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By employing the exact diagonalization method, we investigate the high-harmonic generation
(HHG) of the correlated systems under the strong laser irradiation. For the extended Hubbard model
on a periodic chain, HHG close to the quantum critical point (QCP) is more significant compared to
two neighboring gapped phases (i.e., charge-density-wave and spin-density wave states), especially
in low-frequencies. We confirm that the systems in the vicinity of the QCP are supersensitive to
the external field and more optical-transition channels via excited states are responsible for HHG.
This feature holds the potential of obtaining high-efficiency harmonics by making use of materials
approaching to QCP. Based on two-dimensional Haldane model, we further propose that the even-
or odd-order components of generated harmonics can be promisingly regarded as spectral signals
to distinguish the topologically ordered phases from locally ordered ones. Our findings in this work
pave the way to achieve ultrafast light source from HHG in strongly correlated materials and to
study quantum phase transition by nonlinear optics in strong laser fields.

Introduction.— Quantum phase transitions (QPTs)
are of extensive interest in condensed matter physics [1, 2]
because they happen at zero temperature where the ther-
mal fluctuations vanish and the uncertainty effects in
quantum physics are manifested. In a many-body sys-
tem, phase transition accompanied with the onset of a lo-
cal order parameter occurs as a result of competing inter-
actions. Experimental detections of QPTs are straight-
forward, which include conductivity, susceptibility or to-
tal magnetization in some spin systems [3, 4]. However,
not all order parameters can be measured by such macro-
scopic measurements and they are not suitable for closer
investigations of the quantum critical point (QCP) [5].
Instead, the dynamical response functions such as the
frequency-dependent optical conductivity provide an im-
portant route to investigate the quantum criticality [6–
18]. Due to the destruction of quasiparticles and the
corresponding abundance of incoherent excitations in the
vicinity of the QCP, the systems are expected to be much
more sensitive to external perturbations than in the cen-
ter of a phase[19, 20], especially on short time scales.
Thus, one can expect that nonequilibrium and nonlin-
ear behaviors are relatively active in such systems, which
may play a role as promising tools to detect QPT and
QCP.

Strong-field-driven dynamics and high-harmonic gen-
eration (HHG) are perhaps the most representative ex-
amples of nonlinear and nonperturbative optical pro-
cesses [21, 22], which are widely expected to generate
the attosecond light sources and provide new ultrafast
imaging methods [23, 24]. HHG has been initially stud-
ied in atomic and molecular gas systems, in which a
characteristic plateau with a cut-off energy is well ex-

plained by the three-step model [24–29]. Subsequently,
HHG observed in ZnO crystal is interpreted by intra-
band Bloch oscillations [30], and the extended three-step
model is proposed [31] and recognized in the community
of solid HHG (see [32–35] and references therein). Re-
cently, the studies have also touched on the mechanisms
of HHG and the harmonic plateaus in strongly correlated
systems [36–39]. It is theoretically proposed that the
high-harmonic spectroscopy can be used to time-resolve
non-equilibrium many-body dynamics, such as optically
driven phase transition [40, 41]. Experimental observa-
tion of photoinduced insulator-to-metal phase transition
by time-resolved HHG has also been reported in corre-
lated material vanadium dioxide (VO2) [42].

In this Letter, different from previous explorations on
mechanisms or using intensity characteristics to study
non-equilibrium dynamics in strongly correlated systems,
we shed new light on searching candidate materials
for high-efficiency HHG and detecting topological phase
transition (in or out of equilibrium) on the basis of even-
or odd-order harmonic signals. We first study the ultra-
fast dynamics of the half-filled extended Hubbard model
on the one-dimensional (1D) chain, based on the exact
diagonalization (ED) method. Due to the sensibility of
system close to QCP that separates two gapped phases,
i.e., the spin-density wave (SDW) and charge-density-
wave (CDW) states, an enhancement of the HHG inten-
sity can be observed. Meanwhile, the HHG spectroscopy
has a good correspondence with the optical conductiv-
ity in equilibrium. This might provide a new insight
to explain the HHG plateau and cut-off energy in cor-
related systems. In two-dimension (2D), a topological
phase transition from Chern insulator (CI) to the CDW
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phase occurs in the interacting Haldane model. Different
from that only odd-order components of HHG appear in
CDW phase, both odd and even harmonic orders exist in
CI phase. This feature can be utilized to detect topolog-
ical phase transition in or out of equilibrium.

Models and observables.— We consider two models to
calculate the HHG: the spinful extended Hubbard model
and the spinless Haldane model with nearest-neighbour
interactions, both at half filling. The former is defined
on a periodic chain, which reads

Ĥ = −t1
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + H.c.

)
+ U

∑
i

(
n̂i,↑ −

1

2

)

×
(
n̂i,↓ −

1

2

)
+ V

∑
〈i,j〉

(n̂i − 1) (n̂j − 1) , (1)

where ĉ†i,σ (ĉi,σ) creates (annihilates) an electron at site
i with spin σ =↑, ↓, and n̂i = n̂i,↑ + n̂i,↓ is the number
operator of electrons; t1 is the hopping constant; U and
V are the strengths of the on-site and nearest-neighbor
(NN) Coulomb-interactions, respectively. The lattice size
is set to be L = 10.

On the honeycomb lattice, we study the half-filled spin-
less Haldane model with repulsive NN interactions:

Ĥ =− t1
∑
〈i,j〉

(ĉ†i ĉj + H.c.)− t2
∑
〈〈i,j〉〉

(eiφij ĉ†i ĉj + H.c.)

+ V
∑
〈i,j〉

n̂in̂j . (2)

t1 and t2 are the NN and next-nearest-neighbor (NNN)
hopping constants,respectively. Same as before, V rep-
resents the NN interaction strength. A phase φij = π

2
(−π2 ) in the anticlockwise (clockwise) loops is added to
the second hopping term, which breaks the time-reversal
symmetry and turns the system to be topologically non-
trivial.

We calculate the real part of the optical conductivity
in equilibrium, which is given by the Kubo formula:

Re σ(ω) =
π

L

∑
m 6=0

|〈ψm|Ĵ |ψ0〉|2δ(ω + Em − E0) (3)

where |ψ0〉 and |ψm〉 are the ground state and m-th eigen-
state, respectively. Eq. (3) only gives the the optical con-
ductivity with finite frequency because m 6= 0. The delta
function is broaden by using a Lorentzian shape with a
broadening factor η = 0.1. The current operator on the
1D chain reads

Ĵ = −it1
∑
〈i,j〉,σ

[ĉ†i,σ ĉj,σ −H.c.], (4)

while on the 2D honeycomb lattice we have

Ĵx =− it1
∑
〈i,j〉,σ

Rij · ex [ĉ†i,σ ĉj,σ −H.c.]

− it2
∑
〈〈i,j〉〉,σ

Rij · ex [eiφijc†i,σcj,σ −H.c.], (5)

where Rij = Rj −Ri and the x direction is defined to
be along the nearest-neighbour sites.

Out of equilibrium, we adopt the time-dependent
Lanczos technique in ED to evolve the many-body wave
function, see Supplemental Material [43]. The external
electric field during photoirradiation can be included into
the Hamiltonian via the Peierls substitution in the hop-
ping terms:

ĉ†i,σ ĉj,σ + H.c.→ eiA(t)·(Rj−Ri)ĉ†i,σ ĉj,σ + H.c., (6)

where A(t) = (Ax(t), Ay(t)) is the vector potential and

Ax(t) =

{
A0,xe

−t2/2t2d cos (ω0t) , t < 0

A0,x cos (ω0t) , t ≥ 0
(7)

Ay(t) =

{
A0,ye

−t2/2t2d sin (ω0t) , t < 0

A0,y sin (ω0t) , t ≥ 0.
(8)

The parameter td controls the width of the Gaussian-like
envelope with t < 0 and ω0 is the fundamental frequency
of incident light. In the 2D case, we set A0,x = A0,y

to simulate the circularly polarized laser, while in the
case of 1D chain, we set A0,y = 0 (A0 = A0,x) to sim-
ulate the linearly polarized one. The time-dependent
current density is defined as 〈j〉t = 〈ψ(t)|Ĵ |ψ(t)〉/L or
〈jx〉t = 〈ψ(t)|Ĵx|ψ(t)〉/As accordingly, where L is the
number of lattice of the chain and As is the total area of
the honeycomb lattice. We have to stress that the Peierls
substitution in Eq. (6) must be also added to the current
operator in Eq. (4) and (5) out of equilibrium. The HHG
spectrum |〈j〉ω|2 is obtained as the modulus square of the
Fourier transform of the time-dependent current density
〈j〉t or 〈jx〉t.

In this letter, we use a set of the natural units for the
description of electromagnetic field and related quanti-
ties, taking the reduced Planck constant ~, the elemen-
tary charge e, the light velocity c and the lattice constant
a0 to be 1. Meanwhile, t1 and t1

−1 are the units of en-
ergy and time, respectively. Taking the relevant material
ET-F2TCNQ as an example, we demonstrate the realis-
tic units of time and energy as well as the feasibility of
laser parameters in practical experiments in Supplemen-
tal Material [43].

Results.— We set U = 10.0 for the 1D extended Hub-
bard model and the phase transition between SDW and
CDW locates at V ' U/2 = 5.0 [44]. Figure 1 (a)
shows the optical conductivity Re σ(ω) in equilibrium
with changing the NN interaction V , where we can ob-
serve a minimum optical gap at V = 5.0. Such features
have also been studied in Ref. [45], together with a min-
imum of the single-particle gap.

The HHG spectrum |〈j〉ω|2 as a function of ω/ω0 and
the interaction V are plotted in Figs. 1 (b) and (c), with
ω0 = 0.1, A0 = 10.0 and ω0 = 1.2, A0 = 0.5, respectively.
Interestingly, there is an obvious enhancement of HHG
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FIG. 1. (a) Contour plots of the optical conductivity Re σ(ω)
as a function of ω and the NN interactions V . Contour plots
of HHG spectrum |〈j〉ω|2 as a function of ω/ω0 and V , with
ω0 = 0.1 and A0 = 10.0 in (b) as well as ω0 = 1.2 and
A0 = 0.5 in (c). Other parameters of the Hamiltonian (1)
and the external laser are set to be U = 10.0 and td = 50.0.

spectrum approaching to the critical point V = 5.0. This
can serve as an optical tool to detect the QCP between
two insulating phases, which can not be directly mea-
sured by the traditional electrical methods. In SDW and
CDW phases, the harmonic orders with high intensity of
HHG have a very good correspondence with the optical
conductivity through multiplied by the fundamental fre-
quency ω0. From the definition of Eq. (3), we know that
the spectra of optical conductivity are associated with
the corresponding excited states that can be connected
to the ground state by the current operator. These ex-
cited states are called the optically allowed states. The
HHG is a kind of nonlinear process with absorbing m
multiples of photons and generating laser with frequency
m multiples of the incident light. Thus, the integer m
strongly depends on the energy difference between the
ground state and the optically allowed states, which ex-
plains the similarity between the optical conductivity and
HHG spectrum. This feature may provide a new way to
predict the HHG plateau and cut-off energy in correlated
materials. Deep in SDW and CDW phases, the generated
harmonics (such as the 3rd and 5th orders in Fig. 1 (c))
are suppressed, while they are enhanced when the sys-
tem becomes closer to QCP, which can be well explained
by the flatness of the band structures in SDW and CDW
phases (See details in Supplemental Material [43]). We
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FIG. 2. The HHG spectrum |〈j〉ω|2 as a function of ω/ω0

with V = 0.0 (a), V = 5.0 (b) and V = 6.0 (c). The 3rd and
5th harmonics are plotted in red to emphasize the difference
in intensity. Time profiles of A(t) (red lines) and 〈j〉t (blue
lines) with V = 0.0 (d), V = 5.0 (e) and V = 6.0 (f). Other
parameters of the Hamiltonian (1) and the external laser are
set to be U = 10.0, ω0 = 1.2, A0 = 0.5 and td = 50.0.

propose that such an intriguing phenomenon could be
utilized to generate HHG with higher strength. In addi-
tion, the fact that intensity of HHG in CDW phase with
larger V becomes more and more weak can be attributed
to the rapid increment of the optical gap, i.e., the en-
ergy difference between the ground state and the lowest
optical allowed excited state.

Now we start to discuss the details of the HHG spec-
trum and the ultrafast dynamics of 1D extended Hubbard
model. We choose V = 0 and V = 6 in SDW and CDW
phase, respectively, and V = 5 very close to the critical
point to plot |〈j〉ω|2 as a function of ω/ω0, see Figs. 2
(a), (b) and (c). Parameters of the incident laser are
identical to those in Fig. 1 (c). In order to obtain |〈j〉ω|2,
we do the Fourier transform of 〈j〉t from t = −300 to
t = 400. We observe that all the harmonic components
of HHG spectrum locates at ω/ω0 = 2n + 1 with n > 0
and the lower-order ones (3rd and 5th harmonic order)
with V = 5.0 are much stronger than those in the other
two cases, i.e., V = 0.0 and V = 6.0. However, one can
not clearly observe the sharp peaks of HHG with V = 5.0,
which we speculate is due to the rapid heating process
near the critical point (the electronic thermalization of
this model has been discussed in Ref. [46]). To examine
this idea, we plot the time evolution of the current den-
sity 〈j〉t in Figs. 2 (d), (e) and (f). We can find a quick
and intense current response in the case of V = 5.0 with
the order of magnitude being 10−1 when the light starts
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FIG. 3. Contour plots of HHG spectrum |〈j〉ω|2 as a function
of ω/ω0 and V , with ω0 = 0.1 in (a) and ω0 = 0.2 in (b).
Other parameters of the Hamiltonian (2) and the external
laser are set to be t2 = 0.2, A0,x = 10.0, A0,y = 10.0 and
td = 50.0.

to pump in. As the light shinning steadily (t > 0), an
obvious suppression of the current response takes place
and irregular current-density oscillations appear in Fig. 2
(e), which are responsible for the indistinguishable peaks
in its HHG spectrum. Based on the fact that timescale of
the electron-phonon scattering is much larger than that
of electron-electron interaction, we thus ignore the en-
ergy dissipation from electrons to the phonon bath. The
photoinduced energy accumulation leads to the heating
of our electronic system and the irregular current oscil-
lations (see more discussions in Supplemental Material
[43]). The reference [47] also reported that the peaks
of their odd-order harmonics get cleaner by introducing
the imaginary potential to phenomenologically depict the
dephasing process in the solid HHG.

For the interacting spinless Haldane model (2), the
topological phase transition from a Chern insulator (CI)
towards a trivial CDW insulator with growing interac-
tions has been studied by Varney et al [48, 49]. Here we
adopt the 24A lattice with periodic boundary condition
shown in the inset of Fig. 4 (b), which can largely re-
duce the finite-size effect because of its good symmetry
[49]. We set t2 = 0.2 and the QCP locates at V ≈ 2.0.
Contour plots of the HHG spectrum |〈j〉ω|2 as a function
of ω/ω0 and V are shown in Figs. 3 (a) and (b), with
the incident laser frequency ω0 = 0.1 and ω0 = 0.2, re-
spectively. Other parameters of the external circularly
polarized laser are set to be A0,x = 10.0, A0,y = 10.0 and
td = 50.0. Instead of enhancement of HHG close to QCP,
we observe a gradually decreasing of the HHG intensity
with V increasing. So we speculate this is due to the gap-
less CI phase and there are already enough low-energy
excited states to contribute the harmonic generation in
the topological phase. This supports that the topologi-
cal edge states inside the bulk gap might favor a stronger
HHG.

To see more details of the electron dynamics, we show
the time-evolution of 〈jx〉t for different V in the right
panel of Fig. 4. With V increasing from 0 to 4, ampli-
tudes of the current-density responses decrease from the
order of 10−1 to 10−3, as shown in Figs. 4 (d), (e) and
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FIG. 4. The HHG spectrum |〈j〉ω|2 as a function of ω/ω0

with V = 0.0 (a), V = 2.0 (b) and V = 4.0 (c). Time
profiles of Ax(t) (red lines) and 〈jx〉t (blue lines) with V = 0.0
(d), V = 2.0 (e) and V = 4.0 (f). Other parameters of the
Hamiltonian (2) and the external laser are set to be t2 = 0.2,
ω0 = 0.1, A0 = 10.0 and td = 50.0.

(f). This results in a weaker HHG intensity for larger
V , as seen in Figs. 4 (a), (b) and (c). Similar to the 1D
case, there is a apparent suppression of current response
occurring soon after applying the light to system with
V = 2.0 and the heating process in the 2D case comes
more rapidly and completely. By inspecting Figs. 4 (a)
and (c) as well as their subplots carefully, we find that
there are both odd- and even-order components of HHG
when V = 0 in the CI phase, while most harmonic order
in CDW side are odd numbers with a suppression of the
peaks for the number 3 × (2n + 1). Such 3 × (2n + 1)
peaks could be observed by adopting another shape of
24-site lattice (see Supplemental Material [43]), but the
even-order number peaks can not be revisited by chang-
ing shape or lattice size. So we propose that the odd- or
even-order components of HHG spectrum can be utilized
to distinguish topologically and locally ordered states.

Summary and discussion.— Quantum phase transi-
tion and its critical behavior are playing an important
role in the field of condensed matter physics. By study-
ing the extended Hubbard model on the periodic chain,
we found that the optical-allowed excited states, which
can be measured by optical conductivity in equilibrium,
contribute the formation of HHG spectrum. When the
system is close to the critical point which separates two
gapped phases, more intense HHG especially in low fre-
quencies is observed because there are more optical al-
lowed excited states. Such phenomenon can be repro-



5

duced in the same model on a two-leg ladder, see Sup-
plemental Material for more details [43]. For the interact-
ing Haldane model on the honeycomb lattice, enhance-
ment of HHG close to the topological phase transition
point is not observed because the original CI phase is
gapless. However, the odd- or even-order components of
HHG spectrum provide another way to detect the QPT.

The issue remains open about whether the enhance-
ment of HHG intensity can be accessed in ultrafast
experiments for some materials. The candidates include
the quasi-1D organic Mott insulators of the TCNQ
family [50], in particular ET-F2TCNQ which is widely
studied because of the existence of both on-site and
NN Coulomb repulsions (t1 ∼ 0.1 eV, U ∼ 1 eV;
refs. [51, 52]). In addition, the search can be extended to
ladder or 2D materials at half-filling with strong electron
correlations, such as Sr14−xCaxCu24O41 [53, 54].
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Supplemental Material (I): Time-dependent Lanczos
method

For the time-dependent Hamiltonian Ĥ(t) , we apply
the time-dependent Lanczos method to evolve the time-
dependent wave function |ψ(t)〉 starting from the initial
ground state [55], via

|ψ(t+ δt)〉 '
M∑
l=1

e−iεlδt|φl〉〈φl|ψ(t)〉, (9)

where εl and |φl〉 are eigenvalues and eigenvectors of
Ĥ(t), respectively, in the Krylov subspace; M is the di-
mension of the Lanczos basis, and δt is the time stepping.
We select M = 30 and δt = 0.02 to ensure the conver-
gence of numerical evolution within t ≤ 700. The validity
of this method has been checked in numbers of references,
such as Ref. [56].

Supplemental Material (II): The realistic units and
laser parameters for material ET-F2TCNQ

In the main text, we set t1 = 1 and U = 10 for the
one-dimensional (1D) extended Hubbard model and use
the units a0 = e = ~ = c = 1, where a0, e, ~ and c are
the lattice constant, the elementary charge, the reduced
Planck constant and the speed of light, respectively. To
provide experimental researchers with more details, we
now discuss the realistic units and laser parameters for
the example material ET-F2TCNQ, whose hopping con-
stant t1 ≈ 0.1 eV [51], as follows:

1) The energy ~ω is in units of t1. For instance, the
optical conductivity Re σ(ω) with V = 5 in Fig. 1 of
the main text has a gap around ω ≈ 3.2, so the realistic
optical gap ~ω = 3.2× 0.1 eV ≈ 0.32 eV.

2) The time t is in units of t−11 . So the realistic time

unit for this material is ~
t1

= 1.05457266×10−34J·s
0.1×1.6021766208×10−19J ≈

6.58× 10−15 s.
3) Wavelength λ of the incident laser. Let’s take ω0 =

1.2 as an example, the oscillation period of laser T =
2π
ω0
· ~
t1
≈ 3.445× 10−14s and thus λ = c · T ≈ 10 µm.

4) Continuous laser power I0 = 1
2 c ε0E

2
0 , where E0 is

the amplitude of electric field. From that E = 1
c · ∂A∂t and

A = A0 ·cos(ω0t), we can obtain E0 = ω0

c ·A0. Due to the

fact that A0 is in units of ~c
ea0

, the realistic electric-field

intensity E0 = ~ω0

ea0
·A0. Let’s set ω0 = 1.2 and A0 = 0.5,

one has ~ω0 = 1.2 · t1 = 0.12 eV and ~ω0

e = 0.12 V.
With the lattice spacing a0 ≈ 5.791 × 10−10m [57], we
finally obtain that E0 = ~ω0

ea0
· A0 ≈ 1.0 × 108 V/m and

I0 = 1
2 c ε0E

2
0 ≈ 3.64× 1010 W/cm2.

Compared with the experimental parameters from the
relevant references [58–61], we confirm that such a laser
with power density ∼ 1010 W/cm2 at the wavelength
∼ 10 µm can be readily prepared.
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FIG. 5. The single-particle spectral function I(k, ω) of the
1D extended Hubbard model with (a) V = 0.0, (b) V = 5.0,
(c) V = 6.0 and (d) V = 7.0, respectively. We set U = 10.0
so that the phase transition point is around V = 5.0.

Supplemental Material (III): Band-structure
analysis of the one-dimensional extended Hubbard

model

The single-particle spectral function I(k, ω) can be re-
garded as an effective band structure in interacting sys-
tems. Here we produce I(k, ω) of the 1D extended Hub-
bard model with U = 10.0 for different values of V in
Fig. 5. Compared with V = 5.0 in the vicinity of phase
transition point, flatter band structures and larger gaps
can be observed inside the SDW (V = 0.0) and CDW
(V = 6.0 and V = 7.0) phases. According to the three-
step-like model of understanding high-harmonic gener-
ation (HHG) in solid materials, the lower- and higher-
order HHG can be attributed to the intraband Bloch os-
cillations and interband recombinations of electrons and
holes, respectively. The fact that flat band structure hin-
ders intraband oscillations to some extent explains why
the lower-order HHG components are largely suppressed
in SDW and CDW phases, while they are enhanced when
the system is close to the quantum critical point (QCP).

Supplemental Material (IV): Analysis of the injected
energy in one-dimensional extended Hubbard model

We examine the ultrafast dynamics of the extended
Hubbard model on a periodic chain in the main text and
find the current response of system close to the criti-
cal point is larger than that in SDW or CDW phase.
However, there is an apparent suppression of the current
response soon after shinning the light and then the irreg-
ular current oscillation dominates. Such an anomalous
behavior of current response results in a HHG spectrum
with non-clear peaks and the reason is due to the rapid
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FIG. 6. The time-dependent total energy (a) and kinetic en-
ergy (b) of the 1D extended Hubbard model with different
V under the irradiation. Parameters: U = 10.0, ω0 = 1.2,
A0 = 0.5 and td = 50.0.

heating of the system. Here we provide the increases
of the total energy [E(t) − E0] and the kinetic energy
[Ek(t) − Ek,0] as functions of the time t in Figs. 6 (a)
and (b), respectively, where E(t) = 〈ψ(t)|H(t)|ψ(t)〉 and
E0 is the ground-state energy of the Hamiltonian in the
absence of the external field. Ek(t) and Ek,0 are the ki-
netic part of E(t) and E0, respectively. We can observe
that the system with V = 5 close to the QCP absorbs
much more energy (especially the kinetic energy) than in
the other two phases. The rapid increase of the kinetic
energy happens at t = −20, which coincides with the ap-
pearance of the irregular current oscillation (see Fig. 2
(e) in the main text). In addition, the kinetic energies
in SDW and CDW are observed to oscillate periodically
around zero due to the regular driving of the external
field. So we propose that close to the critical point, the
rapid heating process is responsible for the suppression
of current response.

Supplemental Material (V): HHG spectrum of the
interacting Haldane model on the 24C honeycomb

lattice

In the main text, we show that on the 24A honeycomb
lattice, odd-order HHG with a suppression of the peaks
with number 3(2n+1) is manifested in CDW phase of the
Haldane model with NN interactions. In this section, to
check the finite-size effect, a 24C lattice shown in Fig. 7
(b) is adopted. We do the same calculation with Fig. 4
in the main text. Similarly, we can find that both odd-
and even-order harmonic generations can be observed in
the Chern insulator with V = 0, as shown in Fig. 7 (a)
and its inset. The rapid heating process also occurs when
the system is close to the critical point V = 2 [see Fig. 7
(e)], which leads to a weak and unclear order of HHG
shown in Fig. 7 (b). In CDW phase, we find that most
odd-order HHG peaks can be observed, which is different
from the fact that the peaks with number 3(2n + 1) are

suppressed in 24A lattice. The results further support
our proposal to use the odd- or even-order components
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FIG. 7. The HHG spectrum |〈jx〉ω|2 as a function of ω/ω0

with V = 0.0 (a), V = 2.0 (b) and V = 4.0 (c). Time
profiles of Ax(t) (red lines) and 〈jx〉t (blue lines) with V = 0.0
(d), V = 2.0 (e) and V = 4.0 (f). Other parameters of the
interacting Haldane model and the external laser are set to
be t2 = 0.2, ω0 = 0.1, A0 = 10.0 and td = 50.0.

to distinguish topological and local-order phases.

Supplemental Material (VI): HHG spectrum of the
extended Hubbard model on a two-leg ladder.

In this part, we choose a two-leg ladder with the lat-
tice size L = 2× 6 = 12 to calculate the HHG spectrum
of the extended Hubbard model. The periodic and open
boundary conditions are applied along the leg and rung,
respectively. The external laser to generate HHG is set to
be linearly polarized along the leg and the optical con-
ductivity Re σ(ω) is also defined along this direction.
The on-site interaction U = 9 and phase diagram bew-
teen the spin-density-wave (SDW) and charge-density-
wave (CDW) states locates at V ≈ U/3 = 3.0 [62]. We
plot Re σ(ω) in equilibrium with changing the nearest-
neighbour (NN) interaction V in Fig. 8 (a), which shows
a minium optical gap at V = 3.0.

The parameters of the external laser are identical to
those in 1D chain in the main text: ω0 = 0.1 and A0 =
10.0 in Fig. 8 (b); ω0 = 1.2 and A0 = 0.5 in Fig. 8 (c);
td = 50.0 for the both figures. We can also observe an
enhancement of the HHG intensity (especially for lower-
order harmonics) when the system is approaching the
critical point, attesting to the generality of our results.
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FIG. 8. (a) Contour plots of the optical conductivity Re
σ(ω) as a function of ω and the NN interactions V . Contour
plots of HHG spectrum |〈j〉ω|2 as a function of ω/ω0 and V ,
with ω0 = 0.1 and A0 = 10.0 in (b) as well as ω0 = 1.2 and
A0 = 0.5 in (c). Other parameters of the two-leg extended
Hubbard model and the external laser are set to be U = 9.0
and td = 50.0.
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