
DTFILECOPY
High level Connectionist Models

OHIO
N &TEN

C1 High Level Connectionist Models

Jordan B. Pollack. Principal Investigator

Laboratory for Artificial Intelligence Research

Ohio State University

D TIC Columbus Ohio, 432 10

ELECTE Il

3S JUNO6 199 o J

Department of the Navy
Office of Naval Research

Arlington, Virginia 22217

Grant NOO1 4-89-J1200

Semiannual Report
Nov 1989 - April 1990

Approved for putlic rqeqclmo
S Dia=unuo) U-06 4t1d

90 0B04 162

High Level Connectionist Models

1.0 Technical Progress.

, 4.

FIGURE 1 Image of a "strange' automaton, the result of a language acquisition device which was

not satisfied with a finite number of states.

1.1 Sequential Cascaded Networks

Major work this semi-annum has been the further development and docu-

mentation of sequential cascaded networks. We resolved a difficulty with

our initial work' applied to the acquisition of formal languages, which

was the necessity of specifying intermediate states of a machine.

Through a simple modification, our networks can now reliably learn lan-

guages from a finite set of positive and negative examples of strings. This

has lead to two important discoveries. One is that by underconstraining

the network for the task of inducing finite state machines, we ended up

with a network which could induce infinite state machines whose states

fall on an underlying "strange attractor" (Figure 1). This could be the ba-

sis for a language acquisition device without an inductive bias towards a

fixed class of grammars. Secondly, we have discovered an elegant new

form of induction, where the difference between finite and infinite perfor-

1. Poack. J. B. (1987) Cascaded Back-Propagaiion on dynamic onnecuonist networks Pro-

ceedings of the Ninth Conference of the Cogniive Science Society. Seattle.

a I I I1

High Level Connectionist Models

mance depends on the reshaping of an aracuve landscape with arbitan-

ly small weight changes. This work is reported in the appendix. 'The

Induction of Dynamical Recognizers."

1.2 Schema Selection/Case Retrleval

We have been developing a new approach to case-based merno remtnev-

al (CBMR) based upon RAAMs. A set of symbolic structures are first en.

coded into vectors in a high-dimensional space such that simular

structures map to nearby vectors. A query is also convened to a vector in

the same space, and similar structures are retreved using Eulidean

Nearest Neighbor search (a form of content-addressable memory) on the

vectors. Initial studies show that the proposal is sound. but that simalanty

across the entire vector space is too imprecise a form of retrieval. We de-

veloped a greedy algorithm for selecting subsets of dimensions to craft

specific indexes to the memory, and these results show promise for a new

method of CBMR. A working paper is contained in the appendix.

1.3 Sensitivity Studies

We have completed the study of back-propagation's sensitivity to initial

conditions, and include the final technical report in the appendix. Based

on peer review feedback, the work looks as simpler functions, lower

learning parameters, and views sensitivity to the learning parameters as

well as the initial weights. This work was very important for two reasons.

First, because we discovered this chaotic behavior in learning rather than

in performance dynamics, and because this method has been widely used

for 4 years and thought to be well-behaved.

1.4 Floating Symbol Systems

We have started research and implementation on building systems where

modular networks agree on shared representations. This is important for

a major problem in Al which is the integration of symbolic processing

with perceptual input. For example, a module which converts from pixel

2

High Level Connectionist Models

arrays to lenes muse agree on the representation of a letter with the mod-

ule that puts the tenets into words. The first step in this process is to relax

the assumption that the input (terminal) symbcIs to a module are fixed.

When we tried a published method2 of "floating" input symbols, all sym-

bols became identical. Further study showed that this symbol fusion

problem affii-s all current connectionist representation research, gener-

ating various work-arounds. Our solution. which involves feedback to

push symbols apa. is described in a working paper in the appendix.

1.5 Allegro Common Usp on the Cray Y-MP

The Ohio Super Computer Center (OSC) recently received an evaluation

copy of Cray Common Lisp and Allegro Matrix for the Cray Y-MP We

have been granted an account and some computer time to evaluate and

benchmark this software. While preliminary Gabriel benchmarks show

that the Cray Lisp is only slightly faster than a Sun4, we believe that with

access to efficient vector code. Lisp on the state-sponsored supercomput-

er may an appropriate engine for future applications of our research.

~ Accesiun For

NTIS CRAWI

DTIC TAB 0
Una, q,.wced 0
JUSthtCdtbvi4

STAMMIF2r "A" per Dr. A Neyrovitz By Q...
ONR/Code 1133 F'-
TELEXON 6/6/90 VG Oi ,bul

Av,,uiobily Codes

Avjd w'dI Or

Dr~st Spec*d I

2. Mikkulaim A Dyet (1968) Fomng global repeseuao with eimidad back .jwopaabf.

P-ocwa&is of th IEE m "cd mceferowce an Newdl Na*,r*w Sm DIgo.

3

High Level Connectionist Models

2.0 Publication Activity

2.1 Papers Appeared

1. 3.B. Pollack. (1989) No Harm Intended. A review of the Perceptrons Expanded
Edition. Journal of Mathematical Psychology, 33, 3, 358-365.

2. Pollack. J. B. (1989). Structured Symbolic Representations in Neural State Vectors.
Fifth Annual Aerospace Applications of Artificial Intelligence Conference, Dayton,

OH.

2.2 Papers In Press

1. J. B. Pollack. Recursive Distributed Representations, Artificial Intelligence

2. J. Kolen and A. Goel. Learning in Parallel Distributed Processing Networks: Com-

putational Complexity and Information Content. IEEE Transactions on Systems.

Man, and Cybernetics.

3. J. B. Pollack. Language Acquisition via Strange Automata. Proceedings of the 12th

Annual Conference of the Cognitive Science Society.

4. J. F. Kolen & J. B. Pollack. Back Propagation is Sensitive to Initial Conditions. Pro-

ceedings of the 12th Annual Conference of the Cognitive Science Society.

S. J. B. Pollack & J. A. Barnden. Conclusion. In Bamden, J. A. & Pollack, J. B. (Eds.)

Advances in Connectionist and Neural Computational Theory. Norwood, NJ: Ablex.

6. J. A. Barnden & J. B. Pollack. Problems for High-Level Connectionism. In Bamden,

J. A. & Pollack, J. B. (Eds.) Advances in Connectionist and Neural Computational

Theory. Norwood, NJ: Ablex.

2.3 Papers Submitted

7. J. B. Pollack. The Induction of Dynamical Recognizers. Machine Learning.

8. J. F.Kolen & J. B. Pollack. Back Propagation is Sensitive to Initial Conditions. Com-

plex Systems.

9. 3. F.Kolen & J. B. Pollack. Back Propagation is Sensitive to Initial Conditions. IEEE

Conference on Neural Information Processing Systems.

10.J. B. Pollack. Language Acquisition via Strange Automata. J. B. Pollack. IEEE Con-

ference on Neural Information Processing Systems.

11.P. J. Angeline & J. B. Pollack. Avoiding Fusion in Floating Symbol Systems.IEEE

Conference on Neural Information Processing Systems.

4

High Loeie Conniwthonist Models

3.0 Appendices

3.1 The Induction of Dynamical Recognimer

3.2 Back-Propagation Is SonsitlW to Initia Conditions

3.3 Subdimenulonal Indexing for C BsdMemory Remoival

3.4 Avoiding Fusion in Floating Symbowl Systems

5

- -

The Ohio State University
Department of Computer and Information Science

Laboratory for Artificial Intelligence Research

April 1990

The Induction of Dynamical Recognizers

Jordan B. Pollack
Laboratory for Artificial Intelligence Research

228 Bolz Hall, 2036 Neil Avenue
Department of Computer and Information Science

The Ohio State University
Columbus, Ohio 43210

Note: Submitted to Machine Learning.

The Induction of Dynamical Recognizers

Jordan B. Pollack

Laboratory for Al Research &
Computer & Information Science Department

The Ohio State University
2036 Neil Avenue

Columbus, OH 43210
(614) 292-4890

pollack@cis.ohio-state.edu

ABSTRACT

Sequential Cascaded Networks are recurrent higher order connecuonist networks

which are used, like finite state auto--ata, to recognize languages. Such networks may be

viewed as discrete.dynamical systems (Dynamical Recognizers) whose states are points

inside a multi-dimensional hypercube, whose transitions are defined not by a list of rules.

but by a parameterized non-linear function, and whose acceptance decision is defined by

a threshold applied to one dimension. Learning proceeds by the adaptation of weight

parameters under error-driven feedback from performance on a teacher-supplied set of

exemplars. The weights give rise to a landscape where input tokens cause transitions

between attractive points or regions, and induction in this framework corresponds to the

clustering, splitting and joining of these regions. Usually, the resulting landscape settles

into a finite set of attractive regions, and is isomorphic to a classical finite-state automa-

ton. Occasionally, however, the landscape contains a "Strange Attractor," to which there

is no direct analogy in finite automata theory.

1. Introduction & Background

Recently, J. Feldman (personal communication) posed the language acquisition

problem, as a challenge to connectionist networks. The problem is long-standing, and

related to his own early work in finite-state automata induction (Feldman, 1972). In its

general form, it can be stated quite simply, although it has many specialized variants.

Given a language, specified by example, find a machine which can recognize

(or generate) that language.

J. B. Pollack

In this paper I expose a recurrent high-order back-propagation network to both posi-

tive and negative examples of boolean strings, and report that although the network does

not find the minimal-description finite state automata for the languages, it does induction

in a novel and interesting fashion, and searches through a hypothesis space which,

theoretically, is not constrained to machines of finite state.

This interpretation is dependent on an analogy among automata, neural networks,

and non-linear dynamical systems, which I will try to set out below. After the back-

ground, I will describe the architecture, a set of experiments, some analyses of the

results, and conclusions.

1.1. The Language Acquisition Problem

The language acquisition problem stated above can be specialized by identifying the

complexity of the language and thus the class of machine necessary to recognize it. For

example, most work has attacked only regular languages and assumed a hypothesis space

of finite-state automata.

The problem can also be specialized by constraining the presentation of language

data to the learning system. For example, are the examples selected from a finite or

infinite subset of the target language, and are they presented once or many times? Are

negative examples included and identified as such, included as detractors, or excluded?

It is a widely-held view that children learn their native language from positive examples

only.

Finally, the problem can be specialized by the paradigmatic goals of various discip-

lines. On the one hand mathematical and computational theorists might be concerned

with the basic questions and definitions of learning, or with optimal algorithms (Angluin,

1982; Gold, 1967; Rivest & Schapire, 1987). On another hand, linguists may be con-

cerned with how the question of learnability discriminates among grammatical frame-

works and specifies necessarily innate properties of mind. On the third hand, psycholo-

gists might be concerned, in detail, with how a computational model actually matches up

to the empirical data on child language acquisition. Rather than attempting to survey

these areas, I point to the excellent theoretical review by (Angluin & Smith, 1983) and

the books by (Wexler & Culicover, 1980) and by (MacWhinney, 1987) covering the

linguistic and psychological approaches.

Dynamical Recognizers

1.2. The Generative Capacity Problem for Connectionism

Before one can start talking about language acquisition. it is Important to Leep in

mind the question of generative capacity, the standard measure of the complearxi of

infinite language structures. A connectionist model which could only induce boundo-

length or regular languages might be interesting, but would not conmbute at sU to resol

ing the debate on the appropriateness of the connectionist approach to human cognicor

(Fodor & Pylyshyn, 1988). As Minsky and Papert (1988. p. x) recently put it. "Before s

system can learn to recognize X, it must have the potential ability to represent X '

This was also the crux of the intellectual issue that made generative theores of

language structure so prevalent. Within the framework of computable languages. Chore+

sky showed that there was a hierarchy of formal languages. defined by thir 3bil.t. 1o

generate natural language phenomena, which were associated with differently poa.errld

machines. A machine based solely on "reflexes" or "associations" just is not playing the

language game.

The simplest languages are regular languages. which are associated with Finte

State Automata (FSA). Certain linguistic phenomena, such as center-embedded struc-

tures, could not be described by such automata without massive duplication. The next

class of languages are Context-free languages, which can be generated by Push-Down

Automata. Other linguistic phenomena such as feature agreement or crossed senal depen-

dencies, could not be handled by such automata without massive duplication. The next

class of languages are called Context Sensitive languages, and can only be generated by

Turing Machines. 1

Most connectionist models use fixed-structure networks, in which the weights are

either set programmatically or adjusted slowly by a learning technique. The resultant

networks are essentially "hard-wired" special-purpose computers that perform some

application, like a 10-city Traveling Salesman problem (Hopfield & Tank, 1985) or a

text-to-speech processor (Sejnowski & Rosenberg, 1987).

1 The terms context-free versus context-sensilive are technical terms which apply to phrase-

structure rules, not to whether adjacent words affect each other. And to retort thai every physical

machine is finite state anyway (so who cares), misses the central idea that massive duplication

fails the scientific goal of parsimony.

J. B. Poilack

When a special-purpose ftied-resounre parallel machie is naively applied to

language processing, the results have uniformly been parsers which can only deal with

bounded-length sentences (Cottrell. 1985, Fanty. 1985. Hanson & Keg!. 1987; McClel-

land & Kawamoto, 1986; Selman. 1985). or regular languages.

On the one hand. it is quite clear that human languages are not formal, and thus are

only weakly related to these mathematcal syntactic structures. This might lead connec-

tionists to claim that recursive computational power is not of the "essence of human com-

putation "2 On the other hand. it is also quie clear that without understanding the com-

plexity issues, connectionists can stumble again and again into the trap that naive neural

network models cannot account for the daza of linguistics, which unambiguously requires

complex representations and processes (Pinker & Prince, 1988).

There are several potential routes out of this generative capacity limitation, besides

creating hybnd models which use normal programs to correct the limitations of

neurally-inspired models (Berg, 1987; Lehnert, In Press; Waltz & Pollack, 1985). One

general path involves discovering powerful distributed representations (Hinton, 1984;

Pollack, 1988; Pollack, To Appear, Smolensky, 1987; Touretzky, 1986), which would

allow static networks to process complex and novel structures. Two other routes, which

are jointly exploited by the work herein, involve the sequential or recurrent use of adap-

tive networks, and the rapid modification of network structure through high-order (multi-

plicative) connections.

1.3. Recurrent and Higher-Order Networks

Despite early connectionist rhetoric about massive parallelism (Feldman & Ballard,

1982; Pollack & Waltz, 1982) the generative capacity and representational adequacy

problems (in various guises) has led many researchers to investigate the use of recurrent

or sequential networks for variable-length problems. An architecture could built of units

computing in parallel, but the inputs might arrive sequentially. Jordan's (1986) work was

perhaps the earliest indicationi that back-propagation could be used successfully to train

recurrent networks. Lapedes & Farber (1987) demonstrated how a recurrent network

could be trained to predict various non-linear sequences. Elman (1988) devised a very

2 (Rumelhart & McClelland. 1986). p. 119.

Dy namical Recognizers

simple and elegant approach to language processing by prediction. The papers in this

volume by Elman and by Servan-Schreiber et al. explore this architecture in great detail,

and I will return to a comparison near the end of this paper.

Secondly, various researchers have seen the need for rapid modification of network

structure (Feldman, 1982; McClelland, 1985). The solutions have been less than widely

applie,", because the resulting systems are either neurally implausible, resource intensive,

or quite unstable and difficult to control (Maxwell et al., 1986).

To understand how higher-order networks lead, in effect, to rapidly changing net-

work structure, a network's state may be viewed as a vector Vi(r) which evolves over

time as an some function of the weights in the system, Wij, which are fixed after learning:

Vi (t+ I) = f(Wij Vj (t)

A higher-order, or multiplicative system uses a three-dimensional array of weights, and

involves multiplying it by the state vector twice:

V,(t+1) = f(WijkVk(IWVj(O)

Therefore this can be viewed as a system where there is a weight associated with each

product of outputs (hence the name multiplicative connection), or a system whose

configuration (as defined by the 2D weights) changes at every instant:

Wij(t) = WijkVk(t)

Vi (t+ 1) = f(Wij(t) Vj(0))

Thus, in the simple case of a system using multiplicative connections, each of the virtual

0 (n 2) weights in a system of n units is a very sensitive function of the current activities

of all the units, leading to a system with 0 (n 3) "parameters" instead of 0 (n 2).3

1.4. Finite State Automata, Neural Networks, Dynamical Systems

Finally, as a bit of background, I would like the reader to be able simultaneously

consider a neural network as an automaton and as a dynamical system. This is not

entirely new, as the analogies of automata-to-neural network,' automata-to-dynamical

3 An even more unconstained approach are general Sigma-Pi networks (Williams, 1986), in

which a weight can exist between each unit and the products of every possible subset of units, or

0 (n 2^).

6 J B PulX ,

sys'em, and neural net-to-dynamical system have been made at leatr by (VonNeumainn.

1958), (Wolfram, 1984), and (Ashby, 1960). respectively.

A Finite State Automaton is a quadruple (Q.E, ,F), where Q is a set of states tq 0

denotes the initial state), I is a finie input alphabet. . is a transition functon from

QxX = Q and F is a set of final (accepting) states, a subset of Q.

For small machines, X is specified as a table, which lists a new state for each state

and input. As an example, a machine which accepts boolean strings of odd panty can be

specified as Q=(qo,q 1), Z=(O, 1), F=(q 1), and X. the table:

Input

State 0 1

qO qO q1

qi qI qO

After specifying the set of symbols, learning such an automaton involves the construction

of the table of state-transitions. And, although we usually think in terms of fully specified

tables or graphs, transition functions for an automaton can also be specified as a

mathematical function of the current state and the input. For example, to get a machine

to recognize boolean strings of odd parity, one merely has to specify that the next state is

the exclusive-or of the current state and the input.

Generalizing from a multilayer networks' ability to perform exclusive-or to the vari-

ous constructive and existential proofs of the functional/interpolative power of such net-

works (Hornik et al., To Appear, Lapedes & Farber, 1988a; Lippman, 1987), it is pretty

obvious that recurrent neural networks can work at least as finite state automata, where

the transition table is folded up into some moderately complex boolean function of the

previous state and current input.

From another point of view, a recurrent network with feedback from k units can

also be considered a k-dimensional discrete-time dynamical system, with a precise initial

condition, zk(O) and a state space in a bounded subspace of Rk (i.e., "in-a-box" (Ander-

son et al., 1977)). The input string, yj(t), is merely considered "noise" from the environ-

ment which may or may not affect the systems evolution, and the governing function, F,

is parameterized by weights, W:

zk(t+l) = Fw(zk(t),yj(t))

If we view one of the dirnensions of this s),stern. ay : as an ceptan ce "dtimen-

ston, we can define the language accepted by such a D.namocal Recogpu:er 31 all stnrng,

of input tokens evolved from the precise uutial state for which the accepting dimeniaon

of the state is above a certain threshold.

The first queston to ask is how can such a dynamical system be constructed. or

taught, to accept a particular language? The weights in the network. individually, do not

correspond directly to graph transitions or to phrase sucmure rules. The second quesnon

to ask is what son of generative power can be achieved by such systems.'

2. The Model

To begin to answer the question of learning. I now present and elaborate upon my

earlier work on Cascaded Networks (Pollack. 1987). which were used in a recurrent

fashion to learn parity, depth-limited parenthesis balancing, and to map between word

sequences and proposition representations (Pollack. To Appear).

2.1. Cascaded Networks

A Cascaded Network is a well-controlled higher-order connectionist architecture to

which the back-propagation technique of weight adjustment (Rumelhart et al.. 1986) can

be applied. Basically, it consists of two subnetworks: The function network is a standard

feed-forward network, with or without hidden layers. However, the weights are dynami-

cally computed by the linear context network, whose outputs are mapped in a 1:1 fashion

to the weights of the function net. Thus the input pattern to the context network is used

to "multiplex" the the function computed, which can result in simpler learning tasks. For

example, the famous Exclusive-or function of two inputs can be decomposed into two

simpler functions of one input which are selected by the other.

XOR(y)= Y if x= 0
-,y if x=I

Thus, a simple 1-1 feedforward network is used to compute either the identity or

inverter function, and a simple linear combination is used to set these weights. This net-

work is is shown in Figure 1, uses only 4 weights instead of the 7 required by the smal-

lest multi-layer perceptron. The large diamonds indicate units which compute linear

combinations; the small diamonds indicate that the value computed is used as a weight;

I I I

J. B. Pollack

Figure I near here

----------.--..----.....----

Figure 1. Cascaded network for the XOR problem. The function network acts

as either an inverter or non-inverting bqffer depending on the context bit.

and the black circles are bias units, whose outputs are always 1. Thus when x is 0, the

function network computes g(3y - 1.5), and when x is I it computes g(l.5-3y), where

g(z)= l/l+e- ", the usual sigmoidal squashing function.

Back-propagation is quite straightforward on a cascaded network. After determining

the error terms for the weights of the function network, these are used as the error terms

for the output units of the context network.

2.2. Sequential Cascaded Networks

When the outputs of the function network are used as inputs to context network, a

system can be built which learns to produce specific outputs for variable-length

sequences of inputs. Because of the multiplicative connections, each input is, in effect,

processed by a different function.

Figure 2 near here

Figure 2. A sequential cascaded network. The ouputs of the function network

are used as the next inputs to the context network, yielding a system whose

function varies over time.

Figure 2 shows a block diagram of a simple sequential cascaded network. Given an ini-

tial context, zk(O), and a sequence of inputs, yj(t), t= I...n, the network computes a

sequence of states vectors, zk(t), t= l...n by dynamically changing the set of weights.

wkj(t):

Wkj(t) = Wkjk Zk(tl)

Zk(t) = g(wkj(t) y (t))

Dynamical Recognizers 9

Assuming the desired output for the sequence, dk, is known in advance, the error

propagation phase can be applied just to the final step, generating terms for the context

network, wkit:

aE-- = (zk(n) - dk) zt(n) (1 - zk(n))

aazk(n)

awk,(n) Dz*(n) yj(n)

=E aE (n-1)
awkjk awk,(n)

As in a standard batch or "epoch" organized back-propagation scheme, these errors

are collected over a set of input-string, desired-output pairs. The termination condition

for sequential cascaded back-propagation is the same as for the normal formulations,

namely, when for each test-case and for each output value, the difference between

desired and actual output is less than some threshold.

This can be used successfully when a teacher can supply a consistent and generaliz-

able desired output for a large-enough set of strings.

2.3. The Backspace Trick

Unfortunately, this severely overconstrains the model. In learning parity, this

doesn't matter, as the state fully determines the output. In the case of a higher-

dimensional system, where we know whether or not a string is acceptable, but we don't

know what the internal recurrent state of the system should be, there is a problem in gen-

erating the information necessary to modify the weights.

Jordan (1986) showed how recurrent back-propagation networks could be trained

with "don't care" conditions. If there is no specific preference for the value of an output

unit for a particular training example, simply consider the error term for that unit to be 0.

This will work, as long as that same unit receives feedback from other examples. Other-

wise the weights to that unit will never change.

For larger state vectors, the only prespecified output is the accept bit (I for positive

exemplars and 0 for negative ones). All of the "don't cares" line up and there is no infor-

mation for modifying most of the weights in the network.

10 J. B. Pollack

The first reaction, fully unrolling a recurrent network by maintaining vector his-

tories (Rumelhart et al., 1986) has not lead to spectacular results (Mozer, 1988), the rea-

son being that very tall networks with equivalence constraints between interdependent

layers are unstable. My solution to this dilemma involves unrolling the loop only once:

After propagating errors back from the final configuration, n, of the accept bit d through

the one accepting "plane" of the weight "cube":

aE =z(n (z,(n) -d) z,(n) (I -z,(n))
zo(n)

aE _aE

awaj(n) aza(n)

aE aE Zk(f- 1)

aWaik awaj(n)

We compute the error on the rest of the weights (e.g. i = {1 ... k I i*a) by recycling the

error on the accept plane with the network "backspaced" to its penultimate state:

aE =: aE a
aZi(n-1) j7 awajk waj(n)

aE - aE____awij (n -1) =z z(n -1)y(-1

aE z (n-2)
Dwijk awij(n - 1)

3. Experiments

Connectionist learning algorithms are very sensitive to the statistical properties of

the set of exemplars which make up the learning environment. This has lead some

psychological researchers to include the learning environment in the experimental

parameters to manipulate (Plunkett & Marchman, 1989). Otherwise, it may not be clear

if the results of a connectionist learning architecture are due to itself or due to skill or

luck with setting up a collection of testcases. Therefore, rather than making up - set of

languages and exemplars myself, I chose to work with test cases from the literature.

Tomita (1982) performed beauiful experiments in inducing finite automata from

positive and negative examples. He used a genetically inspired two-step hill-climbing

procedure, which manipulated 9-state machines by randomly adding, deleting or moving

Dynamical Recognizers

transitions, or inverting the acceptability of a state. The current machine was compared to

the mutated machine, and changed only when an improvement was made in the result of

a global evaluation function, which tested the machine's performance on the training set.

The first hill climbing used an evaluation function which subtracted the number of nega-

tive examples accepted from the number of positive examples rejected. The second step

used an evaluation function which maintain correctness of the. examples while minimiz-

ing the number of states.

Tomita ran his system on 7 cases and their complements. Each case was defined by

two small sets of boolean strings, accepted by and rejected by the regular languages

listed below.

l11

2 (10)*

3 no odd zero strings after odd 1 strings

4 no pairs of zeros

5 pairwise, an even sum of 01's and 10's.

6 number of l's - number of O's = 3n

7 0*1*0*1*

For uniformity, I ran all 7 cases on a sequential cascaded network of a 1-input 4-

output function network (with bias, 8 weights to set) and a 3-input 8-output context net-

work with bias. The total of 32 weights is essentially arranged as a 4 by 2 by 4 array.

Only three of the output dimensions were fed back to the context network, along with a

set of biases, and the 4th output unit was used as the acceptance dimension. The standard

back-propagation learning rate was set to 0.3 and the momentum to 0.7. All 32 weights

were reset to random numbers between ±0.5 for each run. Termination was when all

accepted strings returned output bits above 0.8 and rejected strings below 0.2.

Of Tomita's 7 cases, all but cases #2 and #6 converged without a problem in several

hundred epochs. Case 2 would not converge, and kept treating negative case 110101010

as correct; I had to modify the training set (by added reject strings 110 and 11010) in

order to overcome this problem. Case 6 took several restarts and thousands of cycles to

converge, cause unknown. I changed initial conditions during the period of experimenta-

tion, and used an initial state of (.2 .2 .2) for cases 1, 3, and 4, and (.5 .5 .5) for the rest.

12 J. B. Pollack

Figure 3 near here

Figure 3. (a) the ideal FSA Tomita had in mind for 1", (b) the set of positive

and negative exemplars (c) the language induced by the 3D dynamic
recognizer. See text for detail

................................

Figure 4 near here

................................

Figure 4. (a) the ideal FSA Tomita had in mind for (10)*, (b) the set of

positive and negative exemplars (c) the language induced by the 3D dynamic
recognizer.

Figure 5 near here

Figure 5. (a) the ideal FSA Tomita had in mind for "no odd zero strings after

odd I strings", (b) the set of positive and negative exemplars (c) the language
induced by the 3D dynamic recognizer.

Figure 6 near here

Figure 6. (a) the ideal FSA Tomita had in mind for "no pairs of zeros", (b) the

set of positive and negative exemplars (c) the language induced by the 3D

dynamic recognizer.

................................

Figure 7 near here

................................

Figure 7. (a) the ideal FSA Tomita had in mind for "an even sum of 01's and

10's", (b) the set of positive and negative exemplars (c) the language induced

by the 3D dynamic recognizer.

The 7 figures, 3 - 9, contain all the data from these experiments, in a uniform

fashion. Each figure is composed of three recursively shaded rectangles, each of which

maps a number between 0 (white) and 1 (black) to all boolean strings up to length 10.

Starting at the top of each rectangle, each row r contains subrectangles for all the

strings of length r in ascending order, so the subrectangle for each string is sitting right

Dynamical Recognizers i3

Figure 8 near here

Figure 8. (a) the ideal FSA Tomita had in mind for "number of l's - number

of O's = 3n", (b) the set of positive and negative exemplars (c) the language

induced by the 3D dynamic recognizer.

Figure 9 near here

Figure 9. (a) the ideal FSA Tomita had in mind for 0*l*O*l*, (b) the set of

positive and negative exemplars (c) the language induced by the 3D dynamic

recognizer.

below its prefix. The top left subrectangle shows a number for the string 0, and the right

shows a number for the string 1. Below the subrectangle for 0 are the ones for 00 and 01.

and so on.

The top rectangle describes the "ideal" regular language Tomita was "aiming" to

induce; the middle describes the set of exemplars (black indicating strings to accept,

white indicating strings to reject, and with gray indicating unspecified strings), and the

bottom shows the language induced by the sequential cascaded network, with strings

classified into accepted and rejected by thresholding,,the acceptance dimension of the

final state at 0.5.

There are a couple of things to note, the first being that none of the ideal languages

were induced by the network. Even for the first language 1*, a 0 followed by a long

string of 's would be accepted by the network. If the network is not inducing the smal-

lest consistent FSA, what is it doing? The constraint that a common set of weight param-

eters is used for all state transitions means that the network is not merely constructing

massively duplicated states with an arbitrary transition function (which would render the

problem trivial), but that there must be some geometric relationship among them.

4. Analysis

In my attempts at understanding the resultant networks, the first approach was to

analyze what finite-state automata they were isomorphic to. The procedure was very sim-

ple. I ran the network as a generator, subjecting it to all possible boolean strings as input,

14 J. B. Pollack

and collecting first, the set of strings for which the acceptance dimension was past thres-

hold, and second, the set of states (points in 3-space) visited by the machine.

4.1. Limit behavior

Figure 10 near here

Figure 10. Three stages in the adaptation of a network learning parity. (a) the
test cases are separated, but there is a limit point for 1* at about 0.6. (b) after
further training, the even and odd sequences are slightly separated. (c) after a
little more training, the oscillating cycle is pronounced.

Collecting the strings indicated one potential problem with the approach. After
training the system can "fuzz out" for longer inputs than the ones given in the test cases.
This can be examined for any particular recognizer. We simply observe the limit
behavior on the accepting dimension for very long strings. For parity, since the string 1*
requires an oscillation of states, we can examine the acceptance dimension as a function

of the length. Figure shows three stages in the adaptation of a network for parity. At first,
despite success at separating a small training set, a single attractor exists in the limit, so
that long strings are indistinguishable. After a little further training, the even and odd

strings are separated, and after still further training, the separation is enough to set a

threshold easily.

Figure 11 near here

Figure 11. The same three stages viewed figuratively as the splitting of a limit

point into two points, and the amplification of their distinction.

What initially appeared as a bug turns, out to indicate a very interesting form of
induction. Under feedback pressure to adapt, a slight change in weights leads to a point
attractor being "bifurcated" into two. The result, in terms of performance, is significant!
Before the split the network only worked correctly on short finite strings; afterwards, it
worked on infinite strings. Figure 11 is an artists conception of the stages of this type of

Dynamical Recognizers

induction.

4.2. Visualizing the Machines

Based upon preliminary studies of the parity example, my initial hypothesis that a

set of clusters would be found, located in such a way that jumps between them could be

organized geometrically by the quasi-linear combinations of state and input. Thus, after

collecting the state information, it seemed that this would cluster into dense regions

which would correspond to states in a FSA. A program could certainly explore this

space automatically, by taking an unexplored state and combining it with both 0 and 1

inputs. To remove floating-point fuzz, it could use a parameter e and throw out new states

which were within e euclidean distance from any state already known. Unfortunately,

some of the machines seemed to grow drastically in size as e was lowered!

Figure 12 near here

Figure 12. Images of the attractors for the seven Tomita testcases. The points

visited by all boolean input strings up to length ten are plotted.

One reason for this seems to be that many "ravine" shaped clusters rather than point

clusters are developed. Because the states am "in a box" of low dimension, we can view

these machines graphically to gain some understanding of how the state space is being

arranged. Graphs of the states visited by all possible inputs up to length 10, for the 7 test

cases are shown in figure 12. Each figure contains 2048 points, but often they overlap.

The lack of closure under E can now be seen as a completely different sort of attrac-

tor, making my earlier mapping attempt reminiscent of Mandelbrot's (1977, p. 25) essay

about measuring the coastline of Britain. The variability in these structures certainly

deserve further study, especially with regards to what types of landscapes are possible

with different sized networks and alternative activation functions. The images (a) and (d)

are what were expected, clumps of points which closely map to states of equivalent

FSA's, although both the clusters seem to have well-defined similar substructures.

Images (b) and (e) have simple ravines, which bleed into each other at their ends, prob-

ably indicating that longer strings will fuzz out.

16 J. B. Pollack

Images (c), (f), and (g) are complex and quite unexpected, and will be further dis-

cussed below.

5. Related Work

The architecture and learning paradigm I uled is closely related to the work of

Elman and Servan-Schieber (this volume). Both networks rely on extending Michael

Jordan's networks in a direction which separates visible output states from hidden

recurrent states, without making the, unstable "beck-propagatio through time" assump-

tion. Besides our choiO of language data to model, the two main differences are that

(1) They use a "predictive" paradigm, where error feedback is provided at every time

step in the computation, and I used a "classification" paradigm, feeding back only at

the end of the given examples. Certainly, the predictive paradigm is more psycho-

logically plausible as a model of positive only presentation (c.f., Culicover &

Wexler, pp 63-65).

[have no commitment to negative information; all that is required is some desired

output which discriminates among the input strings in a generalizable way. Positive

versus negative evidence is merely the simplest way (with 1 bit) to provide this discrimi-

nation. At no loss of generality, the desired output could be a representation or the neces-

sary control input for a complex task.

(2) They use a single layer (quasi-linear) recurrence between states, whereas I use a

higher-or (qO Wg) miuma.. It, is. certainly plausible that this quadratic

nature allows movs-IaF *4*e*ties to blossom.

Besides otnue analysis, scaling the network up beyond binary symbol alphabets,

immediate folowup wmkminvolvs cumparing and contrasting our rspective models

with the other two possible models, a higher-order network trained on prediction, and a

quasi-linear model tnined m classifcation.

Figure 13 near here

Figure 13. Study of evoludon of dynwm for a network learning parenthesis

balancing, at epoch's 300, 350, 375, 400, 425, and 475.

D, nanmcai Recognizers

As further analysis goes, I have begun to study the evolutionary behavior of the

sequential cascaded networks, to see how such complex structures could arise within a

finite number of training cycles. I ran the same 32-weight model used on the Tomita

examples on exemplars of balanced parenthesis strings (from (Pollack, 1987)), and saved

the weights every 25 epochs. Figure 13 shows in 6 snapshots that the induction-as-

attractor bifurcation method may operate quite in parallel, and might be closely related to

the universal path to chaos. Along these lines, (Crutchfield & Young, 1989) has analyzed

the computation underlying period-doubling in chaotic dynamical systems and has found

power equivalent to indexed context-free grammars.

6. Discussion and Conclusion

The state spaces of the dynamical recognizers for Tomita cases 3, 6, and 7, are

interesting, because, theoretically, they may be infinite state machines, where the states

are not arbitrary or random, but are constrained in a powerful way by some mathematical

principle. I believe that it is closely related to related to Barnsley's work on iterated sys-

tems, where affine "shrinking" transformations direct an infinite stream of random points

onto a underlying fractal attractor. In the recurrent network case, the "shrinking" is

accomplished via the sigmoidal function, and the stream of random points are all boolean

strings.

My usage of the term "atactor" is not precisely the same sort as used in the "energy

landscape" metaphor of optimization problems. (Ackley et al., 1985; Hopfield & Tank,

1985). Furthermore, bewcm my- se.space figures arise from subjecting a dynamical

system with a i iniil cMo to a combinatorial explosion of noise, the attrac-

tors are not precisely dhillife "strange attractors" which _Wi in deterministically

chaotic systems, which are miive to initial conditions (Lorenz, 1963).

Certainly, the link between work in complex dynamical systems and neural net-

works is well-established both on the neurobiological level (Skarda & Freeman, 1987)

and on the mathematical level (Derrida & Meir, 1988; Huberman & Hogg, 1987; Kurten,

1987). It is time that this link be further developed, especially as it applies to the ques-

tion of the adequacy of connectionist, and other "emergent" approaches to high-level

cognitive faculties, such as language (P ack, 1989). The big question is whether any of

the information structures which can be generated by complex dynamical systems can be

J. B. Pollack

at all correlated with the structures arising in natural language.

In conclusion, I have by no means proven that a recurrent dynamical system can act

as an efficient recognizer and generator for non-regular languages, though it does seem

obvious.4 But since Dynamical Recognizers are not organized as a PDA's or Turing

Machines, it is not clear where the associated languages might fit inside the Chomsky

rlierarchy.

Nevertheless, we can consider the implications for language (and language acquisi-

tion) of a family of automata which smoothly evolve between finite and infinite state

machines without massively duplicated transition tables: It will give rise to an induction

method which will apply without a priori specification of the grammatical framework of

a language in question.

Generative capacity is neither natively assumed nor directly manipulated, but is an

emergent property of the (fractal) geometry of a bounded non-linear system which arises

in response to a specific learning task and is only revealed through performance.

Acknowledgements

This work is funded by Office of Naval Research Grant N(014-89-J-1200. I thank

the colleagues who have directly or indirectly discussed various aspects of this research,

including B. Chandrasekaren, J. Crutchfield, P. Culicover, W. Ogden, D. Touretzky, and

my own student colleagues. 3D graphics were adapted from a program written by Tony

Plate while we were both at NMSU.

7. References

Ackley, D. H., Hintn, 0. E. & S T. J. (1985). A learning algorithm for Boltznann Machines.
Cognitive Science. 9, 147-169.

Anderson, J. A., Silveastea, J. W., Ritz, S. A. & Jones, R. S. (1977). Distinctve Features, Categorical

Percepon and Ptababdity Laning: Some Applications of a Neural ModeL Psychological Review.

84,413-451.

4 Assuming rational numbers for states, a recurrent multiplicative relationship would be enough

to start counting, which is necessary for beginning to handle context-free embeddings, of the sort

anbn; For example, if z(t+l)=.5a(t)z(t)+2b(t)z(t). Assuming iationals in the

recurrence relationship, as physicists inadlvtady do, the languages might not even

computable!

Dynamicl Reccgnizers

Angluin, D. (1982). Journal of the Association for Computing Machinery, 29, 741-765.

Angluin, D. & Smith, C. H. (1983). Inductive Inference: Theory and Methods. Computing Surveys, 15,

237-269.

Ashby, W. R. (1960). Design for a Brain: The origin of adaptive behaviour (Second Edition). New York:
John Wiley & Sons.

Berg, G. (1987). A Parallel Natural Language Processing Architecture with Distributed Control. In
Proceedings of the Ninth Annual Conference of the Cognitive Science Society. Seattle, 487-495.

Cottrell, G. W. (1985). Connectionist Parsing. In Proceedings of the Seventh Annual Conference of the
Cognitive Science Society. Irvine, CA.

Crutchfield, J. P & Young, K. (1989). Computation at the Onset of Chaos. In W. Zurek, (Ed.),
Complexity, Entropy and the Physics of INformation. Reading, MA.: Addison-Wesley.

Derrida B. & Meir, R. (198sL80moac behavior of a layered neural network. Phys. Rev. A, 38.

Elman, J. L. (1988). Findi4 Structure in Time. Report 8801, San Diego Center for Research in
Language, UCSD.

Fanty, M. (1985). Context-free parsing in Connectionist Networks. TR174, Rochester, N.Y.: University
of Rochester, Computer Science Department.

Feldman, J. A. (1972). Some Decidability Results in grammatical Inference. Information & Control. 20,
244-462.

Feldman, 1. A. (1982). Dynamic Connections in Neural Networks. Biological Cybernetics, 46,27-39.

Feldman, 1. A. & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6,
205-254.

Fodor, 1. & Pylyshyn, A. (1988). Connectionism and Cognitive Architecture: A Critical Analysis.

Cognition, 28, 3-71.

Gold, E. M. (1967). Language Identification in the Limit. Information & Control, 10, 447-474.

Hanson, S. 1. & Kegl, J. (1987). PARSNP:. A connectionist network that learns natural language grammar
from exposure to natural language sentences. In Proceedings of the Ninth Conference of the
Cognitive Science Society. Seattle, 106-119.

Hinton, G. E. (1984). Distributed Representations. CMU-CS-84-157, Pittsburgh, PA: Carnegie-Mellon
University, Computer Science Depatmnt

Hopfield, J. J. & Tank, D. W. (1985). 'Neural' computation of decisions in optimization problems.
Biological Cybernetics, 52, 141-152.

Hornik, K., Stinchcombe, M. & White, H. (To Appear).. Multi-layer Feedforward Neutwmrk are Universal
Approximators. In Neuardrhwa *. t-

Huberman, B. A. & Hogg, T. (1987). Phase Transitions in Artificial Intelligence Sysenm Arificial
Intelligence, 33, 155-172.

Jordan, M. I. (1986). Serial Order- A Parallel Distributed Processing Approach. ICS report 8601, La
Jolla: Institute for Cognitive Science, UCSD.

Kurten, K. E. (1987). Phase uuitanons in quasirandom neural networks. In Instinua of Electrical and
Electronics Engineers First International Conference on Neral Networks. San Diego, 1-197-20.

Lapedes, A. S. & Farber, R. M. (1988). How Neural Nets Work. LAUR-88-418: Los Alamos.

Lapedes, A. S. & Farber, R. M. (1988). Nonlinear Signal Processing using Neural Networks: Prediction

and system modeling. Biological Cybernetics, To appear.

Lehnert, W. G. (In Press). Advances in Comnectiouist and Neural Conywaiox Theory. Hillsdale, NJ:
Lawrence Erlbm Associam.

Lippman, R. P. (1987). An introduction to computing with neural networks. Institute of Electrical and

Electronics Engineers ASSP Magazine, April, 4-22.

20 J B Pcili.ck

Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal ofAtmospheric Sciences, 20, 130-141.

MacWhinney, B. (1987). In Mechanism of Language Acquisition. Hillsdale: Lawrence Ertbaun
Associates.

Mandelbrot. B. (1982). The Fractal Geometry of Nature. San Francisco: Freman.

Maxwell, T., Giles, C. L., Lee, Y. C. & Chen, H. H. (1986). Nonlinear Dynamics of Artificial Neural
Systems. In Proceedings of a wortshop on Neural Networks for Computing. Snowbird, UT, 299-
304.

McClelland, J. L. (1985). Putfing Knowledge in its Pbce. Cognitive Science. 9. 113-146.

McClelland, J. & Kawamoto, A. (1986). Mechanisms of Sentence Processing: Assigning Roles to
Constituents. In I. L. McClelland, D. E. Runwlhart & the PDP research Group. (Eds.). Parallel
Distributed Processing: E erimenn in rw-Microsuc. q Cogwion Vol. 2. Cambridge: MIT
Press.

Minsky, M. & PapM S. (1988, Pe repensr CAMWIP ?&AWrf Pra m

Mozer, M. (1988). A focused Back-propagation Algorithm for Temporal Pattern Recognition. CRG-
Technical Report-88-3: University of Toronto.

Pinker, S. & Prince, A. (1988). On Language and Connectionism: Analysis of a parallel distributed
processing model of language inquisition.. Cognition. 28, 73-193.

Plunket, K. & Marchman, V. (1989). Pattern Association in a Back-propagation Network: Implicaions
for Child Language Acquisition. Technical Report 8902, San Diego: UCSD Center for Research in
Languge.

Pollack, 1. B. & Waltz. D. L. (1982). Natural Language Processing Using Spreading Activation and
Lateral Inhibition. In Proceedings of the Fourth Annual Cognitive Science Conference. Ann Arbor,
MI. 50-53.

Pollack, J. B. (1987). Cascaded Back Propagation on Dynamic Conecutonist Networks. In Proceedings
of the Ninth Conference of the Cognitive Science Society. Seaje, 391-404.

Pollack, J. B. (1988). Recursive Auto-Associative Mw- . vLing Compositional Distributed
Representations. In Proceedings of the Tendh A n a Conference of thetognitive Science Society.
Montreal, 33-39.

Pollack, J. B. (1989). Implicto of Recuire Distibu Rs. In D. Touretzky, (Ed.).
Advances in Neural Information F-ocessing Vvstemr. Los Gatos, CA: Morgan Kaufman.

Pollack, J. B. (To Appear). Recursive Distributed Representation. In Artificial Intelligence..

Rivest, R.. L & Scfupm~ iLE~I7 -q 49mYIU4w~he laimn in demwiiime
envirooment Id = A-sdx~~ Wd IM M tdcm Leawuqg. Irvin,.
364-475.

Rumelhart, D. L .-IE .Lt. (1966). PDP Nftdeb and O...u Isme in Oognitive Science. In
D. E. R m6 . J. L Mlk hhud & the PIP mFb Gro , (E&). Paraiel Distributed
Procesjiw. 5B u in ab Mof , -Coiddemn Vol. 1. C= ~: MIT Press.

Rumelmn, D. E, h=% 0. & WiUlflm, 7. (1986). Learing Intemrnal Repmations through Error
Pwpspdo In D. . RI elhak I. L McCbhd & the PDP im c Omup, (Eds.). Parallel
Disimbed Prarubq: S~erimsu Dr the Micmaramcr of Cogtiaion. Vol. 1. Cambridge: MIT

Press.

Sejnowski. T. J. & RosenbeqWC R.- (1987). Paralleh *w do LAMM to Pft unce English TeXt.

Complex Systems, 1, 145-168.

Selman, B. (1985). Rul -i d Pm in a Comtida Syuem f Nard Langage

Undeanding CSRL- 1,, Tom, Camt U nity of Tomm GW m Symm Resm

Skarda, C. A. & Freeman, W. I. (1987). How brains make chaos. Brain & Behavioral Science. 10.

I I I n c i

Dynamical R; cigni :,,r-

Smolensky, P (1987). A method for connectionist vanble binding. Technical Report LU-CS-356-87.
Boulder. Colorado: Computer Science Dept. Univ. of Colorado.

Tomita. M. (1982). Dynamic construction of fmite-staze auomata from examples using hill-climbing. In
Proceedings of the Fourth Annual Cognitive Science Conference. Ann Arbor. NI, 105-108.

Touretzky. D. S. (1986). BoltzCONS: Reconciling connecdonism with the recursive nature of stacks and
trees. In Proceedings of the 8th Annual Conference of the Cognitive Science Society. Amherst. MA.
522-530.

VonNeumann, J. (1958). The Computer and the Brain. New Haven: Yale University Press.

Waltz, D. L. & Pollack. J. B. (1985). Massively Parallel Parsing: A strongly interactive model of Natural
Language Interpretation. Cognitive Science, 9. 51-74.

Wexler, K. & Culicover, P. W. (1980). Formal Principles of Language Acquisition. Cambridge: MIT

Press.

Williams, R. (1986). The Logic of Activation Functions. In D. E. Rumelihart J. L. McCleland & the PDP
research Group, (Eds.), Parallel Distributed Processing: Experiments in the Microstructure of

Cognition, Vol. 1. Cambridge: MIT Press.

Wolfram, S. (1984). Universality and Complexity in Cellular Automata. Physica. 10D, 1-35.

J. 3. PoiLiCK

023.1..

Z k(t)

w (t)
Wkjk kj

y1 0Zk(t- 1) J-

I,~

(III 4 Qw..... 'i di

MOROI

0 1 No I No
1111 INN I lins illIF:I III H E 111111111 1111111111 1111111111

ROSS
moss NO

MR IRS MEN m ME

mil

XI
60C.) (Doi)

I m I I

IH I III

ml mi mi mi mi

1111 ml 1111 ml oil 1111111111111111

IN IN 1111111111111 lill $111 lill Ill 11111111111111111111 ,
11 11 111 VI L HI 111 Ul lV ill

oa TWL

No 0r-

U

I

0

Machine OUW

38

0.4

04

0.2'

I 9 l 17 3 31' 41 45 at 53 $7 61 ' 60 #9 I] 0,
L ngt of sm"

• o

34

02

1 9 13 17 It : 2 31 37 at 45 at $1 1 61 63! U I* 1 Is #1 r

M~Lhmet ouoput
19o , .!

08

0 ,

0.4

01

1 5 9 13 17 21 25 39 33 37 41 45 49 53 57 61 65 69 ?1 77 It 15 8 9 97

Length of stuns
I* .V -.A.9!.

cL6 (

K

S -

A

I

I

YFrz
b. d

94~~ Et* I .

0 10

0%

4,0

'gog

00

00

a *0I

-7

~m,.

7

7

>7

A 7 13

-7

7

4. -.
-'7

0 7

A-

7

--A

-7

-A

7

7

A- 7

7

[90-1K-BPSIC]

The Ohio State University
Department of Computer and Information Science

Laboratory for Artificial Intelligence Research

Technical Report
April 1990

Back Propagation is Sensitive to Initial Conditions

John F. Kolen
Jordan B. Pollack

Laboratory for Artificial Intelligence Research
228 Bolz Hall, 2036 Neil Avenue

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210

Note: OSU CIS LAIR Technical Report. A similar version entitled "Scenes from

Exclusive Or: Back Propagation is Sensitive to Initial Conditions" has been submitted

to the Twelfth Annual Conference of the Cognitive Science Society, Boston, MA,

July 1990.

Back Propagation is Sensitive to Initial Conditions

John F. Kolen
Jordan B. Pollack

Laboratory for Artificial Intelligence Research
Computer and Information Science Deprtment

The Ohio State University
Columbus, Ohio 43210, USA

kolen-j@cis.ohio-state.edu, pollack@cis.ohio-state.edu

ABSTRACT

This paper explores the effect of initial weight selection on feed-forward
networks learning simple functions with the back-propagation technique. We

first demonstrate, through the use of Monte Carlo techniques, that the magni-
tude of the initial condition vector (in weight space) is a very significant
parameter in convergence time variability. In order to further understand this
result, additional deterministic experiments were performed. The results of
these experiments demonstrate the extreme sensitivity of back propagation to
initial weight configuration.

April 18, 1990

Back Propagation is Sensitive to Initial Conditions

John F. Kolen
Jordan B. Pollack

Laboratory for Artificial Intelligence Research
Computer and Information Science Department

The Ohio State University
Columbus, Ohio 43210. USA

kolen-jcis.ohio-state.edu, pollack@cis.ohio-state.edu

Introduction

Back Propagation (Rumeihart, Hinton, & Williams, 1986) is the network training method
of choice for many neural network projects, and for good reason. Like other weak methods. it

is simple to implement, faster than many other "general" approaches, well-tested by the field,
and easy to mold (with domain knowledge encoded in the learning environment) into very
specific and efficient algorithms.

Rumelhart et al. made a confident statement: for many tasks, "the network rarely gets
stuck in poor local minima that are significantly worse than the global minima."(p. 5361
According to them, initial weights of exactly 0 cannot be used, since symmetries in the
environment are not sufficient to break symmetries in initial weights. Since their paper was
published, the convention in the field has been to choose initial weights with a uniform distri-
bution between plus and minus p, usually set to 0.5 or less.

The convergence claim was based solely upon their empirical experience with the back
propagation technique. Since then, Minsky & Papert (1988) have argued that there exists no
proof of convergence for the technique, and several researchers (Judd 1988; Blum and Rivest
1988; Kolen 1988) have found that the convergence time must be related to the difficulty of
the problem, otherwise an unsolved computer science question (P ; NP) would finally be

answered. We do not wish to make claims about convergence of the technique in the limit
(with vanishing step-size), or the relationship between task and performance, but wish to talk

about a pervaive behavior of the technique which has gone unnoticed for several years: the

sensitivity of beck propagation to initial conditions.

The Monte-Carlo Experiment

Initially, we performed empirical studies to determine the effect of learning rate, momen-
tum rate, and the range of initial weights on t-convergence (Kolen and Goel. to appear). We

use the term t-convergence to refer to whether or not a network, starting at a precise initial

configuration, could learn to separate the input patterns according to a boolean function
(correct outputs above or below .5) within t epochs. The experiment consisted of training a
2-2-1 network on exclusive-or while varying three independent variables in 114 combinations:

learning rate, q, equal to 1.0 or 2.0; momentum rate, a, equal to 0.0, 0.5, or 0.9; and initial
weight range, p, equal to 0.1 to 0.9 in 0.1 increments, and 1.0 to 10.0 in 1.0 increments

KOLEN & POLLACK

Each combination of parameters was used to initialize and train a number of networks.' Fig-

ure I plots the percentage of t-convergent (where t = 50.000 epochs of 4 presentations) initial

conditions for the 2-2-I network trained on the exclusive-or problem. From the figure we thus

conclude the choice of p S 0.5 is more than a convenient symmetry-breaking default, but is

quite necessary to obtain low levels of nonconvergent behavior.

Scenes From Exclusive-Or

Why do networks exhibit the behavior illustrated in Figure 1? While some might argue

that very high initial weights (i.e. p > 10) lead to very long convergence times since the

derivative of the semi-linear sigmoid function is effectively zero for large weights, this does

not explain the fact that when p is between 2 and 4, the non-t-convergence rate varies from 5

to 50 percent.

Thus, we decided to utilize a more deterministic approach for eliciting the structure of

initial conditions giving rise to t-convergence. Unfortunately, most networks have many

weights, and thus many dimensions in initial-condition space. We can, however, examine 2-

dimensional slices through the space in great detail. A slice is specified by an origin and two

orthogonal directions (the X and Y axes). In the figures below, we vary the initial weights

regularly throughout the plane formed by the axes (with the origin in the lower left-hand

comer) and collect the results of running back-propagation to a particular time limit for each

initial condition. The map is displayed with grey-level linearly related to time of convergence:

black meaning not t-convergent and white representing the fastest convergence time in the

picture. Figure 2 is a schematic representation of the networks used in this and the following

experiment. The numbers on the links and in the nodes will be used for identification pur-

poses. Figures 3 through 11 show several interesting "slices" of the the initial condition

space for 2-2-I networks trained on exclusive-or. Each slice is compactly identified by its 9-

dimensional wei'cnt v,.ctor and associated leaming/momentum rates. For instance, the vector

(-3+2+7-4X+5-2-6Y) describes a network with an initial weight of -0.3 between the left hid-

den unit and the left input unit. Likewise, "+5" in the sixth position represents an initial bias

of 0.5 to the right hidden unit. The letters "X" and "Y" indicate that the corresponding

weight is varied along tle'X- or Y-axis from -10.0 to +10.0 in steps of 0.1. All the figures in

this paper contain the results of 40,000 runs of back-propagation (i.e. 200 pixels by 200 pix-

els) for up to 200 epochs (where an epoch consists of 4 training examples).

Figures 12 and 13 present a closer look at the sensitivity of back-propagation to initial

conditions. These figures zoom into a complex region of Figure 11; the captions list the loca-

tion of the origin and step size used to generate each picture.

Sensitivity behavior can also be demonstrated with even simpler functions. Take the

case of a 2-2-1 network learning the or function. Figure 14 shows the effect of learning "or"

on networks (+5+5-IX+5-IY+3-1) and varying weights 4 (X-axis) and 7 (Y-axis) from -200

to 20.0 in steps of 0.2. Figure 15 shows the same region, except that it partitions the display

according to equivalent solution networks after t-convergence t200 epoch imit), rather than

the time to convergence. Two networks are considered equivalent 2 if their weights have the

'Numbers ranged from 8 to 8355. depending on availability of computational resources. Those

data points calculated with small samples were usually sunxmded by data points with larger

samples.

'For rendering purposes only. It is extemely difficult to know precisely the equivalence

KOLEN & POLLACK

same sign. Since there are 9 weights. there are 512 (29) possible network equivalence classes

Figures 16 through 25 show successive zooms into the central swirl identified by the XY

coordinate of the lower-left comer and pixel step size. After 200 iterations, the resulting net-

works could be partitioned into 37 (both convergent and nonconvergent) classes. Obviously,

the smooth behavior of the t-convergence plots can be deceiving, since two initial conditions.

arbitrarily alike, can obtain quite different final network configuration.

Note the triangles appearing in Figures 19, 21, 23 and the mosaic in Figure 25

corresponding to the area which did not converge in 200 iterations in Figure 24. The triangu-

lar boundaries are similar to fractal structures generated under iterated function systems

(Barnsley 1988): in this case, the iterated function is the back propagation learning method.

We propose that these fractal-like boundaries arise in back-propagation due to the existence of

multiple solutions (attractors), the non-zero learning parameters, and the non-linear determinis-

tic nature of the gradient descent approach. When more than one hidden unit is utilized. or

when an environment has internal symmetry or is very underconstrained. then there will be

multiple attractors corresponding to the large number of hidden-unit permutations which form

equivalence classes of functionality. As the number of solutions available to the gradient des-

cent method increases, the more complicated the non-local interactions between them. This

explains the puzzling result that several researchers have noted, that as more hidden units are

added, instead of speeding up, back-propagation slows down (e.g. Lippman and Gold, 1987).

Rather than a hill-climbing metaphor with local peaks to get stuck on, we should instead think

of a many-body metaphor: The existence of many bodies does not imply that a particle wil

take a simple path to land on one. From this view, we see that Rurnelhart et al. 's claim of

back-propagation usually converging is due to a very tight focus inside the "eye of the

storm''

Could learning and momentum rates also be involved in the storm? Such a question

prompted another study, this time focused on the interaction of learning and momentum rates

Rather than alter the initial weights of a set of networks, we varied the learning rate along the

X axis and momentum rate along the Y axis. Figures 26, 27, and 28 were produced by train-

ing a 3-3-1 network on 3-bit parity until t-convergence (250 epoch limit). Table 1 lists the

initial weights of the networks trained in Figures 26 through 31. Examination of the fuzzy

area in Figure 26 shows how small changes in learning and/or momentum rate can drasticly

affect t-convergence (Figures 30 and 31).

Discussion

Chaotic behavior has been carefully circumvented by many neural network researchers

(e.g. through the choice of symmetric weights by Hopfield (1982)), but has been reported in

increasing frequency over the past few years (Choi and Huberman, 1983; Kurten and Clark.

1986; Babcock and Westervelt, 1987; Derrida and Meir, 1988; Riedal et al., 1988; Sompolin-

sky et al., 1988). Connectionists, who use neural models for cognitive modeling, disregard

these reports of extreme non-linear behavior in spite of common knowledge that non-lineanty

is what enables network models to perform non-trivial computations in the first place. All

work to date has noticed various forms of chaos in network dynamics, but not in teaming

dynamics. Even if back-propagation is shown to be non-chaotic in the limit, this still does not

classes of solutiow, so we approiximated.

KOLEN & POLLACK

preclude the existance of fractal boundaries between attractor basins since other non-chaotic

non-linear systems produce such boundaries (i.e. forced pendulums with two attractors
(D'Humieres et al., 1982))

What does this mean to the back-propagation community? From an engineering applica-

tions standpoint, where only the solution matters, nothing at all. When an optimal set of

weights for a particular problem is discovered, it can be reproduced through digital means.

From a scientific standpoint, however, this sensitivity to initial conditions demands that neural

network learning results must be specially treated to guarantee replicability. When theoretical

claims are made (from experience) regarding the power of an adaptive network to model some

phenomena, or when claims are made regarding the similarity between psychological data and
network performance, the initial conditions for the network need to be precisely specified

or filed in a public scientific database.

What about the future of back-propagation? We remain neutral on the issue of its ulti-

mate convergence, but our result points to a few directions for improved methods. Since the

slowdown occurs as a result of global influences of multiple solutions, an algorithm for first
factoring the symmetry out of both network and training environment (e.g. domain

knowledge) may be helpful. Furthermore, it may also turn out that search methods which har-

ness "strange attractors" ergodically guaranteed to come arbitrarily close to some subset of

solutions might work better than methods based on strict gradient descent. Finally, we view

this result as strong impetus to discover how to exploit the information-creative aspects of

non-linear dynamical systems for future models of cognition (Pollack 1989).

Acknowledgments

This work was supported by Office of Naval Research grant number N00014-85-J1200

Substantial free use of over 200 Sun workstations was generously provided by our depart-

ment.

References

K. L. Babcock and R. M. Westervelt. 1987. Dynamics of simple electronic neural net-

works, Physica, 28D:305-316.

M. Barnsley. 1988. Fracials Everywhere, Academic Press, San Diego, CA. 1988.

A. Blum and R. Rivest. 1988. Training a 3-node Neural Network is NP-Complete.

Proceedings of IEEE Conference on Neural Information Processing Systems, Denver.

Colorado, 1918.

M. Y. Choi and B. A. Hubernman. 1983. Dynamic behavior of nonlinear networks, Phy-

sical Review A, 28:1204-1206.

1. 1. Hopfield. 1982. Neural Networks and Physical Systems with Emergent Collective

Computational Abilities. Proceedings US National Academy of Science 79:2554-2558.

B. Derrida and R. Meir. 1988. Chaotic behavior of a layered neural network. Physical

Review A. 39:31L6-3119.

D. D'Humieres, M. R. Beasley, B. A. Huberman, and A. Libchaber. 1982. Chaotic

States and Routes to Chaos in the Forced Pendulum. Physical Review A, 26:3483-96.

KOLEN & POLLACK

B. A. Huberman and T. Hogg. 1987. Phase Transitions and Artificial Intelligence.
Artificial Intelligence, 33:155-172.

S. Judd. 1988. Learning in Networks is Hard. Journal of Complexity 4:177-192.

J. Kolen. 1988. Faster Learning Through a Probabilistic Approximation Algorithm.

Proceedings of the Second IEEE International Conference on Neural Networks. San Diego,

California, pp. [:449-454.

J. Kolen and A. Goel. To appear. Learning in Parallel Distributed Processing Networks:

Computational Complexity and Information Content. IEEE Transactions on Systems. Man.

and Cybernetics.

K. E. Kurten and J. W. Clark. 1986. Chaos in Neural Networks. Physics Letters.

114A, 413-418.

R. P. Lippman and B. Gold. 1987. Neural Classifiers Useful for Speech Recognition. In

1st International Conference on Neural Networks ,IEEE, IV:417-426.

M. L. Minsky and S. A. Papert. 1988. Perceptrons. Cambridge, MA: MIT Press.

J. B. Pollack. 1989. Implications of Recursive Auto Associative Memories. In Advances

in Neural Information Processing Systems. (ed. D. Touretzky) pp 527-536. Morgan Kaufman.

San Mateo.

U. Riedal, R. Kuhn, and J. L. van Hemmen.1988. Temporal sequences and chaos in
neural nets, Physical Review A. 38:1105-1108.

D. E. Rumelhart, G. E. Hinton. and R. J, Williams. 1986. Learning Representation by
Back-Propagating Errors. Nature 323:533-536.

H. Sompolinsky. A. Crisanti, H. J. Sommers. 1988. Chaos in random neural networks.
Physical Review Letters. 61:259-262.

KOLEN & POLLACK

90.00 -
L= 1.0 M=0.0

C o n'vergence..................

80.00
0

% 70.00 -
- M=0..

N o n / -, , - 0 ,'Q0 T v -- 0 . 9 "

Convergence • / "3.After 60.00 -

20.00-

40.00

30.00 -

40.00- ,

0.00 2.00 4.00 600 8.00 10.00

Figure 1: Percentage T-Convergece vs. Initial Weight Range

KOLEN & POLLACK

3 2 4 6

Figure 2: Sch~mdic Network Figure 3: (4-3+344Y.14+71) qm3US a".40

Figure 4 V.4-7G43Y,1X+1) i2l75 z2.@ Figure 5 : (.5.5.143Y.83) rzL 2.3M

Figure 6: (YX.3.46+3+1.7.3) vjx3.S au.$$ Figure 7: (Y+3.94.46+7.3X.7) ij3J5 w4-64

KOLL'-% .k POLLACK

Figure 8 (-6-4XY4-4+9-4.9) yl=3." cL=*SO Figure 9: 4.I.91.X-34Y-4) i14.75 az=O

Figure 10: (.14-3-6X.1.+8+Y) n:3JO c=.9O Figure 11 (,74-4.9-9-SY.3+9X) 1I:3.W a0 O70

Figure t.2 st..-J ep 06613 Figure 13 : 4.944.-O.S00) step O.W4l

KOLE?4 POLLACK

igure 14: (-20.00o8, .20.00M) stop 0.20W afigue 13: Sciudo. Networks

Figure 16: (-50080,.58WO) step 030W figure 17: Soludom Networks

Figure 18 (.1.68M, L35SWM) Step 4.0024" Figre 19: Solution Networks

KOLEN & POLLACK

F gre 20:(-11536MW, .1.1970") step COW73 Figure 21 : Sdutiou NeP1 k

Figure 22 -(.1.472820, -1.1455210step 6. 0I Figure 13: Solution Networks

Figure 24: (-1.4671M, -1.1*070) step @.NW16 Figure 25: Solution Networks

KOLEIN &POLLACK

Figure 26 :,n10.0,4.0) z=0.0.1.25) Figure 27 ci(.d.)a=(O.O,1.25)

Figure 28 71=O0.0.4.0) a=(0.0,1-=5 Figure 29 :,n=3.456.3.504) a=tO.835.OJ94O)

Figure 30 rlt3.84.936) cL= 10J59,O.62)

KOLEN & POLLACK

Figure 26
Figure 29
Figure 30 Figure 27 Figure 28

Weight 1 -0.34959000 -0.34959000 -0.34959000
Weight 2 0.00560000 0.00560000 0.00560000
Weight 3 -0.26338813 0.39881098 0.65060705
Weight 4 0.75501968 -0.16718577 0.75501968
Weight 5 0.47040862 -0.28598450 0.91281711
Weight 6 -0.18438011 -0.18438011 -0.19279729
Weight 7 0.46700363 -0.06778983 0.56181073
Weight 8 -0.48619500 0.66061292 0.20220653
Weight 9 0.62821201 -0.39539510 0.11201949
Weight 10 -0.90039973 0.55021922 0.67401200
Weight 11 0.48940201 0.35141364 -0.54978875
Weight 12 -0.70239312 -0.17438740 -0.69839197
Weight 13 -0.95838741 -0.07619988 -0.19659844
Weight 14 0.46940394 0.88460041 0.89221204
Weight 15 .0.73719884 0.67141031 -0.56879740
Weight 16 0.96140103 -0.10578894 0.20201484

Table 1: Network Weights for Figures 26 through 30

Subdimensional Indexing for

Connectionist Case-Based Memory Retrieval

Gregory M. Saunders and Jordan B. Poliack

Laboratory for Artificial Intelligence Research
Computer and Information Science Department

Ohio State University, Columbus, Ohio 43201

saunders cis.ohio-state.edu, potlackOcis.ohio-state.edu

Abstract

This paper introduces a new approach to case-based memory retrieval (CBMR). Schema-like

objects are first encoded using a recursive connectionist network which maps variable-sized

symbolic structures into vectors in a high-dimensional Space such that similar structures

map to nearby vectors. Retrieval is then performed using Euclidean nearest neighbor search

on the vectors. We first show that if distances are calculated using the entire vector, re-

trieval is imprecise because the principal components of the representation wash out the

dimensions that code the deeper similaries of the symbolic structures. We then demonstrate

that this problem can be overcome by using only a subset of the dimensions, i.e., by using

subdimensional indezing. These results show promise for a new method of CBMR, based

on a content-addressable memory for patterns.

1 Introduction

Efficient retrieval is a central aspect of any model of memory (Schank, 1982), and is es-

pecially critical for schema or case-based reasoning systems, as the DARPA report (1989,

p.1) points out:

The biggest bottleneck is in choosing the best cases to reason with; this potentially

massive search problem is handled currently through indexing. While the choice

of indices still needs to be better understood, it is possible that the use of parallel

implementations make this problem doable in real time.

SAU.NDERS &- POLLACK

Our approach to this problem is based on Recursive Auto-Associative Memory (RAAM)
(Pollack, 1988; in press), a connectionist architecture which can develop fixed-width dis-

tributed representations for variable-sized symbolic trees and lists.

A RAAM consists of two functions: a compreaso and a reconstructor, both imple-

mented with standard feed-forward networks, and simultaneously trained. The former is

used to recursively compress, from the bottom up, an arbitrary structure into a fixed-width

pattern vector; the latter is used to unpack the pattern, from the top down, to recover the

original structure.

The resulting vectors are such that similar cases have similar representations. This

allows us to perform case retrieval using a nearest-neighbor algorithm as follows. A query
is encoded into a vector by the compressor and the cases are retrieved in order of ascending

Euclidean distance from the query using only some mask, i.e., by using only some subset

of the dimensions. We later show how such masks are calculated.

Other researchers have also adopted a connectionist approach towards case-based re-

trieval (Thagard and Holyoak, 1989; Becker and Jazayeri, 1989; Owens, 1989). Owens

discusses the problems of feature extraction and search, emphasizing that similarity in re-

trieval should be judged by abstract or thematic features. He argues that connectionist

networks are fairly good at performing search once the features have been learned, but
that they are poor at learning the appropriate abstract features. As he states (p. 164):

Connectionist approaches... are very good at deciding how to weight features to
measure case similarity, but they do not deal with the problem of how raw data gets
turned into sets of features in the first place, nor do they deal with how new features
can be learned.... How are features extracted from raw inpdt?

He argues that the processes of feature extraction and memory search should be integrated,

but that this is difficult because feature derivation is difficult. We propose that our approach

is a possible solution to this problem, since the RAAM automatically learns the features

necessary to encode the deeper similarities inherent in the cases.

2 Subdimensional indexing using RAAMs

We begin by formalizing the relevant aspects of a case-based reasoning (CBR) system. A

mask M is simply some subset of the dimensions of a vector space. A CBR system, then,

is defined to be a 5-tuple (Sf, L, Q,dM),' where

'It could actually be a 4-tuple, since 5 and f determine L, but a 5-tuple is conceptutally clearer.

SAUNDERS & POLLACK

-= {C,C 2 ,...,C,,}, a set of cases, usually cast as compositional symbolic

structures.

f = indexing function, which maps cases into their representations in memory.

Hence, memory is defined as...

L = long-term case memory = {f(Ci): 1 < i < n}.

Q = query = f(C'), where C" is the symbolic representation for the case to be

retrieved.

d, = a distance metric over L (where the subscript M denotes the dependence

on a mask), used to judge the similarity between cases in L and the query

Q. Hence d: Q x L =

Thus our view of CBMR begins with a set of cases S. Each case is encoded via some

indexing function f, generating a memory list L. To perform retrieval on some case CO, we

first generate a query Q = f(C*). Then the distance function dm can be applied, so that

the cases C that are retrieved will those that minimize d(f(Cj),Q).

How is this implemented by the RAAM architecture? When a RAAM is used to

transform a set of cases into a set of vectors of dimension k, this automatically specifies a

set of 2 * (implicit) indexing functions f, one for each possible mask M. If distance between

a case C and a query Q is defined in terms of masked Euclidean distance, then the different

masks define 2k different distance functions:

dm(Ci,,Q) = '(f (Ci), -QA

Many of these, of course, will be redundant, but many will also be useful for specialized

forms of retrieval which currently involves custom progranuning.

Why should this method work? Convergence of the network implies that the RAAM

is somehow storing the schema-like cases as patterns. Unlike symbolic representations,

however, these patterns are distributed, so that similar cases have similar representations.

The problem is that the clustering of the patterns captures only structural similarity, and

thus only the principal dimensions (of maximal variance) really affect the straightforward

Euclidean distance calculus'tion. Using masks allows Euclidean distance to be sensitive to

deeper similarities of the s)mbolic structures.

Nearest neighbor search of such structures is algorithmically efficient - using multidi-

mensional divide-and-conquer it is O(n loghl-n) if we have n k-dimensional points (Bentley,

1980) - and potentially can be implemented by analog circuitry (Hopfield, 1982). The

difficulty lies in determining the appropriate mask for a given query. We have devised a

greedy algorithm to perform this task, described below.

SAUNDERS -POLLACK

Suppose that for a given query Q, we wish to find a mask that will retrieve a set of

goal cases G = (C,, Ci., ..., C1 }. Each different mask M yields a distance function dM,

which in turn yields a permutation a, of the case-base (where the order o'(i) of case C, is

determined by dM(C., Q)). The score for a mask is then defined to be

S = { 7--1' 0'(j) > }

This function is really quite straightforward. For each goal case j e G, look at how j ranked

in the permutation a for the mask. If a'(j) ! g, then Cj would be one of the top g cases

retrieved by M, so add 1 to the score. Otherwise the contribution to the score from j is

an exponentially decaying function based upon how close j was to being in the top g cases

retrieved. Finally, the summation is divided by g to scale the result, so that perfect masks

will have a score of 1, and very bad masks will have a score approaching 0.

Our algorithm, then, was simply to build up the mask M by adding dimensions one at

a time, being greedy on the score Sm. The program halted when it could find no dimension

that when added to the current mask would increase its score. (No backtracking was used.)

3 Results

We have implemented subdimensional indexing using the propositions in Pollack (1988) as

cases:
3

1. (loved pat mary)
2. (loved john pat)
3. ((with saw telescope) john (on man hill))

4. ((with ate chopsticks) mary spaghetti)
5. (ate mary (with spaghetti meat))

6. (ate pat meat)
7. (knew pat (loved John mary))

8. (thought pat (knew John (loved mary john)))

9. (hoped pat (thought John (ate mary spaghetti)))

10a. ((with hit (mod telescope long)) john man)
10b. (hit John (with man (mod telescope long)))
11. (hoped pat (saw (with man telescope) pat))

12. (hit pat (is man (thought man (loved mary john))))

13. (saw (is (mod man short) (thought man (saw man John))) pat)

In terms of the notation developed throughout this paper, n = 14, and k = 16, i.e., there

were 14 cases and the RAAM devised a 16-dimensional representation to store them. The

3Cae 10 w"a ambigous and had two possible interpretations. See Pollack (10aS) for more details.

% S.AUNDERS & POLLACK

clustering diagram below is based upon the entire RAAM representation and shows the
similarity between patterns in the full 18-dimensional space. (Note that there are morethan 14 nodes in this diagram because a RAAM also develops representations for all of the
"sub cases".)

in -

In 0z

0 L 0

CL .z L

W . 00 (

W- LU

z L-Uz

0 U P >- - -

I.

S.AUNDERS k- POLLACK

We tested this case-base with many different queries, two of which were (nil pat nil)

and (loved nil nil). The former was intended to retrieve all those cases in which pat was an

agent. The latter was applied with two different intentions: to retrieve stories about love,

i.e., ones that contained love as the action, and to retrieve stories involving love, i.e., ones

which contained the proposition love at any level in the story.

The table below compares the effect of using maska for retrieval (as discovered by our

greedy algorithm) vs. using the entire k-dimensional representations developed by the

RAAM. (am = order in masked permutation, o', = order in unmasked permutation, i.e.,

by using the entire representation, Sm = masked score, ,. = unmasked score.)

Query Goal cases (ordered by am) aM a. SM S,,

(nil pat nil) (ate pat meat) 1 3 1 .43
(knew pat (loved john mary)) 2 13
(hoped pat (saw (with man telescope) pat)) 3 11

(thought pat (knew john (loved mary john))) 4 8 1
(loved pat mary) 5 1'

(hoped pat (thought john (ate mary spaghetti))) 6 20

(hit pat (is man (thought man (loved mary john)))) 7 15
(loved nil nil) (loved mary john) 1 1 1 .51
about love (loved John pat) 2 6

(loved pat mary) 3 5
(loved John mary) 4 8

(loved nil nil) (knew pat (loved john mary)) 2 28 .68 .44
involving love (loved pat mary) 3 5

(thought pat (knew john (loved mary john))) 4 27
(loved John pat) 5 6

(loved mary john) 9 1

(knew John (loved mary john)) 10 32
(thought man (loved mary john) 12 21
(is man (thought man (loved mary john))) 14 24

(hit pat (is man (thought man (loved mary John)))) 16 22

(loved John mary) 22 8

4 Conclusions

Our approach to CBMR involves using a RAAM to develop k-dimensional representations

for a set of symbolic cases, and then applying subdimensional indexing to retrieve the cases

most similar to a given query. Feature extraction occurs automatically because it is learned

by the RAAM, and will be dynamic because any new case that is added to the case-base

will involve a slight adjustment of the weights between levels, which will in turn slightly

adjust the representations of each case.

SAUNDERS L- POLLACK

The above results clearly show that similarity judments using masked Euclidean dis-

tance are more effective than those based on then entire representation. Furthermore, the

difference in results between querying for cases about love vs. querying for cases involving

love shows that subdimensional indexing is also effective at capturing the deeper similarities

in the symbolic cases (Owen's so-called thematic features).

The biggest open issue is the scaability of RAAMs. We are currently trying to train a

RAAM on a larger, more realistic case-base, excerpted from Hammond (1989). However,

in CBR applications, since the feature representations built by RAAM never need to be

reconstructed, absolute convergence of the RAAM is not crucial to construct the indices.

Furthermore, while the current technique is rigidly syntactic in nature, relying on the

semantic order implicit in the case-base designer's choice of a uniform symbol structure, it

is certainly very straightforward to add thematic similarity feedback to a RAAM's training

regimen. Thus a nearest-neighbor subdimensional indexing scheme should be a powerful

and elegant weapon added to the case-based memory retrieval arsenal.

Acknowledgements

Pollack is supported by Office of Naval Research Grant N00014-89-J-1200. Saunders is

supported by a National Science Foundation Graduate Fellowship. Any opinions, findings,

conclusions or recommendations expressed in this publication are those of the authors and

do not necessarily reflect the views of the Office of Naval Research or the National Science

Foundation.

References

IBecker and Jasayeri, 1989] Becker, L. and Jasayeri, K. (1989). A connectionist approach to

case-based reasoning. Proceedings: Case-Based Reasoning Workshop, pages 213-217.

Bentley, 1980) Bentley, J. L. (1980). Multidimensional divide-and-conquer. Communications of

the ACM, 23(4):214-229.

DARPA, 1989] DARPA (1989). Case-based reasoning. Proceedings: Case-Based Reasoning

Workshop, pages 1-13.

Hammond, 19891 Hammond, K. J. (1989). Case-Based Planning: Viewing planning as a memory

task. Academic Press, Inc., San Diego.

Hopfield, 19821 Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-

lective computational abilities. Proceedings of the National Academy of Sciences USA, 79:2554-

2558.

=m~m =nmm nmnmmmEm emu s Wm mnnmmnmn

SAUNDERS & POLLACK

.Kolodner, 1989 Kolodner, J. L. (1989). Selecting the best case for a case-based reasoner. Pro-

ceedings of the Eleventh Annual Conference of the Cognitive Science Society, pages 155-162.

Ann Arbor, MI.

'Owens, 19891 Owens, C. (1989). Integrating feature extraction and memory search. Proceedings

of the Eleventh Annual Conference of the Cognitive Science Society, pages 163-170. Ann Arbor,

MI.

'Pollack, Pollack, J. B. Recursive distributed representations. To appear in Artificial Intelli.

gence.

!Pol1ack, 19881 Pollack, J. B. (1988). Recursive auto-associative memory: Devising compositional

distributed representations. Proceedings of the Tenth Annual Conference of the Cognitive Sci-

ence Society, pages 33-39. Montreal.

Schank, 19821 Schank, .. C. (1982). Dynamic Memory. Cambridge University Press, Cambridge.

'Thagard and Holyoak, 19891 Thagard, P. and Holyoak, K. J. (1989). Why indexing is the wrong

way to think about analog retrieval. Proceedings: Case-Based Reasoning Workshop, pages

36-40.

Avoiding Fusion in Floating Symbol Systems

Peter J. Angeline*and Jordan B. Pollack

Department of Computer and Information Sciences
Laboratory for Artificial Intelligence Research

The Ohio State University

Columbus, Ohio 43210

May 16, 1990

Abstract

Miikkulainen and Dyer (1988) have demonstrated a method, called extended back-propagation
(XBP) whereby a back propagation network can construct appropriate input representations by prop-

agating error back to a "virtual" localist input layer. Our investigation showed that when applied

in a auto-associative fashion these "floating symbols" tend to fuse, which is a significant problem
for modern connectionist representation research. In this paper, we present a method, Pushprop,

which allows auto-associative networks to develop floating symbols which do not fuse, and are not

artificially constrained with embedded constant features, large initial separation, or unique output
patterns. Our initial results use this technique on a prototype application in the domain of optical

character recognition.

*A11 cormspondence to this author. POSTER - Cognitive Science and Al: Repreamntatiomna linus

1

Avoiding Fusion in Floating Symbol Systems

Peter J. Angeline'and Jordan B. Pollack

Laboratory for Artificial Intelligence Research

Department of Computer and Information Sciences

The Ohio State University

Columbus, Ohio 43210

May 17, 1990

1 Summary

One of the historical problems for connectionist systems has been the arbitrary nature of neural representa-

tions, usually designed by a researcher taking advantage of domain knowledge. Sometimes it is possible to

construct representations which non-trivially encode a significant amount of knowledge, greatly simplifying

the associative task, e.g. [2] and [12J. One of the potential benefits of modern connectionist work is that

certain architectures can automatically construct complex representations during the acquisition of a task.

allowing the relationships between learning and representation to be studied in detail [3].

We use the term floating symbol systems to denote a broad class of these connectionist models which

allow complex distributed representations (symbols) to co-evolve (float) with the weights in a neural net-

work system (e.g. [8], [1] and (10]). As a starting point, Miikkulainen and Dyer in [8] have demonstrated a

method, called extended back-propagation (XBP) whereby a back propagation [11] network can construct

"AU correspondence to this author. POSTER - Cognitive Science and AI: Representational !uues

1lll

appropriate input representations by propagating error back to a "virtual" localist input layer.' However.

this process does not reflect all the constraints necessary for the construction of distinct input pattern

representations. Our initial motivation for this project was to remove some of the arbitrary character of

the earning environment for Recursive Auto-Associative Memory (RAAM) [9], which devises fixed-width

representations for recursive data structures. In attempting to float the input representations for RAAM.

we found that the system could converge in a few epochs with all input representations indistinguishable!

In further work on simple auto-association, it became quite clear that floating symbols tend to 'fuse".

Miikkulainen and Dyer did not face this symbol fusion problem, since they started with very distinct

input patterns and assumed unique output patterns, both of which help maintain separation of the floating

input symbols. In subsequent work, Miikkulainen [7] has used partially floating symbols in which some

features are preset and not modified by learning. Elman, as well, did not observe fusion in his word

clustering experiments since he did not allow his networks to converge but stopped after only a few epochs.

well before fusion occurred.

In this paper, we present a method, "Pushprop," which allows auto-associative networks to develop

floating symbols which do not fuse, and are not artificially constrained with embedded constant featuros.

large initial separation, unique output patterns or incomplete training. Our initial results use this techniquie

on a prototype RAAM application in the domain of optical character recognition.

The Pushprop algorithm enforces a pre-specified separation between every pair of floating symbols.

This is accomplished by modifying the error function used to compute partial derivatives for the output of

a feedforward network to globally push apart patterns which threaten to fuse. The error function is based

on the Euclidean distance, d(p,,pj), between two input pattern representations and is defined as:

I
E = - (a - dpp

where o, is the minimum allowed Euclidean distance between pattern p, and pattern pi. We can thus derive

the update algorithm for a component in an floating symbol by inserting the above error function equation

'Geoff Hinton [4) wa the first to note that the weights from a fully local input layer to a more compact hidden layer are i

representation.

2

Figure 1: Strokes used in the representation of characters.

into the derivation for the Back Propagation algorithm given by Rumelhart et al.2 The resilting update

to a specific position in an input pattern is then:

O E p",x - p (- _+ d(p,, pj))
-p, d(p,, p,)

where pi,, is the nth position in the ith input pattern representation. We can now use a gradient descent

on Ej to effectively separate each of the input patterns from the others. By running this separation

method after updating the input pattern representations with XBP, the representations are guaranteed to

be distinct by at least a regardless of the initial conditions.

To test the algorithm, both XBP and Pushprop algorithm were run on a 10-5-10 RAAM which con-

structed representations for letters from sets of vertical and horizontal line segments. The letters T. L. .1.

F, C, U, N, H, I, 0, A and E were represented as binary trees using floating symbols for the 6 distinct

visual lne segments or "strokes" shown in Figure 1, as HT, HM, HB, VL, VM, and VR. Table 1 shows the

tree encodings for each of the 12 letters. While the representations for each of the letters is being learned

by the RAAM, the XBP method is adapting the representations for the 6 floating symbols, either alone or

2 Michael Jordan (5] has anticipated most ues of soft constraints to guide neural network learning, and while he never u -I

this type of "repulsive" constraint, our work is clearly in this tradition.

3

Figure 2: Graph showing the converged sumbol separation (y.axis) versus the initial symbol separation

(x-axis). Dark lines connect the data points for Run I and and the light lines connect the data points for

Run 2. Dashed lines mark performance of Pushprop while solid lines mark the performance of XBP. For

each run, the initial weights for the RAAM were identical in each trial and for each algorithm.

with the Pushprop separation being applied after each epoch.

We chose 18 different initial floating symbol sets (with varying degrees of separation), and a single set

of initial weights for the network per run.3 Using just the XBP technique, only 8 out of the 18 sets of initiaJ

symbol sets did not fuse. This is shown graphically in Figure 2. It is evident from the experiments that

if the initial separation between the input pattern representations is very small, auto- ssociation usually

forces some subset of them to fuse. As the initial separation between the floating symbols increases, the

chances that XBP alone will construct distinct representations for all the input patterns increases. In

contrast, when using the Pushprop with o' = 0.1, all 18 test cases converged with distinct floating symbols.

'Because Back-propagation hu been shown to be very sensitive to initial conditions (6).

4

letter tree of strokes letter tree of strokes letter tree of strokes

T (ht vm) L (hb vl) J (vr hb)

F ((hm ht) v) I ((ht hb) vm) U (hb (vl vr))

N (ht (vi vr)) H (hm (vl vr)) C ((ht hb) vl)

0 ((ht hb) (vi vr)) A ((hm ht) (vl vr)) E ((hm ht) (hb v1))

Table 1: Tree Representations for Characters

While our initial results have applied the Pushprop method for avoiding fusion of floating symbols to

our RAAM work, the method is clearly applicable to most self-supervised auto-associative architectures.

Further, the basic theory behind the Pushprop method is an interesting addition to the connectionist tool-

box in that it offers a new "least commitment" style of constraining the evolution of complex connectionist

representations: each symbol develops its own niche, sufficiently separated from neighbors.

References

[1] J. L. Elman. Finding structure in time. Technical Report CRL 8801, University of California. San

Diego, April 1988.

[2] M. A. Gluck, G. H. Bower, and M. R. Hee. A configural-cue network model of animal and human

associative learning. Proceedings of the Eleventh Annual Conference of the Cognitive Science Society,

1989. Ann Arbor, Michigan.

[3] S. J. Hanson and D. J. Burr. What connectionist models learn: Learning and representation in

connectionist networks. Behavioral and Brain Science, 1989. To Appear.

[4] G. E. Hinton. Learning distributed representations of concepts. Proceedings of the Eighth Annual

Conference of the Cognitive Science Society, pages 1-12, 1986. Amherst, MA.

5

0

[5j M. I. Jordan. Supervised learning and systems with excess degrees of freedom. Technical Report

COINS Technical Report 88-27, Massachusetts Institute of Technology, Boston, November 1987.

[61 J. Kolen and J. B. Pollack. Back prop is sensitive to initial conditions. Technical Report 90-JK-BPSIC.

The Ohio State University, Columbus, February 1990.

[7] R. Miikkulainen. A neural network model of scritp processing and memory. Technical Report UCLA-

AI-90-03, University of California, Los Angeles, March 1990.

[8] R. Miikkulainen and M. Dyer. Forming global representations with extended back propagation. Pro-

ceedings of the IEEE Second Annual Conference on Neural Networks, 1988. San Diego.

[9] J. B. Pollack. Recursive distributed representations. To appear in Artificial Intelligence.

[10] J. B. Pollack. Recursive auto-associative memory: Devising compositional distributed representations.

Proceedings of the Tenth Annual Conference of the Cognitive Science Society, pages 33-39..ktav %la

Montreal.

[11] D. Rumelhart, G. Hinton, and R. Williams. Learning internal representations through error propa-

gation. In D. Rumelhart and J. McClelland, editors, Parallel Distributed Processing: Explorations in

the Microstructure of Cognition, volume 1, pages 25-40. MIT Press, 1986.

[12] D. Rumelhart and J. McClelland. On learning the past tense of english verbs. In D. Rumelhar:

and J. McClelland, editors, Parallel Distributed Processing: Explorations in the Microstructure of

Cognition, volume 2, pages 216-271. MIT Press, 1986.

6

14

HT

VL _____ MVR

VM

He

Figure 1-Strokes used in the formation of characters.

Figure 2 - Separation of Symbols

%- %

0--

-6

%

.-

0.6-

0.4-

0.2-

0.4 0.5 0.6 0.70.0-

