
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999 697
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for VLSI Circuits
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Abstract—High-level power estimation, when givenonly a high-
level design specification such as a functional or register-transfer
level (RTL) description, requires high-level estimation of the
circuit average activity and total capacitance. Considering that
total capacitance is related to circuit area, this paper addresses
the problem of computing the “area complexity” of multioutput
combinational logic given only their functional description, i.e.,
Boolean equations, where area complexity refers to the number
of gates required for an optimal multilevel implementation of
the combinational logic. The proposed area model is based on
transforming the multioutput Boolean function description into
an equivalent single-output function. The area model is empirical
and results demonstrating its feasibility and utility are presented.
Also, a methodology for converting the gate count estimates,
obtained from the area model, into capacitance estimates is pre-
sented. High-level power estimates based on the total capacitance
estimates and average activity estimates are also presented.

Index Terms—High-level area estimation, high-level power
estimation, power estimation, register transfer level (RTL) power
estimation.

I. INTRODUCTION

RAPID increase in the design complexity and the need
to reduce time-to-market have resulted in a need for

computer-aided design (CAD) tools that can help make im-
portant design decisionsearly in the design process. To do so,
these tools must operate with a design description at a high-
level of abstraction. One design criterion that has received
increased attention lately is power dissipation. This is due
to the increasing demand for low-power mobile and portable
electronics. As a result, there is a need for high-level power
estimation and optimization (as well as modeling for area,
timing, noise, etc.).

There are two types of modeling approaches: bottom-up
and top-down. In the bottom-up approach, one starts with a
complete implementation of a circuit block (down to gates,
transistors, and/or layout) and builds a simple and compact
higher-level model that gives the power of the block for any
specified input vectors or input switching statistics. Bottom-
up models can be built with high accuracy because the
circuit level implementation is available. Examples of bottom-
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up techniques include the power factor approximation (PFA)
technique [23], [24], the dual bit type (DBT) method [25], [26],
the look-up-table-based techniques [27], [28], the clustering-
based method [30], and the cycle-accurate macro-model [31].
However, bottom-up models are not enough. Certain parts of
the design (typically 25% or more) will consist of application-
specific logic blocks that have not been previously designed.
During high-level design planning, we need to have some
figure-of-merit for the power that these new functions would
require, once implemented in a given gate library. This paper
proposes a technique to address this problem.

Specifically, we propose an area and power estimation
capability, given only afunctional view of the design, such
as when a circuit is described only with Boolean equations.
In this case, no structural information is known—the lower-
level (gate-level or lower) description of this function is
not available. Of course, a given Boolean function can be
implemented in many ways, with varying power dissipation
levels. We are interested in predicting the nominal area and
power dissipation of a minimal area implementation of the
function that meets a given delay specification.

For a combinational circuit, since the only available infor-
mation is its Boolean function, we consider that its power
dissipation will be modeled as follows:

(1)

where is an estimate of the average node switching
activity that a gate-level implementation of this circuit would
have, (also referred to asarea complexity) is an estimate of
the gate count (assuming some target gate library), and
is an estimate of the average node capacitance. The estimation
of was covered in [1]–[3]. The problem of estimating
from a high-level description of the circuit corresponds to the
problem of high-level area estimation. This problem is also
of independent interest, as the information it provides can be
very useful, for instance, during floorplanning.

In an early work [4], Shannon studied area complexity,
measured in terms of the number of relay elements used in
building a Boolean function (switch-count). In that paper,
Shannon proved that theasymptoticcomplexity of Boolean
functions isexponentialin the number of inputs , and that
for large , almost everyBoolean function is exponentially
complex. In [18], Muller demonstrated the same result for
Boolean functions implemented using logic gates (gate-count
measure). A key result of his work is that a measure of
complexity based on gate-count is independent of the nature
of the library used for implementing the function.
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Several researchers have also reported results on the re-
lationship between area complexity and entropy of a
Boolean function (entropy will be introduced in Section II).
These include [19], [5], [20]. More recently, Chenget al. [6]
empirically demonstrated the relation between entropy and
area complexity, with area complexity measured as literal-
count. They showed thatrandomly generatedBoolean func-
tions (RGBF’s) (for ) have a complexityexponen-
tial in , and proposed to use that model as a area predictor
for logic circuits. However, the circuits tested were very small,
typically having less than ten inputs. As one tries to apply that
model to realistic very large scale integration (VLSI) circuits,
it quickly breaks down due to the exponential dependence on

, leading to unrealistically large predictions of circuit area.
For example, when applied to a circuit with 32 inputs (having
been tuned to inputs), this model predicts an area
of million gates, whereas the circuit can in reality be
implemented with only 84 gates!

In this paper, we use “gate-count” as a measure of com-
plexity, mainly due to the key fact observed by Muller [18],
and also because of the popularity of cell-based or library-
based design. As mentioned above, it is clear that a given
Boolean function can be implemented in many different ways,
with different resulting areas and gate-counts. For instance,
a circuit may contain redundant logic, which artificially in-
creases its area and is not reflected in the circuit function. Since
redundant logic is undesirable anyway, we aim to estimate
the gate-count of anoptimizedimplementation of a Boolean
function. Specifically, in our experiments, we have compared
our estimated gate-counts to the gate-count for optimal circuit
implementations that were obtained using the SIS synthesis
system.

Our estimation technique is based on the novel concept of
complexity measureof a Boolean function, to be defined later
in the paper. Based on this, we will provide an area prediction
model which gives reasonable results for realistic circuits,
which is a significant improvement over traditional techniques.
This will be demonstrated with experimental results on a large
set of benchmarks, for which we compare our predicted gate-
counts to those obtained from SIS. We will then combine the
area estimates, provided by the area estimation tool, with the
high-level activity estimates [1], [3] to obtain high-level power
estimates for various circuits. This paper is an extended version
of [17].

The proposed technique has two important limitations that
one should be aware of. First, it is limited (in its present form)
to combinational circuits. We continue to work on this problem
and will, in future, extend this approach to sequential circuits.
Second, the method does not apply to circuits containing large
arrays of exclusive-or (XOR) gates. Such circuits are also
the source of problems in many CAD applications, such as
in binary decision diagram construction for verification. The
failure of the area model on these circuits could be due to
the failure of thecomplexity measureto capture the extreme
regularity of the on-set and off-set in the Boolean space of
the function. This regularity leads to area implementations
which are small, however, the complexity measure would
indicate otherwise. One can argue that is not an important

limitation of the model, because large XOR arrays are typically
arithmetic units, and it is natural for arithmetic blocks to be
modeled bottom-up, not top-down. As observed by one of
the reviewers, our technique is “better suited to relatively
unstructured control-logic, whereas techniques such as the
DBT method [a bottom-up approach] are better suited to data-
path blocks.” In any case, one way around the problem of
exclusive-or arrays is to require that the Boolean function
specification explicitly list exclusive-or gates. In that case,
these can be identified up-front and excluded from the analysis,
so that the proposed method is applied only to the remaining
circuitry. In the remainder of this paper, we will not consider
circuits composed of large exclusive-or arrays.

The proposed technique can be combined with high-level
top-down delay estimation methods [22], [29] to derive the
power-area-delay tradeoff curves of a Boolean function, thus,
enabling the designer to make useful design tradeoffs early in
the design. Such a capability is essential to do early design
planning for system-on-a-chip designs.

Before leaving this section, we should mention some previ-
ous work on layout area estimation from an RTL level view.
Wu et al. [7] proposed a layout area model for datapath and
control for two commonly used layout architectures. They used
transistor count as a measure of area of datapath and control
logic. For datapath units, the average transistor count was
obtained by averaging the number of transistors over different
implementations of the unit. For control logic, they calculate
the number of transistors from the sum-of-products (SOP)
expression for the next state and control signals. In addition
to this, the wiring area for both datapath and control logic
were estimated. Kurdahiet al. [8] modified the above model to
account for effects of floorplanning (effects of cell placement
and interconnect on chip area). In [8], the area model for
control logic is also based on SOP expressions, similar to
that of [7]. However, each product term is implemented with
AND gates (in the library) and the sum with OR gates (in
the library). Since the product terms could be much larger
than the gates in the library, the resulting implementation is a
multilevel one. The advantage of these models ([7] and [8]) is
that they account for the effect of interconnect and placement
on the layout area. In both these methods ([7] and [8]), the
number of AND gates for the SOP expression is computed by
counting the number of AND gates required for each product
term and summing over all product terms. The number of OR
gates required to implement the SOP expression is computed
by counting the number of OR gates required to form the
sum of the product terms. The area estimate is equal to the
sum of the number of AND and OR gates required. In reality
however, the optimal number of gates required to implement
the function would be much smaller than the above sum,
because it is frequently possible to apply logic optimization
(synthesis) algorithms to give a much better implementation
of the circuit.

This paper is organized as follows. In Section II, we give
a background discussion on the high-level power model for
Boolean functions [1], [3] and a brief discussion of the
activity prediction model of [1] and [3]. In Section III, we
discuss the issues pertaining to the complexity of randomly
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generated Boolean functions. In Section IV, we define the
complexity measure,linear measure, which would be used
to estimate the area complexity and also present a model
to compute the complexity measure of multioutput Boolean
functions. In Section V, we present an area prediction model
and in Section VI, we present the overall flow of our high-
level area estimation algorithm followed by empirical results,
demonstrating the feasibility and utility of the proposed area
estimation scheme. In Section VII, we propose a methodology
for estimating and present empirical results demonstrat-
ing its utility. In Section VIII, we present results showing
the utility of the proposed area model in estimating the
area complexity of a Boolean function at any feasible delay
point. In Section IX, we combine the high-level capacitance
estimates and high-level activity estimates to obtain high-
level power estimates and compare these with gate-level
power estimates obtained using a zero-delay and a general-
delay timing model. This is done for the minimum-area and
minimum-delay implementations. We end the paper with some
conclusions presented in Section X.

II. BACKGROUND

In this section we briefly discuss previously published
results pertaining to high-level power and activity estimation
[1], [3]. These results are being summarized here for the
convenience of the reader.

A. High-Level Power Estimation Model

We restrict ourselves to the common static fully comple-
mentary CMOS technology. Consider a combinational logic
circuit, composed of logic gates, whose gate output nodes
are denoted . If is the transition
density [9] of node (average number of logic transitions per
second), then the average power consumed by the circuit is

where is the total capacitance at node. This expression
accounts only for the capacitive charging/discharging compo-
nent of power, and not for the so-called short-circuit power
which is known to be only around 10% of the total power in
well-designed circuits. The transition density is a measure of
circuit switchingactivity. We will be using the terms “density”
and “activity” interchangeably.

Since we wish to accomplish power estimation at a level
of abstraction where the circuit internal details are not known,
certain approximations seem inevitable. The model proposed
for high-level power estimation [1], [3] is given by

where is a measure of the average node switching activity
and is total circuit capacitance. Also

(2)

where is an estimate of the average gate capacitance for a
given target library and is an estimate of the area complexity

Fig. 1. Accuracy of high-level power model.

of the Boolean function. It must be noted that all the quantities,
, , and , have to be estimated from a high-level

description of the function. In this paper we adopt the above
model for estimating the power.

The above power approximation was
tested on several benchmark circuits from the ISCAS-89 [15]
and MCNC [16] benchmark suites. These circuits (described
at the gate level) were simulated under realistic gate delay
models, for randomly generated vector sequences, for input
probabilities ranging from 0.1 to 0.9. Average circuit activity
and the total average power were computed from this sim-
ulation [10], and the area was computed as the total circuit
capacitance (sum of output capacitance of all the gates). The
results of this test are shown in Fig. 1, demonstrating the
validity of this power approximation. For further details on
this model, please refer to [1] and [3].

B. High-Level Activity Prediction Model

It was observed in the previous Section II-A that one
would have to estimate the average switching activity of a
combinational logic block in order to compute the power
dissipated from a high-level description. In this paper we use
activity prediction model of [1] and [3]. This model is based
on the fact that the switching activity of a signal is related
to its entropy. The model assumes that the primary inputs of
the Boolean function are spatially and temporally independent,
and is based on the empirical observation that the variation
of cross-sectional entropy normalized to a linear width model
falls quadratically with depth. From this observation it follows
that:

(3)

Here is the average activity of a node of the circuit,
is the sum of input activities, is the sum of output

activities, is the number of primary inputs and is the
number of primary outputs of the Boolean function. For further
information on the activity model, please refer to [1] and [3].



700 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

III. RANDOMLY GENERATED BOOLEAN FUNCTIONS

It was pointed out in [4] that for large, Boolean functions
have exponential complexity in, based on a switch-count
measure of complexity. In [6], Chenget al. point out a
similar complexity behavior for randomly generated Boolean
functions with inputs, for and , using a literal-
count measure (the same was observed by the authors when
gate-count was used as a measure of complexity). Byrandomly
generated, we mean that these functions were obtained by
making a random choice for each point in the Boolean space,
as to whether it belongs in the on-set or off-set of the function.

In [4], it was also pointed out that for sufficiently large
, all except a fraction of functions of variables require

at least switch elements. The results of
Chenget al. seem to indicate that this is also true for small

, so that “almost all” Boolean functions seem to have an
exponential complexity. This suggests that theaveragearea
complexity of an -input Boolean function (with the average
taken over the set ofall Boolean functions on variables)
varies exponentially with . Perhaps based on the assumption
that typical logic functions used in practice may be “average”
(or close to average), the method in [6] applies this to every
Boolean function, leading to the following area model:

Here, is the number of inputs, is the area complexity
measured as gate-count, andis the entropy of the output
of the Boolean function (with independent inputs, each with
probability 0.5) where entropy is the amount of information in
a signal and can be easily computed from the signal probability
using the following expression:

The proportionality constant in the area expression depends
on the library being used.

Risking abuse of terminology, we will refer to a Boolean
function for which the above model holds true as anaverage
function. Unfortunately, we have found that logic functions
that are typically used in VLSI are far from beingaverage, so
that the above model breaks down very quickly for reasonable
values of . This is dramatically illustrated by the 32-input 84-
gate circuit mentioned in the introduction, for which this model
predicts an area close to 400 million gates. This behavior is
typical of what we have seen.

Why is it that typical circuits are far from being average
in terms of area complexity? We have investigated this by
examining the structure of the on-sets for randomly gener-
ated functions, and found that their on-sets consist of points
that are randomly scattered in the Boolean space, with no
preferred direction. However, we have found that typical
VLSI circuits have well structured distributions of their on-
sets in the Boolean space, so that a function has certain
preferred directions in which many of its cubes lie. This seems
to translate to tremendous reduction in the area complexity
relative to the (unstructured) randomly generated functions.

Thus, typical VLSI circuits belong to the small minority of
circuits whose area does not satisfy the model of Chenget al.

[6]. Finding an area model for such functions has remained
an open problem. This paper utilizes the structure of the
Boolean space, in addition to the entropy, to predict the area
complexity.

IV. THE AREA COMPLEXITY MEASURE

The problem of estimating the area complexity of a Boolean
function pertains to estimation of theminimumnumber of gates

required to implement the function, given only its high-
level description (Boolean equations) and a target technology
library. It must be noted here that by implementation we mean
an optimal multilevel implementation of the Boolean function.
Let us, for now assume that the function at hand is a single-
output function. For such functions it has been observed that
the sizes of prime implicants of the on and off-sets may give
us a hint about the area complexity. However, to capture this
dependence in a quantitative fashion, the notion of complexity
measure will be introduced, which depends on the distribution
of sizes of the prime implicants in the on and off-sets. This
complexity measure will be referred to as thelinear measure
(one other complexity measure was introduced by the authors
in [12], however, it will not be discussed here).

The linear measureof a function is dependent on the
complexity of the on and off-sets of the function. The linear
complexity measure of the on-set (complexity of off-set can
be defined similarly) is given by

(4)

Here, is the linear complexity measure of the on-set
of , is the number of distinct sizes (size of a cube is
the number of literals in it) of prime implicants in a minimal
cover [13] of , are the distinct sizes of these
prime implicants, and is a weight on the prime implicants
of size such that where is the
probability that when each point of the Boolean space
has the same probability value and the probability of the entire
space is 1. The weights constitute a weighting function,
defined as follows. For , let the be ordered such that

. Let refer to a Boolean subfunction
of the original function , defined so that its on-set consists
only of the prime implicants of sizes , where

. We define the weight as follows:

if
if

(5)

where denotes probability. Thus, is the probability of
the set of all min terms in the on-set ofthat are covered by
the prime implicants of size , but not by prime implicants
of any larger size. With thus defined, as probabilities,
the expression (4) becomes equal to themean of
(when is assumed to take the value 0 with probability

), , and hence can easily be
computed using Monte Carlo mean estimation techniques such
as the one used in [10]. Using a similar development,
can also be computed using Monte Carlo simulation. Using
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and we can define thelinear measureof as

(6)

We have observed that the presence of cubes of size one
(cubes consisting of a single literal) can adversely affect the
accuracy of the area estimation. This is because these cubes
have a negligible effect on the gate count (a single OR gate)
but have a big effect on the output probability value. Their
presence also skews the probability distributions and makes
the Monte Carlo estimation much more expensive. We have
found that the best practical method for accounting for these
cubes is to in effect exclude them from the summation (4)
used to compute , and similarly for . This leads
to improved estimation speed and much improved accuracy.
Thus, the results to be presented in this paper make this
modification to the cube distribution before carrying out the
area prediction.

A. Complexity Measure for Multioutput Functions

The complexity measure proposed in the previous section
is based on the notion of complexity of the on and off-
sets of a Boolean function. However, no such notion exists
for multioutput Boolean functions. Moreover, any notion of
area complexity of a multioutput function should implicitly
account for the fact that there is sharing of logic between the
outputs of the Boolean function. In this section, we propose a
method by which the previously defined complexity measure
can be extended to measure the complexity of multioutput
functions. Our approach is inspired by the multivalued logic
approach to address the problem of two-level minimization of
multioutput Boolean functions [13]. The approach is based on
transforming a binary-valued, multioutput Boolean function
into an equivalent multivalued-input single-output (binary-
valued) Boolean function. The transformation is accomplished
by adding an -valued input to the Boolean function, i.e.,
given

where is an -input, -output Boolean function, can be
transformed to

where is a binary-valued, single-output function with
binary inputs and one -valued input. It must be noted here
that each value of the multivalued input corresponds to one
of the outputs. It has been shown that, for two-level
minimization, minimizing a binary-valued,-input, -output
Boolean function is equivalent to minimizing the correspond-
ing multivalued-input, singled output function. In our approach
we perform a similar transformation on, except that we
use binary-valued inputs to implement a-valued
input. An equivalent way of representing the transformation
is to think of the additional binary-valued inputs
as control signals of a multiplexor, and that the value of the
control word corresponds to the output being selected. This

Fig. 2. Transformation of anm-output Boolean Function into a single output
Boolean function.

corresponds to multiplexing the outputs of a -output
Boolean function, as shown if Fig. 2.

This multiplexing of the outputs of a input, output
Boolean function , gives rise to a input,
single-output Boolean function, shown in Fig. 2. Since
is a single-output function, its complexity measure can be
computed, as presented in the previous section. It must be
noted that by estimating the complexity of, which is made
up of all the outputs, we are in effect dealing with all the
outputs at the same time and, thus, automatically accounting
for the effect of sharing. However, we must remember that
complexity of was computed by adding a multiplexor to.
Thus, in order to compute the area complexity offrom the
area complexity of , we must be able to compute the influence
of the multiplexor on the area complexity of. This problem
of recovery of area of from that of will be discussed in
Section V-B.

V. THE AREA COMPLEXITY MODEL

In this section we present the area model to compute the
area complexity of Boolean functions. The area model
uses the complexity measure of the Boolean function along
with its output entropy to estimate the area complexity. Since
the approach adopted to estimate the area complexity of
multioutput functions is to transform them into equivalent
single-output functions, we will start by considering single-
output functions, and then discuss the area recovery for the
general case of multioutput functions.

A. Area Estimation for Single Output Functions

To start with, we will discuss the data shown in Fig. 3,
which was generated as follows. For a given, consider the set
of all Boolean functions on inputsandwhose output entropy
is , based on all inputs being independent and with
0.5 probability. For a number of randomly generated Boolean
functions from this set, we computed their linear measure,

, using our algorithm and obtained an estimate of the gate-
count from an optimized implementation of the function
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Fig. 3. A(f) versusL(f) for randomly generated Boolean functions with
H(f) = 1.

Fig. 4. Typical VLSI functions fall close to theA versusL curve.

using SIS. We then plotted these points and it can be seen from
the figure that the set of randomly generated functions for each

is clustered around specific points in the plot. This means
that the distribution of of randomly generated Boolean
functions (given and ) is tight, as observed by many others
(see Section III). It also illustrates that the distribution of
is also tight. The dotted curve shown in the figure is one which
joins the center (average values) of each cluster and is close,
but not exactly equal, to an exponential.

This almost-exponential versus curve is very important
and is in fact the essence of our area prediction model. This is
because we have found that not only do randomly generated
Boolean functions fall on this curve, but also typical VLSI
functions fall on it or close to it, as shown in Fig. 4. The data
points shown in Fig. 4 correspond to test cases obtained from
the benchmark suite presented in Table I. It is noteworthy that
the points are not clustered at specific points, but spread all
over the curve. This illustrates the point made earlier about
typical VLSI functions not beingaverage. Further results will

TABLE I
BENCHMARK CIRCUITS AND EXECUTION TIMES

be given in the empirical results section, where we will use
this curve to predict , having first computed . In
fact, we use a family of such curves, corresponding to different
entropy values, as shown in Fig. 5. Additional curves can be
easily generated for other entropy values. These curves need
to be generated only once, which is an up-front once-only
cost, and they can then be used to predict the area of various
functions.

An important consideration is what the largestshould
be for which these curves need to be generated. Obviously,
the curves are going to be more difficult to generate for
larger because of the cost of running synthesis to obtain the

values. Luckily, there are two reasons why this is not a
problem so that considering as in Fig. 5 is sufficient.
First, we have found that for typical VLSI functions, the value
of turns out to be much smaller thanin most cases.
Indeed, all the test cases that we will present (for which
ranges from 4 to 70) had , so that the curves in
Fig. 5 were sufficient. This fact is key because it illustrates
why the traditional (exponential in ) model breaks down,
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Fig. 5. A(�) versusL(�) for different values of entropy.

Fig. 6. log
2
A(�) versusL(�) for different values of entropy.

while our (almost-exponential in ) model gives reasonable
results for typical VLSI functions.

The second reason why generating the curves only for small
is sufficient is that for larger values of the curves become

closer to the exponential and can be modeled analytically, as
can be seen in the logarithmic plot in Fig. 6. For largevalues,
one can simply compute the area complexity as

where is a proportionality constant that depends on
the entropy , and can be computed using a least squares
approach.

B. Area Recovery for Multioutput Functions

We have seen previously that in order to compute the
complexity measure associated with a multioutput function,
we transform it into an equivalent single-output function by
appending to it a multiplexor. However, this transformation
poses the problem of recovering the area offrom that of .
In this section we address this problem.

A natural question to ask is, what is the relation between
the (optimal) area of and that of . To answer this question,
consider the following two scenarios. In the first scenario, let
all the outputs of the multioutput Boolean function be the
same. In this case the area of the multioutput Boolean function
is equal to the area of any of its outputs. Also note that the
prime implicants of the on and off-sets ofare independent
of the control inputs. Hence, the complexity measure ofis
equal to the complexity measure of any of the outputs of.
Also, as all the outputs of the function are the same, there is
no need for the multiplexor. Thus, the area contribution of the
multiplexor to the overall area of a minimizedis zero.

Now consider the second scenario. Here, assume that all
the outputs of the multioutput Boolean function have disjoint
support sets. It then follows that the optimal area ofis
equal to the sum of optimal area complexity ofand the
area complexity of the multiplexor. Thus, one has to subtract
the area of the multiplexor from the area complexity ofin
order to get the area complexity of. Moreover, every prime
implicant in the on and off-sets of contains all the control
inputs.

In the first scenario, when the contribution of the multiplexor
to the area of was zero, we saw that the control inputs
were absent from all the prime implicants, while in the second
scenario when the contribution of the multiplexor to the area
of is maximum, we saw that all the control inputs are present
in every prime implicant of . Thus, there seems to be a
correlation between the influence of the multiplexor on the area
of and the number of control inputs in the prime implicants
of .

From the above considerations, we propose that an appro-
priate area model for a multioutput function, in terms of the
area of and the area of an -to-1 multiplexor is given by

(7)

where is the area complexity of an -to-1 multiplexor,
and is a coefficient that represents the contribu-
tion of the multiplexor to the area complexity of. In the
following, we present an approach for estimating.

Note that the complexity measure of a-to-1 multiplexor
is given by , i.e., the complexity of a -to-1
multiplexor is proportional to the number of control inputs.
This is true because every prime implicant of a-to-1
multiplexor has a size given by . It is well known
that an -to-1 multiplexor has a balanced tree decomposition
such that the height of the tree is equal to and the
number of nodes in the tree is equal to . From this
observation it follows that the area complexity of a

-to-1 multiplexor is given by

(8)

Also, we can rewrite (7) as

Here, represents the area contribution of the
multiplexor to an optimal area implementation of. Note that



704 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

after optimization it might so happen that certain control inputs
become redundant for certain outputs. This manifests itself as
some control inputs being absent in some prime implicants of
on and off-sets of . Thus, we may think of as
representing the area of areducedmultiplexor resulting from
the optimization. This reduced multiplexor area is related to
the number of remaining control signals, which leads us to a
method for estimating this area, as follows.

Let denote the number of control inputs in a prime
implicant . Then define to be the average number of
control inputs in a prime implicant belonging to the on-set of

, so that

(9)

where is the number of prime implicants in the on-
set of . Similarly, one can define . From the above
discussion, it follows that and can be used to measure
the area contribution of the multiplexor to an optimal area
implementation of . Notice that the optimal implementation
of will contain a (implicit) reduced multiplexor whose area
depends on the smaller of and . Thus, we can model
this area contribution, in a fashion analogous to (8), as

(10)

It then follows from (8) and (10) that

(11)

It must be noted that can be computed with minimal effort
from the prime implicants of , and once is available,
can be computed using (7).

VI. HIGH-LEVEL AREA ESTIMATION FLOW

The transformation, as stated in the previous section, does
not place any restriction on the number of outputs that can
be dealt with at a time . However, we have observed that
in practice there is a tradeoff between run time of the area
estimation procedure and. As the value of increases we
observed that the time taken to generate the prime implicants
increases. Also, the size of the table capturing the variation
of area of single-output Boolean functions with thelinear
measureincreases. However, using too small a value of
can affect accuracy by overestimating the area, as the sharing
between all outputs is not captured. Keeping these reasons in
mind, after experimenting with different values of, it was
found that a reasonable choice for the value ofwas 16.

Typically, a multioutput Boolean function has outputs with
varying support set sizes. Outputs whose support set size is
very small, for instance one, two, or three, consume very little
area. For these outputs very little area optimization can be
done. One can make a reliable area prediction for such outputs
without having to resort to the aforementioned approach. In
fact it was found that an area estimate of two gates for
outputs whose support set size is two, and an estimate of
three gates for outputs with support set size of three, works
very well in practice. As far as outputs with support set size
of one are concerned, their contribution to an optimal area

Fig. 7. Flow diagram of the overall area estimation procedure.

implementation depends on whether or not they are realized by
inversion of a primary input signal. Those which are realized
by inversion are assumed to contribute an area of one gate
while the rest are assumed not to contribute to the area. The
above approach yields benefits in terms of both run time
and accuracy, and has been adopted in our area estimation
procedure. The flow diagram for the overall area estimation
procedure is given in Fig. 7.

The area estimation tool reads an input description ofand
partitions the function into two subfunctions. One subfunction

comprises of all outputs whose support set size is less than
or equal to three, while the other , comprises of all outputs
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whose support set size is greater than three. The partitioning
of the network into and can be performed by a breadth
first search and is fairly inexpensive. We estimate the area of

in the following fashion:

(12)

Here, is the number of outputs in with support set size
equal to 1, is a fraction of these outputs which are realized
by inversion of a primary input signal, is the number of
outputs in with support set size equal to two, and is
the number of outputs in with support set size equal to
three. For estimating the area of we use the transformation-
based approach described above. Let the outputs ofbe
grouped into groups of size 16 each, except perhaps for
one group which may have fewer than 16 outputs. Let the
Boolean function comprising of theth group of outputs be .
We apply the multiplexor transformation to, and compute ,
probability and thelinear measureof the resultant . We then
compute the area complexity of using (7) and (11). This
procedure is repeated until all the outputs have been used up,
and the area of is estimated as

(13)

Finally, the area of is computed as

(14)

It must be noted that the proposed area model does not account
for area sharing across groups. Also it must be mentioned
that in our implementation no particular effort was made in
grouping the outputs, as any specific style of grouping would
require additional computational effort.

A. Empirical Results

The above proposed area model for multioutput functions
was tested on several ISCAS-89 [15] and MCNC [16] bench-
mark circuits. These circuits are listed in Table I which,
in addition to primary input and output count, shows the
functionality of these benchmarks.

These circuits were optimized in SIS using the script
script.ruggedfor optimization, and mapped using the library
lib2.genlib. The area predicted using the area model was
compared with the SIS optimal area. The performance of the
model on all the benchmarks in Table I, except and

, is shown in Fig. 8. The circuit is a modified
version of , obtained by deleting the primary outputs
which contain exclusive-or arrays in them. The SIS-optimal
area of was 1367. The estimated area for this circuit
was 1045. The circuit could not be optimized in
SIS in one piece. Hence the circuit was partitioned based
on the support set sizes (in a fashion similar to the above
discussion) and optimized separately in SIS. The resulting
SIS-area that was obtained was 7252. The area estimated by
the area estimation tool was 8492. The area estimation results
obtained have also been tabulated in Table II. As indicated in
Table II, the average absolute error of our estimation approach
on the benchmarks is 21.65%.

Fig. 8. Comparison between actual versus predicted area at minimum-area
point.

TABLE II
ACTUAL VERSUS PREDICTED AREAS FOR

BENCHMARK CIRCUITS AT MINIMUM -AREA POINT
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Fig. 9. Speedup versus number of cases.

The execution time, in central processing unit seconds
on a SUN sparc5 with 24-MB RAM, required by our area
estimation tool is also given in Table I. We compared these
run times, on the above benchmarks, with one run of SIS
usingscript.ruggedfollowed by SIS technology mapping. The
speedup obtained is shown in Fig. 9. The figure shows a
speedup between and . Two important observations
are in order. The proposed area model is implementation
independent. Hence for a given function only one run is
required to estimate its area. However, in practice, several
runs of SIS might be required to build a reasonable confidence
that the implementation is in fact near area-optimal. Hence
the speedup obtained in practice could be significantly larger.
Also, speedup of was obtained on large benchmarks like

and . It must be kept in mind that the reported
time for was obtained after the circuit was partitioned.
Strictly speaking the circuit was not completed in SIS. Hence
we believe that on large benchmarks the speedups that can be
obtained in practice can be significant. A side observation to
be made is that a significant portion of the run time of the
area estimation tool was spent on computation of the prime
implicants in a minimal cover usingespresso[11].

VII. ESTIMATION OF

In order to estimate the power, one needs to estimate
not only the area complexity but also , which is the
average node capacitance in a circuit. If is the total circuit
capacitance of an optimal area implementation andis the
number of gates, then

(15)

This quantity depends on the target gate library and on the fan-
out structure of the circuit. Conceivably, one can make a rough
estimate by averaging the intrinsic output capacitance
of gates in the target library. In order to make this estimate
more accurate, the averaging would have to be weighted
according to the frequency of use of the gates in typical
designs. It is not unreasonable to consider that several prior
designs may be available from which to obtain this data.

Fig. 10. Error between actual and estimated values ofCtot assumingA is
known.

To make the estimation even more accurate, one needs to
consider the fanout structure of the circuit and to add to the
output capacitance of each gate the capacitance due to the
fanout branches. This is the method which we use. In this
case, truly becomes node capacitance and not just logic-
gate capacitance. In order to estimate this, it is assumed that
one has access to a few area optimal circuit implementations
in the desired target library. This does not appear to be an
unreasonable assumption. In this case, an estimate ofcan
be obtained by performing an average of the estimates
obtained from the area optimal circuit implementations.

In order to test the accuracy of this approach, only a few
benchmarks from the benchmark set listed in Table I were
used to obtain an estimate of . These benchmarks were

, (without outputs with support set size less
than or equal to three), , and . This estimated value of
was used to compute , assuming that the exact value of
was available. The estimated value of was compared with
the true value of , for the benchmark set, and the results
are shown in Fig. 10, which validates the above estimation
procedure for .

The above computed estimate of works well in general.
However, for circuits containing a large number of outputs
with support set size less than or equal to three, the above
value of can lead to an over-estimation of . This over-
estimation problem can be fixed by using smaller values of

for estimating the capacitance of the various subfunctions
of (subfunction comprising of all outputs with support
set size less than or equal to three), namely functions with
support set size of one, two and three. As an example,
the for functions with support set size three can be
determined by performing an average of this quantity over
several randomly generated three input functions. The value
of for functions with support set size of one and two can
be similarly determined. Thus, we have the following:

(16)
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Fig. 11. Actual versus estimated values ofCtot.

Fig. 12. Feasible delay realizations of a Boolean function.

Here, can be thought of as the average node capacitance
of a function whose outputs have a support set size greater than
three, and is the average node capacitance of a function
with support set size of, where .

The estimated value of was combined with the es-
timated area complexity of Boolean functions to obtain an
estimate of the total capacitance of the Boolean function,.
The plot comparing the actual versus predicted values of,
when both and are estimated, is shown in Fig. 11.

The above approach can be adopted to estimate at
any delay point on the area-delay curve (see Fig. 12). We
observed that the value of decreases as we move from
the minimum-area to minimum-delay point (see Fig. 12). This
could be because simple gates, as opposed to complex gates
like aoi’s and oai’s, may be preferred to implement a faster
design.

VIII. E XTENSIONS TO AREA MODEL

So far we have looked at a prediction scheme to estimate the
minimum area required to implement the function. However,
there are many possible realizations of a Boolean function
depending on the delay requirements, i.e., the area required
to implement a Boolean function optimally depends on the

delay constraint on the Boolean function, as shown in Fig. 12.
Hence in order to have meaningful power estimation one must
estimate the area (and hence capacitance) as a function of
the delay constraints on the function. In this section we will
present extensions to the basic area estimation approach that
allows one to estimate the area at any feasible delay point.

The different realizable delays of a Boolean function can be
expressed in terms of a dimensionless parameter, such that

corresponds to the minimum delay point
corresponds to the maximum delay point , and every
intermediate value of , between zero and 100, corresponds to
a specific delay between the minimum and maximum delays.
Specifically, if is a feasible delay specification of a Boolean
function, as shown in Fig. 12, whose minimum delay is equal
to and maximum delay is equal to , i.e., ,
then can be expressed in terms of(in percent) as follows:

(17)

Note that the RGBF curves which have been described as
part of the basic area estimation approach correspond to the
minimum area point, i.e., to . The curves at , i.e.,
the minimum delay point, are built in a similar fashion, except
that the RGBF functions are synthesized to have minimum
delay instead of minimum area. Hence to obtain the curves
for an intermediate value of , the RGBF functions are
synthesized to the delay corresponding to the value of, as
given by (17). As a result, the area complexity model, capable
of predicting the area complexity at any feasible delay point,
contains a family of curves parameterized in terms of delay
parameter .

We derived the RGBF curves for three different values of
, namely, 0%, 50%, and 100%. In practice, this granularity

may be enough, although this would really depend on the
application. It is definitely possible to generate the curves for
any value of . The curves for these three values ofrequire
about 36 KB of memory. While this memory cost is quite
reasonable, the total computational effort can be significant,
due to the necessity to make so many synthesis runs. It took
us a couple of days to generate the curves for each value of

(using SIS), having spread the computational effort over a
few workstations. However, this is a one-time cost associated
with using a specific gate library.

In [21] we demonstrate that the parameterfor a multiout-
put function is approximately the same asof its transformed
single-output counterpart. Given a multioutput Boolean func-
tion and a specified value of , the estimation procedure
is as follows. Construct the single-output Boolean function
counterpart, using a multiplexor as usual, then compute its
output entropy and complexity measure. Then, look up the
appropriate (for the given ) set of RGBF curves to get the
area complexity of the transformed function, followed by area
recovery to obtain the area complexity of the multioutput
function. Recent results [22] show that it is also possible to
carry out this procedure starting with a specification of
instead of .

Empirical results will now be reported at two specific delay
points on the area-delay tradeoff curve, corresponding to



708 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 6, JUNE 1999

Fig. 13. Comparison between actual and predicted areas at the mini-
mum-delay point.

and %. As we have done before, the area of a
multioutput function will be estimated by summing up the
areas of its 16-output subfunctions. However, a more careful
analysis is possible, based on the separate area-delay tradeoff
curves of the 16-output subfunctions, as described in [21].

In order to generate the minimum delay implementations,
the functions were optimized in SIS using the script
script.ruggedfollowed by script.delay [13], [14], for delay
optimization, and mapped using the librarylib2.genlib. The
results comparing the actual area of the overall function
with the predicted area, at the minimum delay point, are
given in Fig. 13. The area estimation results have also been
tabulated in Table III. The average error in area estimation
was 21.07%, which is close to the average error obtained at the
minimum-area point. The results were reasonably accurate for
all except . In the case of , there was an over estimation by
about 250 gates due to the conservative approach of simply
adding the areas of the 16-output subfunctions. Also note
that the two circuits, and , are missing from
Table III because they could not be synthesized in SIS at the
minimum-delay point.

In order to generate the 50% delay implementations, the
functions were first optimized in SIS usingscript.ruggedfor
area optimization, and mapped usinglib2.genlib. This was
followed by speeding up the circuit to the 50% delay point
using the commandspeed_up[14] in the SIS environment.
In Fig. 14 we compare the actual and predicted area for the
benchmarks at the mid-delay point and these area numbers
have been tabulated in Table IV. It can be seen from this table
that the average percentage error in area estimation at the 50%
delay point is 22.18%. Also, note that seven circuits, namely,

and , are missing from
Table IV because they could not be synthesized in SIS at the
50% delay point.

These results indicate that the proposed area complexity
model can be used to make area predictions at any feasible
delay realization of the given Boolean function. While using
traditional logic synthesis methods, each area evaluation at
a feasible delay point would require a separate run of SIS,

TABLE III
ACTUAL VERSUS PREDICTED AREAS FOR

BENCHMARK CIRCUITS AT MINIMUM -DELAY POINT

Fig. 14. Comparison between actual and predicted areas at the 50% delay
point.

using our model the area at all delay points of interest can be
obtained in one shot. This we believe, is a major advantage
of this high-level approach.
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TABLE IV
ACTUAL VERSUS PREDICTED AREAS FOR

BENCHMARK CIRCUITS AT 50% DELAY POINT

Using the proposed techniques for estimating , dis-
cussed in Section VII, one can obtain an estimate of at
every feasible delay point. Using these estimates of along
with the area estimates, one can obtain capacitance estimates at
any delay point, which can in turn be converted into high-level
power estimates.

IX. HIGH-LEVEL POWER ESTIMATION

In the previous sections we addressed the problem of
estimating the area complexity of a multioutput Boolean
function. This estimate can in turn be used to estimate the
power dissipated by a Boolean function, by combining it
with average activity estimates [1], [3] and the average node
capacitance estimate. In this section we present results on high-
level power estimates by comparing them with the power
dissipated by a gate level optimal implementations of the
Boolean function, at the minimum-area and minimum-delay
points, under two different timing models, namely, a zero-
delay model and a general-delay timing model. In the case
of the general-delaytiming model the delays were obtained
from a gate library and an event driven simulation was
performed. The estimated average activity was combined with
the estimates of total capacitance to obtain an estimate of
the power dissipated. In Section IX-A we will discuss the

TABLE V
ACTUAL VERSUSPREDICTED ZERO-DELAY POWER FORBENCHMARKS

AT MINIMUM -AREA POINT FOR INPUT PROBABILITY OF 0.5

power estimation results at the minimum-area point and,
in Section IX-B we will discuss the results obtained at the
minimum-delay point.

A. Results at Minimum-Area Point

It must be noted that the activity prediction model (3)
does not account for the increase in switching activity due
to glitches, as is probably to be expected from a high-level
model. Hence it is important to check the accuracy of the high-
level power model against the zero-delay simulation results.
The actual and the predicted zero-delay power values for
the benchmark circuits of Table I, at an input probability of
0.5, are tabulated in Table V. The average percentage error
obtained, at this input probability, is equal to 32.16%. Since the
activity prediction model (3) depends on the input switching
statistics of the circuit, we varied the signal probabilities at
the circuit inputs from 0.1 to 0.9 and computed the actual and
predicted zero-delay powers. This is shown in Fig. 15. Note
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Fig. 15. Comparison between actual zero-delay power and predicted power
at minimum-area point.

that each benchmark circuit is represented by a number of data
points in the figure. The average percentage error between the
actual and the predicted zero-delay power over the range of
input probabilities, from 0.1 to 0.9, was measured to be 32.9%.

In Table VI a comparison is shown between the actual
general-delay power and the predicted power, at an input
probability of 0.5. The average estimation error was equal
to 30.95%. We also compared the predicted power against
the general-delay simulation results for input probabilities
ranging from 0.1 to 0.9. This is shown in Fig. 16. The average
estimation error in this case was 33.7%.

B. Results at Minimum-Delay Point

In Table VII, we compare the predicted power with the ac-
tual power dissipated by the gate-level optimum-delay imple-
mentation under zero-delay conditions at an input probability
of 0.5. As seen in the table, the average estimation error was
30.21%. It must be noted that two circuits, namely, and

, are missing from the table because they could not
be synthesized in SIS at the minimum-delay point. In Fig. 17,
we compare the actual and predicted power values for input
probabilities ranging from 0.1 to 0.9. The average estimation
error for this range of input probabilities was measured to be
30.1%.

In Table VIII we compare the error between the actual
power under general-delay conditions with the predicted power
for an input probability of 0.5, and in Fig. 18, we compare
these quantities over an input activity range of 0.1 to 0.9.
The estimation errors obtained were 31.91% and 31.2%,
respectively.

It must be noted that average estimation error at the
minimum-area and minimum-delay points for the benchmark
circuits is approximately the same. Also, for 80% of
the circuits, the relative estimation error in zero-delay
power between the minimum-area and minimum-delay
implementations was within 25%. Hence, it can be concluded
that the proposed high-level power estimation approach is
relatively accurate across different implementations.

TABLE VI
ACTUAL GENERAL-DELAY POWER VERSUSPREDICTED POWER FOR

BENCHMARKS AT MINIMUM -AREA POINT FOR INPUT PROBABILITY OF 0.5

Fig. 16. Comparison between actual general-delay power and predicted
power at minimum-area point.
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TABLE VII
ACTUAL VERSUSPREDICTED ZERO-DELAY POWER VALUES FOR

BENCHMARKS AT MINIMUM -DELAY POINT INPUT PROBABILITY OF 0.5

Fig. 17. Comparison between actual zero-delay power and predicted power
at minimum-delay point.

Finally, before leaving this section, we would like to discuss
the relativeaccuracy of the proposed approach. In order to get

TABLE VIII
ACTUAL GENERAL-DELAY POWER VERSUSPREDICTED POWER FOR

BENCHMARKS AT MINIMUM -DELAY POINT FOR INPUT PROBABILITY OF 0.5

Fig. 18. Comparison between actual general-delay power and predicted
power at minimum delay point.

a feel for relative accuracy, we compared the ratio of actual
powers at the minimum-area and minimum-delay points with
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TABLE IX
RELATIVE ACCURACY COMPARISONS; RAP IS RATIO OF ACTUAL

POWERS, RPP IS RATIO OF PREDICTED POWERS, AND ARE IS
ABSOLUTE VALUE OF THE RELATIVE ERROR BETWEEN RPPAND RAP

the ratio of the predicted powers at the same points. The results
of this comparison are summarized in Table IX. It can be seen
from this table that the average error of this comparison is
15.68%. Based on this, we believe that the proposed approach
preserves relative accuracy reasonably well.

X. CONCLUSION

We have presented a new area estimation approach to predict
the area complexity of multioutput Boolean functions. This
was based on transforming the multioutput function to an
equivalent single-output function. The advantage of this area
model is that it can be easily characterized, and it also offers
a natural framework to account for sharing occurring in a
multioutput function. Moreover, the utility of the area model
in predicting the area of a multioutput Boolean function at
any feasible delay point has been demonstrated. We have
also proposed a methodology for estimating needed to
convert a gate count estimate of area complexity into an

estimate of total capacitance. The predicted capacitance was
then combined with average activity estimates to get high-level
power estimates.
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