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Key Points 

Question: Does a polygenic score for Schizophrenia (SCZ) predict response to lithium in 

patients with Bipolar Disorder (BPD)? What are the molecular drivers of the association 

between SCZ and lithium treatment response? 

Findings: We found an inverse association between genetic loading for SCZ risk variants 

and response to lithium in patients with BPD. Genetic variants in the HLA region on 

chromosome 6, the antigen presentation pathway and markers of inflammation (TNFα, IL-4, 

IFNγ) point to molecular underpinnings of lithium treatment response in BPD.  

Meaning: In patients with BPD, an assessment of a polygenic load for SCZ risk variants 

may assist in conjunction with clinical data to predict whether they would respond to lithium 

treatment.  
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ABSTRACT 

Importance: Lithium is a first-line mood stabilizer for the maintenance treatment of Bipolar 

Disorder (BPD). However, the efficacy of lithium varies widely, with a non-response rate of 

up to 30%. Biological response markers and predictors are lacking. 

Objective: Genetic factors are thought to mediate lithium treatment response, and the 

previously reported genetic overlap between BPD and schizophrenia (SCZ) led us to test 

whether a polygenic score (PGS) for SCZ could predict lithium treatment response in BPD. 

Further, we explored the potential molecular underpinnings of this association.  

Design: Weighted SCZ PGSs were computed at ten p-value thresholds (PT) using summary 

statistics from a genome-wide association study (GWAS) of 36,989 SCZ cases, and 

genotype data for BPD patients from the Consortium on Lithium Genetics (ConLi+Gen). For 

functional exploration, we performed a cross-trait meta-GWAS and pathway analysis, 

combining GWAS summary statistics on SCZ and lithium treatment response.  

Setting: International multicenter GWAS.  

 Participants: Patients with BPD who had undergone lithium treatment were genotyped and 

retrospectively assessed for long-term treatment response (n=2,586).  

Main outcome measures: Clinical treatment response to lithium was defined on both the 

categorical and continuous scales using the ALDA score. The effect measures include odds 

ratios (ORs) and the proportion of variance explained (R2), and a significant association was 

determined at p<0.05. 

Results: The PGS for SCZ was inversely associated with lithium treatment response in the 

categorical outcome (p=8x10-5), at PT <5x10-2. Patients with BPD who had low polygenic 

load for SCZ responded better to lithium, with ORs for lithium response ranging from 3.46 
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[95%CI: 1.42-8.41 at 1st decile] to 2.03 [95%CI: 0.86-4.81 at the 9th decile], compared to 

the patients in the 10th decile of SCZ risk. In the cross-trait meta-GWAS, 15 genetic loci that 

may have overlapping effects on lithium treatment response and susceptibility to SCZ were 

identified. Functional pathway and network analysis of these loci point to the HLA complex 

and inflammatory cytokines (TNFα, IL-4, IFNγ) as molecular contributors to lithium 

treatment response in BPD. 

Conclusions and Relevance: The study provides, for the first-time, evidence for a negative 

association between high genetic loading for SCZ and poor response to lithium in patients 

with BPD. These results suggest the potential for translational research aimed at 

personalized prescribing of lithium. 

Keywords: lithium treatment, schizophrenia, bipolar disorder, polygenic score, GWAS, 

pharmacogenomics, immune genes, HLA, TNFα, cytokines 
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INTRODUCTION 

Bipolar Disorder (BPD) is a severe and often disabling psychiatric condition, characterized 

by recurrent dysregulation of mood with episodes of mania and depression. With an early 

disease onset and an estimated lifetime prevalence of 1%1 to 4.4%2, BPD is associated with 

high personal impairment and societal costs, accounting for 9.9 million years of life lived 

with disability worldwide3, and substantially increased all-cause mortality and risk of 

suicide4. The etiology of BPD is complex, and both genetic and environmental factors have 

been shown to contribute to the pathogenesis of the disorder5. The estimated heritability of 

BPD ranges from 60% to 85%6, and candidate gene7 and genome-wide association studies 

(GWASs)8-12 have successfully identified genetic loci implicated in the illness. However, 

only a small fraction of the heritability is accounted for by replicated genetic variants that 

have been identified so far7. 

 Lithium stabilizing properties were discovered by Australian psychiatrist John Cade 

back in 194913. Since then, it has retained a status as the ‘gold standard’ mood stabilizer14,15, 

possessing unique protective effects against both manic and depressive episodes16, as well 

as for suicide prevention17. Consequently, lithium is recommended as first-line maintenance 

treatment for BPD by several clinical practice guidelines18-21. However, there is significant 

inter-individual variation between lithium treatment responders and non-responders. About 

30% of patients are only partially responsive, and more than a quarter show no clinical 

response at all22. While clinical studies report a combination of demographic and clinical 

characteristics as potential predictors of treatment response in patients with BPD23, genetic 

factors also appear to be highly involved22,24-26. So far, three GWASs have successfully 

identified single nucleotide polymorphisms (SNPs) associated with lithium treatment 
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response in BPD pointing to different genetic loci 22, 27, 28. To improve the understanding of 

the molecular mechanisms underlying the therapeutic effects of lithium, alternative genomic 

approaches can complement GWAS deserve consideration. One such approach is polygenic 

analysis, which quantifies the combined effects of genetic variants across the whole genome 

on a given clinical outcome, computed as a weighted summation of effect sizes of multiple 

independent polymorphisms. An accurate and successful polygenic model may assist early 

screening for disease risk, clinical diagnosis, and the prediction of treatment response and 

prognosis. In the current study, we aimed to investigate whether BPD patients with high trait 

genetic susceptibility for schizophrenia (SCZ), expressed by their SCZ polygenic score 

(PGS), would respond better or more poorly to lithium compared to BPD patients with a low 

PGS for SCZ. Additionally, we set out to explore the genetic and molecular underpinnings 

of any identified association between SCZ and lithium treatment response. A number of 

previous observations motivated this approach. First, there is increasing evidence for a 

substantial genetic overlap between BPD and SCZ. The Psychiatric Genomics Consortium 

(PGC) estimated a shared genetic variation of ~68%, which is the highest among all pairs of 

psychiatric diagnoses27. Consistent with this, several shared risk genes and shared biological 

pathways associated with both disorders have been identified28,29,30, and current sample sizes 

for SCZ far exceed those available for BPD and thus are better powered. Second, despite 

these genetic and molecular commonalities, lithium is not an effective medication for people 

suffering from SCZ31, and increased SCZ trait loading in those with BPD might be expected 

to serve as a predictor for poor treatment response. An earlier family study found an 

association between family history of schizophrenia and poor response to lithium32 Third, 

during acute illness episodes, BPD and SCZ are often difficult to distinguish clinically 
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because of overlapping psychotic symptoms such as hallucinations, delusions, and 

disorganization, as well as some common behavioral disturbances such as irritability or 

anger 33. Aiming to predict response to lithium, which could potentially confer advantages 

for patients and their treating physicians34 we sought to evaluate the aggregated effect of 

genome-wide SNPs for SCZ on lithium treatment response in BPD using a polygenic score 

approach that was based on the results of the largest SCZ GWAS to date35. Further, in order 

to explore potential genetic and molecular drivers of any detected association, we carried 

out a cross-trait GWAS meta-analysis, combining the summary statistics from the largest 

available GWAS for both SCZ35 and lithium response22. Overlapping SNPs that met 

genome-wide significance in the meta-GWAS were subsequently analyzed for biological 

context using the Ingenuity® Pathway Analysis platform (IPA®).  
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METHODS AND MATERIALS  

Study Samples 

The International Consortium on Lithium Genetics (ConLi+Gen)  

The ConLi+Gen Consortium (www.ConLiGen.org) is an initiative by the National Institute 

of Mental Health (NIMH) and the International Group for the Study of Lithium-Treated 

Patients (IGSLI) (www.IGSLI.org) that was established with the aim of discovering genetic 

variants responsible for lithium treatment response in BPD36. The ConLi+Gen study 

involved patients with BPD from Europe, South America, USA, Asia, and Australia22 who 

had been treated with lithium at some stage since diagnosis. The first GWAS based on this 

initiative was published in 201622. For the current study, genetic and clinical data collected 

from 2,586 patients with BPD who were part of the ConLi+Gen consortium were 

analyzed22,36. A series of quality control procedures were implemented on the genotype data 

before and after imputation as described below. 

Genotyping and quality control 

The genome-wide genotypes, as well as clinical and demographic data, were collected by 22 

participating sites. Quality control (QC) procedures were implemented using PLINK37. 

Samples with low genotype rates <95%, sex inconsistencies (X-chromosome 

heterozygosity), and genetically related individuals were excluded. We also excluded SNPs 

that had a poor genotyping rate (<95%), an ambiguity (A/T and C/G SNPs), a low minor 

allele frequency (MAF<1%), or that showed deviation from Hardy-Weinberg Equilibrium 

(p<10-6).  
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Imputation 

The genotype data passing QC were imputed on the Michigan server38 

(https://imputationserver.sph.umich.edu) separately for each genotype platform using the 

1000 Genomes Project Phase 3 (Version 5) reference panel. During the imputation process, 

we used the European reference panel for all the samples except for those from Japan and 

Taiwan, for which the East Asian reference population was used. After excluding the low-

frequency SNPs (MAF<10%); low-quality variants (imputation INFO < 0.9); and indels, the 

imputed dosages were converted to best guess genotypes. The subsequent polygenic 

analyses were performed using the best guess genotypes. 

Discovery GWAS summary data 

The PGSs were calculated using the approach previously described by the International 

Schizophrenia Consortium39. This method requires discovery and target datasets. The 

discovery data, which refers to the GWAS summary statistics-effect sizes (beta, a log of 

odds ratio), were obtained from a previously published SCZ GWAS35 that was publicly 

available for download by the Psychiatric Genomics Consortium (PGC) 

http://www.med.unc.edu/pgc/, accessed on March 18, 2017. 

Target outcome 

Lithium treatment response in BPD was defined for patients who had received lithium for a 

minimum of 6 months. Lithium treatment outcome was assessed using the “Retrospective 

Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder” 

scale, also known as the ALDA scale 40,41. The ALDA scale is a well-validated tool to rate 

symptom improvements after treatment with lithium in BPD, and it has shown excellent 
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inter-rater reliability42. The ALDA scale quantifies symptom improvement over the course 

of treatment (A score, range 0–10), which is then weighted against five criteria (B score) 

that assess confounding factors, each scored 0, 1, or 2. The total score is calculated by 

subtracting the total B score from the A score, and negative scores are set to zero22. We 

developed two main outcomes for lithium response (categorical and continuous outcome). 

The categorical (i.e., good versus poor) response to lithium in BPD was defined based on 

the total score as a cut-off score of 7, in which patients with a total score of 7 or higher were 

categorized as “responders”. The ALDA score on subscale A was used as a continuous 

outcome after excluding individuals with a total B score greater than 4 or who had missing 

data on the total scores of ALDA subscale A or B22. In addition to the ALDA scale scores, 

information on covariates such as age and gender was collected, and further details can be 

found in an earlier publication22. 

Polygenic scoring 

Quality-controlled SNPs were clumped for linkage disequilibrium based on GWAS 

association p-value informed clumping using r2 = 0.1 within a 250-kb window to create a 

SNP-set in linkage equilibrium using PLINK software run on Linux (plink --clump-p1 1 --

clump-p2 1 --clump-r2 0.1 --clump-kb 250). Then, the SNPs at ten p-value thresholds 

(<1x10-4, <1x10-3, <0.01, <0.05, <0.1, <0.2, <0.3, <0.4, <0.5, <1) were selected to compute 

the SCZ PGSs in the ConLi+Gen sample. The major histocompatibility complex region was 

excluded from the PGS calculation because of its complex linkage disequilibrium structure. 

A genome-wide weighted SCZ PGS for each participant was calculated at each p-value 

threshold (PT) as the sum of independent SNPs genotype dosage (from 0 to 2) of the 

reference allele in the ConLi+Gen genotype data, multiplied by SCZ GWAS effect sizes for 
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the reference allele, estimated as log (OR) divided by the total number of SNPs in each 

threshold. 

STATISTICAL ANALYSES  

For statistical analyses, we applied PGS association analyses, cross-trait meta-GWAS, and 

Ingenuity Pathway Analysis (IPA) of the cross-trait findings. The details for each analysis 

are described below. 

Polygenic score association analysis  

Once the PGSs were constructed, the association of the PGSs at each PT and lithium 

treatment response was evaluated using regression models. While a binary logistic 

regression was implemented for the categorical outcome (response versus non-response), a 

linear regression was applied to lithium treatment response on the continuous scale. Using 

the PGS at the most significant threshold (PT <5x10-2), we divided the study samples into 

ten deciles (1st to 10th), ranging from the lowest polygenic load (1st decile) to the highest 

polygenic load (10th decile). The most significant threshold refers to the PT at which the 

PGS for SCZ and lithium treatment outcomes were most strongly associated (i.e., the 

smallest p-value). Using binary logistic and linear regression modeling, we compared BPD 

patients with lower polygenic load (1st to 9th deciles) for SCZ with patients with the highest 

polygenic load (10th decile), to quantify the effect of SCZ polygenic load on lithium 

treatment outcomes. Associations were considered significant at p < 0.05. 

The PGS association analyses were adjusted for the covariates age, gender, genotyping 

platform, and 7 principal components (PCs) calculated in PLINK. The analyses were 

performed using R for Statistical Computing and PLINK 1.9 for Linux 37. Prediction 

accuracy, the percentage of variance in lithium response accounted by for the PGS at each 
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PT, was estimated as the variance explained by the full model including each PGS and 

covariates minus the variance explained by the model including only covariates. 

Cross-trait meta-analysis of genome-wide association studies 

Biologically, a significantly associated PGS implies that genetic factors influencing the two 

traits are overlapping. Thus, further analyses were performed to identify genetic 

polymorphisms that are likely to both increase the susceptibility to SCZ and influence 

treatment response to lithium in patients with BPD. We performed cross-trait meta-analyses 

by combining the summary statistics for GWAS on lithium response from the ConLi+Gen22 

and GWAS on SCZ from the PGC35. We applied both the O’Brien’s (OB) method and the 

direct Linear Combination of dependent test statistics (dLC) approach43,44, which are 

implemented in the C++ eLX package. Briefly, the OB and dLC approach, combine 

univariate meta-GWAS data (beta coefficients or Z-scores) for each SNP43,44.  

The methods follow an inverse-variance meta-analysis approach and directly combine 

correlated Z-scores (as in meta-analyses) considering the correlation within the univariate 

test statistics and estimated variances between the traits. The OB method is more powerful 

when the summary statistics are homogeneous (not very different) and in the similar 

direction, while dLC is better when the test statistics are either heterogeneous or in opposite 

directions. Because they often vary based on the sign of the Z-scores, the smallest p-value 

on either of the two tests could be used to determine statistical significance. Further details 

are available elsewhere43,44. 

In this cross-trait meta-analysis, for each SNP we combined GWAS association Z-scores 

from the SCZ study35 with the GWAS association Z-scores for lithium treatment response in 

the ConLi+Gen study22 separately for the categorical and continuous outcomes. Each 
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analysis generates two test statistics and associated p-values, one for the OB method and 

one for the dLC method. Statistical significance of the cross-trait association was 

determined based on the smaller of the two p-values. The results were considered significant 

if (1) the p-value for the cross-trait meta-analysis reached genome-wide significance (p< 

5×10-8), and; (2) the univariate meta-GWAS effects were at least nominally significant for 

both SCZ and lithium response (p< 0.01). For each cross-trait meta-analysis, only one 

independent lead SNP per locus was reported. Nearby SNPs in LD (r2>0.1) with the lead 

SNP were considered dependent and belonging to the same locus. 

Ingenuity® Pathway Analysis (IPA®) 

To characterize the potential biological significance of the SNPs discovered from the cross-

trait meta-analyses, we performed analyses using QIAGEN's Ingenuity® Pathway Analysis 

(IPA®, QIAGEN Redwood City, CA, USA, www.qiagen.com/ingenuity). 

To prepare the input genes for IPA, we followed a three-step bioinformatics approach: 

Step 1: We defined tagSNPs that are in high linkage disequilibrium (LD: r2>0.5) and within 

a + 500-kb region with the meta-GWAS significant SNPs (gSNPs) using the genetic catalog 

of the 1000 Genomes project phase 3, October 2014 release45. Step 2: The gSNPs and 

tagSNPs from step 1 were mapped to the genes in which they are located. This generated a 

list of hosting genes (hGenes).  

Step 3: We performed an expression quantitative trait loci (eQTL) lookup in three databases, 

searching for any nearby genes (eGenes) whose expression was associated with each of the 

gSNPs and tagSNPs from step-1. These databases contained the results of eQTL-mapping 

studies from blood and/or brain tissues: 1) Westra et al46 at FDR<0.05 

http://genenetwork.nl/bloodeqtlbrowser/, 2) Almanac (Braineac)47 at p<1x10-5 
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http://www.braineac.org/, and 3) Genotype-Tissue Expression (GTEx) data release V6p 

(dbGaP Accession phs000424.v6.p1) accessed from the GTEx Portal on February 8, 2017, 

at https://www.gtexportal.org/home/. 

Finally, the combined list of hGenes and eGenes was used as input into the IPA software 

after removing gene duplicates. IPA compares the proportion of input genes mapping to a 

biological pathway to the reference genes list in the ingenuity databases. The significance of 

the overrepresented canonical pathways and functional networks is determined using the 

right-tailed Fisher’s exact test and later adjusted for multiple testing using the Benjamini-

Hochberg (BH) method48. Significant results were determined at BH adjusted P-value 

<0.01. 
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RESULTS 

Sample characteristics and lithium treatment response rates  

In total, 3,193 patients with BPD who had undergone lithium treatment and had available 

genotype and clinical data participated in the study. After QC, 2,586 patients remained for 

analysis, of whom 2,366 were of European ancestry and the rest Asian. The mean (sd) age 

of all the patients combined was 47.2 (13.9) years and 2,052 (62.7%) were female. In all, 

704 (27.2%) had a good response to lithium treatment (ALDA score ≥7). The mean (sd) 

ALDA score for all participants was 4.9 (3.1) (Table 1).  

Table 1: The characteristics of patients with BPAD and outcomes with lithium treatment 

Patient 

characteristics 

Categorical outcomea  

Good versus poor response 

Continuous scaleb 

ALDA score on subscale A 

BPAD patients (N)  2,586 2,244 

Responders, N (%)  704 (27.2)  - 
Age at interview, 

mean (s.d)  

47.2 (13.9)   47.4 (13.9)  

Sex, Women, N (%)  1,478 (57.2%)  1,291(57.5%) 
ALDA scale A score, 

mean (s.d) 

6.2(3.0) 6.3 (3.0) 

ALDA scale total B 

mean (s.d) 

2.5(1.7) 2.1 (1.2) 

ALDA scale total 

mean (s.d) 

4.1(3.2) 4.5(3.1) 

Legend: BPAD: Bipolar affective disorder; aTotal ALDA score ≥7 was defined as good 

response; bSubjects with total B score >4 or who had missing data on the total scores on 

ALDA subscale A or B were excluded. 
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Associations of SCZ PGS with lithium treatment response in BPD patients 

At the most significantly associated threshold (PT <5x10-2), the PGS for SCZ was strongly 

associated with lithium treatment response in BPD (p=8x10-5) for the categorical outcome 

on the ALDA scale (Figure 1), explaining 0.8% of the variance. For the continuous outcome 

(total score on the ALDA subscale A), the direction of association was congruent with the 

finding on the categorical outcome, but was not statistically significant (p>0.05). The 

association results of the categorical and continuous outcomes at each threshold levels are 

detailed in Figure 1. In each threshold, a lower polygenic load for SCZ was associated with 

a favorable lithium treatment response in patients with BPD (Table 2 & Figure 1).  

Table 2 shows the odds ratios (OR) for the association between lithium treatment response 

in BPD and SCZ PGS in deciles, comparing the response status of patients in the low 

polygenic load categories (1st to 9th deciles) with patients in the highest polygenic load 

category for SCZ (in the 10th decile). Results demonstrate that BPD patients who carry a 

lower polygenic load for SCZ have higher odds of favorable lithium treatment response, 

compared to patients carrying a high polygenic load. In other words, the OR of favorable 

treatment response decreased as the genetic load for SCZ increased, ranging from an OR 

3.46 [95%CI: 1.42-8.41] at 1st decile to OR 2.03 [95%CI: 0.86-4.81] at the 9th decile, 

compared to the reference SCZ PGS at the 10th decile. As well, there was a highly 

significant linear trend in the association between the PGS at deciles and lithium treatment 

response (Table 1& Figure 1). 

Figure 1: The graph shows (A) the association of polygenic score (PGS) for schizophrenia 

(SCZ) and lithium treatment response defined as a categorical and continuous scale, at 

different SCZ GWAS p-value thresholds; and (B) trends in the odds ratios for favorable 
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lithium treatment response for BPD patients in the low SCZ deciles (1st to 9th) compared to 

patients in the highest (10th) SCZ PGS decile, estimated at the most significant p-value 

thresholds (PT <5x10-2) (n=2,586).  

 

Legend figure 1a: The y-axis (R2) refers to the percentage of variance in lithium treatment 

response accounted for by the PGSs of SCZ at a particular p-value threshold. On the x-axis, 

plotted from left to right, are the GWAS p-value thresholds used to group single nucleotide 

polymorphisms (SNPs) for PGSs. On the top of each bar are the p-values of the association 

between the PGS for SCZ and lithium treatment response. 
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Legend figure 1b: The effect sizes on the y-axis are estimated in odds ratios and on the x-

axis are SCZ PGS deciles (1st to 10th). X-sign on the line plot indicates that the association is 

not statistically significant at that particular decile. 

Table 2: The odds ratios of favorable lithium treatment response (categorical outcome) in 

patients with BPAD, comparing the response status of patients in the low PGS decile for 

SCZ with patients with the highest polygenic load for SCZ (10th decile).  

SCZ PGS in 

categories (deciles) 

Patients with BPAD (n=2,586) 
aR/N unadjusted OR  

(95% CI)  

bAdjusted OR  
(95% CI)  

1st lowest score 83/175 1.97 (1.32-2.96)  3.46 (1.42-8.41)  

2nd  80/179 1.86 (1.24-2.79)  3.19 (1.32-7.74)  
3rd  78/180 1.80 (1.20-2.71)  2.87 (1.18-6.95)  
4th  76/184 1.72 (1.14-2.59)  2.86 (1.18-6.91)  
5th  76/180 1.76 (1.17-2.64)  2.71 (1.12-6.55)  
6th  67/194 1.44 (0.95-2.18)  2.50 (1.03-6.05)  
7th  58/200 1.21 (0.79-1.85)  1.97 (0.81-4.79)  
8th  75/184 1.70 (1.13-2.55)  2.47 (1.03-5.96)  
9th  61/198 1.28 (0.84-1.95)  2.03 (0.86-4.81)  
10th highest score 50/208 1 (reference)  1 (reference)  
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Legend: The reference decile refers to the PGS category with the highest polygenic load for 

schizophrenia (10th decile, at PT <5x10-2).  

a R/N: number of lithium responders versus non-responders; b adjusted for age, sex, 

genotyping platform and 7-principal components. SCZ: schizophrenia, PGS: polygenic 

score, OR: odds ratio  

Cross-trait meta-analysis of GWAS for lithium treatment response in BPD, and 

GWAS for SCZ 

Subsequent to the PGS analysis, we performed a SNP-based cross-trait meta-analysis by 

combining the summary statistics for the GWASs on: 1) SCZ and lithium treatment 

response in the categorical outcome; and 2) SCZ and lithium treatment response in the 

continuous outcome — with the aim of identifying individual genetic variants implicated in 

the genetic susceptibility to SCZ and lithium treatment response. This meta-analysis yielded 

15 loci with p-values below the genome-wide significance level (p<5x10-8) (Table 3, Figure 

2). The top six loci and closest genes were: rs144373461 (p=1.28x10-17; HCG4), 

rs66486766 (p=1.38x10-11; ADAMTSL3), rs7405404 (p=4.62x10-11; ERCC4), rs142425863 

(p=5.13x10-11; HCG4), rs3919583 (p=4.54x10-9; CCNH); and rs59724122 (p=5.16x10-9; 

EPHX2) 
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Table 3: Loci resulting from cross-trait meta-analysis of GWASs for lithium treatment response in BPAD patients and GWAS for 

SCZ (P-univariateGWAS<1x10-2 and cross-trait P-cross-trait <5x10-8).  

 SNP CHR BP A1 A2 Schizophrenia Lithium 

Categorical 

Cross-trait Effect 

direction  

Nearby gene  

rs324899 5 87915582 A G 5.82x10-7 4.63x10-3 2.28x10-8 -- MEF2C 

rs6942227 6 25177508 A G 9.86x10-8 8.45x10-3 2.53x10-8 +- CMAHP 

rs142425863 6 29751753 T C 2.50x10-10 9.92x10-3 5.13x10-11 -- HCG4 

rs59724122 8 27424696 T C 2.22x10-8 7.21x10-3 5.16x10-9 -+ EPHX2 

rs61123830 11 123392846 A G 2.85x10-6 2.60x10-3 4.53x10-8 -- GRAMD1B 

rs7959663 12 109884367 C G 4.74x10-5 2.06x10-4 2.79x10-8 -- MYO1H 

rs66486766 15 84806060 A G 1.07x10-10 4.95x10-3 1.38x10-11 -- ADAMTSL3 

rs7405404 16 13749859 T C 3.93x10-10 5.27x10-3 4.62x10-11 ++ ERCC4 

     Schizophrenia Continuous    
rs6728642 2 97607071 A G 1.10x10-4 1.34x10-4 4.81x10-8 -- FAM178B 

rs62200793 2 185750642 T C 1.70x10-7 5.45x10-3 1.40x10-8 ++ ZNF804A 

rs7588746 2 200986345 A G 2.08x10-7 6.33x10-3 3.91x10-8 +- MAIP1 

rs3919583 5 86947591 A C 4.18x10-6 2.65x10-4 4.54x10-9 -- CCNH 

rs144373461 6 29751005 A C 8.30x10-17 3.93x10-3 1.28x10-17 -- HCG4 

rs209474 6 32924584 A G 7.49x10-7 3.41x10-3 2.20x10-8 -- HLA-DMA 

rs1521470 7 45646852 A G 2.41x10-6 3.92x10-4 3.23x10-8 +- ADCY1 

rs79403677 14 35539131 T G 2.91x10-7 2.04x10-3 1.92x10-8 +- FAM177A1 

A1, effect allele; A2, other allele; Effect direction: the effect of the SNPs on schizophrenia and lithium treatment response oriented to 

the reference allele. Nearest genes were based on refseq genes (build 37). 
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Figure 2: Manhattan plot showing the result of cross-trait meta-analysis of GWASs on SCZ 

and the GWASs on lithium treatment response in BPD as A) categorical outcome; and B) 

continuous scale, highlighting the loci that showed genome-wide significance (orange), and 

the nearest genes (top).  

 

Legend figure 2: The −log10 (cross-trait p-value) is plotted against the physical position of 

each SNP on each chromosome. The threshold for genome-wide significance (cross-trait p-

value<5x10-8) is indicated by the red dotted horizontal line. 
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To characterize the functional implications of identified SNPs, we undertook IPA pathway 

analysis using query gene inputs generated from the results of the cross-trait and eQTL 

analyses. These genes included 33 hGenes hosting the gSNPs and tagSNPs, as well as the 

eQTL genes identified from the three databases — 27 eGenes from Westra et al, 23 eGenes 

from Almanac (Braineac) and 31 eGenes in GTEx portal. Table 4 gives the list of 82 unique 

genes used as input for IPA. 

Table 4: Combined list of eGenes and hGenes used as an input in the Ingenuity Pathway 

Analysis (IPA) 

Hosting 

Genes 

eQTL genes (eGenes) lookup in All combined  
Duplicates removed Westra BRAINEAC GTEx  

HLA-F HLA-G ADAMTSL3 HLA-K AC103965.1, ACACB 

HCG4 ANKRD36 EPHX2 HLA-F-AS1 ADAMTSL3, ADCY1 

HLA-DMB SRP54 HLA-F HLA-H ANKRD36, BAZ1A 

HLA-DMA UBE3B IFITM4P HLA-F BRD2, CASP14 

BRD2 KCTD10 MMAB ZFP57 CHRNA2, CMAHP 

FAM178B ACACB NACAD HLA-V CSPG4P11, EFTUD1P1 

ANKRD36 NMB SEC11A HCG4P11 EPHX2, FAM177A1 

ZNF804A KIAA0391 TRIM26 PPP2R3C FAM178B, GABBR1 

TMEM161B PPP1R11 TRIM35 CSPG4P11 GOLGA6L4, GOLGA6L5P 

MEF2C HLA-F UBE3B ZSCAN2 GPNMB, HCG4 

ADCY1 ZNRD1 WDR73 HLA-W HCG4B, HCG4P11, HCG4P5  

MYO1H MMAB ZNF592 IFITM4P HFE, HLA-A, HLA-DMA 

KCTD10 EPHX2 HCG4B HLA-A HLA-DMB, HLA-DOB, HLA-

DPB1 

UBE3B TAP2 ZNRD1ASP HLA-U HLA-F, HLA-F-AS1, HLA-G 

MMAB HLA-DPB1 SCAND2P HLA-J HLA-H, HLA-J, HLA-K, HLA-

T 

MVK HLA-DMB KIAA1920 MICF HLA-U, HLA-V, HLA-W, 

IFITM4P 

IGBP1P1 HLA-DMA LOC100128364 MVK IGBP1P1, KCTD10, 

KIAA0391 

SRP54 HLA-DOB LOC285830 EFTUD1P1 KIAA1920, LMAN2L 

FAM177A1 LMAN2L LOC440297 GOLGA6L4 LOC100128364, LOC285830 

PPP2R3C GABBR1 LOC440300 CHRNA2 LOC440297, LOC440300 

KIAA0391 PSMB9 LOC642288 IGBP1P1 LOC642288, LOC727858 

PSMA6 BRD2 LOC727858 BAZ1A LOC728121, MEF2C, MICD 
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ADAMTSL3 MEF2C LOC728121 MICE MICE, MIC, MMAB, MVK 

GOLGA6L5P PPP2R3C HCG4P5 MYO1H,NACAD, NMB 

UBE2Q2P1 CMAHP MICD PPP1R11, PPP2R3C, PSMA6 

ZSCAN2 GPNMB HLA-G PSMB9, SCAND2P, SEC11A 

SCAND2P SEC14L3 HLA-T SEC14L3, SRP54, TAP2 

WDR73 GOLGA6L5P TMEM161B, TRIM26, TRIM35 

NMB HFE UBE2Q2P1, UBE3B 

SEC11A CASP14 WDR73, ZFP57, ZNF592 

ZNF592 AC103965.1 ZNF804A, ZNRD1 

GPNMB ZNRD1ASP, ZSCAN2 

LOC440300  

We then assessed how these genes are enriched with canonical pathways in the Ingenuity 

database. The most significantly represented canonical pathways and enriched genes are 

shown in Table 5. The top 5 IPA® canonical pathways include: Antigen Presentation 

Pathway, OX40 Signaling Pathway, Autoimmune Thyroid Disease Signaling, Cdc42 

Signaling, and B Cell Development (Table 5). These pathways were predominantly 

identified on the basis of several HLA genes — HLA-A, HLA-DMA, HLA-DMB, HLA-DOB, 

HLA-DPB1, HLA-F, HLA-G, PSMB9, and TAP2.  
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Table 5: The top canonical signaling pathways enriched for genes identified in the cross-trait meta-analyses 

Ingenuity Canonical Pathways Enriched genes P-values 

Antigen Presentation Pathway HLA-DPB1, HLA-A, TAP2, HLA-DMA, HLA-DMB, HLA-G, HLA-DOB, 

PSMB9, HLA-F 

7.94x10-16 

OX40 Signaling Pathway HLA-DPB1, HLA-A, HLA-DMA, HLA-DMB, HLA-G, HLA-DOB, HLA-F 4.47x10-10 
Autoimmune Thyroid Disease Signaling HLA-A, HLA-DMA, HLA-DMB, HLA-G, HLA-DOB, HLA-F 2.29x10-9 
Cdc42 Signaling HLA-DPB1, HLA-A, HLA-DMA, HLA-DMB, HLA-G, HLA-DOB, HLA-F 1.07x10-7 
B Cell Development HLA-A, HLA-DMA, HLA-DMB, HLA-DOB 1.55x10-6 

Nur77 Signaling in T Lymphocytes HLA-A, HLA-DMA, HLA-DMB, HLA-DOB 1.82x10-5 
Calcium-induced T Lymphocyte Apoptosis HLA-A, HLA-DMA, HLA-DMB, HLA-DOB 2.95x10-5 
Th1 Pathway HLA-DPB1, HLA-A, HLA-DMA, HLA-DMB, HLA-DOB 3.63x10-5 
Th2 Pathway HLA-DPB1, HLA-A, HLA-DMA, HLA-DMB, HLA-DOB 6.03x10-5 
T Helper Cell Differentiation HLA-A, HLA-DMA, HLA-DMB, HLA-DOB 4.79x10-5 

Legend: a P-values were adjusted by Benjamini & Hochberg (BH) method48.The top canonical pathways and enriched genes are 

determined at BH adjusted P-value <0.01.The P-value reflects the likelihood that the association between a set of input genes and a 

given canonical pathways are statistically significant. 

Brief description: OX40-is a member of the tumour necrosis factor receptor (TNFR) -superfamily; Cdc42-Cell division control 

protein 42 homolog is a protein involved in regulation signalling pathways that control cellular functions including cell morphology, 

cell migration, endocytosis and cell cycle progression; Nur77 is a member of nuclear receptor family involved in mediating 

inflammatory responses and it also induces apoptosis; Th1/Th2 are pathways related to type 1 and type 2 T helper cells that play a 

vital role in the adaptive immune system. These pathways regulate immune responses by releasing T cell cytokines. 
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The IPA® network analysis revealed 2 relevant functional networks (Table 6). As it can be 
seen in Figure 3, the top 2 networks indicate that tumor necrosis factor alpha (TNFα), 
Interleukin-4 (IL-4), and interferon gamma (IFNγ) might represent important functional 
molecular nodes in the interaction between lithium response and SCZ.  

Figure 3: Indicates the top networks of molecules in IPA, in which TNFα, IL-4 and IFNG 
represent the main functional nodes mediating the genetic interaction between lithium 
response and SCZ; shown as network for a) group 1 and b) group 2 molecules in Table 6. 
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Legend Figure 3: IPA generates the network using a proprietary algorithm, and included 
genes that could contribute to the network, even if they were not contained in the original 
dataset.
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Table 6: Top IPA protein networks, molecules in network and top diseases functionally related to the network 

Group Molecules in Network P-score Focus 

Molecules 

Top Diseases and Functions 

1 APOA4, B2M, CD33, CD163L1, CD1B, CD1C, CLEC4G, DUSP10, 

DUSP16, EPHX2, ERN1, GABBR1, HLA-A, HLA-DMA, HLA-F, 

HLA-G, IL4, IL19, LILRB1, LILRB2, MAP3K2, MEF2A, MEF2C, 

NLRC5, PDCD1, PSMA6, PSMB9, PSMB10, RPS6KA3, SLC29A1, 
TAP2, TFAP4, TNF, XBP1, ZFP57 

20 11 Hematological System 
Development and Function, 
Lymphoid Tissue Structure and 
Development, Tissue 
Morphology 

2 ADCY1, ALOX12, AQP11, BANK1, BRD2, Ca2+, CASP3, Ccl2, 
CREBBP, DHCR24, GPNMB, HFE, HLA-DOB, HRH1, HTRA1, 
IFNG, IL13, IL20, IL22RA2, IL31RA, JUN, Ms4a4b (includes 
others), MVK, NMB, PANX1, PDLIM2, PLCE1, PPID, SEC11A, 
SIRT6, SRP54, STAT6, SYNGR2, TRIM26, XIST 

18 10 Endocrine System Disorders, 
Gastrointestinal Disease, 
Metabolic Disease 

Legend: The molecules represented in bold are derived from the cross-trait meta-GWAS (Table 1) and post-GWAS analysis 
(Supplementary Tables). The p-score is calculated by IPA, and estimates, the probability of finding eleven (group 1) or ten (group 2) 
or more focus molecules in a network of 35 molecules randomly selected from IPA's Global Molecular Network. The p-score = 
−log10 (p-value); the p-value is calculated by Fisher's exact test.  
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DISCUSSION  

The present study reports two main findings: first, using PGS methodology, we demonstrate 

that there is an inverse association between genetic loading for SCZ risk variants and long-

term therapeutic response to lithium in patients with BPD on the categorical outcome of the 

ALDA scale. Second, we show in cross-trait meta-GWAS and pathway analyses that genetic 

variants in the HLA region, the antigen presentation pathway and inflammatory cytokines 

such as TNF-α, IL-4 and IFNγ could have a biological role in lithium treatment response in 

BPD.  

These findings are consistent with previous clinical and epidemiological studies of lithium 

response. Lithium is not an effective medication for people suffering from SCZ spectrum 

disorders49,31. Moreover, lithium may be deleterious for patients with SCZ because of their 

greater liability to developing lithium-induced neurotoxicity even at modest doses and blood 

levels49,50. The severity of psychotic symptoms present in bipolar patients was found 

inversely associated with lithium treatment response51. Similarly, slow resolution of 

psychosis in response to lithium treatment during acute manic episodes has been shown to 

predict poorer overall response to the drug52. Amongst patients with BPD, those with a 

family history of SCZ show poorer response to lithium compared to those with a family 

history of BPD53. Our findings may provide insight into the genetic architecture underlying 

these clinical observations.  

In the SCZ to lithium response cross-trait GWAS meta-analyses, 15 genetic loci located 

within protein-coding, genes that appear to have overlapping effects on SCZ risk and 

response to lithium treatment in BPD were identified. Only one of these genes, type 1 
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adenylyl cyclase (ADCY1), had previously been directly implicated in genetic studies of 

both SCZ54 and lithium treatment response26. It has been shown that ADCY1 directs 

neuronal signaling through activation of the extracellular signal-regulated kinases 1 and 2 

(ERK1/2) and phosphoinositide 3-kinase (PI3K) pathways55. Lithium, in turn, has also been 

shown to engage the ERK 1/2 pathway and the PI3K pathway, possibly through complex 

interactions with GSK-356,57. It is possible that the polymorphisms in the ADCY1 gene 

implicated in our study result in altered ERK1/2 and PI3K activation states, thereby 

interfering with potentially therapeutic lithium effects through these pathways. 

Both the most significant finding of the cross-trait GWAS (HCG4 gene on chromosome 6) 

and the SNPs from the post-GWAS functional analyses point out to the HLA system in 

modulating lithium response. Differences in cellular HLA surface protein composition 

between BPD patients who respond well to lithium and non-responders were first reported 

over 30 years ago in several studies. These reports noted that leukocyte HLA-A3 antigen 

reactivity was reported to be associated with poor lithium response, whereas the absence of 

HLA-A3 predicted a favorable response58-60. At the same time, in vitro experiments 

suggested that lithium binds to HLA antigens on cultured human leukocytes61. A subsequent 

in vivo study in BPD patients demonstrated that exposure to lithium for about 2 months 

promoted substantial alterations in the composition of leukocyte HLA proteins62.  

The genetic association between SCZ and the HLA region on chromosome 6 is the most 

robust finding of SCZ GWAS to date35,63-66. A functional follow-up analysis demonstrated 

that HLA SCZ risk variants result in altered expression of Complement Component 4a 

(C4a) and 4b (C4b) proteins, impacting negatively on neuronal synaptic pruning and thereby 

resembling neuropathological findings in SCZ67. Further, reduced C4a in transgenic mice 
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resulted in greatly decreased neuronal complement component 3 (C3) expression67. 

Interestingly, a recent study demonstrated that lithium exposure of human monocytes and 

mouse microglia in vitro resulted in increased expression of C3, which in turn was driven by 

the inhibition of glycogen synthase kinase-3 (GSK-3)68. Inhibition of GSK-3 is to date the 

most comprehensively documented molecular effect of lithium in neurons, glia, and 

peripheral immune cells69,70. Taken together, these studies and our findings raise the 

possibility that lithium’s GSK-3-mediated activation of the complement system, via 

enhanced C3 expression68, is suppressed in people with a high genetic loading for SCZ due 

to functional disturbances of the complement cascade resulting from the SCZ-HLA-C4 

association. In this context, it is also compelling that IPA® identified Antigen Presentation 

as the top canonical pathway characterizing the findings of our cross-trait meta-GWAS 

analysis. Cellular antigen presentation is mediated by HLA proteins and is closely linked to 

the functions of the complement system as described above.  

Further, functional network analysis of our meta-GWAS findings implicated TNFα, IL-4 

and IFN-γ as central functional nodes, suggesting that the negative interaction between 

lithium response and genetic predisposition for SCZ could be mediated by mechanisms 

implicating these pro-inflammatory cytokines. Previous studies have reported modulatory 

effects of lithium treatment on these cytokines in BPD. For example, a study of euthymic 

patients with BPD reported that TNFα and IL-4 were selectively increased in patients on 

lithium monotherapy relative to untreated patients and healthy controls71. Similarly, lithium 

treatment in BPD patients with a rapid cycling pattern was associated with increased TNFα 

levels72. In a large clinical sample, peripheral TNFα activity was increased in people with 

SCZ and BPD, and there was evidence that lithium treatment further increased serum levels 
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in those with BPD73. In contrast, in vitro experiments have shown that lithium decreases 

IFN-γ levels in human blood cultures74,75, while attenuating the differentiation of naïve 

CD4+ T cells into T1 Helper (Th1) cells by IFN-γ following immune challenge76. These 

effects on inflammatory cytokines are, at least in part, driven by GSK-3 inhibition77,76,78. 

Intriguingly, one study using the ALDA scale reported elevated TNFα levels in patients 

with poor long-term response to lithium, compared to good responders79. In all, these 

findings underscore the possibility that mechanisms involving pro-inflammatory cytokines 

might play an important role in mediating therapeutic effects of lithium in patients with 

BPD80. The disturbances of these mechanisms through genetic variants involved in the 

pathogenesis of SCZ might also perturb lithium’s clinical effectiveness. A growing body of 

evidence describing aberrant inflammatory processes in patients with first episode 

psychosis81 and SCZ82 supports this idea.  

This study has four limitations that are outlined in the Supplementary Materials. 

Limitations of the study 

Our study has a number of limitations. First, the polygenic load for SCZ accounted for only 

a modest percentage (~1%) of the observed variation in lithium treatment response in 

patients with BPD. While this is in line with previous reports on the effects of PGSs on 

complex clinical phenotypes such as SCZ and BPD65, the significance of this finding at 

clinical- and population-levels needs to be further explored. Encouragingly, previous studies 

indicate that PGS approaches can assist in characterizing relevant clinical phenotypes. For 

example, in SCZ, a high polygenic SCZ score has been reported as a measure of disease 

chronicity83, and is associated with failure to respond to treatment84. Second, lithium 

response in our study was assessed using the ALDA scale, which is a retrospective measure. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 11, 2017. ; https://doi.org/10.1101/209270doi: bioRxiv preprint 

https://doi.org/10.1101/209270


 

 

39 

In order to substantiate our findings further, prospective studies are required that can 

measure clinical responses to lithium prospectively. Third, while our strategy for exploring 

the biological context of our genetic findings can point towards avenues for future research, 

it is not designed to provide definitive mechanistic answers. Hypothesis-driven experiments 

are required to follow up on these leads. Fourth, the Ingenuity Pathway Analysis revealed 

that the enriched pathways were mainly driven by two independent loci (rs209474 and 

rs144373461/rs142425863). As an example, the top associated "Antigen Presentation 

Pathway" contains a total of 9 genes of which 6 are implicated by the SNP rs209474 (HLA-

DPB1, TAP2, HLA-DMA, HLA-DMB, HLA-DOB, and PSMB9, all genes located at 

chr6:32,768,557-33,059,376 , hg19) and the other 3 genes (HLA-A, HLA-F, HLA-G, all 

located at chr6:29,683,619-29,917,908) by the SNPs rs144373461 and rs142425863 which 

have a chromosomal distance of only 748 bp. This could be due to the high LD structure in 

the HLA region and also be related to the parameters used to define LD to extract tagSNPs 

to the meta-GWAS significant SNPs (LD: r2>0.5 and within a + 500-kb region). The same 

commonly used parameters were used for all significant findings without a priori 

stratification according to a chromosomal region. 

In conclusion, we demonstrated for the first time that lower SCZ loading is strongly 

associated with better lithium response in patients with BPD. Follow-up functional analyses 

point to genes that code for the immune system, including the HLA complex and 

inflammatory cytokines. For future clinical translation, a high genetic loading for SCZ risk 

variants could be used in conjunction with clinical parameters to predict the likelihood of 

non-response to lithium treatment in BPD. 
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Web resources 

The URLs for data presented herein are as follows: 

PGC-Psychiatric Genomics Consortium: schizophrenia, GWAS data, 

http://www.med.unc.edu/pgc/downloads 

Blood eQTL browser: http://genenetwork.nl/bloodeqtlbrowser 

The Brain eQTL Almanac (Braineac): http://www.braineac.org/  

The Genotype-Tissue Expression (GTEx): http://www.gtexportal.org/home/.  

Tools 

OB and dLC methods in eLX package: 

https://sites.google.com/site/multivariateyihsianghsu/. 
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