

Newcastle University ePrints - eprint.ncl.ac.uk

Beaumont J, Mokhov A, Sokolov D, Yakovlev A.

High-level asynchronous concepts at the interface between analogue and

digital worlds.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 2017,

https://doi.org/10.1109/TCAD.2017.2748002

Copyright:

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

DOI link to article:

https://doi.org/10.1109/TCAD.2017.2748002

Date deposited:

29/08/2017

http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=240744
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=240744
https://doi.org/10.1109/TCAD.2017.2748002
https://doi.org/10.1109/TCAD.2017.2748002

High-level asynchronous concepts at the interface
between analogue and digital worlds

Jonathan Beaumont, Andrey Mokhov, Danil Sokolov, Alex Yakovlev
{j.r.beaumont, andrey.mokhov, danil.sokolov, alex.yakovlev}@ncl.ac.uk

School of Engineering, Newcastle University, UK

Abstract—Asynchronous circuits are becoming increasingly
important in system design for Internet-of-Things, where they
orchestrate the interface between big synchronous computation
components and the analogue environment, which is inherently
asynchronous and has high uncertainty with respect to power
supply, temperature and long-term ageing effects. However, wide
adoption of asynchronous circuits by industrial users is hindered
by a steep learning curve for asynchronous control models,
such as Signal Transition Graphs, that are developed by the
academic community for specification, verification and synthesis
of asynchronous circuits.

In this article we introduce a novel high-level description
language for asynchronous circuits, which is based on be-
havioural concepts – high-level descriptions of asynchronous
circuit requirements, that can be shared, reused and extended by
users, and can be automatically translated to Signal Transition
Graphs for further processing by conventional asynchronous and
synchronous EDA tools, such as PETRIFY and MPSAT. Our aim
is to simplify the process of capturing system requirements in
the form of a formal specification, and to promote behavioural
concepts as a means for design reuse. The proposed design flow
is fully automated in open-source toolsuite WORKCRAFT, and is
applied to the development of an asynchronous power regulator.

I. INTRODUCTION

Analogue and mixed-signal circuits become more tightly
integrated with digital systems, in particular in mobile and
autonomous applications, such as wearable consumer elec-
tronics and self-powered Internet-of-Things nodes, where it
is essential to have intelligent timing control and power regu-
lation [1][2][3]. An on-chip power management system is an
illustrative example: it relies on analogue circuitry for power
regulation and conversion, and its behaviour is characterised
by many operating modes with complex interplay and high-
level decision logic that is digitally controlled. Asynchronous
circuits are event-driven, i.e. they react to changes in a system
at the rate they occur [4]. This makes them particularly useful
for interacting with analogue world, where the ability to
quickly respond to non-digital input, e.g. dynamically chang-
ing loads across the chip, is essential for reliable operation
and efficiency [5].

Signal Transition Graphs (STGs) [6][7] are commonly
used for the specification, verification and synthesis of asyn-
chronous control circuits as they are supported by multiple
EDA tools, such as PETRIFY [8], PUNF/MPSAT [9][10],
VERSIFY [11], WORKCRAFT [12][13], and others. These
tools take an STG specification of a complete asynchronous
controller and can formally verify its correctness, as well
as synthesise an asynchronous circuit implementation that is

speed-independent, i.e. guaranteed to work correctly regardless
of component delays [14]. Such a monolithic approach to
designing asynchronous circuits has poor scalability: as the
system grows in complexity its monolithic specification be-
comes challenging to comprehend, debug and maintain. The
problem becomes particularly severe when designing multi-
mode systems, such as power regulators, where capturing all
aspects of system behaviour in a consistent specification is a
major design challenge [15][16]. The STG models of compo-
nents and operating modes developed for one asynchronous
system are difficult to reuse when designing others, and thus
each new design must be built from the ground up. This further
adds to the design time, hence making asynchronous circuits
costly for use in industry.

In this paper we address this issue by proposing a new
method for design of asynchronous circuits based on be-
havioural concepts. The method splits a specification into
several parts corresponding to operational modes of the circuit
(scenarios). The features, constraints and requirements of each
scenario (concepts), are described in a formal notation, which
we implemented as a domain specific language embedded
in Haskell [17]. Concepts can be defined at several levels;
specifically, we give examples of signal-, gate- and protocol-
level concepts. It is possible to compose basic concepts into
more complex ones, thus supporting the design reuse at the
level of system specification. Concepts can be automatically
translated into equivalent STGs and formally verified using
standard tools, e.g. WORKCRAFT. When all scenarios have
been translated to STGs and verified, they can be combined
to produce a complete specification, and synthesised into
an asynchronous circuit implementation targeting a chosen
technology library.

Our contributions are as follows:

• We introduce asynchronous concepts as a specification
language in Section III and compare it to STGs in
Section IV.

• We present an algorithm for translating concepts to STGs,
which is implemented in the open-source tool PLATO [18]
and integrated into the open-source asynchronous circuit
design toolsuite WORKCRAFT [13], see Section V.

• We demonstrate the proposed design method on a case
study of an asynchronous power regulator, Section VI.

We start with a motivational example in Section II, review
related work in Section VII, and discuss future research in
Section VIII.

2

control

V_nmos

V_pmos

buck

V_ref

I_0

R
_l
o
a
d

PMOS

NMOS

I_max

gp_ack

oc

uv

zc

gn_ack

gp

gn

over-current

under-voltage

zero-crossing

(a) Schematic (digital control in analogue environment).

UV UV OC

I_max

current ZC absent ZC late

OC

ZC early

PMOS OFF

ZC

PM
OS OFF

NM
OS ON

NMOS OFF

ZC

NMOS O
FF

PM
OS

ON

NM
OS

OFF
NM

OS ON

PM
OS OFF

PM
OS O

N

UV OC

timeNM
OS

OFF

PM
OS

ON

I_0

(b) Informal description of three behavioural scenarios.

Fig. 1: Buck converter and its informal description.

II. MOTIVATING EXAMPLE: BUCK CONVERTER

On-chip power management is essential for energy effi-
ciency and reliability of IoT computation nodes [1]. According
to a 2016 report by Research & Markets, the global power
management market will reach $34.86 billion by 2022, driven
by the increasing demand in various applications, including
traditional IoT sectors such as wearable, automotive, indus-
trial, retail and building control electronics. Unlike conven-
tional digital components, power management units need to
directly interface with the analogue part of the system for
sensing and controlling it, and can therefore strongly benefit
from asynchronous implementation that allows them to react
to changes in the system at the rate they occur, instead of
sampling various analogue parameters by clock, which is
slow and energy-wasteful [15][16]. As a compelling example,
consider an asynchronous power management controller with
1ns response time to stimuli from the analogue world. To
match its performance with a synchronous equivalent, one
would need to clock it at 2-3GHz, as two clock cycles are
required just for a conventional two flip-flop synchroniser [19].
Bearing in mind that power management controllers spend
most of their time doing nothing and waiting for relatively
slow changes in the analogue environment, such a high-speed
clock solution would clearly be inadequate.

In this section we first provide the background on asyn-
chronous buck converters Section II-A, our main motivation
example and case study. Buck converters rely on analogue
circuitry for power regulation and conversion and their be-
haviour is typically characterised by many operating modes
with complex interplay and high-level decision logic that is
digitally controlled. We then discuss challenges arising in the
design of asynchronous buck converters with Signal Transition
Graphs (STGs) [6][7], a commonly used mathematical model
for the specification of asynchronous circuits (Section II-B).

Fig. 2: STG specification of a simple buck converter.

Finally, we outline our new design approach (Section II-C)
wherein the behaviour of an asynchronous buck converter is
decomposed into simple behaviours, that we later refer to as
concepts. The approach is described at an intuitive level, and
is formalised in Section III.

A. Background on buck converters

Our motivating example comes from the power management
domain, a multi-scenario power regulator [15]. A basic power
regulator comprises an analogue buck and a digital controller,
as shown in Figure 1a. The controller operates the power
regulating PMOS and NMOS transistors of the buck (using
gp and gn outputs) as a reaction to under-voltage (UV), over-
current (OC) and zero-crossing (ZC) conditions (uv, oc, and
zc inputs, respectively). These conditions are detected by a set
of sensors that compare the measured current and voltage with
some reference values (V_ref, I_max, I_0). Note that in order
to avoid a shortcircuit, the PMOS and NMOS transistors of
the buck must never be ON at the same time. Therefore, the
controller is explicitly notified (by gp_ack and gn_ack) when
the power transistor threshold levels (V_pmos and V_nmos)
are crossed.

The operation of a power regulator is usually described in
an intuitive, but rather informal way, e.g. by enumerating the
possible sequences of detected conditions and describing the
intended reaction to these events, as shown in Figure 1b. The
diagram shows that UV should be handled by switching the
NMOS transistor OFF and PMOS transistor ON, while OC
should revert their state – PMOS OFF and NMOS ON (ZC ab-
sent scenario). Detection of the ZC after UV does not change
this behaviour (ZC late scenario). However, if ZC is detected
before UV then both the PMOS and NMOS transistors remain
OFF until the UV condition (ZC early scenario).

B. Monolithic STG-based design approach

Using the informal description of three behavioural scenar-
ios, the designer can produce a formal specification, typically
a monolithic STG describing the complete behaviour of the
circuit. Figure 2 shows such a monolithic STG specification for
the simple buck controller described above. Nodes of the STG
correspond to signal rising (+) and falling (−) transitions, arcs
model causality, parallel branches correspond to concurrency,
and a circle place with a black dot (token) represents the
choice of the current scenario. We formally introduce STGs
in Section IV.

3

This STG is moderately large and captures all three scenar-
ios by overlaying their common parts. In the monolithic design
approach, the designer starts with a blank page and manually
inserts signal transitions and the connections between them
according to the informal description of the system’s operation.
With there being several scenarios, the designer could choose
to design each separately, and then manually compose these
taking advantage of the similarities between the scenarios, as
described in [15][16].

In the event that a designer needs to add or remove signals
or correct a fault, editing can become difficult, due to the
complexity and size. This can lead to further faults, and several
iterations of design and tests until the new feature is added and
deemed to be working correctly.

A designer may even have to start from a blank page in some
cases, unable to reuse any of the previous design. The larger
and more complex an STG is, and the more signals there are,
the more difficult it is to comprehend, debug and edit. This can
slow the design process of a circuit, which is undesirable in an
industry where the time for a device to move from conception
to market is becoming critical, and ever shorter.

C. Towards high-level asynchronous concepts

In an attempt to streamline the design process, we aimed to
find a way to create STGs which allows editing and reuse at
various stages of the design. This way, if something needs
to be corrected, this can be done to a small part, but we
can reuse everything that works correctly. These parts can
then be composed to produce a full STG which contains the
corrections, with a minimum amount of time spent making the
corrections.

This led us to take the example of a simple buck converter,
and compare what the STG shows, and what the description
of operation of the system, in particular its signals, is. This
allowed us to view interactions between certain signals which
may not be obvious, but without which the STG would not be
a correct representation of the design. For example, Figure 3
shows one scenario of the simple buck converter with some
points of interest highlighted.

Studying this STG shows that there are some high-level
signal interactions that we can identify:
• High levels of uv and oc are mutually exclusive; indeed,
uv goes high (transition uv+) only after oc goes low
(transition oc−), and vice versa.

• High levels of gp and gn are also mutually exclusive.
• Signals gp and gp_ack form a handshake, i.e. there is a

cycle gp+ → gp_ack+ → gp− → gp_ack− etc.
• Signals gn and gn_ack also form a handshake.
These interactions can also be identified in the informal

buck description: uv and oc indicate opposite conditions in
the circuit and will naturally be mutually exclusive, while
gp and gn are used to switch PMOS and NMOS transistors
respectively, and switching these transistors ON at the same
time will cause a shortcircuit and is therefore prohibited.
Signals gp_ack and gn_ack are used to acknowledge the
state of these transistors, and thus always follow gp and gn,
respectively, forming two separate handshakes.

Mutually
Exclusive

Mutually
Exclusive

Mutually
Exclusive

Mutually
Exclusive

Handshake Handshake

Fig. 3: Deconstructing the STG of the ZC absent scenario.

Knowing this information means that we can describe these
protocols once, and include them in the design of any circuit
involving these signals. Any other interactions between any
of these signal will be subject to these protocols, which will
prevent circuit breaking bugs in the testing phase. For example,
an interaction involving gp will ensure that it is never set high
at the same time as gn, as otherwise the mutual exclusion will
not hold.

If one of these signals is removed, then the protocols that
this affects can be removed, but the unaffected protocols can
continue to be used, avoiding a major re-design which may
happen when using the STG-based monolithic approach.

With this idea in mind, we need to find a way to describe
these protocols, as well as other signal interactions, in order
to ensure that each different interaction can be edited without
needing to change every single interaction.

III. CONCEPTS

In this section we formally introduce concepts that we
propose to employ for the specification of asynchronous cir-
cuits. Below we list (fairly standard) definitions and notational
conventions that are used throughout the paper.

We use B to denote the set of Boolean values {0, 1}. Given
two Boolean functions f : X → B and g : X → B with the
same domain X , we lift Boolean operators (disjunction ∨,
conjunction ∧, implication ⇒, etc.) in the usual manner:
h = f ∨ g means h(x) = f(x) ∨ g(x) for all x ∈ X , etc.
Furthermore, 0 and 1 stand for constant Boolean functions
that discard their input and return 0 and 1, respectively.

A monoid is a set M and a binary operation � :M ×M →
M satisfying two axioms:
• Identity: e � a = a � e = a for any a ∈M , where e ∈M

is the identity element of the monoid.
• Associativity: a � (b � c) = (a � b) � c for all a, b, c ∈M .

Monoid is the simplest mathematical structure that captures
the notions of emptiness and composition. The concepts intro-
duced in this section form commutative monoids: they have
identity elements corresponding to empty specifications, and
can be composed to build complex concepts from simpler
ones. The order of composition does not matter, i.e., the
concepts commute: a � b = b � a for all a, b ∈M .

A. Abstract concepts

We first describe abstract concepts that we use as building
blocks for developing domain specific concepts, such as those
related to asynchronous circuits (Section III-B).

4

Abstract concepts are parameterised by finite sets of states
S and events E. The initial state concept captures all possible
(or permitted) initial states of the system. In the most general
form it is a function

initial : S → B

that given a state s ∈ S returns 1 if s is an initial state
and 0 otherwise. In practice this concept is often realised
as a membership test of a set of initial states I ⊆ S,
i.e. initial(s) = s ∈ I . However, we prefer the functional
form because it is more abstract and permits other, often
more efficient realisations. Note that 0 and 1 have natural
interpretations as initial concepts: they correspond to systems
with no initial states, and systems where any state can be
initial, respectively. Initial state concepts form a commutative
monoid with the identity element 1 and the composition
operation ∧. Intuitively, if a system comprises two subsystems
then its initial state should satisfy constraints imposed by both
subsystems, hence the conjunction operator.

The event excitation concept captures all states wherein a
given event can occur (or is excited). In the most general form
it is a function

excited : E × S → B

that given an event e ∈ E and a state s ∈ S checks
whether e is excited in s. In practice this concept is often
realised using interpreted graph models such as Finite State
Machines and Petri Nets [8], STGs, Conditional Partial Order
Graphs [20][21], and others. A partial application of the
excitation function is often useful: excited(e) captures all
states where event e is excited; for example, if excited(e) = 0
then e is never excited or dead. Event excitation concepts also
form a commutative monoid with e = 1 and � = ∧. This
definition corresponds to the parallel composition operation,
a standard notion for many behavioural models [22].

Some states may be impossible or undesirable during the
normal system operation. To express this we use the invariant
concept, which captures all correct or permitted states of the
system. A typical use case for invariant concepts is to specify
assertions or assumptions about the system state space, that
may by verified via model checking and/or used for optimising
the implementation. In the most general form an invariant
concept is a function

invariant : S → B

that given a state s ∈ S returns 1 if s is permitted by the
invariant and 0 otherwise. Note that if for some state s the ini-
tial concept initial(s) holds but the invariant invariant(s) does
not hold, then the specification is contradictory and cannot be
satisfied by any implementation. We therefore usually assume
that initial(s) ⇒ invariant(s) holds for all s ∈ S. Similarly,
invariant concepts form a commutative monoid with e = 1
and � = ∧. Intuitively, if a system comprises two subsystems
then its states should be permitted in both of the subsystems.

One can derive other useful concepts from the three con-
cepts described above, for instance,

silent(e, s) = excited(e, s)

captures all states s ∈ S when a given event e ∈ E cannot
occur. Furthermore, one can define other useful concepts that
cannot be derived from the above, e.g., the execution concept
capturing the effects that different events have on the system
state. Due to space limitations we only consider the three
concepts defined above and their derivatives.

All the above concepts are monoids, hence their com-
binations are trivially monoids too. It is convenient to
consider triples of concepts (initial, excited, invariant) with
(1,1,1) representing the empty specification, and composition
(initial1, excited1, invariant1) � (initial2, excited2, invariant2)
defined as (initial1 � initial2, excited1 � excited2, invariant1 �
invariant2). Note that composition of two non-contradictory
specifications is always non-contradictory, that is if both
initial1(s) ⇒ invariant1(s) and initial2(s) ⇒ invariant2(s)
hold for all states s ∈ S, then initial1(s) � initial2(s) ⇒
invariant1(s) � invariant2(s) holds too.

B. Concepts for asynchronous circuits
We now introduce concepts which are specific for the

domain of asynchronous circuits and express them using the
abstract concepts defined above.

Signal-level concepts: States and events of an asynchronous
circuit are parameterised by a set of signals A. A state s ∈ S
is an assignment of Boolean values to signals, i.e. a function
s : A → B, while an event e ∈ E is a signal transition, i.e.
a pair e : A × B comprising a signal a ∈ A and the value of
the signal after the transition occurs. We call transitions (a, 0)
and (a, 1) falling and rising, respectively, and denote them by
a− and a+ for brevity.

The following two predicates are very useful for construct-
ing concepts:

before : E × S → B
after : E × S → B

A state s ∈ S is said to be before a transition (a, b) ∈ E if
s(a) 6= b, i.e. in state s signal a has a value which is different
from the resulting value of the transition. Similarly, s is after
(a, b) if s(a) = b (the transition has already occurred).

We are now ready to define an excitation concept called
consistency [8]:

consistency = before

This concept captures the requirement that in a consistent
asynchronous circuit a signal transition can only be excited
in states that are before it.

Another key concept in asynchronous circuits is causality:
we say that a transition effect ∈ E causally depends on
transition cause ∈ E, denoted as

causality(cause, effect) : E × E → B

if effect can occur only in states that are after cause. This is
an excitation concept, which can be expressed as follows:

causality(cause, effect)(e)=

{
1 if e 6= effect

after(cause) otherwise

In words, we do not add any constraints to events e ∈ E that
are distinct from effect , but effect is constrained to occur only

5

after cause. Note that function after is used in the partially
applied form. We will use a short-hand notation

cause effect

for the causality concept for convenience. One can compose
two causality concepts using the monoid composition.

a c � b c

corresponds to so-called AND-causality: event c can only
occur after both a and b have occurred. Specifying OR-
causality is slightly more tricky:

orCausality(a, b, c)(e) =

{
1 if c 6= e

after(a) ∨ after(b) otherwise

Event c is thus excited after at least one cause has occurred.
Gate-level concepts: Using the causality concept we can

express the behaviour of gates in asynchronous circuits. For
example, a buffer is a gate with one input signal a ∈ A and
one output signal b ∈ A, whose output transitions causally
depend on the input ones:

buffer(a, b) = a+ b+ � a− b−

An inverter has a similar conceptual specification, but the
output transition is inverted:

inverter(a, b) = a+ b− � a− b+

An AND gate has two inputs a and b and one output c,
which synchronises rising transitions via AND-causality and
falling transitions via OR-causality:

and(a, b, c) = a+ c+ � b+ c+ � orCausality(a−, b−, c−)

A C-element is a gate with two inputs a and b and one
output c, which synchronises both rising and falling input tran-
sitions via AND-causality (see an example in Section IV-B):

cElement(a, b, c) = a+ c+ � b+ c+ � a− c− � b− c−

An alternative way to express the same concept is to reuse the
buffer concept:

cElement(a, b, c) = buffer(a, c) � buffer(b, c)

Indeed, a C-element combines the constraints imposed on the
output transitions by two ‘virtual’ buffers.

Behaviour of other gates can be similarly defined using
concepts, see our open-source implementation [18].

Protocol-level concepts: In addition to gate-level concepts
described above it is often important to specify protocols of
interaction between multiple gates, components or signals, as
discussed in the motivating example Section II-C.

Here we demonstrate how one can use concepts to specify
asynchronous handshakes and mutual exclusion mechanisms.

Given two signals a and b, a handshake between them is
the following composition of causality concepts:

handshake(a, b) = a+ b+ � b+ a− � a− b− � b− a+

Intuitively, we have a two-way asynchronous communication
channel, where one party sends transitions a+ and a− and the

other party responds by corresponding b+ and b− transitions.
One can notice that the four causality concepts match those
found in the buffer and inverter concepts, which leads to an
alternative way to express a handshake between a and b:

handshake(a, b) = buffer(a, b) � inverter(b, a)

Indeed, this conceptual understanding of a handshake as being
composed from a buffer and an inverter is often used by circuit
designers as a convenient way of reasoning.

In order to specify the initial state of a handshake between
signals a and b, we use the initialise concept:

initialise(signal , value) = after(signal, value)

For example, initialise(a, 0) sets the state of the signal a to 0.
We can compose an initial state concept with the handshake
concept into a combined handshake00(a, b) concept as

handshake(a, b) � initialise(a, 0) � initialise(b, 0)

The resulting concept corresponds to a handshake between
signals a and b that are both initially 0.

The last important concept that requires an introduction is
mutual exclusion between two signals a and b:

me(a, b) = a− b+ � b− a+ � after a+ ∧ after b+

The concept comprises two parts: i) in terms of causality, we
say that rising transitions a+ and b+ can only occur after the
opposite falling ones, ii) the initial states when a = b = 1
are forbidden. Taken together these parts guarantee that a and
b are never set to 1 at the same time, i.e. they are mutually
exclusive. We also add after a+ ∧ after b+ to the invariant.

We can now specify a mutual exclusion element [19] that
receives asynchronous requests r1 and r2 to a shared resource
and grants access to it by corresponding mutually exclusive
signals g1 and g2:

meElement(r1, r2, g1, g2)=buffer(r1, g1)�buffer(r2, g2)�me(g1, g2)

Interface concepts: To specify the type of a signal (input,
output or internal) we introduce the interface concept:

interface : A→ {Input,Output, Internal}

Signal types are composed according to the following rules:

� Input Output Internal

Input Input Output Internal
Output Output Output Internal
Internal Internal Internal Internal

The intuition is as follows:

• If a signal is an input in one component of the system,
but is an output in another components, then in the
composition it will be an output.

• An internal signal is similar to an output signal in the
sense that it is driven by the circuit (not the environment),
but it is hidden, i.e. not accessible via the circuit interface.
Once a signal is hidden and declared internal it cannot
be revealed.

Specifying signal types is important when designing asyn-

6

chronous circuits, as it helps to quickly identify errors (e.g.
an input transition is caused by a hidden internal transition),
and reuse existing tools for circuit simulation, verification and
synthesis. Signal type information is also used in the algorithm
for automated translation of concepts to STGs (Section V).

Concepts inputs, outputs, internals are defined for spec-
ifying types of sets of signals for convenience. For example,
to specify that signals a and b are inputs, c is an output, and
t is internal, it is possible to write:

inputs({a, b}) � outputs({c}) � internals({t}).

IV. CIRCUIT SPECIFICATION WITH CONCEPTS

Here we present a method for deriving a circuit specification
from a set of concepts that describe its different aspects.
We focus on specification of speed-independent (SI) circuits,
which is an important class of asynchronous circuits [14]
that work correctly regardless of the gate delays, while the
wires are assumed to have negligible delays. Alternatively, one
can regard wire forks as isochronic and add wire delays to
the corresponding gate delays (Quasi-Delay Insensitive (QDI)
circuit class [23]). A convenient formalism for specification
of SI circuits is STGs [6][7], which is a special kind of Petri
nets [24] whose transitions are associated with signal events.

A. Petri nets and STGs
Formally, a Petri net is defined as a tuple PN =

〈P, T, F, M0〉 comprising finite disjoint sets of places P
and transitions T , arcs denoting the flow relation F ⊆
(P × T) ∪ (T × P) and initial marking M0. There is an arc
between x ∈ P ∪ T and y ∈ P ∪ T iff (x, y) ∈ F . The preset
of a node x ∈ P ∪T is defined as •x = {y | (y, x) ∈ F}, and
the postset as x• = {y | (x, y) ∈ F}. The dynamic behaviour
of a Petri net is defined as a token game, changing marking
according to the enabling and firing rules. A marking is a
mapping M : P → N denoting the number of tokens in each
place (N = {0, 1} for 1-safe Petri nets). A transition t is
enabled iff ∀p, p ∈ •t⇒M(p) > 0. The evolution of a Petri
net is possible by firing the enabled transitions. Firing of a
transition t results in a new marking M ′ such that

∀p M ′(p) =

 M(p)− 1 if p ∈ •t \ t•,
M(p) + 1 if p ∈ t • \ • t,
M(p) otherwise.

An STG is a 1-safe Petri net whose transitions are la-
belled by signal events, i.e. STG = 〈P, T, F, M0, λ, Z, v0〉,
where λ is a labelling function, Z is a set of signals and
v0 ∈ {0, 1}|Z| is a vector of initial signal values. The labelling
function λ : T → Z± maps transitions into signal events
Z± = Z × {+,−}. The signal events labelled z+ and z−

denote the transitions of signals z ∈ Z from 0 to 1 (rising
edge), or from 1 to 0 (falling edge), respectively. The labelling
function does not have to be 1-to-1, i.e. transitions with the
same label may occur several times in the net. To distinguish
transitions with the same label and refer to them from the text
an index i ∈ N is attached to their labels as follows: λ (t) /i,
where i differs for different transitions with the same label.
STGs inherit the operational semantics of their underlying
PNs, including the notions of transition enabling and firing.

Interface
concept

output

input

input

Circuit
concept

Initial state
concept

c=0

a=0

b=0

Environment
concept

System
concept

Fig. 4: Example system specified using concepts.

Graphically, the places are represented as circles, transitions
as text labels, arcs are shown by arrows, and tokens are
depicted by dots. For simplicity, the places with one incoming
and one outgoing arc are often hidden, allowing arcs (with
implicit places) between transitions.

B. Composition of concepts

A single concept can be used to describe an initial state,
invariant states, a single event or a combination of these, yet
describing some protocols using this method can become long
winded, as these can involve multiple events. We make use
of the monoid composition of concepts to describe complex
systems incrementally. Importantly we can mix several levels
of system description and refer to signal, gate and protocol
level concepts in one specification, depending on which level
is more convenient in a particular situation.

Consider an example of a C-element, which has signals a
and b as inputs, and signal c is the output. The output of this C-
element is connected to each of the inputs via an inverter. This
is a simple example of a complete system, of a C-element with
an environment, see Figure 4. The example can be described
by the following script:

circuit(a, b, c) = interface � outputRise � inputFall
� outputFall � inputRise � initialState

where
interface = inputs({a, b}) � outputs({c})
outputRise = a+ c+ � b+ c+

inputFall = c+ a− � c+ b−

outputFall = a− c− � b− c−

inputRise = c− a+ � c− b+

initialState = initialise(a, 0) � initialise(b, 0)
� initialise(c, 0)

The first concepts in this list is the circuit concept, defined
as a composition of the following five listed after the where
keyword. They describe certain aspects of the system: the first
four are named according to what they represent, for example,
outputRise describes the events which cause the output to
rise, and the final concept defines the initial states.

Note: For better readability the format of concept scripts
used in the article differs from the actual syntax used in
our current implementation, which is embedded in Haskell
programming language [17] and therefore relies on the stan-
dard Haskell syntax. The basis of the format used here is the
same, but there are some minor differences. An up-to-date
description of the actual syntax supported by the developed
tool can be found in the manual [18].

7

This set of concepts is only one way of describing this C-
element and the environment. Another way could be to use
gate-level concepts and describe the environment explicitly.
In this case the environment allows the inputs to transition in
the opposite direction to the output c, as two inverters would.
We can then compose this with the C-element and the same
interface and initialState concepts as follows:

circuit(a, b, c) = interface � cElement(a, b, c)
� environment � initialState

where
environment = inverter(c, a) � inverter(c, b)

This specification is equivalent to the previous one; indeed one
can prove this by rearranging the primitive concepts using the
commutativity and associativity of the underlying commutative
monoid. Consequently, this specification will be translated to
the same STG shown in Figure 5.

Fig. 5: STG for the example system.

Finally, the designer can also rely on protocol-level con-
cepts, producing the following equivalent specification:

circuit(a, b, c) = interface
� handshake00(a, c) � handshake00(b, c)

Indeed, at the high level the circuit can be seen simply as two
handshakes synchronised on a common signal.

This example demonstrates that the presented formal nota-
tion for capturing concepts is very flexible and provides the
designer with a rich selection of available levels of abstraction,
which could be used not only for deriving simplest possible
specifications but also for cross-checking the adequacy of
specifications by refactoring them according to the concept
composition laws.

C. Multiple behavioural scenarios

So far we have only considered systems operating in a
single behavioural scenario specified by a composition of
concepts. However, real-life systems often need to support
multiple scenarios, e.g. start-up and normal operation, different
power modes, etc. This allows each individual scenario to be
designed using concepts, and tested individually to ensure they
work correctly, before these are combined to produce a full
system specification.

To increase the reuse of scenarios, which helps reduce
design time of future systems, this method supports the use of
pre-designed scenarios as concepts.

In some cases, a designer may find it easier to split the
specification of operational modes further than scenarios and
design certain elements separately. In this way, a model may
be produced from concepts, which may not be an operational

mode on its own, but can be composed and tested separately.
Having several elements predefined using concepts may be-
come useful for quickly designing systems. A predefined logic
gate, for example, could be useful to quickly include in any
list of concepts when designing multiple scenarios. An STG
produced of this element can be referenced in a list of concepts
by name (provided that the definition is appropriately imported
into the current namespace). When a list of concepts is passed
into the STG translation algorithm, all referenced concepts are
replaced by the corresponding definitions.

V. INTEROPERABILITY WITH STG BASED TOOLS

Concepts are a useful way of specifying asynchronous
circuits, but specifications also need to be verified against
certain properties to ensure their correctness, and once they
are deemed to be correct, they need to be synthesised into
efficient circuit implementations. Many software tools exist
which automatically verify and synthesise STG specifications,
such as PETRIFY [8] and MPSAT [9]. In order to reuse the
tools developed by the community, it is necessary to be able
to automatically translate concept specifications to STGs. In
this section, we present a translation algorithm (Section V-A)
and discuss ways of composing multiple behavioural scenarios
into a single STG specification (Section V-C).

A. Translating concepts to STGs

As discussed in Section IV-B, there are multiple ways
of representing a specification using concepts. However, all
levels of abstraction available to the designer are built out of
primitive low-level signal concepts such as causality. Given
a specification, we can therefore break down all gate- and
protocol-level constructs into ‘atoms’, which significantly sim-
plifies the translation task.

Using the example of a C-element with an environment, any
representation mentioned in Section IV-B can be broken down
into the following list of low-level concepts:

circuit(a, b, c) = a+ c+ � b+ c+ � c+ a− � c+ b−

� a− c− � b− c− � c− a+ � c− b+

� inputs({a, b}) � outputs({c})
� initialise(a, 0) � initialise(b, 0)
� initialise(c, 0)

One can see that the above list of primitive concepts matches
the STG in Figure 5 very closely, in particular the causality
concepts match the arcs of the STG. Below we describe a
general translation algorithm that in particular can produce
this STG fully automatically. The algorithm is implemented
and integrated in the open-source tool WORKCRAFT, where it
produces STGs in commonly used *.g file format.

Given a list of primitive concepts, the algorithm starts by
creating so-called consistency loops for each signal in the
specified interface, which forces rising and falling transitions
of each signal to alternate, thereby ensuring that the resulting
STG satisfies the property of consistency [8]. The places
between the transitions of a signal determine its state. Figure 6
shows consistency loops created for the example.

The next step is to connect signal transitions according to
the list of causality concepts. In the above example we start

8

Fig. 6: The first step: create consistency loops.

with a+ c+. To represent it in the STG, we connect the
place after a+ (a1 in Figure 6) to transition c+ by a read arc,
which allows c+ to transition without consuming the token
(consuming the token would disable a−), see Figure 7.

Fig. 7: The second step: add causality concept a+ c+.

We continue translating the remaining causality concepts in
the same manner obtaining the STG shown in Figure 8.

Fig. 8: Finish the second step: add all causality concepts.

The final step of the translation algorithm is to add tokens to
some of the places of the resulting STG according to the initial
state concepts initialise(a, 0) � initialise(b, 0) � initialise(c, 0),
which declare the initial states of all three signals to be 0. We
therefore add tokens to places a0, b0 and c0, producing the
fully translated STG in Figure 9.

Fig. 9: The final step: set the initial state.

The resulting STG and the STG shown in Figure 5 look
very different but they are behaviourally equivalent. The latter
is much more compact and easier to read though, and it would
be preferable to show it to the designer instead of the one
obtained by our translation algorithm. Our implementation
supports automated resynthesis of the resulting STG using
PETRIFY, and can therefore seamlessly produce the STG in
Figure 5 from the given specification.

The described translation algorithm is shown in pseudocode
in Algorithm 1.

B. Partial translation and parallel composition
In some cases it may be useful to partially translate concepts

to STGs, for example to investigate the behaviour of a circuit

Algorithm 1 Algorithm for translating concepts to STGs

for Each defined concept do
add signal-level concepts to conceptList

end for
for Each signal in system do

define signal as input/output/internal
add transition high
add transition low
add place signal-0
add place signal-1
connect (transition high, place signal-1)
connect (place signal-1, transition low)
connect (transition low, place signal-0)
connect (place signal-0, transition high)

end for
for Each causlity concept do

connect-read(place following cause, effect transition)
end for
for Each initial state concept do

add-token(place signal-value)
end for

in different environments. An important property of the above
algorithm is that it can be applied to incomplete systems,
thereby translating smaller collections of concepts, or even
singular concepts, which do not necessarily correspond to
well-behaving STGs (e.g. the resulting STGs may contain
spurious input transitions if they are not controlled by the
environment). Such partial specifications can be visualised,
studied, and then composed into complete specifications using
the parallel composition, which is supported by WORKCRAFT
using an integrated tool PCOMP [22].

Using the example in Section IV-B, a C-element with
environment, we can translate the concepts corresponding to
the C-element and the two environment inverters individually.
Including the initial states, this would give us the STGs found
in Figure 10. These STGs can be composed using the parallel
composition, the outcome of which will be equivalent to
the result obtained by translating the complete specification,
bringing us back to the STG in Figure 5.

C. Scenario combination

As mentioned in Section IV-C, concepts are used to specify
a single behavioural scenario. When combining scenarios,
there are several things to consider in how the scenarios fit
together. Depending on the application, some scenarios may
need to operate in certain orders, for example, one scenario
may exist simply to initialise the circuit, therefore this scenario
needs to run at start-up, before any other scenario, and then
never be run again while the system remains active.

To address this, we can define templates, which can be used
to combine scenarios in various ways. With this the designer
specifies how the scenarios should be combined, and if an
order is needed, the order the scenarios should be run from
start up. The following are some examples of templates that
can be used to combine scenarios.

9

(a) cElement(a, b, c)

(b) inverter(c, a)

(c) inverter(c, b)

Fig. 10: Partial translation of concepts into STGs

Sequential template: Sequential combination allows a de-
signer to select the order of all scenarios, so when combined,
they run in a sequence.

Scenario 1 Scenario 2... ...

Concurrent template: In this case there is no order, but one
or more of the scenarios run concurrently. It may be necessary
to limit concurrency by specifying, for instance, the number
of scenarios that can be active simultaneously:

Scenario 1A

... ...

Scenario 1B

Non-deterministic choice template: This template com-
bines the scenarios in a way that allows any of the scenarios
to run by consuming the initial token from the choice place and
producing it in the merge place when the scenario completes:

Scenario A

... ...

Scenario B

It is possible to combine some scenarios using one template,
then including the result in a combination with other scenarios
using another template.

This method can allow for many possible scenario com-
bination styles, and more complex systems can be combined
automatically, which in comparison to manual combination,
could reduce the number of errors as well as design time.

D. Tool integration
The concepts tool PLATO [18], which translates asyn-

chronous concepts to STGs has been integrated into open-
source toolsuite WORKCRAFT [13]. This allows a designer to
visualise their concept designs as STGs, to simulate, verify and
synthesise them using other tools integrated in WORKCRAFT,
and if there are any corrections or additions to be made these
can be done either directly in the STG or in the original
concept specification, which can then be re-translated into
an updated STG. These automated processes can allow for
a streamlined design process of asynchronous circuits.

Scenario combination is not yet implemented and is per-
formed manually by the designer using WORKCRAFT’s graph-
ical user interface. This design stage can also be automated to
further streamline the design process using concepts.

VI. CASE STUDY

In Section II we introduced the motivating example for this
article, a simple buck converter, and discussed the challenges
of monolithic approach to specifying asynchronous circuits.
We have also introduced concepts in Section III, and with
examples explained how they can be used to design simple
circuits, and how these can be translated to STGs for subse-
quent synthesis of asynchronous gate-level implementation. In
this section we use the buck converter as a case study to detail
the whole design process in WORKCRAFT, see Figure 11.

A. Formal specification using concepts
The informal specification of the buck converter defines

three operating modes that require distinctive control scenar-
ios. Requirements for each operating mode can be captured
with a separate list of concepts and translated into scenario
STGs. These can be subsequently combined to produce single
STG for the whole circuit. During this process, it is useful
to find any operations which occur between two or more
operating modes, as these can then be reused.

1) ZC absent scenario: A circuit that handles buck opera-
tion in absence of ZC condition is specified as follows:

zcAbsentScenario(uv, oc, zc, gp, gp_ack, gn, gn_ack)
= chargeFunc � uvFunc � uvReact

where
interface = inputs [uv, oc, zc, gp_ack, gn_ack]

� outputs [gp, gn]
uvFunc = uv+ gp+ � uv+ gn−

ocFunc = oc+ gp− � oc+ gn+

uvReact = gp_ack+ uv− � gn_ack− uv−

ocReact = gp_ack− oc− � gn_ack+ oc−

environment = me(uv, oc)
noShortcircuit = me(gn, gp)

� gn_ack− gp+ � gp_ack− gn+

gpHandshake = handshake(gp, gp_ack)
gnHandshake = handshake(gn, gn_ack)
initialState = initialise0 [uv, oc, zc, gp, gp_ack]

� initialise1 [gn, gn_ack]
chargeFunc = interface � ocFunc � ocReact

� environment � noShortcircuit
� gpHandshake � gnHandshake
� initialState

10

Fig. 11: Stages of the design flow when using asynchronous concepts in WORKCRAFT.

The zcAbsentScenario concept is a composition of buck
charging and UV handling. Consider the charging function
captured in chargeFunc concept. It comprises several con-
cepts: interface specifies the types of signals and initialState
defines their initial state; gpHandshake and gnHandshake
specify the protocol on gp/gp_ack and gn/gn_ack interfaces
respectively; noShortcircuit enforces a safety constraint to
prevent a shortcircuit; ocFunc and ocReact define the inter-
play with OC condition; and environment captures the fact
that OC and UV conditions never happen at the same time.

Note that the sequence of PMOS/NMOS switching during
the charging cycle is the same for all operating modes, and
therefore the chargeFunc concept can be reused in other
scenarios.

The zcAbsentScenario concept is automatically translated
to the STG specification in Figure 12.

2) ZC late scenario: If ZC condition is detected after UV,
then buck operation is the same as in absence of ZC, i.e. ZC
conditions can be ignored. This is captured by an additional
zcLate concept:

zcLateScenario(uv, oc, zc, gp, gp_ack, gn, gn_ack)
= chargeFunc � uvFunc � uvReact � zcLate

where
zcLate = uv+ zc+ � zc− uv−

The STG specification automatically produced from the
zcLateScenario concept is shown in Figure 13. It looks

Fig. 12: STG for the zcAbsentScenario concept.

Fig. 13: STG for the zcLateScenario concept.

similar to the STG in Figure 12 but features a concurrent
branch for zc signal. Note that the arc zc+ zc− is implied
at translation time by consistency loops.

Note that the concept specification of zcLateScenario
reuses most of the code from the zcAbsentScenario; in
particular, the description of the analogue environment does
not need to be duplicated, as with the STG approach, where
the designer needs to redraw the specification from scratch.
WORKCRAFT allows to copy and paste STGs, which mitigates
the problem, but duplication and associated design problems
remain – for example, if the analogue environment needs to
be amended, these changes need to be done consistently in
all scenarios. With concepts, only one definition needs to be
changed, which increases the productivity of the designer.

11

3) ZC early scenario: If ZC condition is detected before
UV then it needs to be explicitly handled by the control circuit:

zcEarlyScenario(uv, oc, zc, gp, gp_ack, gn, gn_ack)
= chargeFunc � zcFunc � zcReact � uvFunc′

� uvReact′

where
zcFunc = zc+ gn−

zcReact = oc− zc+ � gp+ zc−

uvFunc′ = uv+ gp+

uvReact′ = zc+ uv+ � zc− uv−

� gp_ack+ uv−

The obtained STG for the zcEarlyScenario concept is
shown in Figure 14.

Fig. 14: STG for the zcEarlyScenario concept.

B. Combining the scenarios

The scenario STGs can now be combined as described in
Section V-C to produce a multi-scenario specification. As buck
operating modes are active one at a time, the control scenarios
are combined using the non-deterministic choice template.

Figure 15 shows the resulting STG specification. This can
be further simplified by merging the common parts of the
scenarios, thus producing a more compact model similar to
that shown in Figure 2.

There is an explicit place in this model which holds a token
initially and allows any of the scenarios to run. This free-
choice place has no control over which scenario can run, and
only allows one of them to run at a time.

C. Verification and simulation

To be combinable by our method, the scenario STGs need
to satisfy certain properties [8]:
• Complete State Coding (CSC): each state of the models

with different behaviour has differing signal encodings to
avoid problems during synthesis. Note that in most cases
it is possible to automatically resolve CSC conflicts.

• Deadlock freedom: no state is reachable from which no
progress can be made.

• Output persistence: there are no race conditions in the
STG (i.e. no glitches).

• Signal consistency: in any trace the rising and falling
transitions of each signal alternate.

These properties can be automatically checked in
WORKCRAFT using the MPSAT [9] backend tool. It is
also possible to verify custom safety properties expressed
using syntax similar to SystemVerilog Assertions, which is
familiar to many hardware designers. Figure 16 contains
an example custom assertion !(gp && gn) that we created
for this case study. In this we formally verify that there is
no shortcircuit in the system, by checking that gp and gn

Fig. 15: Complete STG for a buck converter.

Fig. 16: Custom verification of no shortcircuit.

are never high at the same time. As seen in this image, the
property correctly holds, as expected.

In the event that one of these properties does not hold, unless
it can be corrected automatically, which MPSAT can attempt,
the combination of scenarios fails. In this case a problematic
concept can be identified and diagnostic information is printed
out to help a designer correct the issue.

Correctly produced scenarios may not necessarily work as
the designer expects, and this needs to be validated before
using these scenarios in any further designs. In addition to
formal verification, WORKCRAFT features a simulation tool,
and this can be used by a designer to check that the signals
can transition according to the initial requirements. If the
simulation produces undesirable results, a designer can work
to fix the error of the scenario STG, or correct the design at
the concept level. The latter is the preferable method if the
design is to be reused either as a predefined concept, or as a
scenario in another system.

After all scenarios have been combined, the result will be
the STG specification for the full system. If each scenario used
in the combination process satisfies the verification properties,
it is possible no errors will exist within the full specification.
However, unforeseen errors may be produced and thus, it
is necessary to verify the resulting specification. This can
be performed using MPSAT as with the scenarios to ensure

12

the same properties are held. The simulation tool built into
WORKCRAFT can also be utilised for testing the functionality
of a full system specification.

D. Synthesis of a speed-independent controller

The final step in this design flow is to synthesise the STG
specification into a speed-independent circuit. Synthesis is the
process of finding Boolean equations to calculate the next
state of the output signals based on the input signals and the
current state of the circuit [8]. Circuits can be synthesised
using PETRIFY or MPSAT, both of which are integrated in
WORKCRAFT. There are different types of synthesis with their
own specifics. For example, Figure 17 shows the result of
Complex gate synthesis of the buck STG.

Fig. 17: Complex gate implementation.

Complex-gate synthesis does not use a gate library and
yields Boolean functions of arbitrary complexity. These func-
tions are often too large to be implemented by a single
gate available in the gate library. Unfortunately, breaking up
a complex-gate into smaller ones, when performed naïvely,
generally yields an incorrect circuit – this happens due to the
delays associated with the outputs of the newly introduced
gates and can lead to glitches or deadlocks.

In fact, logic decomposition in the context of speed-
independent circuits is a very difficult problem, that cannot
always be solved. PETRIFY and MPSAT backend tools do
a good job in many situations, but occasionally they fail
to converge to a solution and a manual intervention by the
designer is required.

Another type of synthesis is Technology mapping. This
performs Logic decomposition and uses a gate library to map
the logic only onto gates available in the library.

Fig. 18: Technology mapped implementation.

Figure 18 is the technology mapped implementation. The
gate labels correspond to the gate names in the library. The two
inverters are shown with a dotted line through. This is because
they have the Zero delay property expressing the assumption
that their output wire delays are negligible. This is usually

unproblematic as long as such input inverters are placed close
to the main gate; this can be enforced during the place-and-
route stage.

Within WORKCRAFT we can further decompose the imple-
mentation of gp into two-input gates, as shown in Figure 19.
This is achieved by restricting the synthesis back end (in this
case MPSAT) to use the gates with at most two inputs. Such
2-input decompositions may be beneficial for designs targeting
low operating voltages.

Fig. 19: Technology mapping into 2-input gates/latches.

More information on the synthesis of this example can be
found in the tutorials of the WORKCRAFT website [13].

VII. RELATED WORK

There are several existing methodologies which are similar
to the one being proposed in this paper, and there are a
common set of features between these which can be compared.
In some cases, these cannot be used for asynchronous designs,
but some of their other key features can still be compared.
Table I contains a comparison of these features.

We have found the related work limited in certain aspects,
and we discuss this below.

A common approach of designing asynchronous circuits,
Balsa [25], uses an RTL language to specify operations
for asynchronous circuits for both big-digital, data featur-
ing multiple bits, and little-digital, control systems. A Balsa
specification is initially converted into a format describing a
network of handshake components, which can be used for
simulation and circuit diagrams. This can then be used in
synthesis, by mapping handshake components on to library
components [26]. RTL languages are used for synchronous
design, and thus designers can adapt to Balsa more easily,
however specifying a control system can lead to a complicated
program which can be difficult to comprehend, in comparison
to the STGs produced in the proposed approach, in which
signal interactions can be visualised.

Biscotti [27] is an approach which uses a C-style language,
which can be easy to adapt to as designers are likely to have
programming experience. It features forever blocks, in which
code runs sequentially, but all these blocks run concurrently
to each other. This design method starts by specifying a
circuit which is then compiled into a Petri Net for verification
with existing tools including WORKCRAFT and if success-
ful, synthesis, similar to our approach with conversion of
concepts to allow use with multiple existing back-end tools
based on STGs. Biscotti is aimed at designing data-driven
asynchronous systems however, and as with Balsa, specifying
an asynchronous control system is difficult, especially as the
number of signals involved increases.

13

TABLE I: A comparison of features of related work and the proposed method

Method Asynchronous
support

Tool
support Gate-level Event-

level
Protocol-
level Design focus

Concepts Yes Yes Yes Yes Yes Little digital
Balsa Yes Yes Yes No Yes Big digital
Biscotti Yes Yes Yes No No Big digital
Lava No Yes Yes No Yes Big digital
Cλash No Yes Yes No Yes Big digital
Snippets No No No No No Little digital
DI algebra Yes No No Yes No Little digital
Structural design No Yes No No No Modular

[28] introduces Lava, a Haskell tool. This features its own
design flow, using predefined functions for structures like logic
gates, allowing users to define functions using these structures.
A collection of these functions can be used to design a circuit
and be verified within Lava, however for steps such as simula-
tion and synthesis, Lava generates VHDL code to be used by
other software. This has similar ideals to concepts, allowing
users to define functions from predefined structures, which
can be reused. However, Lava is more focussed on designing
synchronous circuits for data processing featuring wires with
multiple bit widths, rather than asynchronous control circuits.

Cλash, introduced in [29], is also a Haskell based tool,
similar to Lava, focussed on synchronous data processing cir-
cuits. It has some cross-over features with Lava, such as built-
in verification, and the ability for users to define functions.
Cλash also features built in synthesis and simulation, avoiding
the need to export VHDL, however this feature remains.
This allows a simpler way of specifying synchronous circuits,
which may be more natural for designers, however Haskell as a
language features huge differences to programming languages
like C, which may be an issue for adoption. Cλash is also
focussed on synchronous circuits.

The current implementaion of asynchronous concepts also
uses Haskell as the host language, but our focus is on asyn-
chronous control circuits, therefore the designer only works
with a very small subset of Haskell using predefined domain-
specific primitives, i.e. no advanced Haskell knowledge is
required. We use Haskell because it provides powerful func-
tional programming abstractions, significantly simplifying our
implementation, and allowing us to use algebraic approaches
to the specification of event-interaction graphs, e.g. see [30].

Snippets [31], similar to concepts, are smaller state graph
models which are used to compose full state graphs of larger
systems. Snippets describe the operation of a part of a system
in terms of input and output alphabets, and in which ways
these snippets can fail. When composed with other snippets
it can produce a working system state graph model. With our
design methodology however we want to go deeper and de-
compose a component into concepts responsible for capturing
signal behaviours for system features, such as handshakes,
mutual exclusion, synchronisation and others.

DI algebra [32] is a method of describing systems as
algebraic equations. Each equation represents an operation of
the specification, similar to scenarios, and composing these can
be simplified for the most compact version of the equation.

These can then be composed to find an equation for the
whole specification and again simplified for the most compact
version. Our method is similar to DI algebra, however concepts
are described textually, which is different to DI algebra and as
such, simplification does not occur at concept level, but during
the composition and combination steps, and the most compact
form of the model is automatically produced.

To the best of our knowledge there are no EDA tools
supporting compositional design of asynchronous circuits us-
ing snippets or DI algebra, which makes these approaches
unsuitable for use in an industrial setting.

Structural design features re-usability of modular compo-
nents [33]. Here, a component design can be used multiple
times across full device designs in conjunction with several
other circuit modules. These modules can be changed in some
way without affecting how they are used in the full device
designs. The ideas of this method are similar to that of the
design methodology we are proposing to reduce design time.
However, this method is at a much higher level, using fully
designed and tested components, whereas we propose to allow
re-usability at gate and even signal/event levels.

Asynchronous concepts presented in this paper have been
inspired by a series of research works dedicated to the compo-
sitional specification of asynchronous circuits. Specifically, we
build on Conditional Partial Order Graphs [20], Conditional
Signal Graphs [21] and Parameterised Graphs [34]. This work
is different in that we focus on developing a textual specifica-
tion language that can be used by a designer directly, without
the need to explicitly describe large graph-based models.

Concepts have many advantageous features, such as reuse,
description and composition at multiple levels of abstraction.
Several of the abovementioned approaches feature similar
features which make them beneficial in certain circuit design
applications, but we believe that concepts address an important
gap in the state of the art: compositional design of little
digital asyncrhonous control logic, with industrial-strength
open-source EDA tool support.

VIII. CONCLUSIONS AND FUTURE RESEARCH

In this work we show that it is possible to design asyn-
chronous control circuits at the interface between analogue
and digital worlds by splitting their specification into opera-
tional modes, scenarios, and describing signal interactions and
requirements of each scenario using high-level asynchronous

14

concepts. These can then be translated into STGs that represent
these operational modes, which can be used with existing
verification and synthesis tools. STGs can be further combined
to produce a complete model for the system specification.

Using concepts, a user can reduce the time of designing
an asynchronous control circuit from the ground up, as well
as allow reuse of components either as part of a scenario or
entire scenarios to reduce the design-time of future projects.
Composition of concepts and scenarios can help reduce errors
and save time in comparison to performing these manually.
This method can help to make asynchronous circuits more
appealing to industrial designers.

Currently, this method works with Signal Transition Graphs,
however it can be applied to other modelling disciplines, such
as Finite State Machines (FSM).

Process mining can also be used for various purposes in con-
junction with designing asynchronous circuits. For example,
process mining can discover a behavioural model when none
exists, and can be used to check that an existing specification
is realistic, or find less complex models. All of this can be
performed automatically, by tools such as PGMINER [35],
given an event log with observations of a real analogue or
digital system, and aid a designer in reducing design time and
errors. We aim to include process mining in the design flow
for the proposed approach.

As the Internet-of-Things becomes ubiquitous, asyn-
chronous circuits will be key in designing energy-efficient
and reliable IoT nodes, particularly at the interfaces between
analogue and digital domains, such as power management
units. We believe that high-level asynchronous concepts could
be instrumental in the design of these systems.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their
constructive comments. This research was supported by EP-
SRC research grant ‘A4A: Asynchronous design for Ana-
logue electronics’ (EP/L025507/1) and the Royal Society
Research Grant ‘Computation Alive: Design of a Processor
with Survival Instincts’. Jonathan Beaumont is sponsored by
a PhD scholarship from the School of Engineering, Newcastle
University, UK.

REFERENCES

[1] J. Myers, A. Savanth, R. Gaddh, D. Howard, P. Prabhat, and D. Flynn.
A subthreshold arm cortex-m0+ subsystem in 65 nm cmos for wsn
applications with 14 power domains, 10t sram, and integrated voltage
regulator. IEEE Journal of Solid-State Circuits, 51(1):31–44, Jan 2016.

[2] Andrew Talbot. Holistic mixed signal design in ultra deep sub-micron
technologies. NMI R&D Workshop: Analog and Mixed-Signal Design,
2016.

[3] Y. Lee, Y. Kim, D. Yoon, D. Blaauw, and D. Sylvester. Circuit and
system design guidelines for ultra-low power sensor nodes. In Design
Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages
1037–1042, June 2012.

[4] Jens Sparsø and Stephen B Furber. Principles of asynchronous circuit
design: a systems perspective. Springer Netherlands, 2001.

[5] Jonathan Audy. Navigating the path to a successful IC switching
regulator design. Tutorial at IEEE International Solid-State Circuits
Conference (ISSCC), 2008.

[6] T.-A. Chu. Synthesis of self-timed VLSI circuits from graph-theoretic
specifications. PhD thesis, Massachusetts Institute of Technology, 1987.

[7] A. Yakovlev L. Rosenblum. Signal graphs: from self-timed to timed
ones. International Workshop on Timed Petri Nets, pages 199–206.

[8] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Logic Synthesis for Asynchronous Controllers and In-
terfaces. Springer, 2002.

[9] Victor Khomenko, Maciej Koutny, and Alex Yakovlev. Detecting state
encoding conflicts in stg unfoldings using sat. Fundamenta Informaticae,
62(2):221–241, 2004.

[10] V. Khomenko and A. Mokhov. An algorithm for direct construction of
complete merged processes. In International Conference on Application
and Theory of Petri Nets and Concurrency, pages 89–108, 2011.

[11] Oriol Roig i Mansill. Formal Verification and Testing of Asynchronous
Circuits. PhD thesis, Citeseer, 1997.

[12] D. Sokolov, V. Khomenko, and A. Mokhov. Workcraft: Ten years
later. In This asynchronous world. Essays dedicated to Alex Yakovlev
on the occasion of his 60th birthday, pages 269–293. Newcastle Uni-
versity (UK), 2016.

[13] Workcraft website. https://www.workcraft.org.
[14] W. Bartky D. Muller. A theory of asynchronous circuits. International

Symposium of the Theory of Switching, 1959.
[15] D. Sokolov, A. Mokhov, A. Yakovlev, and D. Lloyd. Towards asyn-

chronous power management. In IEEE Faible Tension Faible Consom-
mation (FTFC), pages 1–4, May 2014.

[16] Danil Sokolov, Victor Khomenko, Andrey Mokhov, Alex Yakovlev, and
David Lloyd. Design and verification of speed-independent multiphase
buck controller. In Asynchronous Circuits and Systems (ASYNC), 2015
21st IEEE International Symposium on, pages 29–36. IEEE, 2015.

[17] P. Hudak. Building domain-specific embedded languages. ACM
Computing Surveys, 28(4):196, 1996.

[18] Concepts repository. https://github.com/tuura/plato, 2016.
[19] D. J. Kinniment. Synchronization and Arbitration in Digital Systems.

John Wiley and Sons, 2008. ISBN: 978-0-470-51082-7.
[20] Andrey Mokhov and Alex Yakovlev. Conditional partial order graphs:

Model, synthesis, and application. IEEE Transactions on Computers,
59(11):1480–1493, 2010.

[21] Andrey Mokhov, Danil Sokolov, and Alex Yakovlev. Adapting asyn-
chronous circuits to operating conditions by logic parametrisation. 2012
IEEE 18th International Symposium on Asynchronous Circuits and
Systems, pages 17–24, 2012.

[22] Arseniy Alekseyev, Victor Khomenko, Andrey Mokhov, Dominic Wist,
and Alex Yakovlev. Improved parallel composition of labelled Petri nets.
In International Conference on Application of Concurrency to System
Design (ACSD), pages 131–140, 2011.

[23] A. Martin. Compiling communicating processes into delay-insensitive
VLSI circuits. Distributed Computing, vol. 1(4), pages 226–234, 1986.

[24] C. Petri. Kommunikation mit automaten (Communicating with au-
tomata). PhD thesis, University of Bonn, 1962.

[25] Doug Edwards and Andrew Bardsley. Balsa: An asynchronous hardware
synthesis language. The Computer Journal, 45(1):12–18, 2002.

[26] Kees Van Berkel. Handshake circuits: an asynchronous architecture for
VLSI programming, volume 5. Cambridge University Press, 1993.

[27] Gang Jin, Lei Wang, and Zhiying Wang. A new description language for
data-driven asynchronous circuits and its design flow. In Circuits, Com-
munications and Systems, 2009. PACCS ’09. Pacific-Asia Conference
on, pages 322–325, May 2009.

[28] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
hardware design in Haskell. In ACM SIGPLAN Notices, volume 34,
pages 174–184. ACM, 1998.

[29] Christiaan Baaij. Cλash: From Haskell to Hardware. 2009.
[30] A. Mokhov. Algebraic Graphs with Class (Functional Pearl). In

Proceedings of the International Haskell Symposium. ACM, 2017.
[31] Igor Benko and Jo Ebergen. Composing snippets. In Jordi Cortadella,

Alex Yakovlev, and Grzegorz Rozenberg, editors, Concurrency and
Hardware Design, volume 2549 of Lecture Notes in Computer Science,
pages 1–33. Springer Berlin Heidelberg, 2002.

[32] Mark B Josephs and Jan Tijmen Udding. An overview of di algebra.
In Hawaii International Conference on System Sciences (HICSS), vol-
ume 1, pages 329–338. IEEE, 1993.

[33] Craig Armenti. Get to market faster with modular circuit design.
Electronic Engineering Journal, 2015.

[34] A. Mokhov and V. Khomenko. Algebra of Parameterised Graphs. ACM
Transactions on Embedded Computing, 13(4s), 2014.

[35] Andrey Mokhov, Josep Carmona, and Jonathan Beaumont. Mining
Conditional Partial Order Graphs from Event Logs. In Transactions
on Petri Nets and Other Models of Concurrency XI, pages 114–136.
Springer Berlin Heidelberg, 2016.

