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Abstract

Background: Several studies have addressed the epidemiology of community-associated Staphylococcus aureus (CA-SA) in
Europe; nonetheless, a comprehensive perspective remains unclear. In this study, we aimed to describe the population
structure of CA-SA and to shed light on the origin of methicillin-resistant S. aureus (MRSA) in this continent.

Methods and Findings: A total of 568 colonization and infection isolates, comprising both MRSA and methicillin-susceptible
S. aureus (MSSA), were recovered in 16 European countries, from community and community-onset infections. The genetic
background of isolates was characterized by molecular typing techniques (spa typing, pulsed-field gel electrophoresis and
multilocus sequence typing) and the presence of PVL and ACME was tested by PCR. MRSA were further characterized by
SCCmec typing. We found that 59% of all isolates were associated with community-associated clones. Most MRSA were
related with USA300 (ST8-IVa and variants) (40%), followed by the European clone (ST80-IVc and derivatives) (28%) and the
Taiwan clone (ST59-IVa and related clonal types) (15%). A total of 83% of MRSA carried Panton-Valentine leukocidin (PVL)
and 14% carried the arginine catabolic mobile element (ACME). Surprisingly, we found a high genetic diversity among MRSA
clonal types (ST-SCCmec), Simpson’s index of diversity = 0.852 (0.788–0.916). Specifically, about half of the isolates carried
novel associations between genetic background and SCCmec. Analysis by BURP showed that some CA-MSSA and CA-MRSA
isolates were highly related, suggesting a probable local acquisition/loss of SCCmec.

Conclusions: Our results imply that CA-MRSA origin, epidemiology and population structure in Europe is very dissimilar
from that of USA.
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Introduction

Staphylococcus aureus, particularly methicillin-resistant S. aureus

(MRSA) is one of the most important nosocomial pathogens.

Resistance to methicillin is conferred by the mecA gene, which is

carried within a mobile genetic element called staphylococcal

cassette chromosome mec (SCCmec) [1]. So far, eleven major

structural types of SCCmec have been described [2,3,4,5].

For several decades, MRSA was confined to hospitals, but in the

early 1990s, infections in healthy individuals emerged among

Aborigines’ communities in Australia [6]. However, clinical

significance was attributed to these strains only some years later

when four children with no previous hospital contact died in the

USA due to MRSA infection [7]. Although the very first outbreaks

of serious infections in the USA were caused by the USA400 clone

(ST1-IVa) [7], USA300 (ST8-IVa) rapidly become the dominant
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community-associated MRSA (CA-MRSA) clone in the USA [8].

Molecular typing studies showed that CA-MRSA differs from

hospital-associated MRSA (HA-MRSA) [9]: they belong to

distinct genetic lineages, usually carry smaller SCCmec cassettes

and specific virulence factors, such as PVL (Panton-Valentine

leukocidin) and ACME (arginine catabolic mobile element). CA-

MRSA were also shown to have higher expression levels of toxins,

PSMs (phenol soluble modulins) and hemolysins [10,11], suggest-

ing that these isolates are more virulent than HA-MRSA.

Previous studies have shown that USA300 is extremely

widespread in the USA [8,12], whereas CA-MRSA infections in

other parts of the world are generally caused by other clones: the

Southwest-Pacific clone (ST30-IVc) and the Queensland clone

(ST93-IVa) [13,14] in Australia and New Zealand; the Taiwan

clone (ST59-IVa, ST59-V) and USA700 (ST72-IVc) in Asia

[15,16,17]; ST88-IV in Africa [18] and the European clone

(ST80-IVc) in Europe [19]. The dominant CA-MRSA clones in

different European countries have been identified

[20,21,22,23,24,25,26,27,28,29,30]. Nonetheless, the comprehen-

sive population structure of CA-MRSA and MSSA has never been

assessed in Europe. In this study we aim to identify the main CA-

MRSA and MSSA clonal lineages in Europe, to determine its

population structure and to try to shed some light on the origin of

CA-MRSA in this continent.

Methods

Ethical Statement
Isolates were obtained as part of routine diagnostic testing and

were analyzed anonymously and the isolates, not humans, were

studied. All data was collected in accordance with the European

Parliament and Council decision for the epidemiological surveil-

lance and control of communicable disease in the European

community [31,32]. Ethical approval and informed consent were

thus not required.

Bacterial Collection
The collection analyzed in this study was not part of a

structured survey with pre-defined criteria of isolate collection. It

was a convenience sample composed of 568 S. aureus isolates

obtained from infection (74%) and colonization (17%) of patients

attending health-care centers and hospitals, collected within 48

hours of hospitalization. The isolates were distributed among 16 of

the most populous countries in Europe, including The Czech

Republic (75 isolates), Spain (52), The Netherlands (49), Greece

(45), United Kingdom (42), Sweden (41), Hungary (40), Bulgaria

(37), Denmark (37), France (34), Poland (26), Romania (24),

Portugal (22), Finland (20), Slovakia (17) and Italy (7). The isolates

were obtained between 2000 and 2010, but the majority have

been collected between 2007 and 2010 (62%). For 9%, no

information on collection year was available. All isolates were

accompanied by a questionnaire with clinical data and with

questions formulated to ascertain their origin. The isolates were

grouped according with their presumptive origin as suggested

previously [8]: isolates were considered as community-associated

S. aureus (CA-SA) when they were collected from persons that had

no previous contact with the hospital one year before sampling or

any of the assessed risk factors for MRSA carriage and were

obtained in the first 48 hours of hospitalization (Center for Disease

Control criteria); isolates were considered to be community onset

S. aureus (CO-SA) when they were collected from persons with at

least one risk factor for health-care contact although they were

obtained within the first 48 hours of hospitalization. For some of

the isolates no information was available regarding several of the

assessed risk factors for hospital contact. In these cases isolates

were considered as having a community-onset origin.

Patient Population
The patient population included 231 females and 264 males; for

73 patients, no information was available regarding gender. A total

of 122 children (0–18 years), 285 adults (19–64) and 119 elderly

(.65) were included in the study; no information was available

regarding age for 42 patients. The clinical diagnosis for a great

part of the patients (52%) was skin and soft tissue infections

(SSTIs), bacteremia or septicemia (6%), endocarditis (5%),

pneumonia (4%) and urinary tract infections (3%). For 30%, no

information regarding clinical diagnosis was available.

S. aureus Isolation and Cultivation
S. aureus were isolated by standard techniques and identified by

Vitek (Vitek2, bioMérieux, Marcy L’Etoile, France) or phenotypic

methods in participating institutions. Species identification was

confirmed by growth on mannitol salt agar (MSA, Difco, BBL,

Becton Dickinson, Franklin Lakes, New Jersey, USA) and by

testing coagulase production by Staphytec Plus assay (Oxoid,

Cambridge, United Kingdom).

Antimicrobial Susceptibility Testing
All isolates were tested by Vitek (Vitek 2, bioMérieux, Marcy

L’Etoile, France, cards P563, 580, 592, 619), by disk diffusion or

broth microdilution methods, according to the Clinical and

Laboratory Standards Institute recommendations [33] in the

collaborating centers against a panel of 22 antimicrobial agents,

including: oxacillin, benzylpenicillin, cefoxitin, vancomycin, teico-

planin, linezolid, gentamicin, tobramycin, norfloxacin, ciproflox-

acin, levofloxacin, moxifloxacin, erythromycin, clindamycin,

quinupristin/dalfopristin, tetracycline, rifampicin, fosfomycin,

mupirocin, fusidic acid, trimethoprim/sulfamethoxazole, nitrofu-

rantoin. For 157 isolates (28%) the antibiogram was not

performed. Multiresistance was defined as resistance to three or

more classes of antimicrobial agents. The rates of resistance and

multidrug resistance of CA epidemic clones were calculated

considering as denominator the total number of isolates with

antimicrobial susceptibility testing data.

Detection of the mecA and Panton-Valentine Leukocidin
(PVL) Genes

The mecA and lukS-PV, lukF-PV genes (which encode PVL) were

detected as described before [34,35].

SCCmec Typing
The structure of the staphylococcal cassette chromosome mec

(SCCmec) was determined by the updated multiplex PCR strategy

developed by Milheiriço et al [36]. The subtypes of SCCmec type

IV were determined by multiplex PCR as previously described

[37]. In case of ambiguous results this characterization was further

complemented by amplification of the mec complex and ccr

complexes by PCR [9,38,39] and by sequencing an internal region

of the ccrB gene [39,40]. SCCmec was classified according to the

guidelines proposed by the International Working Group on the

Classification of SCC elements [2]. A SCCmec was considered

non-typable (NT) when it was not possible to ascertain a class of

mec complex and/or a type of ccr.

spa Typing
spa typing was performed as previously described [41] and spa

types were attributed using the RIDOM web server (http://

CA-MRSA in Europe
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spaserver.ridom.de/). The BURP algorithm was used to define spa

clonal complexes (spa-CC) [42]. The spa server was used as well to

predict sequence types (STs).

Pulsed-field Gel Electrophoresis (PFGE)
PFGE was performed: 1) to predict STs, when a single ST could

not be inferred from the spa type; 2) to discern the most closely

related clonal type among MSSA strains, when this could not be

deduced from ST (e.g. ST8-MSSA, could be related to USA300

clone or Irish clone (ST8-II)). Total DNA was restricted with SmaI

and the resulting fragments were separated by PFGE as described

before [43]. The SmaI restriction band assignments were

manually curated after automatically band detection, using the

Bionumerics software (Applied Maths, Saint-Martens-Latem,

Belgium). For band patterns comparison with reference strains

belonging to epidemic clones of nosocomial and community

origin, the following settings were used: optimization of 0.50% and

a tolerance of 1.25%. PFGE types were defined by groups formed

at 80% Dice similarity cutoff on a dendrogram constructed by the

unweigthed pair group method using average linkage (UPGMA),

as previously described [40].

Multilocus Sequence Typing (MLST)
MLST was performed when a sequence type (ST) could not be

inferred from the spa type in the spa server (http://spaserver.

ridom.de/) or from the literature. The genetic background of the

isolates was determined by MLST [44]. STs were attributed by

submitting the DNA sequences obtained to the online MLST

database (http://www.mlst.net/). The goeBURST algorithm was

used to assign MLST clonal complexes, CC (http://goeburst.

phyloviz.net). This analysis was performed on October 20th, 2011.

ACME Detection
The two loci (arc and opp3) that compose ACME-I in USA300

strain FPR3757, were amplified by PCR as previously suggested

[45]. This element was typed according with its structure: type I

(arc and opp3 operons), type II (arc operon only) and type III (opp3

operon only) [45,46]. ACME was detected only in the isolates that

were related with community-associated clones (see below).

Definition of CA-MSSA/CA-MRSA Epidemic Clones and
CA-MRSA/CA-MSSA Clone-related

Community-associated (CA), hospital-associated (HA) and live

stock-associated (LA) epidemic clones were defined as clones

(MSSA:ST; MRSA:ST-SCCmec) previously described to cause

infections in several different geographic locations and that have

originated in the community, hospital and animals, respectively

[47]. In this study, MSSA clones were defined by its ST, spa type,

PFGE type (when necessary), ACME and PVL. Each MRSA

clone was defined based on the association of ST and SCCmec type

as previously proposed [44], as well as by spa type, ACME and

PVL. A clone was considered to be related to other if they shared

all these characteristics except one. For ST, only single locus

variants were considered related. When the molecular character-

istics of an isolate did not fulfill these criteria, the isolate was

considered sporadic.

Assessment of Genetic Diversity
The degree of genetic diversity was assessed by the Simpson’s

index of diversity (SID), using a confidence interval of 95% [48].

The SID was estimated by the combination of the results obtained

by spa typing, PVL and ACME determination (each different

combination was considered a ‘‘type’’ or a ‘‘species’’).

Results

Population Structure of S. aureus Isolated from the
Community-associated Setting

A total of 246 isolates (43%) out of the 568 isolates analyzed in

this study were isolated from subjects with no recent hospital

contact (CDC criteria for CA-SA). The combination of the results

obtained by all the typing methods used showed that the majority

(145 isolates, 59%) was related to epidemic community-associated

(CA) clones, while 67 (27%) were related to hospital-associated

(HA) clones and 32 (13%) were sporadic [47]. In addition, we

recovered two MSSA isolates (1%) belonging to livestock-

associated clones or related (ST398 and its SLV, ST291) (Table 1).

Of the 67 S. aureus isolates belonging to HA clones, 43 were

MRSA and were related with EMRSA15 (ST22-IVh) (19 isolates,

46%), EMRSA-3 (ST5-I) (11 isolates, 24%), and Pediatric (ST5-

VI/IV) (six isolates, 15%) clones. The remaining seven isolates

belonged to New York Japan (ST5-II, 3 isolates), Berlin (ST45-IV),

Brazilian (ST239-III), ST111-I, and ST125-V (one isolate each).

The 24 MSSA isolates belonged to ST45 (10 isolates, 43%), ST5

(seven isolates, 26%), ST22 (five isolates, 22%) and ST36 (two

isolates, 9%).

Of the 145 isolates belonging to CA epidemic clones, 58%

(84 isolates) were MRSA and belonged or were related to USA300

(29 isolates, 37%) and the European epidemic clones (28 isolates,

36%). The remaining isolates belonged to: the Taiwan or related

clones, ST59-V, ST59-IVa (four isolates each, 11%), and a ST59

SLV, ST375-IVa (three isolates); ST772-V (five isolates); ST1-IVa

(three isolates); ST97-IVa (two isolates); ST15-IVa, ST30-IVa,

ST30-IVc, ST72-IVc, ST93-IVa, and ST188-IVa (one isolate

each).

Noteworthy, we observed that a considerable part of the isolates

related to epidemic CA-MRSA clones lacked one or more of their

typical characteristics, namely the presence of PVL and/or ACME

or did not belong to a particular spa type or ST (Table 2 and

Information S1). For example, only 11 isolates out of the 29

isolates related to USA300 had all the molecular characteristics of

this clone (ST8-IVa, t008, PVL+ and ACME-I) [12] and 23 out of

28 isolates had all the characteristics of the European clone (ST80-

IVc, t044, PVL+) [49]. Overall a high genetic diversity of MRSA

clones, as determined by the combination of the results obtained

by spa typing, PVL and ACME determination, was observed

[SID = 0.852 (0.788–0.916)].

Among the 61 MSSA that belonged to CA epidemic clones and

were collected from persons with no recent hospital contact, the

most frequent clone was identified as ST30 (12 isolates), followed

by ST121 (11 isolates), but ten additional STs were also identified:

ST1, ST7, ST8 ST15, ST25, ST59, ST80, ST97, ST1472 and

ST1595 (a SLV of ST25). Overall a higher genetic diversity was

observed among MSSA than among MRSA [SID = 0.977 (0.966–

0.989)].

Population Structure of S. aureus Isolated from the
Community-onset Setting

A total of 322 isolates (57%) out of the 568 analyzed in this

study were collected in the first 48 hours of hospitalization from

patients with at least one risk factor for hospital contact, and were

considered as community-onset S. aureus.

Of the 322 isolates, 193 (60%) belonged or were related with

community-associated epidemic clones, 85 (26%) were related to

hospital-associated epidemic clones and 42 (13%) were sporadic.

In addition, we identified two isolates (1%) that belonged to LA-

MRSA epidemic clones (ST398-IVa and ST398-VII) (Table 1).

CA-MRSA in Europe
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From the 85 S. aureus collected in the community-onset setting

but belonging to HA epidemic clones, 43 were MRSA and 42

were MSSA. The most frequent clones among MRSA were E-

MRSA15 (ST22-IVh, 24 isolates, 56%), followed by the Pediatric

(ST5-IV/VI, seven isolates, 16%) and EMRSA 3 (ST5-I, five

isolates, 12%). In addition, we also found the Berlin clone (ST45-

IV, four isolates), New York/Japan (two isolates) and USA500

(ST8-IV, one isolate). The following clones were found among

MSSA: ST45 (20 isolates, 48%), ST5 (15 isolates, 36%) and ST22

(seven isolates, 16%).

Of the 193 isolates belonging or related to community-

associated epidemic clones, 96 (50%) were MRSA. Overall, the

population structure of CA-MRSA and CO-MRSA isolates was

similar. As observed for CA-MRSA isolates, the most frequent

clones among CO-MRSA were USA300-related and the Europe-

an related clone. Other clones that were common in the two

populations were the Taiwan clone (ST59-IVa), the Southwest

Pacific-related clone (ST30-IV), the Queensland clone (ST93-IVa)

and ST97-IVa. However, we also found clones that were only

prevalent among the onset isolate collection, like a SLV of

Taiwan-clone, ST338-V, ST7-IVa, ST7-V, ST1-V and ST1835-

V (Table 3). Overall CO-MRSA showed a genetic diversity similar

to that observed for CA-MRSA isolates as defined by the

combination of spa types with the presence of PVL and ACME

[SID = 0.897 (0.863–0. 931)].

Concerning the 97 CO-MSSA isolates, we observed that its

population structure differed from that found for the group of

community-associated isolates analyzed in this study. The

Table 1. Distribution of the isolates analyzed in this study.

Isolate collection/risk factor for hospital
contact

Total no of
isolates

Infection/colonization (no of
isolates) MSSA/MRSA

Type of epidemic clones (no
of isolates,%)

,48 h with risk factor (CO-MRSA/MSSA) 322 225/46* 172/150 CA (193, 60%); HA (85, 26%); LA
(2, 1%); Sporadic (42, 13%)

,48 h with no risk factors (CA-MRSA/MSSA) 246 198/48 107/139 CA (145, 59%); HA (67, 13%); LA
(2, 1%); Sporadic (32, 13%)

*for 51 isolates no information was available regarding this specific question.
doi:10.1371/journal.pone.0034768.t001

Table 2. Molecular characteristics of the 338 CA and CO-S. aureus isolates analyzed in this study that belonged to epidemic CA
clones or related.

Genetic background
(no of isolates; %)

Sequence types
(MLST) SCCmec types spa types

PVL (no positive
isolates/
total isolates)

ACME (no positive
isolates/
total isolates)

CC8 (92; 27) ST8, ST72, ST931,
ST939

IVa, IVc, IVd, IVg,
IVnt, V, VI, NT

t008, t024, t064, t148, t121, t324, t664, t791,
t1189, t1578, t5160, t1705

59/72 40/72

ST8, ST72 MSSA t008, t024, t126, t148, t3682, t5896 2/20 1/20

CC15 (57; 17) ST1, ST15, T188,
ST772, ST1835

IVa, V, NT t084, t127, t189, t345, t657, t1381, t4915 8/13 –

ST1, ST15, ST772,
ST1867

MSSA t084, t085, t121, t127, t184, t273, t346, t368,
t393, t491, t590, t774, t803, t1387, t1492, t2574

9/44 –

CC80 (55; 16) ST80 IVc, IVnt t044, t067, t131, t376 48/51 –

ST80 MSSA t044, t131, t934 4/4 –

CC30 (46; 14) ST30, ST1456 IVc t019, t1133, t7709 8/9 –

ST30, ST34 ST1472,
ST1833

MSSA t012, t018, t021, t032, t037, t122, t136, t238,
t318, t342, t433, t665, t710, t871, t2509, t4275

6/37 –

CC59 (31; 9) ST59, ST338, ST375 IVa, V t172, t216, t437, t441 20/27 5/27

ST59, ST375 MSSA t216, t316, t437 –

CC121 (18; 6) ST121 MSSA t159, t2019, t272, t284, t435, t1114, t4685,
t6031, t645, t6870, t6872

7/18 –

CC7 (18; 5) ST7 IVa, V t091 1/2 –

ST7 MSSA t091, t796, t7710 – –

CC97 (10; 3) ST97 IVa t267 – –

ST97 MSSA t1965, t267, t3380, t359 – –

CC25 (8; 2) ST25, ST1595 MSSA t078, t081, t280, t2909, t3644, t9040 1/8 –

S93 (3; 1) ST93 IVa t202, t1819 3/3 –

NT- non typable.
Clonal complexes (CC) were assigned by applying the e-BURST algorithm to the data obtained in this study and comparing it with the entire MLST database (www.mlst.
net). This analysis was performed on October 20th 2011.
doi:10.1371/journal.pone.0034768.t002
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prevalent clones among CO isolates (ST30 and related STs and

ST15 and related STs) were different from those identified among

CA isolates. Moreover, we observed that although all clonal types

found among CA isolates were also present in the CO collection,

there were some clonal types that in our study were specific of the

onset setting, namely ST34, ST72, ST1833 and ST1867 (Table 3).

However, this was not translated into a higher genetic diversity

[SID = 0.970 (0.957–0.982)].

Clonal Variation and Genetic Diversity Along Time
Although sampling was performed between 2000–2009, the

genetic diversity observed among the two settings was consistent

throughout the entire time-frame analyzed (Information S1). A

slight increase in genetic diversity was observed, particularly from

the first period (2000–2001) to the second one (2002–2003),

though this increase is not statistically significant.

Moreover, we observed that the number of isolates belonging to

each clone varied along time. Whereas the European clone was

the most frequent between 2004 and 2006, the frequency of

USA300 and Taiwan clones increased in the last two years, when

these clones became prevalent (Information S1).

Distribution of PVL, ACME and SCCmec Among S. aureus
Clones

We found an unexpectedly high prevalence of PVL among

community-associated isolates (77/145, 53%) and community-

onset isolates (98/193, 51%). Interestingly, PVL was not limited to

specific genetic backgrounds or clones, but otherwise was found to

be disseminated among all clonal complexes identified among CA

epidemic clones with the exception of CC97.

The great majority of the PVL-positive isolates were MRSA

(83%, 146 out of 175 isolates) and belonged to USA300 clone and

its variants, the European clone and its variants and the Taiwan

clone and related clones. Moreover, PVL genes were identified in

eight additional clones (ST1-IVa, ST7-IVa, ST30-IVc, ST30-IVa,

ST1456-IVc, ST772-V, USA700-ST72-IVc and Queensland-

ST93-IVa) (Table 2 and Information S1). Regarding the 29

MSSA isolates, PVL genes were disseminated among a total of

nine STs, namely ST1, ST8, ST15, ST25, ST30, ST72, ST80,

ST121 and ST1472.

Like for PVL, the distribution of ACME among community-

associated isolates (21/145, 15%) was similar to that found among

community-onset isolates (25/193, 13%) and was mostly associ-

ated to MRSA (45 out of 46 isolates). However, unlike PVL,

ACME distribution was limited only to two clonal complexes

(CC8 and CC59).

ACME-positive isolates belonged or were related to USA300,

the Taiwan clone and USA700. ACME-I was identified

exclusively among USA300-related isolates, while ACME-II,

containing only the arc operon, was identified in isolates of the

other two epidemic clones.

SCCmec typing showed that the great majority of isolates (73 CA

and 73 CO, 81%) carried SCCmec IV, though SCCmec V (28

isolates, 16%) and VI (four isolates, 2%) were also detected. In

addition, two isolates (1%) presented a non-typable SCCmec. The

most common SCCmec IV subtype was SCCmec IVc (78 isolates,

53%), followed by SCCmec IVa (62 isolates, 42%). SCCmec IVd

and IVg were rare (one isolate each) and four isolates carried a

non-subtypable SCCmec IV.

Antibiotic Resistance
As expected, we found a very low rate of antibiotic multi-

resistance in CA-MRSA from both settings, 11.6% (21 isolates out

of 181). The results are summarized in Table 4. Multi-resistance

occurred exclusively in USA300 clone and its variants, in the

European clone, Taiwan and related clones and a ST772-V

isolate. Two isolates resistant to four classes of antimicrobial agents

were identified and belonged to clones ST8-IVc, t024, PVL+ and

ST772-V, t1387, PVL+. Regarding MSSA, antibiotic resistance

rates were extremely low. In fact, only 19.9% (36 isolates out of

181) of the isolates were resistant to at least one class of antibiotics

and a single isolate was identified as multi-drug resistant (0.5%,

ST121, resistant to ciprofloxacin, erythromycin, clindamycin and

tetracycline).

Geographic Distribution of CA-S. aureus in Europe
Overall, a high genetic diversity was found among community-

associated and community-onset S. aureus isolates belonging to CA

epidemic clones (Figure 1). However, some asymmetry was

observed in what respects to the number of different clonal types

found in each country. Whereas in The Netherlands as many as

ten different clonal types were identified among 22 isolates (ST80-

Table 3. Distribution of the 338 MRSA and MSSA isolates
belonging to epidemic CA-MRSA clones or related in the
community and community-onset settings.

Community-associated epidemic clones and related variants (%)

MRSA (52%),
84 isolates

MSSA (48%),
61 isolates

Community-
associated

USA300 and related (35%) ST30 (20%)

European and related (33%) ST121 (18%)

Taiwan and related (13%) ST7 (13%)

ST772-V (6%) ST15 (13%)

ST1-IVa (4%) ST97 (8%)

ST97-IVa (3%) ST80 (7%)

USA700 (1%) ST59 (5%)

ST188-IVa(1%) ST25 (5%)

ST15-IVa (1%) ST1 (3%)

ST30-IVa (1%) ST8 (3%)

ST30-IVc (1%) ST1595 (3%)

ST93-IVa (1%) ST1472 (2%)

MRSA (50%),
96 isolates

MSSA (50%),
97 isolates

Community-onset USA300 and related (42%) ST30 (22%)

European and related (24%) ST15 (21%)

Taiwan and related (17%) ST1 (14%)

Southwest Pacific (5%) ST8 (11%)

USA700 (2%) ST7 (8%)

Queensland (2%) ST121 (7%)

ST1456-IVc (2%) ST72 (7%)

ST772-NT(1%) ST25 (3%)

ST7-IVa (1%) ST97 (2%)

ST7-V (1%) ST34 (2%)

ST1-V (1%) ST59 (1%)

ST1835-V (1%) ST1833 (1%)

ST97-IVa (1%) ST1867 (1%)

doi:10.1371/journal.pone.0034768.t003
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IVc, ST772-V, ST8-IVa, ST8-IVnt, ST7-V, ST30-IVc, ST398-

IVc, ST398-VII, ST93-IVa, ST97-IVa), in Poland only three

types among 16 isolates were found (ST338-V, ST80-IVc, ST7-

IVa) (Information S1).

In spite of the genetic diversity observed, all the clonal types

identified were disseminated in more than one country and

neighboring countries shared more clonal types than distant

countries. The most epidemic clonal type among MRSA was the

European clone (ST80-IVc) that was found in eleven different

countries, followed by USA300 (ST8-IVa) that was recovered in

nine countries.

Interestingly, some specificity was observed in what respects the

distribution of the most prevalent clones. Whereas USA300, the

European or related clones were the most prevalent in Southern

and Central European countries, in Northern Europe (Finland,

Sweden and Poland) the most prevalent MRSA clonal type was

related with the Taiwan clone (Figure 1 and Information S1).

Regarding MSSA, the most disseminated clone was ST15 and

related clonal types that were identified in eleven different

countries, followed by ST121 and ST30 and its derivatives that

were identified in nine countries each.

CA-MRSA Origin
In order to understand the origin of the CA-MRSA clones

presently circulating in Europe, we analyzed the relatedness of spa

types identified in MSSA and MRSA isolates belonging to the

same clonal lineage by BURP analysis of the spa types (Figure 2).

BURP analysis showed that MRSA and MSSA isolates

belonging to ST8 (CC-t008, CC-t024, CC-1705/1189), ST72

(CC-t148, CC-t148/t3682) and ST59 (CC-t437, CC-t216) or its

SLVs (Figure 2) shared the same or related spa types, suggesting

that CA-MRSA and CA-MSSA isolates belonging to these STs

were closely related.

On the other hand, for MRSA and MSSA isolates from ST30

(CC-t012) and ST93 (CC-t202/t1819) genetic clones no common

or related spa types were found. Regarding isolates belonging to

the European clone, no conclusions could be drawn since only a

small number of MSSA isolates belonging to this specific genetic

background was found in our collection.

Discussion

The recent establishment of CA-MRSA as a leading cause of

infections in healthy individuals is a matter of great concern.

Previous studies that have addressed the epidemiology of this

pathogen indicate that most of the infections are caused by a

limited number of specific clones that in addition seem to be

geographically restricted [19,47,50]. In this study we report for the

first time the population structure of CA-MRSA in Europe and

describe the very high level of genetic diversity and epidemicity of

CA-MRSA clones on this continent.

As many as ten different CA-MRSA clones in a single country

were found. Moreover, several different variants of already

described clonal types were identified, differing in the nucleotide

sequence of housekeeping genes or in the SCC elements content

and virulence genes; several new or rare CA-MRSA clonal types

(ST772-V, ST7-V, ST188-IVa, ST15-IVa, ST375-IVa and

ST338-V) were identified. Similar results were described in studies

conducted in some European countries [51,52,53], but it was

never observed at a global scale. The reason for the large genetic

diversity observed, in contrast to the situation of a single epidemic

CA-MRSA clone described in USA, is not obvious. We suggest

that the multiplicity of cultural and social behaviors and habits

inherent to each European country, namely frequency and

destination of travel, different hygienic habits, infection control

measures and antibiotic prescription and consumption policies

may have shaped the population structure of CA-MRSA on this

continent. Moreover, the geographic proximity of the countries

and the travel habits resultant of tourism and business can also

have had a role on the dissemination of clonal types among the

different European countries.

Interestingly, the most frequent clone detected in the collection

was USA300 or related clones, which contrasts sharply with

previous studies in Europe in which the European clone was found

to be predominant [19]. This represents a changing trend in the

epidemiology of CA-MRSA in Europe. The USA300 clone is well

adapted to the community environment; it carries ACME and

SCCmec IV, which are believed to confer a higher fitness to the

clone [45,46]. Around 33% of all ST8 isolates had all the

characteristics of the USA300 clone, suggesting that this clone was

imported and is becoming well established in Europe. However,

the great majority of ST8 isolates was highly related with USA300,

but lacked one of its typical molecular characteristics or had others

instead (for instance, the presence of SCCmec V or the absence of

PVL). We were able to detect as many as six different SCCmec

(sub) types and nine spa types associated to ST8, indicating that

different sub clones exist in the population structure of this ST.

The high genetic diversity that we found among ST8 isolates was

already observed by others [54,55,56]. The origin of such variants

is unknown. They may have derived from the epidemic USA300

strain imported from the USA and evolved rapidly in Europe in

order to adapt to different selective pressures, namely by

acquiring/losing virulence factors as PVL or antibiotic resistance

determinants as SCCmec. Alternatively, they may have diverged

from a USA300 MSSA ancestor early in time and established as a

different clone in Europe by the acquisition of an SCCmec element.

The finding in our study of MSSA and MRSA isolates belonging

Table 4. Molecular characteristics of multidrug-resistant
MRSA isolates belonging to epidemic community-associated
clones collected in the community and community onset
settings.

Antibiotic Resistance Genetic background (no isolates)

Beta-lactams, Fus acid, Tet ST80-IVc, t044, PVL+, ACME - (2)

ST80-IVc, t131, PVL+, ACME- (1)

ST8-IVc, t024, PVL+, ACME- (1)

ST375-IVa, t172, PVL-, ACME- (1)

ST59-V, t437, PVL+, ACME II (1)

ST59-V, t437, PVL+, ACME – (1)

Beta-lactams, Fus acid, Ery ST80-IVc, t044, PVL+, ACME - (3)

ST80-IVnt, t044, PVL+, ACME – (1)

ST8-IVc, t024, PVL+, ACME – (1)

Beta-lactams, Cipro, Ery ST8-IVa, t008, PVL+, ACME I (3)

ST8-IVc, t008, PVL+, ACME – (1)

Beta-lactams, Tet, Ery ST8-IVc, t024, PVL+, ACME- (1)

ST80-IVc, t044, PVL+, ACME- (1)

ST59-IVa, t437, PVL-, ACME II (1)

Beta-lactams, Ery, Clind, Tet, Fus acid ST8-IVc, t024, PVL+, ACME- (1)

Beta-lactams, Ery, Tet, Gent ST772-V, t1387, PVL+, ACME- (1)

Cipro – ciprofloxacin; Clind – clindamycin; Ery – erythromycin; Fus acid – fusidic
acid; Tet – tetracycline; Gent – gentamicin.
doi:10.1371/journal.pone.0034768.t004
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to the same spa type that is different from t008 supports the

existence of a European ST8 clone. However, only the whole

genome sequence of these strains will clarify this hypothesis.

Besides ST8, we also found MRSA and MSSA isolates

belonging to ST72 and ST59 that shared the same spa types,

which suggests that these specific genetic backgrounds could have

also emerged recently in Europe by the acquisition of SCCmec in

already established MSSA clones. On the contrary, for ST30 and

ST93 or related clones no common or related spa types were found

between MRSA and MSSA, suggesting that CA-MRSA belonging

to these clones were probably created outside Europe and

imported later.

The continuous evolution of CA-MRSA in Europe could

explain the high level of genetic diversity of SCCmec found among

CA-MRSA belonging to the same ST: by emerging in Europe,

these isolates could have acquired the most common SCCmec in

each specific location. A similar proposition has been made by

Nübel et al [57] to explain the diversity among ST5 MRSA.

Although our proposition is plausible we cannot disregard the

hypothesis that the different genetic backgrounds were imported as

MRSA and later lost the SCCmec in Europe in the absence of

selective pressure.

The collection analyzed in this study was not part of a

structured survey with pre-defined criteria of isolate collection. It

was a convenience sample composed of isolates collected within 48

hours of hospital admission. Consequently, the number of isolates

obtained was not equal from country to country and the timeframe

of isolation spanned almost 10 years. The inclusion of a low

number of isolates in some countries might have provided an

erroneous picture of the local epidemiology that wrongly

influenced the overall genetic diversity described in this study.

Moreover, due to the long timeframe of sampling, the genetic

diversity observed in this study might be inflated, not reflecting

absolutely the present reality in Europe.

We found an unexpectedly high prevalence of PVL in our

collection (52%) and a high level of dissemination among S. aureus

CA-epidemic clones. To our knowledge, PVL was only rarely

reported among S. aureus collected in Europe [58,59] and was

usually associated with the European clone [19]. However, there

are studies that report an increasing frequency of this leukocidin in

isolates collected in Europe [53,60]. The data that resulted from

our study suggest that PVL frequency in Europe may be

increasing, not only due to the dissemination of PVL positive

epidemic CA-MRSA clones, but also due to de novo acquisition of

phage encoded PVL by different genetic backgrounds. Surveil-

lance measures should be taken in order to detect these leukocidin-

producing isolates, since several studies have indicated a

connection between the existence of PVL and the outcome of

the disease [11,61,62,63,64].

In contrast we found a low frequency of ACME (14%) mainly

associated with the USA300 clone (ST8-IVa). Noteworthy, we

found some isolates related with the Taiwan clone (ST59-V) and

USA700 (ST72-IV) carrying ACME-II. This fact is particularly

relevant if one take into consideration that acquisition of ACME

by already epidemic S. aureus clones may increase their capacity of

dissemination [46].

Figure 1. Prevalence of MRSA and MSSA community-associated clones in Europe. Distribution of the most prevalent MRSA and MSSA
community-associated epidemic and related clones in 16 of the most populous European countries. Each color represents a different clone and
related clonal lineages. A –MRSA; B –MSSA.
doi:10.1371/journal.pone.0034768.g001
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The CA-MRSA population structure in the community and

community onset settings were almost identical in what regards to

distribution of the most prevalent clones, however certain clones

were only identified among the onset-population. The results

suggest that a high number of different CA-MRSA clonal types are

at risk of entering hospital environment through the community-

onset population.

In this study we identified a tremendously high level of genetic

diversity among CA-MRSA in Europe as well as a high frequency

of PVL-positive isolates. This scenario poses an unprecedented

challenge not only to diagnostic but also to infection control. The

fast CA-MRSA evolution in Europe demands a continuous

surveillance as a means to help local health-care providers in

designing strategies to detect and control CA-MRSA.

Supporting Information

Information S1 Additional molecular and epidemiolog-
ical information.

(DOCX)
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