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transition in human aortic endothelial cells
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Abstract

Background: Vascular calcification is one of the common complications in diabetes mellitus. Many studies have

shown that high glucose (HG) caused cardiovascular calcification, but its underlying mechanism is not fully

understood. Recently, medial calcification has been most commonly described in the vessels of patients with

diabetes. Chondrocytes were involved in the medial calcification. Recent studies have shown that the conversion

into mesenchymal stem cells (MSCs) via the endothelial-to-mesenchymal transition (EndMT) could be triggered in

chondrocytes. Our previous research has indicated that HG induced EndMT in human aortic endothelial cells

(HAECs). Therefore, we addressed the question of whether HG-induced EndMT could be transitioned into MSCs and

differentiated into chondrocytes.

Methods: HAECs were divided into three groups: a normal glucose (NG) group, HG group (30 mmol/L), and

mannitol (5.5 mmol/L NG+ 24.5 mmol/L) group. Pathological changes were investigated using fluorescence

microscopy and electron microscopy. Immunofluorescence staining was performed to detect the co-expression of

endothelial markers, such as CD31, and fibroblast markers, such as fibroblast-specific protein 1 (FSP-1). The

expression of FSP-1 was detected by real time-PCR and western blots. Endothelial-derived MSCs were grown in

MSC medium for one week. The expression of the MSCs markers STRO-1, CD44, CD10 and the chondrocyte marker

SOX9 was detected by immunofluorescence staining and western blots. Chondrocyte expression was detected by

alcian blue staining. Calcium deposits were analyzed by alizarin red staining.

Results: The incubation of HAECs exposed to HG resulted in a fibroblast-like phenotype. Double staining of the

HAECs indicated a co-localization of CD31 and FSP-1. The expression of FSP-1 was significantly increased in the HG

group, and the cells undergoing EndMT also expressed STRO-1, CD44 and SOX9 compared with the controls

(P< 0.05). Additionally, alcian blue staining in the HG group was positive compared to the NG group. Consistent

with the evaluation of SOX9 expression, calcium deposits analyzed by alizarin red staining were also enhanced by

the HG treatment. Specifically, we showed that HG-induced EndMT is accompanied by the activation of the

canonical Snail pathway.

Conclusions: Our study demonstrated that HG could induce endothelial cells transdifferentiation into

chondrocyte-like cells via the EndMT, which is mediated in part by the activation of the Snail signaling pathway.
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Background

Cardiovascular complications are the leading cause of

death in patients with diabetes mellitus (DM) [1]. Emer-

ging evidence suggests that the presence of vascular cal-

cification in any arterial wall in patients with DM is

associated with a 3-4-fold higher risk for mortality and

cardiovascular events [2]. Pathological studies have

shown that patients with DM exhibit characteristic calci-

fication in the tunica media, which is independently

associated with cardiovascular mortality [3]. However,

the pathogenesis of medial artery calcification (MAC) is

complex and has not been fully elucidated.

Traditionally, a calcium-phosphorus homeostasis im-

balance is considered the cause of calcium salt depos-

ition, which may play an important role in vascular

calcification by transforming vascular smooth muscle

cells (SMCs) to osteoblast-like cells, producing a matrix

of bone collagen and non-collagenous proteins. MAC

has recently been considered an orchestrated process

that begins with mesenchymal condensation, followed by

chondrogenesis and endochondral ossification [4,5].

However, the mechanisms responsible for these proce-

sses in diabetic vascular calcification remain largely

unknown.

In the past decade, SMCs and pericytes have been

reported to possess the plasticity to express bone and

cartilage proteins in calcified blood vessels [6,7]. How-

ever, recent studies have indicated that mature endothe-

lial cells can transform into fibroblasts in vitro and in

DM [8-11], by a process known as the endothelial-

mesenchymal transition (EndMT). Furthermore, Medici

et al. found that vascular endothelial cells have the po-

tential to convert into mesenchymal cells that possess

mesenchymal stem cells (MSCs) properties and are able

to differentiate into chondrocytes [12]. In addition,

chondrocyte conversion underlies medial calcification in

uremic rats [13]. Thus, whether EndMT might be a

novel source of chondrocytes during the MAC process

in patients with DM is an interesting question.

Chronic high glucose (HG) is a major initiator of dia-

betic vascular complications and implicated in the devel-

opment of vascular calcification [14,15]. Our previous

studies have shown that 30 mmol/L HG induced human

aortic endothelial damage via the mediation of EndMT

and that EndMT contributed to cardiac fibrosis in dia-

betic rats, which was inhibited by irbesartan [16,17].

However, the relationship between HG-induced EndMT

and its association with chondrocyte transformation dur-

ing diabetic vascular calcification are still poorly under-

stood. In this study, we addressed the question of

whether HG-induced EndMT could be used to transition

human aortic endothelial cells (HAECs) into MSCs and

then differentiate into chondrocytes.

Materials and methods

Cell culture

Primary HAECs were purchased from Sciencell Research

Laboratories (USA) and cultured as previously described

[16]. Briefly, cells were grown in endothelial culture

medium (No. 1001, Sciencell) containing 5% fetal bovine

serum (FBS) (No. 0025), 1% endothelial cell growth sup-

plement (No. 1052) and 1% penicillin/streptomycin solu-

tion (No. 0503) in 5% CO2 at 37°C. Passage 2–5 HAECs

were expanded in monolayers in flasks or dishes. At ap-

proximately 80% confluence, the culture medium was

changed to a serum-free solution for 24 h prior to their

use in all experiments. And the HAECs were treated

with normal glucose (NG; 5.5 mmol/L), HG (30 mmol/L

D-glucose) [16], or 5.5 mmol/L NG+24.5 mmol/L man-

nitol for 48 h.

Cell differentiation

The cells were grown in chondrogenic differentiation

medium (MCDM, Sciencell) supplemented with TGF-β3

(Peprotech, Rocky Hill, USA) at a concentration of

10 ng/ml, followed by growth in serum-free medium

with HG at 30 mmol/L for 48 h. Alcian blue (Sigma)

staining for chondrogenic proteoglycans and alizarin red

A B

Figure 1 Immunofluorescence staining of HAECs with CD31 in the NG and HG groups. Note: The incubation of HAECs with high glucose

(30 mmol/L) for 48 h resulted in a fibroblast-like phenotype (B). 1 bar = 50 μm. A: normal glucose. B: high glucose.
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staining for calcium deposition were performed on

cultures grown in chondrogenic medium for 7 days.

Real-time PCR

The total RNA from the cultured HAECs was extracted

using RNAiso Plus according to the manufacturer’s proto-

col (TAKARA, China). The RNA concentration and pur-

ity were confirmed with a Nanodrop 2000 (Thermo,

USA). Samples with a relative absorbance ratio between

1.8 and 2.0 at 260/280 were used. All RNA samples were

reverse transcribed (Applied Biosystems, USA).

The quantification of specific mRNAs was conducted

using an ABI Prism 7300 Sequence Detection System

(Applied Biosystems, USA) with the SYBR Green

Real-time PCR Kit (TAKARA, China). The following

oligonucleotide primer sequences were used: CD31,

forward 50-GAGTCCAGCCGCATATCC-30 and reverse

50-TGACACAATCGTATCTTCCTTC-30; FSP1, forward

50- GTCCACCTTCCACAAGTAC-30 and reverse 50 TG

TCCAAGTTGCTCATCAG-3; CD44, forward 50-GAG

CAGCACTTCAGGAGGTTAC-30 and reverse 50-GGAA

TGTGTCTTGGTCTCTGGTAG-30; CD10, forward 50-C

CTCGTTGACTGGTGGACTC-30 and reverse 50-CTG

ATAGGCTCTGTATGCTTGAC-30; SOX9, forward 50-G

CTCTGGAGACTTCTGAAC-30 and reverse 50-CGTT

CTTCACCGACTTCC-30; and β-actin, forward 50-CTGG

AAGGTGGACAGCGAGG-30 and reverse 50-TGACGTG

GACATCCGCAAAG-30. All primers were designed and

synthesized by Generay (Shanghai). The relative amount

of mRNA was normalized to β-actin and calculated using

the standard curve method. In brief, the pre-PCR prod-

uct of each gene was used as the standard. The standard

curve was established with a 10-fold serial dilution of the

product and was included in all PCR runs. The ratio of

target gene abundance to housekeeping gene abundance

was used to evaluate the expression level of each gene.

Controls consisting of ddH2O were negative in all runs.

Western blot analysis

The total cellular protein was extracted to evaluate the

levels of CD31, FSP1, α-SMA, CD44, STRO-1 and

CD10. Equal amounts of cell lysate proteins (30 μg) were

separated on 4-20% SDS-polyacrylamide gels and trans-

ferred onto nitrocellulose membranes (Pall, USA) by

electroblotting. The blots were incubated overnight with

primary antibodies at concentrations recommended by

the respective manufacturers: CD31 (sc-65260, Santa

Cruz), FSP1 (ab27957, Abcam), CD44 (sc-71220, Santa

Cruz), and CD10 (sc-9149, Santa Cruz). A horse-radish

peroxidase-labeled secondary IgG (Santa Cruz, Europe)

was then added to the blots. The signals were detected

using an ECL advance system (GE Healthcare, UK).

β-actin was used as the internal control.

Immunofluorescence

HAECs grown on coverslips were fixed in 4% parafor-

maldehyde and permeabilized with 0.3% Trition-X100.

After blocking with 10% BSA for 1 h, they were incu-

bated with primary antibodies at 4°C overnight. The cells

were then incubated with AlexaFluor-conjugated sec-

ondary antibodies (Invitrogen Technology, USA) at

room temperature in the dark for 1 h. The absence of

primary antibody was used as a negative control. The

cells were visualized and photographed with a scanning

(See figure on previous page.)

Figure 2 RT-PCR and western blot expression of CD31 in the NG and HG groups. Notes: The mRNA and protein expression of CD31 were

decreased in cells incubated with high glucose, whereas the expression of FSP-1 was increased. * P< 0.05 vs. control; # P< 0.05 vs. mannitol.

A B

Figure 3 The confocal microscopy analysis. Notes: Labeling experiments used antibodies against CD31 (endothelial cell marker; green) and the

fibroblast marker FSP1 (red). Confocal microscopy revealed that some cells acquired FSP1 staining and lost CD31 staining, which suggested the

stage of EndMT. A: normal glucose. B: high glucose.
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confocal microscope (LSM 510 META, Carl Zeiss,

Germany; TCS SP5, Leica, Germany).

Electron microscopy

Ultra-thin cells were counter-stained with uranyl acetate

and lead citrate and were examined with a transmission

electron microscope (TEM, HITACHI H600). Dried

samples were sputtered with gold for observation by a

scanning electron microscope (SEM-505, Phillips, the

Netherlands).

Statistical analysis

The data were expressed as the means ± standard devi-

ation (SD). A one-way analysis of variance (ANOVA)

was performed and confirmed with a two-tailed paired

Student’s t test using SPSS 19.0. P values less than 0.5

were considered significant.

Results

HG induces EndMT in HAECs

As our previous experiment showed, we found that

HAECs treated with 30 mmol/L HG for 48 h induced

profound changes, with the cells becoming elongated,

spindle-shaped and losing cobblestone morphology under

fluorescence microscopy (Figure 1). The protein and

mRNA expressions of endothelial marker CD31 were

decreased in the cells incubated with HG, whereas the

protein expression of FSP-1 was increased (Figure 2). Im-

munofluorescence with antibodies for the endothelial

marker and the mesenchymal marker demonstrated

that the HG-treated cells acquired FSP1 staining and

lost CD31 staining compared with the control cells

(Figure 3).

We next observed the cells under TEM and SEM.

HAECs treated with 30 mmol/L HG for 48 h showed a

distinct change from a cobblestone-like to a spindle-

shaped morphology. In addition, TEM was performed to

examine the ultrastructure of cells, which displayed nor-

mal structures. In contrast, the HG group treated for

48 h exhibited endothelial protrusion, a significantly

roughened endoplasmic reticulum, and microfilamenta-

tion (Figure 4). These data suggested that EndMT was

induced by the HG treatment.

HG-induced EndMT expresses mesenchymal stem markers

and acquires chondrocyte differentiation potential

To determine whether EndMT could cause an acquisi-

tion of MSCs-like phenotype, HAECs were treated with

HG to examine the expression of the MSC markers

CD44, CD10 and STRO-1. We performed immunofluor-

escence with antibodies for the MSC markers CD44 and

STRO-1. After incubation with 30 mmol/L HG for 48 h,

the cells showed significantly increased expression of

CD44 and STRO-1 compared with the control under

BA

DC 

Control High glucose

Figure 4 Cellular ultrastructure following HG treatment. Notes: TEM and SEM depicting the change in the cellular ultrastructure following

high glucose (30 mmol/L) exposure. The normal HAECs present with few microfilaments and a rough endoplasmic reticulum (A, B). After

exposure to HG, microfilamentation and a swollen rough endoplasmic reticulum appeared in the cytoplasm, and the cells became elongated and

spindle-shaped (C, D). 1 bar = 4 μm.
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confocal microscopy (Figure 5). Compared with the

control group, the HG treatment induced significantly

increased mRNA expression in CD44 and CD10 at

48 h post-treatment (Figure 6). In addition, the CD44

and CD10 protein expression was markedly increased

(Figure 7).

Because MSCs are multipotent, we next assessed the

chondrocyte differentiation capability of endothelial cells

that underwent EndMT. We exposed the ECs to the

30 mmol/L HG for 48 h after the cells were grown in

chondrogenic culture media for one week. Western blot

analysis showed that the expression of the chondrocyte-

specific marker SOX9 was significantly increased com-

pared with the control (Figure 8). Meanwhile, the HG-

treated HAECs stained positively for cartilage proteogly-

can alcian blue after growth in chondrogenic medium

for 7 days (Figure 9). Consistent with the evaluation of

SOX9 expression, calcium deposits as shown by alizarin

red staining were also enhanced by HG treatment

(Figure 9).

HG-induced EndMT is associated with the activation of

the Snail signaling pathway

To determine whether the EndMT triggered by HG

observed in our experiments was accompanied by the

activation of Snail, a western blot was performed using

HAECs treated with or without HG. The protein level of

Snail was significantly increased by treatment with HG

compared with the control (Figure 10).

Discussion

Vascular calcification is more common in patients with

diabetes compared with the general population and is

associated with increased mortality, stroke and amputa-

tions [1-3]. In addition, under HG conditions with

increased TNF-alpha levels, the death receptors TNF-R1

and Fas, are up-regulated in human coronary artery

endothelial cells, which could in turn play a role in HG-

induced endothelial cell apoptosis and hyperglycemia

appears to be a risk factor for vascular calcification

[14-16]. Many studies have shown that HG may cause

Figure 5 Immunofluorescence staining of HAECs with CD44 and STRO-1 in the NG and HG groups. Note: Representative

immunofluorescence staining of CD44 and STRO-1 (green) with DAPI. 1 bar = 50 μm. Control: normal glucose. HG: high glucose.
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cardiovascular medial calcification and increased levels

of plasma Matrix GLA protein indicates the progressing

calcification process in patients with type 2 DM [17],

but its underlying mechanism is not fully understood in

HG-induced endothelial injury. We repeated the same

results as a previous study: it showed that the treatment

of HAECs with HG led to a significantly increased ex-

pression of the FSP1 protein in a dose- and time-

dependent manner (data not shown). Double staining of

the HAECs showed co-localization of CD31 and FSP1,

the acquisition of a spindle-shaped morphology by some

cells and loss of CD31 staining, which indicated the oc-

currence of EndMT [18,19]. Furthermore, in this study,

the cells undergoing EndMT showed expression of

STRO-1, CD44 and SOX9 compared with the controls.

Additionally, alcian blue staining in the HG group was

positive compared with the NG group. The EndMT

resulted in the acquisition of MSCs-like properties to

enable the differentiation into chondrocytes, which is in

accordance with the report from Medici and colleagues

[12]. We first found that the HG-induced EndMT could

trigger the conversion into chondrocytes, which are

involved in the vascular medial calcification.

Chondrogenesis is a key pathologic mechanism under-

lying medial calcification [4,13]. Given its central role, it

is not surprising that the origins of ectopically accumu-

lated chondrocytes in the arterial wall have become an

attractive field in research. During the past decade,

the notion that SMCs undergo differentiation into

chondrogenic cells to participate in MAC has already

gained acceptance [5,7]. However, conventional distinc-

tions among vascular cell lineages are becoming less

clear as our studies and other investigators determine

that ECs could also trans-differentiate into SMCs, a

process known as EndMT [10,11,18,19]. Furthermore,

studies found that EndMT has the ability to convert cells

into MSCs and then differentiate into chondrocytes [12].

MSCs are known to be multipotent cells with cartil-

age-, adipose-, and bone-forming potential that are wide-

spread in calcified lesions [20-23]. Previous studies have

determined that MSCs in adult humans and rodents are

derived from bone marrow, cord blood, placenta and

adipose tissue [21,23]. Recently, vascular endothelial

cells have been proposed to be one precursor of MSCs

in certain microenvironments [21,24]. TGF-β2 treat-

ment-induced EndMT contributes to the acquisition of

the MSC phenotype in ECs [12,23]. Kissa et al. [25] indi-

cated that ECs from the aortic ventral wall can trans-

formation into hematopoietic cells in animals. Slukvin

et al. [24] showed the MSCs could derive from EndMT.

More interestingly, Medici et al. found that chondrocytes

at the sites of heterotopic ossification stain positively

with antibodies specific for endothelial markers in pro-

gressive models of fibrodysplasia ossificans [12]. In our

experiment, we found that elevated HG could induce

the significantly increased expression of CD44, CD10,

and STRO-1 (markers of MSCs) and SOX9 (a transcrip-

tion factor required for chondrocyte differentiation) in

Figure 6 RT-PCR expression of CD10 and CD44 in the NG and HG groups. Notes: HAECs were treated with 30 mmol/L high glucose for the

indicated times. The expression of MSCs markers (CD44, CD10) was detected by real-time PCR. The values represent the means ± SD. *, P< 0.05

vs. control.
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CD44

CD10

β-actin

Figure 7 Western blot expression of CD44 and CD10 in the NG and HG groups. Notes: HAECs were treated with or without 30 mmol/L HG

for 48 h. MSCs marker (CD44, CD10) expressions were detected by western blot. β-actin was used as internal control. Values represent the means ± SD.

*P<0.05 vs. control. #P<0.05 vs. mannitol.

Figure 8 Western blot expression of SOX9 in the NG and HG groups. Notes: Western blot analysis for the chondrocyte marker is shown

(SOX9). β-actin was used as an internal control. The values represent the means ± SD. *, P< 0.05 vs. control.
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cells undergoing EndMT. Meanwhile, HG-treated

HAECs stained positively for cartilage proteoglycan

alcian blue after growth in chondrogenic medium for

7 days. Consistent with the evaluation of SOX9 expres-

sion, calcium deposits as shown by alizarin red staining

were also enhanced by HG treatment. All of these

experiments suggested that the endothelium may con-

tribute to chondrocyte genesis by MSCs generation,

which was involved in the diabetic vascular medial

calcification.

Recent work has shown that the exposure of ECs

to HG activates several signal transduction networks

C D

7 days

A B

Figure 9 HAECs incubated with HG exhibit chondrocyte differentiation potency. Notes: HAECs were treated with or without 30 mM HG for

48 h followed by exposure to chondrogenic culture medium for 7 days (A). Alcian blue staining for cells grown in chondrogenic culture medium

for 7 days is shown (B, ×100). (C). Alizarin Red staining for calcium deposition (D, ×200).

Figure 10 Western blot expression of Snail in the NG and HG groups. Notes: HAECs were treated with 30 mmol/L high glucose for 48 h

followed by exposure to chondrogenic culture medium for 7 days. The western blot analysis for Snail is shown. β-actin was used as an internal

control. The values represent the means ± SD. *, P< 0.05 vs. control.
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responsible for mediating the proliferative and growth-

promoting responses. Snail has been implicated in a

wide variety of cellular responses, including transi-

tion, growth, gene expression, angiogenesis, contractility

and vesicle trafficking. Kokudo et al. [26] found that

Snail is required for the TGF ß-induced EndMT of

embryonic stem cell-derived ECs. Moreover, TGF-β2

promotes Snail-mediated endothelial-mesenchymal tran-

sition through the convergence of Smad-dependent and

Smad-independent signaling [27]. In addition, a role of

the TGF-β in the regulation of terminal chondrocyte dif-

ferentiation was recently reported [28]. Jayachandran

and colleagues [29] found that Snail transcription factors

mediate the epithelial-mesenchymal transition (EMT) in

lung fibrosis. EndMT is known to be a form of EMT

that is present during the embryonic development of the

heart [30], and glycogen synthase kinase-3 is an en-

dogenous inhibitor of Snail transcription, which has been

implicated in EMT [31]. Thus, we addressed the ques-

tion of whether Snail mediated the HG-induced EndMT.

Our results indicated that the protein level of Snail was

significantly increased by the HG treatment compared

with the control. Therefore, all of these findings support

the hypothesis that the effect of HG on EC transdifferen-

tiation into chondrocyte-like cells is mediated, at least in

part, through the Snail signaling pathway.

Conclusions

Our study demonstrated that HG could induce endothe-

lial cells transdifferentiation into chondrocyte-like cells

via EndMT, which is mediated in part by the activa-

tion of the snail signaling pathway. Understanding the

mechanisms that control endothelium transdifferentia-

tion to osteochondroprogenitors and the subsequent

vascular calcification may help develop novel strategies

that prevent or reverse vascular calcification.
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