
High Level Cache Simulation for
Heterogeneous Multiprocessors

Joshua J. Pieper1, Alain Mellan2, JoAnn M. Paul1, Donald E. Thomas1, Faraydon Karim2

1Carnegie Mellon University
[jpieper, jpaul, thomas]@ece.cmu.edu

2STMicroelectronics
[alain.mellan, faraydon.karim]@st.com

ABSTRACT
As multiprocessor systems-on-chip become a reality, perfor-
mance modeling becomes a challenge. To quickly evaluate
many architectures, some type of high-level simulation is re-
quired, including high-level cache simulation. We propose to
perform this cache simulation by defining a metric to repre-
sent memory behavior independently of cache structure and
back-annotate this into the original application. While the
annotation phase is complex, requiring time comparable to
normal address trace based simulation, it need only be per-
formed once per application set and thus enables simulation
to be sped up by a factor of 20 to 50 over trace based simu-
lation. This is important for embedded systems, as software
is often evaluated against many input sets and many ar-
chitectures. Our results show the technique is accurate to
within 20% of miss rate for uniprocessors and was able to
reduce the die area of a multiprocessor chip by a projected
14% over a naive design by accurately sizing caches for each
processor.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Performance, Design

1. Introduction
There is a growing consensus that heterogeneous multipro-
cessing on a single chip will become more prevalent. For
these chips, it is unlikely that all the processing elements will
use a common, or homogeneous cache structure. Indeed, one
recently proposed architecture, the Hyperprocessor frame-
work [9], enables integration of many heterogeneous pro-
grammable components. Each Hyperprocessor instance may
contain hundreds of interacting processors, caches, memo-
ries, I/O devices, and custom hardware, all of which can be
customized to the application. Cache structures are espe-
cially difficult to simulate at a high level [3] [11], with few
current tools to accurately simulate cache structures above
the instruction set level. We tackle this problem by develop-
ing a method for simulating cache structures at a high level
quickly and accurately.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’04,June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00

Figure 1: High-Level Cache Simulation Flows

Figure 1 shows the traditional method for high-level cache
modeling and our newly proposed method, part of the MESH
(Modeling Environment for Software and Hardware) frame-
work [4]. In the traditional method, the modeled software
is executed on an instruction set simulator (ISS), generating
an address trace, which is then analyzed to determine the
performance of the uniprocessor system. The address trace
contains no information regarding potential parallelization,
or data-dependencies within the code. This limits it to mod-
eling uniprocessor non data-dependent systems. In systems
that have data dependent execution, data dependent paral-
lelization, or multiple hardware architectures to explore, the
address trace will have to be generated for every possible in-
put and architecture combination.

In contrast, we propose to use an ISS or designer intuition
to generate short, concise metrics that describe the memory
behavior of individual program fragments in the concurrent
application set. These metrics are annotated into the orig-
inal source code, then this source code and the hardware
architecture are executed in the MESH high level perfor-
mance simulation framework. Since the cache behavior for
each program fragment is represented, the cache structure
can be an input into the simulator for each processor in the
system. The simulator can then find the cache behavior for
each processor when executing each application fragment.
Using this information, it can determine the interactions
between concurrently executing software and discover the
net performance of the heterogeneous processor system.

The proposed per fragment metric, highlighted in the fig-
ure, is a derivative of stack distance histograms. The stack
distance histogram has many desirable properties for em-
bedded system simulation, but requires too much data per
fragment for back-annotation. Our contributions are two

techniques that alleviate this limitation, logarithmic binning
and adaptive average compression. Actual simulation time
is very fast, with most of the cache modeling work occurring
during a one-time annotation phase, resulting in a 20 to 50
times simulation speedup over trace based approaches. This
is important for embedded systems, as software is often eval-
uated against many input sets and many architectures for
which the one-time annotation cost is amortized over many
simulations. Later in our example section, we show how this
ability allowed MESH to reduce the total chip area needed
for a multiprocessor system by a projected 14% by identify-
ing which caches needed to be large and which did not, all
with a reduced detail model.

2. The Hyperprocessor Framework
We begin by discussing the Hyperprocessor framework as
its heterogeneous nature motivated this work. The Hyper-
processor is an attempt to streamline the design of mod-
ern heterogeneous Systems-on-Chip (SoC), by providing the
designer with a simple, abstract view of the system (i.e.
the programming model) and the technology to build an ar-
chitecture that facilitates the mapping of the programming
model.

The Hyperprocessor[9] manages task-level parallelism, where
tasks are equivalent to actors in coarse-grain dataflow mod-
els. The top-level data- and control-flow is expressed in a
high-level sequential program, very similar to assembly lan-
guage. Each “instruction,” or task, is a block of code, or a
function performed by a hardware block. The data depen-
dencies of the tasks are expressed through registers. This
enables concurrent scheduling and, unlike a dataflow model,
allows complex control-flow constructs to be implemented
with much fewer resources. The result is a clean, 2-level
hierarchical programming model that has the potential to
blend hardware and software blocks seamlessly, and that
raises the abstraction level for the SoC programmer, creat-
ing a new chip-level programmer’s view.

The programming model is an abstraction of the underlying
architecture, which uses principles very similar to a super-
scalar micro-architecture. At the task-level, a Control Pro-
cessor fetches and decodes the task-level “instructions,” and
then performs renaming within the limits of the available
renaming registers. The renaming eliminates false depen-
dencies, giving more opportunities to increase the coarse-
grain parallelism. A Task Dispatcher checks the data avail-
ability and dispatches eligible tasks to the Processing Units
according to scheduling policies. A Universal Register File
implements the data exchange between the processing units.

Each slave processor may be unique in both its microarchi-
tecture and its interface to a memory subsystem, including
caches. When exploring Hyperprocessor architectures at a
high level using current techniques, the software must be
profiled for every possible cache configuration to obtain the
number of cache misses. Our technique reduces the amount
of profiling that must be done before design exploration
starts and reduces the amount of storage necessary per soft-
ware application during the exploration process.

3. Prior Work
Several approaches have been proposed to represent the cache
behavior of a program above the trace level. The simplest
of these is the cache-miss rate or average cache misses per
access. While simple and easy to use, this metric is simply
an average performance value, closely tied to a specific cache

architecture and requires re-profiling for every configuration
considered. More advanced techniques attempt to reduce
the dependence of the metric on the cache architecture.

3.1 High-Level Cache Modeling
In [11] both the program behavior and the cache structure
are represented by 3D surfaces created by analyzing traces.
The surface is a measure of both spatial and temporal lo-
cality. These surfaces contain too much data to be easily
understandable by the designer and their accuracy is very
limited. Cache Miss Equations [6] are another technique
to represent the cache access patterns of software. Poten-
tial cache misses are represented as a set of linear equations
whose solutions describe exactly when and where misses oc-
cur. When applied to this problem, their inability to handle
data-dependent computation and the large amount of data
needed prevent them from being widely used.

Many simplified analytical forms have been derived that can
describe memory patterns [1]. In general, these formulas are
very promising as metrics in our simulation methodology.
Access patterns are distilled into a few numbers that rep-
resent key memory behavior characteristics. However, they
are usually designed to model a single cache, and can be
difficult to extend to multiple levels of cache hierarchy.

Stack distance histograms are another approach to modeling
memory behavior originally used to quickly simulate many
caches from a given address trace. They describe how many
unique references occur in between two references to the
same memory location. Using this information, a stack his-
togram will produce identical results as simulation for any
fully associative cache and as shown in [8] can approximate
any sized set-associative as well with reasonable accuracy.
Their use of the inclusion property of caches makes them
well suited to simulating multiple levels of hierarchy. They
may in the future even be useful for simulating the differing
register sets of microprocessors. Recent compiler techniques
[3] have been able to generate approximate histograms, so
this metric may be extendable to source level analysis. How-
ever, they do not account for cache line sizes, and a new
histogram must be calculated every time the cache line size
changes.

3.2 Stack Distance Histograms
Stack distance histograms are created by the stack simula-
tion algorithm, which uses the inclusion property to quickly
simulate many size caches with only one pass through an
address trace. Inclusion [8] is a property of caches that is
obeyed for two caches of size x and y where x > y if ev-
ery address that results in a hit in y is also a hit in x. It
holds for caches that have the same block size, use the same
set-mapping function and have certain restrictions placed
on the set mapping and eviction functions (most common
cache architectures meet these restrictions).

The stack simulation algorithm can be implemented as a sin-
gle linked list, where the head of the list contains the most
recently referenced cache line, the second item contains the
second most recently referenced line, etc. When an address
is encountered in the trace, a search is conducted through
this list to see when the line was last referenced, then the
item is removed and placed at the head. The item’s previ-
ous distance is recorded and added to a histogram. Each
bin in the histogram represents the number of cache lines
that were referenced at that distance, and thus measures
temporal locality in an address trace.

Figure 2: Stack Simulation Algorithm

For example, consider the address trace in Figure 2. It con-
tains an entry for every cache line as it is accessed in pro-
gram order. At time index t, the address trace is at the
indicated position and the current stack state is as shown.
The histogram contains the references that have been com-
puted up until this point in time. Advancing to cache line
at time index t+1, cache line 21 is found at position 3, then
removed and re-inserted at the head of the list. Position 3
is the distance since last reference, so this value is recorded
in the distance histogram at the bottom of the figure. The
infinity bin is used for the first time a cache line appears in
the address trace, and thus does not yet exist in the stack.

Using the histogram, any fully associative cache of size s can
quickly be simulated by summing the bins from 0 to s − 1.
In this example, at index t + 1, the number of hits for a
cache that could hold three lines would be the sum of bins 0
through 2, or 22. An approximate formula for set-associative
caches is derived in [8].

4. Proposed Metric
Stack distance histograms have many of the properties we
require for our per-fragment metric. They can be evaluated
quickly, handle multiple levels of hierarchy naturally, and
can be used in automated way without requiring a full tar-
get toolchain. Their downfall is the large amount of space
required to store the information for one fragment. There
exists an entry in the histogram for every temporal distance
referenced within a fragment, which on average equates to
the working set size. For our largest example, Sphinx3 (to
be described later), some fragment’s histograms would need
to contain 200,000 elements. This size is not feasible when
the elements need to be back-annotated for possibly thou-
sands of program fragments. Our contributions are two tech-
niques, logarithmic bins and adaptive compression that re-
duce the size required to store the data inside a histogram
with an acceptable loss of accuracy.

4.1 Logarithmic Bins
The first technique we use is calculating the histogram such
that each bin sums all the distances from 2n to 2n−1. Since
cache hardware is most efficiently implemented in powers of
two, this seems like a reasonable approximation to make.
For all fully associative caches of size 2n, the number of
misses will still be exact. For set-associative caches, this
introduces more error as the set associative approximation
must be made with truncated information.

The top of Figure 3 shows how the logarithmic bins relate
to the full histogram for a sample fragment from one of
our benchmarks. The original histogram has three distinct
regions of memory references, one between 0 and 2, which
correspond to stack distances between 0 bytes and 64 bytes,

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

 0 2 4 6 8 10 12 14 16M
em

or
y

R
ef

er
en

ce
s

log2(stack distance)

Logarithmic Bins+Compression

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

 0 2 4 6 8 10 12 14 16

M
em

or
y

R
ef

er
en

ce
s

Full Histogram
Logarithmic Bins

Figure 3: Stack Distance Histograms for Sample
Sphinx3 Fragment

another between 5 and 6 (512 bytes through 1024 bytes in
the original histogram), and a final region between 11 and
14 (32768 bytes through 524288 bytes). Stack distance is
normally indicated in terms of cache lines, which for all of
our experiments are 32 bytes. The logarithmic bins capture
the basic features of these three regions, without retaining
all of the detail. When simulating this program fragment,
these logarithmic bins can easily be used to calculate a miss
rate for many different cache sizes.

4.2 Compression
While the logarithmic binned histograms capture the rele-
vant details of the base stack distance histogram, they still
can require large amounts of space to store depending upon
the workload size. For example, Sphinx3 has a workload of
approximately 4 megabytes and requires 19 bins to store all
of its histogram for many fragments. Each bin requires ap-
proximately 4 bytes to store, which equates to 76 bytes per
annotation. For small fragment sizes, or finely instrumented
software, this is clearly excessive. A method of reducing the
amount of data further is required.

Our technique for compression, adaptive average compres-
sion, accomplishes this based on the observation that for
most program fragments the histogram contains significant
amount of empty space. Further, when there is non-empty
space, the resulting distance values are often relatively flat
and clustered together. To take advantage of these prop-
erties, our compression technique describes a program frag-
ment’s histogram as ranges of logarithmic bins and an asso-
ciated average number of references per bin. For example, in
the bottom of Figure 3, the histogram has been represented
as 4 regions, bins 0-2, 3-4, 5, and 6. In each region the num-
ber of references per bin is assumed to be constant and equal
to the average from the original logarithmic binned version.

We select a new set of regions for each program fragment
based on what provides the least amount of modeling error.
Most programs exhibit fewer references as the distance in-
creases, which means the same absolute error will result in
a greater percentage error for large cache sizes. We combat
this by weighting our error calculation such that large stack
distances are more likely to be allotted a region than small
distances. In the fragment of Figure 3, bins 11-14, while
containing some references, are represented as 0 in the com-
pressed graph because even after the extra weight assigned
to them they still contribute little to the memory behavior
of the program fragment.

4.3 Assumptions
In developing this combination of stack distance histograms,
logarithmic binning, and adaptive average compression, we
must make several assumptions that limit the accuracy and
retargetability of our technique. First, we will ignore the
effects of compulsory misses and cache interference from
multiple tasks executing on a single processor. These can
greatly affect performance, but the former is unaffected by
cache structure and while the latter is a difficult problem, it
is negligible in the Hyperprocessor’s task-based system and
in other approaches that utilize many processors. Second,
data-dependent behavior is averaged within each annotation
region. For this to hold, the size of the annotation region
must be small enough to capture system-level data depen-
dencies. Third, we will only look at data accesses and ignore
instruction accesses. For an embedded multiprocessor it is
very likely that each processor will have a dedicated storage
region for its instructions or an effective level 1 instruction
cache. Fourth, reads and writes are treated equally.

Also, due to our selection of stack distance histograms, we
must ignore variations in cache line size and assume that
cache blocks map to sets independently. The first assump-
tion is reasonable, often the cache line size is fixed by the
processor, and even then it has only a second order effect on
miss rate. We have used a 32 byte line size for all our exper-
iments. The second assumption tends to cause the models
to overestimate cache misses since real programs show high
spatial locality. We will show with our later results that
the accuracy loss is tolerable and in many cases unnotice-
able. Finally, LRU replacement is assumed for all simulated
caches.

5. Experiment Methodology
In this section we will first describe our modifications to the
MESH framework to incorporate our new metric, next the
methods we used to collect data for our experiments, and
finally the specific benchmarks that we tested with.

5.1 MESH Simulation Framework
The MESH performance simulation framework facilitates
modeling of heterogeneous systems on chips using reduced
detail level models. It enables early design space explo-
ration for performance in complex heterogeneous architec-
tures where only part of the complete application or pro-
cessor set is known. This is accomplished by decoupling the
application, scheduling, and physical resources into separate
interacting layers. These layers are analogous to the lay-
ers in the Hyperprocessor platform and are one reason why
MESH was chosen to model this new architecture. Detailed
descriptions of the methodology of MESH can be found in
[2] [4].

In MESH, software threads are expressed by annotating ar-
bitrary C code with consume calls. These consume calls
create annotation regions between the calls, indicating the
computational complexity of software within that fragment.
Values associated with consume calls can be derived from
techniques such as profiling, designer experience, or soft-
ware libraries and do not directly relate to physical timing.
The system’s physical timing is determined by resolving the
consume call complexity to the available physical resources
in the system.

When applying the MESH annotations to cache design space
exploration, or exploration of architectures with multiple
differing caches, the main limitation is the dependence of

computational complexity on the cache structure. For each
cache and software combination that is considered, a sep-
arate computational complexity number must be derived.
This requires that multiple copies of the source code be
maintained, each with different valued annotations. No mat-
ter what method is used to derive the complexity number,
it is difficult to maintain and store separate values for every
cache structure under consideration.

To enable heterogeneous cache simulation, we extend our
consume call structure to include memory behavior effects
independent of cache structure, thus leaving the remainder
of the structure to define the computing requirements of
software. At simulation time, the memory system perfor-
mance is calculated using the proposed metric and cache
parameters such as size and associativity.

5.2 Experiment Design/Benchmarks
For our experiments, we use as a baseline a full address
traces taken from an instruction set simulator (ISS). The ISS
was instrumented to write the current address to a file every
time a memory location was read or written. The exact
miss ratio, or ratio of cache misses to memory references,
was determined by running a full cache simulator with these
traces. The simulator can be configured to emulate any
combination of cache size, set size, and block size. For each
combination, a separate run of the cache simulator was used
to determine the miss ratio for that selection of address trace
and cache parameters.

When analyzing the proposed metric, we used two differ-
ent methods depending upon the aspect of the metric being
tested. In the first case, we calculated a single metric for
the entire application run, then used our model with the
single metric and cache parameters to determine the miss
ratio. In the second case, the metric is calculated for each
program fragment, which are then modeled against a cache,
and the resulting miss counts are added to obtain a total
miss ratio. The first type of test allowed us to determine
the accuracy of single metrics, while the second version is
more detailed and shows the effects of local truncation er-
rors averaged over entire application runs. To compare the
accuracy of the metrics, we always measure the percentage
error in the miss rates from that calculated by the proposed
metric model to that of the trace simulator.

We employ several embedded benchmarks to evaluate our
approach. The MiBench [7] suite is used as well as the
Sphinx3 [10] speech recognition engine ported to run on the
Hyperprocessor framework. From MiBench we use GSM,
a cell phone audio compression algorithm and blowfish, a
stream encryption cipher. They both have a small work-
ing set and exhibit regular data access patterns. Sphinx3 in
contrast, has a very large working set and a data-dependent
amount of dynamic parallelism. When annotating these
benchmarks, we delimited fragments such that every func-
tion call and return would cause a new fragment to be cre-
ated. Thus the granularity is somewhat higher than basic-
block, but lower than function call level. However, the cache
metric itself can be applied to any size annotation region.

6. Results
We first verify that each of our individual techniques, log-
arithmic binning and adaptive compression, are justifiable
using directed experiments. After this, we then show that
the techniques are applicable to larger systems, including
single processors and finally heterogeneous multiprocessors.

Table 2: Compression Accuracy Comparison
Block Average Adaptive Average

w=2 w=3 w=4 w=5 n=5 n=4 n=3

Full Sphinx3 11.7% 19.7% 16.7% 27.5% 6.2% 8.3% 12.8%
Blowfish 10.8% 18.1% 17.3% 16.8% 8.7% 13.1% 14.5%

GSM 18.2% 35.0% 26.4% 44.7% 13.8% 15.5% 34.0%

4-Way Sphinx3 15.9% 18.7% 20.7% 32.0% 18.2% 19.6% 19.6%
Blowfish 16.7% 7.1% 28.3% 19.1% 11.9% 13.7% 23.4%

GSM 15.3% 41.3% 48.9% 58.6% 18.3% 23.1% 36.7%

Direct-Mapped Sphinx3 14.3% 14.9% 20.5% 25.1% 12.7% 13.3% 13.2%
Blowfish 3.5% 5.2% 7.8% 10.4% 2.6% 3.3% 8.6%

GSM 32.3% 35.0% 37.6% 44.6% 27.1% 27.2% 25.9%

Bytes/Annotation 40 28 20 16 22 18 14
Average Error 15.3% 21.0% 24.8% 30.8% 13.3% 15.2% 20.9%

Table 1: Set-Associative Accuracy Comparison for
Logarithmic Binning

Average Error

Experiment Full Histogram Logarithmic Binning

Sphinx3 Direct-Mapped 8.9% 12.7%

Sphinx3 2-Way 6.4% 11.1%

Sphinx3 4-Way 4.0% 8.6%

Sphinx3 8-Way 2.5% 6.3%

Blowfish Direct-Mapped 21.1% 16.1%

Blowfish 2-Way 21.7% 14.5%

Blowfish 4-Way 21.1% 11.6%

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10 12 14 16

C
ac

he
 M

is
se

s

log2(cache size/32)

Direct-Mapped Exact
Direct-Mapped 3-bin Adaptive

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 2 4 6 8 10 12 14 16

C
ac

he
 M

is
se

s 2-Way Exact
2-Way 3-bin Adaptive

Figure 4: Miss Rate vs. Cache Size for Sphinx3

6.1 Metric Validation
First, we verify the validity of logarithmic binning as ap-
plied to stack distance histograms. We compare the accu-
racy of the logarithmic binning technique to the accuracy
of the base stack distance histograms using our first exper-
imental technique, whole program metric characterization.
In Table 1, error was averaged for all power of two cache
sizes less than the working set size. The average error after
logarithmic binning is very similar to that of the original his-
togram, with some benchmarks showing slightly more, and
some benchmarks showing slightly less error. Since the en-
tirety of the error in the original stack distance approach is
due to the set mapping independence assumption, it is rea-
sonable to conclude that this is the source of the majority
of the error after logarithmic binning as well.

To verify the adaptive average compression we compare it
and a simple block average to trace based results. In the
simple block average there is one fixed region size for all
program fragments. When describing these techniques for
the fixed block average, w is the width of each region and
inversely proportional to the number of regions. In the adap-
tive case, n is the number of regions used per fragment.

Using a similar methodology as when evaluating the loga-
rithmic binning, we performed experiments comparing the
accuracy of these approaches. The major difference between
the two experiments is that now we use our second experi-
mental technique and perform the binning and compression
for every annotation region in the program, then sum the re-
sults, as opposed to using one histogram for the program as a
whole. This increases the average error, but shows the actual
results that a full uniprocessor simulation of each benchmark
would. Table 2 gives our results for various benchmarks and
cache configurations. The adaptive block averages perform
significantly better than simple block averages and also re-
quire the fewest number of bytes to store. Large direct-
mapped caches are more inaccurate. We address this issue
in section 6.2.

6.2 Single Processor Results
After validating the metrics in isolation, we now perform
simulation experiments of entire systems to determine all
the interactions between metric error, truncation error, and
application data dependencies. In Table 3 we ran each of
the back-annotated benchmarks on a single processor ARM
system for an entire input data-set. The total number of
cache misses from the trace simulation and the model’s pre-
diction are shown, along with the percentage error. Figure
4 shows the number of predicted misses as cache size is var-
ied for the Sphinx3 benchmark. The most error is shown
for large cache sizes in the direct-mapped cache, where our
model predicted twice as many misses as actually occurred.
This error is a result of the stack histogram approach itself,
and is not a result of our proposed compression techniques.
We expect this to be minimal source of error in real systems,
as data caches are rarely direct mapped.

To compare simulation complexity, the trace simulation, an-
notation calculation, and metric simulation CPU times are
shown in Table 4. These show that the stack histogram
plus compression metric performs more work at annotation
time, but then enables very fast simulation. The long an-
notation time for sphinx is attributable to its large working
set; stack histogram calculation complexity is proportional
to both the trace length and working set size. In all exam-
ples, the proposed metric simulation time is more than an
order of magnitude less than full trace simulation. This is
important for embedded systems, as software is often eval-
uated against many input sets and many architectures; the
one-time annotation cost is amortized over many simula-
tions.

6.3 Multiprocessor System
Our multiprocessor system is the Sphinx3 benchmark ported
to the Hyperprocessor architecture. The particular Hyper-
processor configuration we simulated is a bus-based shared

Table 3: Single Processor Cache Misses x 106

Benchmark Cache Exact 5-bin Adaptive Error

Sphinx3 Direct 8k 11.7 11.7 0.7%

Direct 64k 5.58 5.55 0.7%

4-way 8k 7.58 7.10 6.3%

4-way 64k 5.10 4.60 9.8%

GSM Direct 512b 16.1 27.2 68.7%

Direct 2k 1.73 7.58 337.0%

4-way 512b 3.31 3.15 4.9%

4-way 2k 0.808 0.519 35.8%

Blowfish Direct 1k 25.9 25.1 3.3%

Direct 4k 4.27 10.6 148.8%

4-way 1k 24.2 21.0 13.1%

4-way 4k 3.75 4.22 12.7%

Table 4: CPU Time (seconds) Comparison
Trace-Based Metric-Based

Simulation Profiling + Annotation Simulation

GSM 72.4 157.0 0.24

Blowfish 27.6 72.5 0.52

Sphinx3 48.8 8266.5 1.87

memory system where all of the slave processors execute the
ARM instruction set. The MESH high level models use a
penalty-based shared resource framework to model the inter-
connect [2]. In Figure 5 our experiments show how the ap-
plication scales in the presence of different bus bandwidths.
We ran the cycle accurate simulator and MESH with all
processors using an 8k fully associative cache. The perfor-
mance limit can be seen to change as the bus bandwidth
(measured in processor cycles per cache line) varies. While
MESH’s absolute accuracy is only within 20% for this exam-
ple, it does track the correct trends as both bus bandwidth
and the number of processors is scaled. These trends allow
the designer to discover and prune the design space early in
the design process [4].

Next, we tried a configuration that could not be evalu-
ated in the ISS, but was easy to implement in MESH—
heterogeneous cache structures. Since caches can take up a
large portion of the design budget of a processor, we decided
to reduce the cache size of some of the processors. In the
right column of Table 5 we started with a configuration con-
sisting of all 8k fully associative caches. Then we reduced
the cache size of all but one processor to 1k, these results
are shown in the middle column. Finally, the configuration
with all 1k caches is shown in the left column. We see that
the architecture with only one large cache has performance
that is almost identical to that of the architecture contain-
ing all large caches, indicating that the other caches were
not the bottleneck in the system. For at least one embed-
ded ARM processor, the cache system consumes 60% of the
area budget of the entire processor core [5]. If the cache
sizes are scaled proportionally between the described chip
and this example, this experiment showed that 14% of the
original chip area was not necessary. Since MESH was able
to discover this during early design space exploration, possi-
bly many iterations of expensive instruction set simulation
can be eliminated.

7. Conclusions
We present a technique for representing memory access be-
havior of program fragments that allows high level simula-
tion of cache structures by moving runtime simulation com-
plexity into a one-time annotation phase. We evaluated the
technique using single processor benchmarks from MiBench
and a speech recognition example on the next generation

 1.2e+09
 1.4e+09
 1.6e+09
 1.8e+09

 2e+09
 2.2e+09
 2.4e+09
 2.6e+09
 2.8e+09

 3e+09
 3.2e+09

 1 2 4 8 16

S
im

ul
at

io
n

C
yc

le
s

Instruction Set Simulator

16 cycles/line
32 cycles/line
64 cycles/line

 1.2e+09
 1.4e+09
 1.6e+09
 1.8e+09

 2e+09
 2.2e+09
 2.4e+09
 2.6e+09
 2.8e+09

 3e+09
 3.2e+09
 3.4e+09

 1 2 4 8 16

MESH

16 cycles/line
32 cycles/line
64 cycles/line

Figure 5: Scalability: Performance vs. # of
Processors for 8k Fully Associative Cache

Table 5: Heterogeneous Cache Architecture
Performance (Simulation Cycles x 109)

of Processors All 1k One 8k All 8k

1 3.021 2.758 2.758

2 2.355 2.110 2.103

4 2.068 1.824 1.817

8 1.947 1.705 1.700

16 1.899 1.659 1.658

Hyperprocessor framework. The experiments show that our
technique has a simulation time one to two orders of magni-
tude faster than trace based approaches and can accurately
model single processor cache configurations. In combina-
tion with a high level interconnect model it can accurately
distinguish between heterogeneous multiprocessor architec-
tures and quickly evaluate alternative designs. For our sam-
ple heterogeneous example, the technique was able to reduce
the total chip area by a projected 14% through intelligently
sizing the caches for each processor in the system.

8. Acknowledgments
This work was supported in part by ST Microelectronics,
General Motors, and the National Science Foundation under
Grant 0103706. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

9. REFERENCES
[1] A. Agarwal, M. Horowitz, and J. Hennessy. An Analytical

Cache Model. ACM Transactions on Computer Systems,
7(2):184–215, 1989.

[2] A. Bobrek, J. Pieper, J. Nelson, J. Paul, and D. Thomas.
Modeling Shared Resource Contention Using a Hybrid
Simulation/Analytical Approach. DATE, 2004.

[3] C. Cascaval and D. Padua. Estimating Cache Misses and
Locality Using Stack Distances. Proceedings of the 17th
Annual International Conference on Supercomputing, pages
150–159, 2003.

[4] A. Cassidy, J. Paul, and D. Thomas. Layered, Multi-Threaded,
High-Level Performance Design. DATE, 2003.

[5] L. Clark et al. A Scalable Performance 32b Microprocessor.
IEEE International Solid-State Circuits Conference, pages
230–231, 2001.

[6] S. Ghosh et al. Cache Miss Equations: A Compiler Framework
for Analyzing and Tuning Memory Behavior. ACM
Transactions on Programming Languages and Systems,
21(4):703–746, 1999.

[7] M. Guthaus et al. Mibench: A free, commerically
representative embedded benchmark suite. IEEE Workshop on
Workload Characterization, Dec. 2001.

[8] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU
Caches. IEEE Transactions on Computers, 38(12):1612–1630,
1989.

[9] F. Karim, A. Mellan, B. Stramm, T. Abdelrahman, and
U. Aydonat. The Hyperprocessor: a Template Architecture for
Embedded Multimedia Applications. WASP, 2003.

[10] K. Lee, H. Hon, and R. Reddy. An overview of the SPHINX
speech recognition system. IEEE Transactions on Acoustics,
Speech and Signal Processing, 38:35–44, 1990.

[11] E. S. Sorenson and J. K. Flanagan. Cache Characterization
Surfaces and Prediction Workload Miss Rates. IEEE
Workshop on Workload Characterization, pages 129–139,
December 2001.

