
Received February 19, 2021, accepted March 2, 2021, date of publication March 19, 2021, date of current version April 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3067453

High-Level Annotation of Routing Congestion for
Xilinx Vivado HLS Designs

OSAMA BIN TARIQ 1, (Graduate Student Member, IEEE),

JUNNAN SHAN 1, (Graduate Student Member, IEEE), GEORGIOS FLOROS2, (Member, IEEE),

CHRISTOS P. SOTIRIOU 2, MARIO R. CASU 1, (Senior Member, IEEE),

MIHAI TEODOR LAZARESCU 1, (Senior Member, IEEE),

AND LUCIANO LAVAGNO 1, (Senior Member, IEEE)
1Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy
2Department of Electrical and Computer Engineering, University of Thessaly, 382 21 Volos, Greece

Corresponding author: Osama Bin Tariq (osama.bintariq@polito.it)

ABSTRACT Ever since transistor cost stopped decreasing, customized programmable platforms, such as

field-programmable gate arrays (FPGAs), became a major way to improve software execution performance

and energy consumption. While software developers can use high-level synthesis (HLS) to speed up register-

transfer level (RTL) code generation from C++ or OpenCL source code, placement and routing issues, such

as congestion, can still prevent achieving an FPGA programming bitstream or dramatically reduce the FPGA

implementation performance. Congestion reports from physical design tools refer to thousands of RTL signal

names instead of developer-accessible identifiers and statements, considerably complicating the developer

understanding and resolution of the issues at the source level. We propose a high-level back-annotation

flow that summarizes the routing congestion issues at the source level by analyzing the reports from the

FPGA physical design tools and the internal debugging files of the HLS tools. Our flow describes congestion

using comments back-annotated on the source code and identifies if the congestion causes are the on-chip

memories or the DSP units (multipliers/adders), which are the shared resources very often associated with

routing problems on FPGAs. We demonstrate on realistic large designs how the information provided by our

flow helps to quickly spot congestion causes at the source level and to solve them using appropriate HLS

directives.

INDEX TERMS FPGA, HLS, routing congestion.

I. INTRODUCTION

Since transistor cost stopped decreasing in the latest technol-

ogy generations [1]–[3], software performance and energy

improvement through parallelism was considerably reduced.

Application-driven circuit customization allows increasing

performance at comparable prices, but rising mask costs

restrict this solution to a few application domains, such as

general-purpose machine learning, as witnessed by many

startups working on specialized chips in this domain. Other

application domains can get some improvements, for a lim-

ited time, from extreme customizing of the datapath and

memory architecture on a reconfigurable platform, such as

a field-programmable gate array (FPGA). This means using

a hardwired finite state machine (FSM) instead of a fetch/de-

code/execute cycle for control, using a customized memory

hierarchy instead of a cache, and using the exact bit width

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

datapath required by the application at hand for each operator.

All these combined can typically gain an order of magnitude

in power consumption, and sometimes a similar performance

gain magnitude, over graphical processing units (GPUs), and

much more over central processing units (CPUs). Hence,

several cloud computing service providers, such as Amazon

[4], Microsoft [5], [6], Alibaba [7], and Huawei [8], offer

virtual machines with FPGA accelerators.

However, accelerating datacenter applications using

FPGAs requires a software-like development cycle to be

economically appealing. The developers expect to compile

hardware accelerators from high-level source code written in

languages like C++ or OpenCL [9]. Even higher level lan-

guages, such as Python, can benefit from this trend through

accelerated implementations of mathematical libraries, like

BLAS [10].

Even though C++ or OpenCL high-level synthesis (HLS)

has made extraordinary progress in recent years (both

Xilinx and Intel/Altera offer such tools), the underlying

54286
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5398-4072
https://orcid.org/0000-0001-9405-8825
https://orcid.org/0000-0001-9318-474X
https://orcid.org/0000-0002-1026-0178
https://orcid.org/0000-0003-0884-5158
https://orcid.org/0000-0002-9762-6522
https://orcid.org/0000-0001-9315-1788


O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

implementation flow still relies on synthesis, placement, and

routing. Limited routing resources in FPGAs [in particular

involving ‘‘hardened’’ components such as block random

access memory (BRAM) and digital signal processing (DSP)

units] make meeting clock cycle requirements particularly

challenging [11]. Up to 50% of the FPGA resources can be

left unused to complete the routing and/or to meet the timing

requirements.

Unfortunately, the modern physical design tools report

problems in terms of register-transfer level (RTL) nets

for both FPGAs and application-specific integrated circuits

(ASICs). For HLS users, this is like a C compiler reporting

errors referred to the generated assembly instructions. Soft-

ware developers, like experienced hardware designers, do not

write, and often cannot read the RTL code generated by an

HLS flow while porting a complex software application or

library to FPGA accelerators.

To fill this gap, we provide a set of tools that trace back the

origin of congestion issues to the HLS input code, written in

C++ or OpenCL. This is only a first step toward a physically

aware HLS tool, but it helps to solve a real, stringent problem.

We developed a set of algorithms that treat the HLS flow

almost as a black box and use the limited relationship that the

HLS tools, and in particular the Xilinx Vivado HLS on which

our results are based, keep between the C++ or OpenCL

source code and the final RTL.

We use this feedback and some basic knowledge of the

mapping between source language constructs (e.g., arrays and

on-chip BRAMs, or arithmetic operations and DSP units)

to show how the source code and/or the synthesis directives

can be modified to reduce congestion, hence improving the

final clock frequency without losing in other respects, and

even improving the throughput due to BRAM partitioning

introduced to reduce congestion. Our main contributions are:

• A new method to trace back the nets in congested

areas to the high-level source code independently of the

HLS tool used for RTL generation or the placement

algorithm.

• Techniques to separate the congested nets by the func-

tional unit they belong to (e.g., multipliers, adders

or dividers, memory units, and the related multiplex-

ers), to help adopting the best strategy to alleviate the

congestion at the HLS level.

• We demonstrate the usefulness of the information that

we trace back by improving the allocation of lim-

ited FPGA resources, such as DSPs and BRAMs, and

increasing design performance, such as the operating

clock frequency.

II. RELATED WORK

Tracking accurate routing congestion causes can guide tim-

ing and placement optimization, assist efficient design space

exploration, and if back-annotated on the high-level source

code it can direct the designer toward the code sections that

are responsible for most routing congestion. FPGAs, unlike

ASICs, have limited routing resources, hence congestion is a

very common cause of routing problems, and it needs to be

dealt with at the abstraction level used by the designer [12],

which for HLS means the C++ or OpenCL code. Routing

congestion can lead to timing violations, and lower power and

area performance in the post-layout design phase [12].

Several methods have been proposed to adapt the HLS

scheduling and allocation algorithms [13]–[16] to generate

layout-friendly RTLmodels. For example, cut sizes and graph

embedding metrics can correlate with routability, allowing

one to evaluate the impact of HLS to improve the generated

RTL routability on FPGA [16].

However, these methods improve the RTLmodels or incor-

porate floor planning information into HLS instead of finding

the actual congestion causes and reporting them in the source

code. Hence, they can only solve the congestion issues which

are caused by bad scheduling and binding decisions, rather

than those that originate from inherently difficult to route

designs or improper optimization directives. Our method

focuses especially on the latter.

Wirelength, timing, and routability estimations are often

tightly connected physically and algorithmically. Zheng et al.

[17] proposed an iterative high-level synthesis flow with con-

straints adjusted using the estimates from the Altera Quartus

fast placement and routing tool and a delay estimation model

developed by the authors. The system can be used to direct

the synthesis to improve the circuit latency. Guo et al. [18]

observed that the delays induced by signal broadcasting,

either by the control logic or the data path, reduce the operat-

ing frequency, but they are not included in the delay models

of widely used HLS tools, e.g., Vivado HLS. The authors

propose techniques to optimize the timing of the implicit

broadcasts, such as broadcast-aware scheduling, redun-

dant synchronization pruning, and skid-buffer-based pipeline

control.

Pui et al. [19] proposed a multi-stage congestion-driven

global placement, and a routing-source-aware detailed place-

ment to reduce routing congestion for FPGA. The authors

also note that blocks with high pin counts and large areas,

such as DSPs and BRAMs, can significantly influence the

global placement, increasing the half-perimeter wire length

(HPWL). Based on this observation, we focus mostly on such

blocks. Tatsuoka and Kaneko [20] devised a source-to-source

compiler to detect wire congestion caused by multiplex-

ers using pattern matching on program dependence graph,

without going through logic synthesis and physical design.

Li et al. [21] proposed a routability-driven FPGA

placer, UTPlaceF, which implements a routing congestion-

aware depopulation technique and a hierarchical congestion-

aware detailed placement technique to improve wirelength

and routability. However, this mostly improves the place-

ment algorithm. We focus on improving the HLS source

code regardless of the underlying placement and routing

algorithms.

Recently, the use of machine learning methods has gained

popularity also in this domain [22]–[28]. Maarouf et al. [23]

used tens of millions of routed grid cells from large FPGAs

VOLUME 9, 2021 54287



O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

for training and testing. They used features such as wirelength

per area as well as pin count and cut nets per region, and

applied various machine learning algorithms to estimate the

actual congestion in each grid cell after placement, without

the need to route the chip. Alhyari et al. [24] trained and

evaluated a convolutional neural network model on tens of

thousands of images based on several hundred benchmarks

from Xilinx to predict the routability of the designs based on

the congestion heatmap during placement. In the same team,

Szentimrey et al. [27] combined a deep learning-based con-

gestion management model with the congestion estimation

approach proposed in [23] and the routability prediction algo-

rithm from [24] and used them in the GPlace3.0 framework

[29] to achieve better runtime and quality of results. Pui et al.

[26] also used machine-learning-based models to estimate

the routing congestion for a given circuit placement on an

FPGA along with detailed placement techniques (two-step

clock legalization and chain move) to better optimize wire-

length and meet emerging clocking architectural constraints

of modern FPGAs, like Xilinx UltraScale. Yu and Zhang [28]

proposed generative adversarial networks to evaluate the full

FPGA routing resource utilization and congestion, including

the detailed routing. They devised the task as an image trans-

lation problem that includes features collected up to circuit

placement. Routing requirement estimation techniques can

analyze circuit netlists and provide a fine granularity distri-

bution of interconnect requirements over the whole FPGA

device [30].

All the approaches above focus on predicting congestion

after placement, avoiding the need for routing. We exploit the

routing algorithm of Xilinx Vivado to estimate the congestion

information after global routing, which we use because it

is obtained faster than the actual post-routing delays, yet

it correlates very well with the routing negative slack on

FPGAs.

Back-annotation has been used to map the various low-

level aspects of hardware design to higher abstraction lev-

els. For example, Tatsuoka et al. [12] and Goering [31]

note that large multiplexers and demultiplexers in ASICs

significantly contribute to congestion. They can be traced

back to the source code either as back-annotations or as

suggested changes to help the designers modify the code

or the associated synthesis directives. Similarly, Lee et al.

[32] generated functional hardware models back-annotated

with cycle-accurate and data-dependent power and perfor-

mance estimates at the intermediate representation (i.e.,

LLVM instruction) level. Another study used multiple fea-

tures extracted from the HLS flow corresponding to oper-

ations at the LLVM level to train machine learning (ML)

models to predict routing congestion [22]. It used various

examples to generate a data set of thousands of samples for

training. The tool can back-annotate the source code with

congestion predictions to help identify early potential rout-

ing congestion sources. However, no further information is

provided in the back-annotated code on what resources may

have contributed to the congestion.

FIGURE 1. Design flow for back-annotation.

In summary, in this article, we use physical design tools

(mostly Xilinx Vivado, although the method can be easily

extended to cover other tools like Intel Quartus) as a black

box. Rather than trying to predict the tool behavior (as the

existing approaches listed above), we provide information at

the source high level which can be used by the HLS users

to iteratively improve the routability (and performance) of

their designs. As we show in the extensive set of experiments

that we performed, reducing congestion dramatically helps

achieve timing closure on the FPGAs that we are targeting.

III. MOTIVATION

The most common FPGA design flow uses RTL models

written in a hardware description language (HDL), which are

then synthesized, placed, and routed. However, it is very time

consuming and difficult to use efficiently by users unfamiliar

with hardware architectures. Thanks to modern HLS tools,

such as Xilinx Vivado HLS, the designers can easily program

FPGAs using functional models written in high-level lan-

guages such as C++ or OpenCL. Hardware implementation

(RTL generation) can also be easily directed using ‘‘HLS

pragmas’’. However, to improve the design performance,

users rely on the HLS tool reports that focus mostly on

FPGA resource usage. Yet, poor high-level design choices

can lead to routing congestion, which can significantly reduce

the implementation performance (e.g., the FPGA working

frequency) or the routing may fail altogether.

We describe a novel tool (Fig. 1) that provides

back-annotations on high-level project sources in

user-understandable terms on the possible causes of conges-

tion, which should be addressed to improve the routability,

hence the clock frequency.

IV. BACK-ANNOTATION — OUR APPROACH

A. GENERIC BACK-ANNOTATION FLOW

Our back-annotation flow includes five phases:

1) Extraction of the source-level debugging information.

This information can be found in intermediate files

generated during high-level synthesis. They contain

information about the variables generated during syn-

thesis and include the name and line number of their

declarations in the source code.

54288 VOLUME 9, 2021



O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

2) Separation of the variables generated during the syn-

thesis process based on their resource usage e.g., DSPs,

BRAMs, and multiplexers.

3) Generation of a list of nets that cross congested

FPGA tiles, weighed by relative significance (num-

ber of crossings) from the Vivado post-global routing

database.

4) Cross-match the nets obtained from congested areas to

the variable names generated during synthesis to find

their source in the high-level code.

5) Back-annotation of the high-level source code lines that

contribute the most to congestion, including the hard-

ware resource types involved in congestion (essential

to improve routability, as we will discuss later).

On-chip memories (implemented both as register files and

BRAMs) and DSP units are the most common causes of con-

gestion since they cannot be duplicated and moved around by

the physical design tools as easily as look-up tables (LUTs)

and registers. Tatsuoka et al. [12] and Goering [31] show

the role of multiplexers in routing congestion. We observed

that, in the case of designs synthesized with Vivado HLS,

the congestion due to resource sharing multiplexers, and the

resulting timing problems, can be significantly alleviated via

a judicious choice of memory partitioning andDSP allocation

directives.

B. XILINX VIVADO HLS AND VIVADO IMPLEMENTATION

Vivado HLS generates several intermediate files in the

<project>/<solution>/.autopilot/db folder.

The .adb files contain a control flow graph (CFG) describ-

ing the design at a high-level, close to the source code.

Vivado HLS provides debugging data for each CFG node

as an LLVM [33] instruction that produces a value flowing

through the data path, hence closely associated with RTL

nets and registers. It includes the source code line number,

bit width, delay, and the RTL signal name. Source level data

in .adb files are complemented by hardware resource level

data in the .rpt report files that are also contained in the

<project>/<solution>/.autopilot/db folder.1

These report files contain additional useful information about

multiplexers, such as the LUTs used and the input sizes.

We then categorize them, by exploring the design connec-

tivity, based on their relation with memories, functional

units, and control. Using the project debugging files, we then

find the source code lines and operations which feed these

multiplexers. Note that, although these internal compiler files

are not documented by Xilinx, their presence and format

have been stable for several years. Moreover, we discuss in

Section VII that other techniques, not based on the internal

tool files, can also be used to achieve comparable results.

Xilinx Vivado can include routing congestion reports in its

design analysis. The reports have three congestion tables:

1Note that these files are different from the similarly named .rpt files
in the user-accessible design report directory, which contain less useful data
for our purposes.

• Placer Final congestion

• Initial Estimated Router congestion

• SLR Net Crossing

Our automatic flow analyzes the congestion report and then

sends TCL commands to Vivado physical design engine to

dump into intermediate files the RTL net names that cross

the highly congested areas reported by the initial global router

congestion estimates.

The extracted RTL net names are weighed by the number

of congested tiles they cross and are then matched with the

source level references extracted from the .adb and .rpt

files. The .adb files, as mentioned above, contain the infor-

mation about the variables generated during synthesis, which

includes the name and line number of their declarations in the

source code.

Fig. 2 shows the detailed steps of the back-annotation

flow. The light blue rectangle blocks represent either the

files generated by Vivado HLS and Vivado. The purple oval

blocks represent various parts of our back-annotation tool

while the purple rectangle blocks represent the output files

generated using the back-annotation tool. Algorithm 1 shows

the operation of the back-annotation method. We split the

RTL names of the synthesized design into four categories (the

for loop on line 2), with special handling for two FPGA

resource types that are particularly prone to causing problems

during routing: DSP units, BRAM blocks, and multiplexer

units connected to them. Note that the LUTs and the flip-flops

(FFs) cause fewer problems because the physical design tools

can replicate them to improve the routing. The rest of the RTL

names are categorized as other nets. More precisely, we adopt

the following procedure:

1) Collect in a global list (lines 2 and 3 in Algorithm 1)

the RTL names and source line numbers from the.adb

files.

2) Store the RTL names connected to DSP instances in

the .adb files in the dsp_nets_list (lines 4 and 5 in

Algorithm 1), with the source line numbers.

3) Store the RTL names connected to BRAMs in the

.adb files (with ‘‘addr’’, ‘‘load’’, or ‘‘store’’ suffixes)

in the bram_nets_list (lines 6 and 7 in Algorithm 1),

with the source line numbers.

4) Store the multiplexers in the design along with their

RTL names and source code line numbers. Note that

a single multiplexer can be associated with multiple

RTL names and multiple source code line numbers.

For example, a multiplier instance using DSPs can

receive inputs from multiple source code lines with

multiplication operations.

5) Collect all other RTL names in the other_nets_list

(line 11 inAlgorithm 1), with their source line numbers.

Steps 1 – 5 were done by the ‘‘Parser’’ in Fig. 2. Then,

we scan the nets in all congested areas andmatch them against

the names collected in these lists as follows:

6) List all tiles belonging to the congested windows,

reported by the Vivado congestion report, with level

VOLUME 9, 2021 54289



O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

FIGURE 2. Our flow extracts design data from Vivado HLS project files and matches them with Vivado congestion reports. We then back-annotate the
source code with synthetic congestion information.

3 and above and the nets passing through them

(line 12 in Algorithm 1). The Vivado congestion report

only lists the congestionwindows and their correspond-

ing congestion level. The ‘‘Script Generation’’ in Fig. 2

creates ‘‘Script’’ which has a sequence of commands

for Vivado, to list tiles in congestion windows and the

nets in them.

7) Attach source line numbers to each net crossing one

or more tiles (line 13 in Algorithm 1) by removing one

suffix at a time from their names (separated by ‘_’) until

the remaining name root matches an RTL name from

the .adb files, which is associated to a source line

number (lines 14 and 15 in Algorithm 1). For exam-

ple, the net L_6_3_loc_assign_2_reg_21300

matches the variable L_6_3_loc_assign_2 in the

.adb files, which has a source line number.

8) For any match, we increment the statistics associated

with the (name, line number) set on the specific list:

DSPs (from step 2), BRAMs (step 3), or other (step 5).

If the name belongs to a multiplexer, we check in an

additional step if it comes from a DSP- or memory-

related multiplexer.

Note that recognizing the memories (BRAMs) is more

difficult because the .adb files do not include memory

names. Hence we traverse the net hierarchy to deter-

mine if the net is connected to a BRAM.

9) Annotate the source code lines with the number and

type of congested nets collected on lines 17, 19, 22, 24,

and 26 of Algorithm 1.

Steps 7 and 8 were done at ‘‘cross match’’ stage in Fig. 2.

We use the number of nets traversing congested tiles (‘‘rep-

etitions’’) as a measure of the congestion generated by the

source code, while the type of resource involved in the

congestion can hint the developer the actions to take to

reduce it. In other words, ‘‘repetitions’’ is the sum of the

weights of the nets corresponding to a source code line,

where the weight of a net is the number of tiles crossed

by the net. We empirically found that this correlates well

with the amount of disturbance caused by a net, hence its

impact on timing. Additionally, we generate a simple text

report with details about the memories, the DSP usage in

functional units, the multiplexers and their relation to the

various parts of the source code, and the nets in the congested

areas.

V. EXPERIMENTAL RESULTS

We demonstrate how the post-place and route congestion

information can be correlated and back-annotated on the

source code, and how we use it to resolve design congestion.

We use a few exemplary congested designs, which can be

easily explained in an article, but the tools and flow are fully

general.

We examine the back-annotations and then infer changes

to design source code or HLS directives based only on:

• specific knowledge of the source-level code;

• generic knowledge about how the HLS and physical

design of FPGAs work.

Then, we verify that the physical design improves, i.e., the

congestion is reduced, and iterate, if necessary.

We validate our tool using Vivado HLS and Vivado

v2019.1, and we use SDAccel v2018.2 (which integrates

Vivado HLS and Vivado) only for the convolution example

in Section V-B.

The terms and abbreviations used in the following are

explained in Table 1.

A. LDL DECOMPOSITION

LDL decomposition is a variant of the classical Cholesky

decomposition. It is used for efficient implementation of

many applications, such as direction of arrival (DOA) estima-

tion [34], a hardware architecture for positive definite matrix

inversion computation [35], and various numerical solutions,

e.g., finance [36] and Monte Carlo simulations [37].

Our LDL implementation uses four floating-point array

arguments: two 2D arrays and two 1D arrays. The imple-

mentation has an outer loop, which includes a sequence

of several loops. Each inner loop performs multiplica-

tions, divisions, and subtractions. Application performance

improved with a pipeline pragma outside the main loop

to unroll large computations, and one of the 2D arrays is

fully partitioned for concurrent data access (target FPGA

xa7s25ftgb196-2I).

Listing 1 shows the back-annotated part of the LDL decom-

position source. We note that congestion is due to memory

accesses mainly in lines 20, 28, and partially in lines 17,

54290 VOLUME 9, 2021



O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

Algorithm 1: Code Back-Annotation Algorithm

1 procedure High-level-code-annotation

// Collect all RTL nets by resource

type

2 for rtl_name in synthesized_design do

3 add rtl_name, line_number to rtl_names

4 if rtl_name associated in report to

dsp_instances then

5 add (rtl_name, line_number) to

dsp_nets_list

6 else if prefix(rtl_name) ∈ {addr, load, store}

then

7 add (rtl_name, line_number) to

bram_nets_list

8 else if rtl_name associated in report to

Multiplexers then

9 add (rtl_name, line_number) to

multiplexers_list

10 else

11 add (rtl_name, line_number) to

other_nets_list

// Count congested nets by resource

type and source line #

12 for tile in congested_areas do

13 for net crossing tile do

14 while net /∈ rtl_names do

15 remove_suffix(net)

16 if (net) ∈ dsp_nets_list then

17 matched_dsp [net, line_number]++

18 else if (net) ∈ bram_nets_list then

19 matched_bram [net, line_number]++

20 else if (net) ∈ multiplexers_list then

21 if (net) ∈ dsp_multiplexer then

22 matched_dsp [net, line_number]++

23 else if (net) ∈ memory_multiplexer then

24 matched_bram [net, line_number]++

25 else if (net) ∈ other_nets_list then

26 matched_other [net, line_number]++

TABLE 1. Terms and abbreviations.

23, 31, 35. DSP resources (for floating-point operations)

contribute to congestion mainly in lines 17, 23, 31 and

partially in 32, while Others, i.e., LUTs and FFs used

for implementing fdiv operations in line 32 and 35 are

17: V[k] = L[j][k]*D[k]; //7515 repetitions from 10

Nets, Mem:16%, DSP:84%, Others:0%

[...]

20: t = A[j][j]; //1625 repetitions from 8 Nets,

Mem:100%, DSP:0%, Others:0%

[...]

23: t -= L[j][k]*V[j]; //17454 repetitions from 14 Nets,

Mem:9%, DSP:91%, Others:0%

[...]

28: t = A[i][j]; //2320 repetitions from 28 Nets,

Mem:100%, DSP:0%, Others:0%

[...]

31: t -= L[i][k]*V[k]; //15993 repetitions from 14 Nets,

Mem:1%, DSP:99%, Others:0%

32: t -= L[i][k]/V[k]; //26184 repetitions from 12 Nets,

Mem:0%, DSP:40%, Others:60%

[...]

35: L[i][j] = t / D[j]; //20807 repetitions from 17

Nets, Mem:5%, DSP:0%, Others:95%

LISTING 1. Congestion-related back-annotations on the unoptimized LDL
decomposition source.

TABLE 2. FPGA resource usage for the LDL decomposition example.

significant causes of congestion. From the text report gen-

erated by the tool we can also see further details, for example

in line 31 howmany nets involving DSP are because of multi-

plication operations and howmany are because of subtraction

operations.We address congestion in two steps i.e. first mem-

ory related and then operators related, to better see co-relation

between congestion and trace-back. Most congested nets for

lines 20 and 28 involve memory accesses. We partitioned

the arrays to reduce memory port congestion and show the

results on the first optimization line in Table 2 (BRAM usage

is zero because the arrays are external to the synthesized

block).

The remaining congestion after the first optimization is

shown in Listing 2. The congestion due to memory accesses

disappeared on lines 17, 28, 31 and 35 (but net repetitions

slightly increased on line 20 because the array is now fully

partitioned and implemented with FFs) and timing improved

in terms of TNS and WNS but with higher Texe(see Table 3).

One consequence of addressing only the memory related

issue (i.e., partitioning the memory) was that Vivado HLS

by default allocated fewer DSPs to the design (see Table 2),

aggravating the DSP resource allocation issue. We observe

that the congestion related to DSPs is high on lines 17, 23,

31 and 32. Similarly, line 32 and 35 generate many congested

nets due tofdiv operations. From the report generated by the

tool we can see that the 86% of the DSP nets on line 23 are

because of fsub and 14% are because of fmul, while

79% belong to fsub and 21% to fmul on line 31. This

unbalance indicates clearly that more fsub units are needed.

VOLUME 9, 2021 54291



O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

17: V[k] = L[j][k]*D[k]; //6884 repetitions from 10

Nets, Mem:0%, DSP:100%, Others:0%

[...]

20: t = A[j][j]; //2908 repetitions from 4 Nets, Mem:0%,

DSP:0%, Others:100%

[...]

23: t -= L[j][k]*V[j]; //30140 repetitions from 20 Nets,

Mem:4%, DSP:96%, Others:0%

[...]

31: t -= L[i][k]*V[k]; //28762 repetitions from 17 Nets,

Mem:0%, DSP:100%, Others:0%

32: t -= L[i][k]/V[k]; //33492 repetitions from 17 Nets,

Mem:0%, DSP:73%, Others:27%

[...]

35: L[i][j] = t / D[j]; //24544 repetitions from 18

Nets, Mem:0%, DSP:0%, Others:100%

LISTING 2. Congestion-related back-annotations on the LDL
decomposition source after the first optimization.

TABLE 3. Implementation performance for the LDL decomposition
example.

After allocating more operators using the pragma allocation,

we both reduced the congestion and significantly improved

the design timing (see Table 3).

It is worth mentioning that the tracing of congestion due

to memory or DSPs helps to also reduce the multiplexer

sizes. As mentioned previously, multiplexers are one of the

main causes of routing congestion [12], [31]. We observed

that after the first optimization, i.e. the partitioning of the

arrays, all multiplexers related to memory vanished, but the

remaining multiplexers related to DSPs were larger both in

terms of LUTs and input size. After the second optimization,

i.e. using the allocation pragma to allocate more operators,

we had more multiplexers but they were much smaller in

terms of LUTs and input sizes.

B. CONVOLUTION

The convolution kernel is one of the most important oper-

ations in popular machine learning algorithms for, e.g.,

machine vision and image recognition. Convolution kernels

are both highly computationally intensive and highly par-

allelizable on FPGAs, to increase their throughput. They

receive a feature map in input to which they convolve several

(learned) filters to produce the output feature map.

The application was initially optimized for performance

using loop tiling. The two innermost loops are fully unrolled,

and the loop one level above is pipelined with an initiation

interval of one (target FPGA xcvu9p-flgb2104-2-i).

The congestion back-annotation of our tool shows that

source line 127 (see Listing 3) creates the most congestion

because of memory and DSPs in nearly equal parts. The

design already used Tm × Tn multipliers and adders and

120: for (int i=0; i<FILTER_SIZE; i++) {

121: for (int j=0; j<FILTER_SIZE; j++) {

122: for (int trr=0; trr<Tr; trr++) {

123: for (int tcc=0; tcc<Tc; tcc++) {

124: #pragma HLS PIPELINE

125: for (int too=0; too<Tm; too++) {

126: for (int tii=0; tii<Tn; tii++) {

127: out[too][trr][tcc] +=

filter_local[too*Tn+tii][i*FILTER_SIZE+j] *
inp_image_local[tii][STRIDE*trr+i][STRIDE*tcc+j];

//2806336 repetitions from 810 Nets, Mem:41.7%,

DSP:58.3%, Others:0%

LISTING 3. Congestion-related back-annotation on the unoptimized
convolution kernel source.

TABLE 4. Implementation performance for the convolution example.

the arrays are already fully partitioned in the first dimen-

sion, hence allocating more resources or increase the array

partitioning would not help much. We reduced congestion

however by splitting the design into several smaller parallel

modules, each with potentially less congestion because of the

simpler RTL structure and lower throughput requirements.

To do this, we reduced the loop unrolling factor and instan-

tiated multiple module copies to preserve the overall perfor-

mance. Specifically, we halved Tm and used two concurrent

compute units (CUs). The congestion is markedly reduced

(see Table 4), the target timing is met, and the performance

increased by 57%.

This reduced the routing congestion (as can be observed

in Fig. 3 where the areas with more than 100% interconnect

density are significantly reduced) and the design satisfied

the timing constraints (see Table 4) with almost unchanged

resource usage (see Table 5).

C. OPTICAL FLOW

Optical flow detects the movement pattern of objects between

image frames, which is a vital and broadly used compo-

nent for object detection and tracking in various image/video

processing toolsets, such as OpenCV and the MATLAB

Computer Vision toolbox.

We used the C++model from the Rosetta benchmark [38],

which is based on the FPGA-friendly Lucas-Kanade method

[39]. It computes the movement of each pixel in five sequen-

tial image frames. The top-level function runs sequentially

eight sub-functions creating a streaming dataflow pipeline

between different stages of the algorithm. In this application,

the main computing kernels are 1D convolution and Outer

product. To optimize this application, we pipelined the outer

loops to further improve the performance of the original code,

and synthesized the design obtaining the resource utilization

and performance shown in Table 6 and Table 7, respectively.

On the target FPGA, xcvu9p-flgb2104-2-i, the timing

requirement is not met due to routing congestion. Our tool

traced the most congested nets to the code shown in Listing 4.

54292 VOLUME 9, 2021



O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

FIGURE 3. Interconnect density in percentage for the convolution
example: (a) before and (b) after design optimizations.

TABLE 5. FPGA resource usage for the convolution example.

TABLE 6. FPGA resource usage for the optical flow example.

Lines 31 and 32 show that congestion is partially due to

DSP utilization. As in previous cases, we used the allocation

pragma to resolve it. Additionally, lines 125 to 127 show that

many congested nets are due to memory. To resolve this, we

used the appropriate array partition pragmas, depending on

the array access patterns. After synthesis and implementation,

we note that congestion was highly reduced and timing is

almost met, as shown in Table 7. Moreover, the performance

31: x_grad += frame[r-2][c-i] * GRAD_WEIGHTS[4-i];

//1134 repetitions from 2 Nets, Mem:0%, DSP:58%,

Others:42%

32: y_grad += frame[r-i][c-2] * GRAD_WEIGHTS[4-i];

//402 repetitions from 3 Nets, Mem:0%, DSP:10.5%,

Others:89.5%

[...]

125: acc.x += y_filt[r][c-i].x * GRAD_FILTER[i]; //3858

repetitions from 9 Nets, Mem:58%, DSP:18%,

Others:24%

126: acc.y += y_filt[r][c-i].y * GRAD_FILTER[i]; //4766

repetitions from 7 Nets, Mem:75%, DSP:0%, Others:25%

127: acc.z += y_filt[r][c-i].z * GRAD_FILTER[i]; //5449

repetitions from 7 Nets, Mem:88%, DSP:1%, Others:11%

LISTING 4. Congestion-related back-annotations on the unoptimized
optical flow source.

TABLE 7. Implementation performance for the optical flow example.

improved by 20% thanks to the additional DSP resources

and BRAM ports. The improvements can also be seen

in Fig. 4 that shows the interconnect density before and after

optimizations.

VI. INTERPRETATION OF ANNOTATIONS

As can be observed from the examples, the annotations

belong to three categories: DSP-related, BRAM-related, and

others (such as FF- and LUT-related). The DSP-related nets

typically come from the implementation of mathematical

operations (e.g., multiplication, addition, subtraction, divi-

sion). Note that floating-point divisions, like in the LDL

example, were implemented using FFs and LUTs, which can

be traced back to the fdiv operation in the source code.

So we can trace congested nets back to the source lines and

operations regardless of the hardware resource used for its

implementation. If a line in the source code contains multiple

operations, our tool can identify the weight of the congested

nets associated with each operation. We print this detail in a

separate report, for readability.

Such detailed operation trace-back can guide the user to

improve resource allocation. For example, when a DSP unit

implementing a subtraction has a high number of repetitions,

the user can direct the synthesis to allocate more subtraction

units, e.g., using the allocation pragma. Similarly, if more

repetitions in the others category are caused by a fdiv

operation, the user can direct the synthesis to allocate more

floating-point divisions. Besides improving resource alloca-

tion, this also breaks large sharing multiplexers into smaller

ones, which contribute less to congestion.

If a large number of repetitions point to the BRAMs,

the user can partition the arrays according to the data access

order. Arrays implemented as BRAMs are reported in the

Mem category, while arrays implemented by FFs are included

in Others.

VOLUME 9, 2021 54293



O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

FIGURE 4. Interconnect density in percentage for the Optical Flow
example: (a) before and (b) after design optimizations.

In summary, we can trace-back congested nets caused by

arrays and operations regardless of what hardware resources

are used for their implementation.

For some large very parallelizable designs like convolu-

tions, if the trace-back points to the DSPs and BRAMs, and

both blocks are already allocated and partitioned to fully

exploit the available resources, we can split the design into

several smaller ones that are working independently. Thus,

each DSP unit will use a smaller amount of input data as

operands, hence the multiplexer size will be reduced.

Note that extracting congestion information from heat

maps or reports containing hundreds or thousands of net

names is absolutely non-trivial, especially for large FPGAs,

like the one used in the convolution example (Section V-

B). This clearly shows the need for a back-annotation-based

source-level congestion resolution flow, such as the one we

propose in this article.

VII. BACK-ANNOTATION GENERALIZATION

Using the information from the .adb files, we can disam-

biguate well the attribution of nets to source code lines and

variables, but this technique depends on the specific tool

that we used (Xilinx Vivado HLS in this case). Alternatively,

we can match unique source code identifiers directly with

net names, without relying on tool-specific intermediate files.

We thus tested also an independent method, based purely

on replacing C++ source variable names with easily distin-

guishable ones, through hashing, and then looking for these

names in the congestion reports. We used a tool that replaces

the name of each variable with a unique hash, so that different

variables with the same original name get different hashes

(we used only 8 characters for readability).

Note that in our experiment we back-annotated the modi-

fied code just to show the effectiveness of the technique. In a

better engineered version of the method, the back-annotation

should be performed directly on the original source code.

The main steps of our procedure are:
1) Replace source code variable names with a unique

hash.

2) Run the whole synthesis flow.

3) Obtain the congestion report.

4) Collect all net names in congested regions.

5) Select the nets matching the hashed source identifiers.

6) Count the congested nets matched by each identifier.

7) Associate with nets the source code line number that

generated them and the number of congested tiles

crossed.

Note that, as discussed above, we are interested in con-

gested nets connecting to on-chip memories (BRAMs) or

shared functions (floating-point operations and DSP units).

We can easily identify the memories from the array names

that are propagated into the netlist, since source code arrays

that are mapped on memories, and hence BRAM-related

congestion, can be traced back directly using this mechanism,

without relying on intermediate files used by the HLS tool.

For nets associated with DSP units, we cannot trace

back their congestion information based on variable names

directly. We uniquely associate each operation (an integer

or floating-point operation mapped to a shared DSP) by

breaking a complex expression where operations can be

mapped to DSP units into elementary assignments, hence

with an associated source code variable. Note that this does

not need to be done for the entire source code, but only

for statements where the sharing occurs. In Xilinx Vivado

HLS this can happen only for non-inlined user functions

or floating-point operations. Then, we use the variable-to-

shareable-operation one-to-one correspondence to trace the

congestion information back to the source code, e.g., in List-

ing 5, the multiplication operation on line 28 is assigned

to a new variable o_76398e. To trace back the nets from

the DSP unit used on line 28, we count how many times

the identifier o_76398e is found in the congested region.

As mentioned above, we can automatically get information

about the operations which are assigned to DSPs through

the synthesis report. Hence, we can perform this manual

breaking only for nets that are associated with shared DSPs.

In future work, this step can also be trivially automated via a

source-to-source translator.

54294 VOLUME 9, 2021



O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

23: o_f7efe8 = o_74d024[o_471974][o_471974]; //32031

repetitions, Mem:100%, DSP:0%, Others:0%

[...]

27: float o_bae153 = o_82649c[o_471974]; //2678

repetitions, Mem:60%, DSP:0%, Others:40%

28: float o_76398e = o_1a7a49 * o_bae153; //435

repetitions, Mem:0%, DSP:100%, Others:0%

29: float o_29c208 = o_f7efe8 - o_76398e; //4849

repetitions, Mem:0%, DSP:91%, Others:9%

[...]

35: o_f7efe8 = o_74d024[o_d95347][o_471974]; //32031

repetitions, Mem: 100%, DSP:0%, Others:0%

[...]

48: float o_75ede2 = o_f7efe8 / o_6d2ce5[o_471974];

//598 repetitions, Mem:0%, DSP:0%, Others:100%

49: o_c3630f[o_d95347][o_471974] = o_75ede2; //18813

repetitions, Mem:0%, DSP:0%, Others:100%

LISTING 5. Congestion-related back-annotations based on variable name
hashing for the unoptimized LDL decomposition source.

Now we analyze if the back-annotation through hashed

variable names provides similar congestion annotations,

hence resolutions, as the back-annotation through.adbfiles.

In Listing 5, we can see the results of tracing back through

variable name hashing for the example in Section V-A.

In ldl, on lines 23, 27, and 35, we observe the congested

nets related to memory accesses, which match exactly those

reported by the.adbfilemethod. Even though both the abso-

lute numbers and the percentages on nets involved in conges-

tion vary (in fact, the hashing-based method can trace back

more congested nets than the .adb file method), the result

for the designer is the same, identifying precisely the causes

of congestion. The nets on lines 28 and 29 are attributed to

the DSP resources. Note that the nets on line 48 are much

fewer than those obtained via .adb backtracing (598 vs.

19 766), but in the following line we can see a high number of

nets. This happens because the variable containing the result

of division operation (o_75ede2) is assigned to the array

o_c3630f. After partitioning all arrays, as in the .adb-

based annotation, we can see the results in Listing 6. We can

thus achieve the same result, as the congestion due to memory

accesses is significantly reduced in lines 23 and 35 (the same

array is causing congestion in both cases). We still observe a

high number of congested nets due to DSP operations (which

even increased in some cases, particularly on line 40 where it

increased from 670 nets to 4362 nets), indicating the need to

allocate more resources, as we did in the .adb-based method

in Section V-A.

The technique discussed in this Section has only been par-

tially automated, namely by automatically generating vari-

able names. In the future, we can improve it to back-annotate

the original source code, to provide better user support and

replacing thus completely the one based on .adb files. For

now, our goal was simply to illustrate that our technique

is fully general because we obtain similar results without

relying on tool-specific internal files and reports.

We also verified that this method works with the Intel

HLS tool for their FPGAs (which incidentally uses the same

LLVM front-end as Xilinx Vivado HLS). The hashed names

23: o_f7efe8 = o_74d024[o_471974][o_471974]; //4115

repetitions, Mem:100%, DSP:0%, Others:0%

[...]

27: float o_bae153 = o_82649c[o_471974]; //6222

repetitions, Mem:23%, DSP:0%, Others:77%

28: float o_76398e = o_1a7a49 * o_bae153; //748

repetitions, Mem:0%, DSP:100%, Others:0%

29: float o_29c208 = o_f7efe8 - o_76398e; //1558

repetitions, Mem:0%, DSP:52%, Others:48%

[...]

35: o_f7efe8 = o_74d024[o_d95347][o_471974]; //4115

repetitions, Mem: 100%, DSP:0%, Others:0%

[...]

40: float o_9d068e = o_e7ff79 * o_036404; //4362

repetitions, Mem:0%, DSP:100%, Others:0%

[...]

48: float o_75ede2 = o_f7efe8 / o_6d2ce5[o_471974];

//7241 repetitions, Mem:0%, DSP:0%, Others:100%

49: o_c3630f[o_d95347][o_471974] = o_75ede2; //22336

repetitions, Mem:0%, DSP:0%, Others:100%

LISTING 6. Congestion-related back-annotations based on variable name
hashing on the LDL decomposition source after the first optimization.

of the variables related to both DSPs and on-chip RAM were

found in the RTL. Since the messages and reports that are

generated by physical design use the RTL names, it would be

possible to complete a similar flow also for Intel FPGAs, and

thus our method can support multiple vendors.

VIII. CONCLUSION

We showed that the back-annotation of post-placement global

routing congestion information can be used to effectively and

easily improve performance (in a particular clock period) by

performing simple transformations using HLS directives.

Note that the recipes that we followed were relatively

straightforward:

1) If congestion was due to BRAM, we partitioned it,

typically resulting in increased performance.

2) If DSPs were involved, we either allocated more units

or created one level of function hierarchy to sim-

plify the scheduler’s job and create a more regular

netlist.

These recommendations can be provided directly to the

designer, based on the findings of our tool, and may also

be automated as part of future work. We believe that our

approach can effectively help to solve a serious problem

that affects fast HLS-based design flows for modern large

accelerators implemented on FPGAs.

REFERENCES

[1] Z. Or-Bach. (2012). Is the cost reduction associated with IC scaling

over? EE Times. Accessed: Nov. 13, 2020. [Online]. Available:

https://www.eetimes.com/is-the-cost-reduction-associated-with-ic-

scaling-over/

[2] K. Flamm, ‘‘Measuring Moore’s law: Evidence from price, cost, and

quality indexes,’’ in Measuring and Accounting for Innovation in the 21st

Century. Chicago, IL, USA: Univ. of Chicago Press, 2019.

[3] N. Thompson and S. Spanuth, ‘‘The decline of computers as a gen-

eral purpose technology: Why deep learning and the end of Moore’s

law are fragmenting computing,’’ Nov. 2018. [Online]. Available:

https://ssrn.com/abstract=3287769, doi: 10.2139/ssrn.3287769.

VOLUME 9, 2021 54295

http://dx.doi.org/10.2139/ssrn.3287769


O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

[4] J. Varia and S. Mathew, ‘‘Overview of Amazon Web services,’’

Amazon Web Service, Seattle, WA, USA, Tech. Rep., 2014,

pp. 1–22. Accessed: Nov. 13, 2020. [Online]. Available:

https://media.amazonwebservices.com/AWS_Overview.pdf

[5] Microsoft Azure Cloud. Accessed: Nov. 13, 2020. [Online]. Available:

https://azure.microsoft.com/

[6] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,

M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,

T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,

D. Chiou, and D. Burger, ‘‘A cloud-scale acceleration architecture,’’ in

Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),

Oct. 2016, pp. 1–13.

[7] Alibaba Group. Alibaba Cloud. Accessed: Nov. 13, 2020. [Online]. Avail-

able: https://www.alibabacloud.com/

[8] FPGA Accelerated Cloud Server-Huawei Cloud. Accessed: Nov. 13, 2020.

[Online]. Available: https://www.huaweicloud.com/

[9] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,

H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, ‘‘A survey

and evaluation of FPGA high-level synthesis tools,’’ IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp. 1591–1604,

Oct. 2016.

[10] T. De Matteis, J. de Fine Licht, and T. Hoefler, ‘‘FBLAS: Streaming

linear algebra on FPGA,’’ 2019, arXiv:1907.07929. [Online]. Available:

http://arxiv.org/abs/1907.07929

[11] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R. Aggarwal,

‘‘Routability-driven FPGA placement contest,’’ in Proc. Int. Symp. Phys.

Design, Apr. 2016, pp. 139–143.

[12] M. Tatsuoka, R. Watanabe, T. Otsuka, T. Hasegawa, Q. Zhu, R. Okamura,

X. Li, and T. Takabatake, ‘‘Physically aware high level synthesis design

flow,’’ in Proc. 52nd Annu. Design Automat. Conf., Jun. 2015, p. 162.

[13] J. Wu, C. Ma, and B. Huang, ‘‘Congestion aware high level synthesis com-

bined with floorplanning,’’ in Proc. IEEE Pacific–Asia Workshop Comput.

Intell. Ind. Appl., vol. 2, Dec. 2008, pp. 935–938.

[14] Y. Wang, J. Bian, Q. Wu, and H. Hu, ‘‘Reallocation and rescheduling after

floor-planning for timing optimization,’’ in Proc. 5th Int. Conf., vol. 1,

2003, pp. 212–215.

[15] W. E. Dougherty and D. E. Thomas, ‘‘Unifying behavioral synthesis and

physical design,’’ in Proc. 37th Conf. Design Automat., 2000, pp. 756–761.

[16] J. Cong, B. Liu, G. Luo, and R. Prabhakar, ‘‘Towards layout-friendly high-

level synthesis,’’ in Proc. ACM Int. Symp. Int. Symp. Phys. Design, 2012,

pp. 165–172.

[17] H. Zheng, S. T. Gurumani, K. Rupnow, and D. Chen, ‘‘Fast and effective

placement and routing directed high-level synthesis for FPGAs,’’ in Proc.

ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2014, pp. 1–10.

[18] L. Guo, J. Lau, Y. Chi, J. Wang, C. H. Yu, Z. Chen, Z. Zhang, and J. Cong,

‘‘Analysis and optimization of the implicit broadcasts in FPGA HLS to

improve maximum frequency,’’ in Proc. 57th ACM/IEEE Design Automat.

Conf. (DAC), Jul. 2020, pp. 1–6.

[19] C.-W. Pui, G. Chen, W.-K. Chow, K.-C. Lam, J. Kuang, P. Tu, H. Zhang,

E. F. Y. Young, and B. Yu, ‘‘RippleFPGA: A routability-driven placement

for large-scale heterogeneous FPGAs,’’ in Proc. 35th Int. Conf. Comput.-

Aided Design, Nov. 2016, pp. 1–8.

[20] M. Tatsuoka and M. Kaneko, ‘‘Wire congestion aware high level synthesis

flow with source code compiler,’’ in Proc. Int. Conf. IC Design Technol.

(ICICDT), Jun. 2018, pp. 101–104.

[21] W. Li, S. Dhar, and D. Z. Pan, ‘‘UTPlaceF: A routability-driven FPGA

placer with physical and congestion aware packing,’’ IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 4, pp. 869–882,

Apr. 2018.

[22] J. Zhao, T. Liang, S. Sinha, and W. Zhang, ‘‘Machine learning based

routing congestion prediction in FPGA high-level synthesis,’’ in Proc.

Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 1130–1135.

[23] D. Maarouf, A. Alhyari, Z. Abuowaimer, T. Martin, A. Gunter, G. Grewal,

S. Areibi, andA. Vannelli, ‘‘Machine-learning based congestion estimation

for modern FPGAs,’’ in Proc. 28th Int. Conf. Field Program. Log. Appl.

(FPL), Aug. 2018, pp. 427–4277.

[24] A. Alhyari, A. Shamli, Z. Abuwaimer, S. Areibi, and G. Grewal, ‘‘A deep

learning framework to predict routability for FPGA circuit placement,’’

in Proc. 29th Int. Conf. Field Program. Log. Appl. (FPL), Sep. 2019,

pp. 334–341.

[25] Z. Qi, Y. Cai, and Q. Zhou, ‘‘Accurate prediction of detailed routing

congestion using supervised data learning,’’ in Proc. IEEE 32nd Int. Conf.

Comput. Design (ICCD), Oct. 2014, pp. 97–103.

[26] C.-W. Pui, G. Chen, Y. Ma, E. F. Y. Young, and B. Yu, ‘‘Clock-aware

ultrascale FPGA placement with machine learning routability prediction,’’

in Proc. 36th Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017,

pp. 929–936.

[27] H. Szentimrey, A. Al-Hyari, J. Foxcroft, T.Martin, D. Noel, G. Grewal, and

S. Areibi, ‘‘Machine learning for congestion management and routability

prediction within FPGA placement,’’ ACM Trans. Des. Automat. Electron.

Syst., vol. 25, no. 5, pp. 1–25, Oct. 2020.

[28] C. Yu and Z. Zhang, ‘‘Painting on placement: Forecasting rout-

ing congestion using conditional generative adversarial nets,’’ 2019,

arXiv:1904.07077. [Online]. Available: http://arxiv.org/abs/1904.07077

[29] Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Gréwal, S. Areibi,

and A. Vannelli, ‘‘GPlace3. 0: Routability-driven analytic placer for ultra-

scale FPGA architectures,’’ ACM Trans. Des. Automat. Electron. Syst.,

vol. 23, no. 5, pp. 1–33, 2018.

[30] P. Kannan and D. Bhatia, ‘‘Interconnect estimation for FPGAs,’’ IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 8,

pp. 1523–1534, Aug. 2006.

[31] R. Goering, (Dec. 2014). Front-End Summit: Avoiding Routing Congestion

With High-Level Synthesis. [Online]. Available: https://community.

cadence.com/cadence_blogs_8/b/ii/posts/front-end-summit-avoiding-

routing-congestion-with-high-level-synthesis

[32] D. Lee, L. K. John, and A. Gerstlauer, ‘‘Dynamic power and perfor-

mance back-annotation for fast and accurate functional hardware simu-

lation,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), 2015,

pp. 1126–1131.

[33] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong

program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.

Optim. (CGO), 2004, pp. 75–86.

[34] A. A. Hussain, N. Tayem, and A.-H. Soliman, ‘‘LDL decomposition-

based FGPA real-time implementation of DOA estimation,’’ in Proc. 52nd

Asilomar Conf. Signals, Syst., Comput., Oct. 2018, pp. 1163–1168.

[35] C. Ingemarsson and O. Gustafsson, ‘‘Hardware architecture for posi-

tive definite matrix inversion based on LDL decomposition and back-

substitution,’’ in Proc. 50th Asilomar Conf. Signals, Syst. Comput.,

Nov. 2016, pp. 859–863.

[36] P. Dellaportas and M. Pourahmadi, ‘‘Cholesky-GARCH models with

applications to finance,’’ Statist. Comput., vol. 22, no. 4, pp. 849–855,

Jul. 2012.

[37] X. Wang and I. H. Sloan, ‘‘Quasi-Monte Carlo methods in financial engi-

neering: An equivalence principle and dimension reduction,’’ Oper. Res.,

vol. 59, no. 1, pp. 80–95, Feb. 2011.

[38] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston,

Y.-H. Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang, ‘‘Rosetta:

A realistic high-level synthesis benchmark suite for software pro-

grammable FPGAs,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program.

Gate Arrays, Feb. 2018, pp. 269–278.

[39] Z. Wei, D.-J. Lee, and B. E. Nelson, ‘‘FPGA-based real-time optical

flow algorithm design and implementation,’’ J. Multimedia, vol. 2, no. 5,

pp. 1–8, 2007.

OSAMA BIN TARIQ (Graduate Student

Member, IEEE) received the M.S. degree in elec-

tronic engineering with specialization in embed-

ded systems from the Politecnico di Torino, Italy,

where he is currently pursuing the Ph.D. degree

with the Department of Electronic and Telecom-

munications Engineering. His research interests

include artificial intelligence andmachine learning

applications, indoor localization, and high-level

synthesis.

54296 VOLUME 9, 2021



O. B. Tariq et al.: High-Level Annotation of Routing Congestion for Xilinx Vivado HLS Designs

JUNNAN SHAN (Graduate Student Member,

IEEE) received the B.S. and M.S. degrees from

the Politecnico di Torino, Italy, where she is

currently pursuing the Ph.D. degree with the

Department of Electronics and Telecommunica-

tions under the supervision of Prof. Mario Casu

and Prof. Luciano Lavagno. Her research interests

include electronic design automation, system-level

design, low-power, high-performance computing,

and high-level synthesis.

GEORGIOS FLOROS (Member, IEEE) received the B.Sc. degree in com-

puter science and the M.Sc. degree in electrical engineering. Since 2013,

he has been working with FPGAs on topics like data acquisition networks,

software defined radios, and cryptography.

CHRISTOS P. SOTIRIOU received the B.Eng.

degree in computer science and electronics, and

the Ph.D. degree in computer science from The

University of Edinburgh, Scotland, in 2001. He is

currently an Associate Professor with the Depart-

ment of Electrical and Computer Engineering,

University of Thessaly. His research interests

include design methodologies for synchronous or

asynchronous digital circuits and systems, elec-

tronic design automation (EDA) algorithms, tools

and flows for digital circuit implementation, physical design, lower-power

design, reliability and power, performance and area (PPA) optimisation.

He received the Qualcomm Faculty Award twice, in 2019 and 2020, and

has collaborated with several large corporations on EDA tools and flows

development, circuit implementation, and physical design.

MARIO R. CASU (Senior Member, IEEE)

received the Ph.D. degree in electronics and com-

munications engineering from the Politecnico di

Torino, Torino, Italy, in 2001. He is currently an

Associate Professor. His past work focused mostly

on latency-insensitive design of systems-on-chip

(SoC) and on networks-on-chip. His research

interests include systems-on-chip with special-

ized accelerators, system-level design and design

methodology for FPGAs and ASICs, and embed-

ded machine learning. He is also interested in the design of circuits, systems,

and platforms for industrial applications (biomedical, automotive, food).

He regularly serves for the Technical Program Committee of International

conferences, such as DAC, ICCAD, and DATE.

MIHAI TEODOR LAZARESCU (Senior Member,

IEEE) received the Ph.D. degree in electronics and

communications from the Politecnico di Torino,

Italy, in 1998. He was a Senior Engineer with

Cadence Design Systems and founded several star-

tups. He currently serves as an Assistant Professor.

He has coauthored more than 60 scientific publi-

cations, four books, and international patents. His

research interests include design tools for reusable

WSN platforms, sensing, indoor localization, and

data processing for the IoT, low power embedded design, high-level HW/SW

co-design, and high-level synthesis.

LUCIANO LAVAGNO (Senior Member, IEEE)

received the Ph.D. degree in electrical engineering

and computer sciences from the University of Cal-

ifornia at Berkeley, Berkeley, CA, USA, in 1992.

He was an Architect of the POLIS HW/SW

co-design tool. From 2003 to 2014, he was an

Architect of the Cadence CtoSilicon high-level

synthesis tool. Since 1993, he has been a Professor

with the Politecnico di Torino, Italy. He coau-

thored four books and more than 200 scientific

articles. His research interests include synthesis of asynchronous circuits,

HW/SW co-design, high-level synthesis, and design tools for wireless sensor

networks.

VOLUME 9, 2021 54297


