High-Level Estimation Techniquesfor Usagein Hardwar e/Softwar e Co-Design

Jorg Henkel

C& C Research Laboratories
NEC USA, Princeton, NJ 08540
henkel @ccrl.nj.nec.com

Abstract--- High-level estimation techniques ar e of paramount
importancefor design decisionslike har dwar e/softwar epar tition-
ing or design space explorations. In both cases an appropriate
compr omisebetween accuracy and computation time deter mines
about the feasibility of those estimation techniques. I n this paper
we present high--level estimation techniquesfor hardwar e effort
and hardwar e/software communication time. Our techniques
deliver fast results at sufficient accuracy. Furthermore, it is
shown in which way these techniquesareapplied in order to cope
with contradictory design goalslike performance constraintsand
hardware effort constraints. As a solution, we present a cost
function for the purpose of hardwar e/softwar e partitioning that
offers a dynamic weighting of its components. The conducted
experiments show that the usage of our estimation techniquesin
conjunction with their efficient combination leads to reasonable
har dwar e/softwar e implementations as opposed to approaches
that consider single constraintsonly.

|. INTRODUCTION

Though complex systems—on—a—chip are aready redity
([1]), accurate and fast high-level estimation techniques
are still rare. Systems-on—a—chip comprise software parts
(e.g. processor coresrunning asoftwareprogram) and hardware
parts (dedicated hardwareimplementing system partswith high
performance constraints). Thetradeoff between these hardware
and software partsis controlled by design constraintslikelimi-
tation of the die size, performance considerations, design time,
design flexibility, design re-use etc. Thislarge variety of con-
straintsmakes it most impossible or at least very hard for the
system designer to find a sophisticated compromise that best
matches these constraintsin a particular case. So, the current
procedure of providing a customer with such a design is as
follows: the vendor delivers a couple of designs with slightly
different focuses to the costumer who decides for that one that
meets best his congtraints. Afterwards, one or more refine-
ments on the favoritedesign are conducted. The whole process
isiterative and takes up to half ayear. Thistime-consuming
and therefore expensive process could be drastically reduced
if high-level estimation methodologies would be performed
before mayor design decisions are made. The intention is to
explore the design space with respect to different design con-
straints. As aresult, fast and sufficiently accurate statements
concerning a possible implementation can be obtained. At that

Rolf Ernst

Ingtitut fur DV —Anlagen
Technische Universitat Braunschweig
D-38106 Braunschweig, Germany

point the designer can be guided towards his next design steps
while preventing misleading design decisions.

In this paper weintroduce some high—level estimation tech-
niquesthat aim at exploringthe design space aswell as guiding
the process of hardware/software partitioning. Due to limited
space in this paper we concentrate on two high—level estima
tion techniques: hardware effort and hardware/software com-
munication estimation. While the first technique is useful for
estimating theimplementation cost, the other techniquesis part
of estimating the performance in a hardware/software system.
Asmentioned above, design constraintsare often manifold. As
an example, for a specia class of systems—on—a—chip — hard
real—time systems — there is a hard timing constraint as well
as the constraint to keep the hardware effort as small as possi-
ble. We show in which way this contradictory constraints can
be combined into one single cost function. Furthermore, we
demonstrate that thistechnique— adynamically wei ghted cost
function — can save hardware effort as opposed to techniques
that take into consideration one constraint at atime only.

Not lessimportant are techniquesfor softwarerun—timeestima-
tion and hardware run—time estimation. As for our approach,
those techniques are described in [17, 14].

This paper is structured as follows: section |1 gives a short
overview of research activitiesin co—synthesis as far as these
approaches focus on hardware/software partitioning and pro-
vide a cost function that considers at least two different con-
straints — such as run—time and hardware effort, for exam-
ple. Other approaches to co—synthesis and especially to hard-
ware/software partitioning are not introduced here since parti-
tioningand co—synthesisare not the primary goal s of that paper.
For asummary of those approaches, the interested reader isre-
ferred to [2]. The following two sections are dedicated to the
estimation of hardware effort and hardware/software commu-
nication, respectively. Each of these sections aso contains an
overview of related work in that specific area rather than to
include that in section Il. Afterwards, section V presents our
approach of combining these different estimation techniques
into one single cost function with the goal of meeting a real—
time constraint and at the same time minimizing the hardware
effort. For this purpose, a dynamically weighted cost func-
tion is presented. Results of this combination are presented
in section V1. However, individual resultsi.e. those referring
to estimation techniques solely, are presented in the according
sections. Finally, section VII givesaconclusion.

Il. RELATED WORK

Rather than giving an overview of all approachesto system—
level design techniques and estimation, we introduce two ap-
proaches that explicitly describe their method of reducing the
hardware effort while meeting real—time constraints during
hardware/software partitioning. More approaches to hard-
ware/software co—design are described in [2]. Furthermore,
related work to specific high—evel estimation techniquesisin-

troduced within this paper in the according sections.
Kaavade and Lee [3] describe an agorithm called GCLP

to minimize hardware effort while meeting timing constraints.
Themain ideaisto sdlect different cost functions during hard-
ware/software partitioning according to a criticality measure
that is computed for each possible hardware/software parti-
tioning.

Vahid and Ggjski [4] useabinary search algorithmto minimize
hardware effort while meeting timing constraints during par-
titioning. They relax the contradictory goals of low hardware
effort and timing constraints by accepting all hardware efforts
below a given size rather than trying to optimize hardware
effort and timing a the same time. They use an incremen-
ta algorithm for estimating hardware effort that is adapted to
function-evel partitioning [5].

Our approach handlesthe contradictory goals of minimizing
hardware and meeting real—time constraints by a cost function
that is dynamically weighted rather than selecting from a set of
different cost functions.

I1l. A HIGH-LEVEL HARDWARE EFFORT ESTIMATION
TECHNIQUE

The aim of this hardware effort estimation technique is to
obtain helpful hints about the possible hardware effort of var-
ious system parts before the final decision of partitioning into
hardware and software is done. Thisis one mayor difference
compared to methods who assume that a particular piece will
be implemented as a hardware in any case. As aconsequence,
our technique is subject to different constraints. It should @)
deliver fast estimations, b) be as far as possible independent
from synthesis ¢) easily get adapted to various synthesistools

A. Redlated work in high-level hardware effort estimation

The techniquepresented in[7] estimates hardware effort and
delay timefor functional unitsonly. They calculate aminimum
hardware effort for agiven delay time or aminimumde ay time
for a given amount of hardware resources. The approach de-
scribed in[8] isan extension of [7] that additionally takesinto
consideration hardware effort for connectivity. The approach
described in [9] isinterva based. Due to not considered data
dependenci esbetween interval stheactual demand onresources
might be larger. In [10] alower bound estimation technique
for data dominated applications is presented. The approach
in [11] is very complete since it takes into consideration data
path resources as well as the hardware effort for the controller
and the memory. However, statistical assumptions may lead

. Registers |
‘ Reg‘ “Reg‘ ‘ Reg‘ “Reg‘ ‘ Reg‘ ‘ Reg‘ ‘ Reg‘
[o
Mux Mux FA Mux / A L
Modules ALU Multipl.

Fig. 1. Componentsto estimate: Registers, input multiplexer, modulesand
output multiplexer

to larger deviations. Furthermore, it is not assumed that a
scheduling has aready been performed. The method intro-
duced in [5] isone of the few that istailored to the demands of
hardware/software co—design since it features an incremental
estimation for each possible hardware/software partitioning.
The method is accurate for coarse—grain estimation (e.g. esti-
mating wholefunctionsor tasks) but inaccurate for small—grain

estimation (base blocks etc.).
To summarize, there are some fast but not sufficiently accu-

rate approaches available. Their inaccuracy results from their
principle: they are lower bound methods that, for example, do

not assume that a scheduling has already been performed.
Our approach is comparable to those in terms of execution

times but due to a previoudly performed scheduling as well as
not relying on statistical data, it promisesto be more accurate.
An additiona feature is the adaptation to different synthesis
tools. We made the experience that especially the controller of
ahardware design is very specific to the applied synthesistool
i.e. hard to estimate in a general approach. Therefore, this part
of the estimation is separated from the estimation of the data
path.

B. Our Approach

Our approach takes into consideration controller as well as
data path estimation. But only the estimation of thedatapath is
presented here?, because the controller part needs to be adapted
to the synthesis tool we use before a satisfactory result can be
obtained. Animportant feature of our techniqueis performing

scheduling before the estimation is started.
Inthefollowing, the algorithmsfor estimating modul es, data

registers, and multiplexer are presented (Fig. 1 gives an exam-
ple of a data path). The estimation takes place at a CDFG
(control and data flow graph) representation that is directly
derived from a C system- evel description.

B.1 Modules

A module m performs an operation o; ; where i denotes the
control stepitisperformedinand! refersto the 3—address—code
itispart of. Let M = {ma,...,mp} bethe set of different

1Estimating the hardware effort of the controller is described in detail in

[6l.

1) Initialize global ModulList

2) For all ¢s; € CS

3) Initialize local ModulList

4) Forall o,;€ O

5) Compute sorted ModulList

6) m, .= first element of sorted ModulList

7 For all elementsof sorted ModulList

8) m, :=current Modul Type of sorted ModulList
9) If number(mﬂ)mfembomglob. Mod. List >

10) number(mx),. clok. Mod. List

11) then

12) Increment number of Modul Type m - in
13) local ModulList by 1; goto 2)

14) Incr. # of Modul Type m . in local ModulList by 1
15) update global ModulList by means of local ModulList
16) Initialize hardware effort Ao« of Modules

17) For all ModulTypesof global ModulList

18) Amod = Amoa + number(my) x A(my)

Fig. 2. Algorithm for estimating the number and types of modules

module types with D the total number. Furthermore, assume
that for each module m of type =, i.e. m,, there are one or
more instances. Figure 2 shows the algorithm for estimating
thenumber of necessary modules. Themain loop (2) isiterated
for all control stepses; intheset of al control stepsC'S. Global
and Local Module List have the same structure since they both
provide an entry for each module type and specifying their
number of them that has been used so far. Now, the inner
loop starting at (4) is iterated for al operators. The purpose
of the sorted module list is to provide al possible modules
i.e. those that might be able to execute operation o; ;. The
list is sorted in an ascending order of hardware effort for each
module. Afterwards, an initial module is selected (6). In the
following steps (9 to 13), all fitting module types are tested in
termsof previous(i.e. withinanother control step) instantiation.
If that isthe case then thismodul etypeisassigned tothe current
operator and an additional instance of this module type is not
necessary. This assignment is noted in the local module list
and afterwards the next operator is selected (12). In the other
case, thelocal modulelistissearched for an already instantiated
but in the current control step not used instance of the specific
moduletype. If the search fails, the first and as mentioned the
least hardware consuming module is assigned to the current
operator and the local module list is updated (14). After all
operatorsof aspecific control step have been served, theglobal
modulelist is enlarged by as many entries as the local module
list has (15). So, after al operators and all control steps are
treated, the global modulelist containsthe number of instances
of all module types (18).

B.2 DataRegisters

Dataregistersholdtemporary resultsor datathat isloaded from
memory or going to be stored into memory. Since registers
are expensive, as many as possible variables should share one
register. Therefore, alife-timeinterval ¢ (X) 1= [¢sq, csp] fOr

1) Register#,,,, = 0

2) Calculateall pathesP = P, ..., P, of graph G = {V| '}
3) For all pathesP; € P

4) Search all locations def(¢)

5) For all definitions of variables def(¢)
6) Search last location use(?)

7) T, =T, U tL(i)

8) Register# = CliquePart(1%)

9) If

10) Register# > Register#,, ..,

11) then

12) Register# , . = Register#

13) Areg = Register#mw X Asingle register

Fig. 3. Algorithm for estimating the number of dataregisters. Graph GG isa
CDFG.

each variableis calculated. In this context, cs, is the control
step in which variable z is defined for the first time i.e. a
valueis assigned to «. Furthermore, ¢s; denotes the control
step in which variable z is used for the last time. Taking into
consideration that avariable can have severdl lifetimeintervals
within a program execution, the set of dl lifetime intervals of
avariable isdefined. Using these definitions, figure 3 shows
the algorithm for estimating the number of necessary registers.
Starting with initiaizing the number of registers (1), the main
loop iterates for all paths 2 (2), (3). Then, for al variables
the set of life times are calculated (4) to (7). Afterwards, the
minimum number of registers is calculated using the clique
partitioning agorithm (8) [13]. In the followings steps (9) to
(12) the number of registersisupdated and finally the hardware
effort of all necessary registersis calculated by multiplyingthe
number of estimated registers by the amount of gates used for
oneregister (13).

B.3 Multiplexer

The task of the multiplexer in a multiplex—based data path is
to distributethe valuesin the dataregisters among the modules
(ALUs, multipliers,...) and to forward results of operations
to registers. These both types of multiplexer are caled input
and output multiplexer, respectively. The agorithm presented
in the following (input multiplexer), assumes that a module
estimation as well as estimation of data registers have aready
been carried out. Consequently, at thispoint it isknownwhich
value is contained in which register during each control step.
Furthermore, it is known which operation is executed it which
module. In the following, the estimation of input multiplexer
is presented (fig. 4).

Thefirst loop (2) isiterated for all types of moduleswhereas
the nested loop (3) isiterated for all instances of that particular
module type. The number of input lines of a multiplexer ng
is calculated by means of |O,, . | i.e. the number of operators

2We have devel oped an algorithm for keeping the number of relevant paths
small. Consequently, wedo not haveto copewith apolynomial path complexity
problem as described in [12]. Our method is described in detail in [14].

1) Ninoa =0

2) For all ModulTypes € globale ModulList
3) For all Instances of ModulType m
4) Nmod:Nmod+l

5) ng =0

6) For both Operands

7) nE:nE—|—|Om7r)l|

8) Muz List[Nmod] = ng

9) Amug,in =0

10) For all Elementsm; of MuxList

11) If

12) Mux List[m;] > 1

13) then

14) Amumym = Amumym =+ Amum(nE)

Fig. 4. Algorithm for estimating the number and types of input multiplexer

EHigh—Level Synthesis with BSSJ

Register-Transfer-Synthesis with
Synopsys Design Compiler
hardware effort

Fig. 5. Estimation results compared to synthesisresults

that are intended to be executed in this instance of that mod-
ule (known from modul e estimation). The number of modules
Nmoa and the according number of input lines are stored in
Mux List[]. Once, the number of multiplexer and their input
linesare known, the according hardware effort (interms of gate

equivalents) is cal culated advising an according data base.
The estimation of the output multiplexer is performed in a

similar way but omitted in this paper for lack space.

C. Estimating haraware effort: results

The result of our hardware estimation technique is the sum
Aestim = Amod + Areg + Amux + Acontrol

where A0, Areg, Amue- Acontro ethehardware effort for
modules, registers, multiplexers and the control unit, respec-
tively. As mentioned above, A oniror 1S NOt described here,
In order to guarantee a precise comparison of our estimation
technique, the following steps are performed for each exam-
ple: high-evel synthesis using our system BSSis carried out
and the resulting RTL description is fed into the SYNOPSY S
design compiler by means of the LSl 2.0 library. Output isthe
hardware effort in terms of gate equivalents (1 gate equivaent
(geq) isequal to 4 transistors). Seefig. 5for thesynthesissteps.
Later on, estimation resultsand synthesisresults are compared.
Before, the adaption of estimation to synthesisisdiscussed: as

| application | method | DP1| DP2| DP3 |

bpic | &im [10618 | 0188 | 0188

gnth || 7,607 | 8848 | 9,101

ro | esim || 6,976 | 7,486 | 20814

gnth || 3093 | 8267 | 11,773

estim || 22,887 | 9,944 | 26,463

hufman - th T 6004 | 7272 | 7,538

. esim || 4,020 | 2,411 | 5849

labeling - R T 123 | 2450 | 2,450

bl |eSim || 2,380 | 14,906 | 14082

gnth || 1,088 | 15,057 | 16,483

ik |esim | 13,200 | 27,700 | 29,130

gnth || 3449 | 12,837 | 15,084

[estim || 16,060 | 40,614 | 42,413

Wrmits ot 3593 | 3.736 | 12378
TABLE |

COMPARISON OF OUR ESTIMATION TECHNIQUE FOR HARDWARE EFFORT (IN
GATE EQUIVALENTS) AND SYNTHESIS RESULTS FOR THREE DIFFERENT DESIGN
POINTS (DP1 TO DP3) OF EACH APPLICATION

25000

20000 estimation technigu
g 15000
K]
5 /
©
o
%ﬂ 10000
i) after synthesis

5000

DP1 DP2 DP3 DP4

design points

Fig. 6. Comparison of estimation results and synthesisresultsin terms of
hardware effort for the application sml

mentioned earlier, scheduling precedes hardware estimation.
Since the scheduling method in the high-level synthesis sys-
tem BSSisakind of path—based scheduling, we carried out our
path—based estimation technique ([14]). The controller estima-
tionistailoredto thehigh- evel synthesissystem BSS sinceour
experience has shown that amore genera controller estimation
technique leads to unacceptable deviations. The data path on
the other hand is estimated n a more genera way, as shown
above.

As an example for the experiences we conducted, fig. 6
compares estimation and real synthesis by using different de-
sign points of an application from the domain of digital signa
processing. Different design pointsmeansthat either thewhole
application or only parts of it have been estimated/synthesi zed.
Table | shows more results of other application, each time
comparing three different design points. As can be seen, dl
estimation results are in the same order of magnitude. The
estimationtimesare only afew secondsto afew minutesas op-
posed to results obtained by synthesiswho took in most cases
several hours. So, our estimation method iswell suited for fast

SW

H

shared
memory

Fig. 7. Example for our communication model

design space explorations as well as high-level estimations
to guide the designer during decisions like hardware/software
partitioning.

As can be observed, in most cases the number of estimated
gate equivalentsis larger than the according number obtained
by synthesis. Thisis due to the fact that al the optimization
steps carried out in high-level synthesis, RTL synthesis and
logic synthesis cannot — by principle— be taken into consid-
eration during estimation.

The superiority of our approach in terms of accuracy and
run-time as opposed to other estimation approaches is due to
thefollowing aspects: we perform a scheduling before estima-
tion of hardware effort, we use an advanced method for path
calculation[14], werely on afixed sequence of estimation (first
modules, then data registers and finally multiplexer) and last
but not least we separate data path and control path estimation
meaning that control path estimation is tailored to the high—
level synthesis system whereas data path estimation is more
generic.

IV. ESTIMATING HARDWARE/SOFTWARE COMMUNICATION

Our hardware/software model isasfollows. a software pro-
gramisexecuted on astandard processor core. At several points
in the program a hardware routineis called, thereby transmit-
ting control from softwareto hardware. After the hardware part
has completed execution, control is given back to the software.
When control is transmitted, also data has to be transferred
from software to hardware and vice versa since both sides may
operate on the same data. The estimation technique presented
here, estimates this communication.

A. The estimation gpproach

Fig.7 gives an example of our model for communication es-
timation. The boxeson theleft hand side symbolize asoftware
program, the boxes on the right hand side symbolize hardware
i.e. algorithms or part of dgorithms that are implemented as
a synthesized hardware. In the middle there are different sec-
tions of shared memory where communication is performed

through. All arcs are shown symbolize data transfers. For the
purpose of simplicity, arcs representing control transmission,
are omitted. Our communication model takes into consider-
ation the data transfer into the shared memory and the data
transfer from the shared memory into the processor or into the
hardware. The effort for transmitting control from software
to hardware or vice versa, is not reflected in our estimation
technique since we found out that this part is pretty small. So,
for one piece of hardware o; that is caled by software, the
following communication overhead arises:

s

— 04
Trans, SW—HW — 1

Trans,SW—mem + ;”;ans,memﬁHW

(1)
The first part stems from transferring data from software to
shared memory whereas the second part stems from transfer-
ring datafrom the shared memory into thehardware. A similar
communication effort arises when control is from hardware to
software. Inareal implementation thiswouldmean avery large
communication effort. What happensin redlity is: datathat is
already in hardware (e.g. produced by hardware piece o1 in the
fig.) and used by another pieceof hardware(e.g. o2infig.7) will
be directly transferred between these two hardware parts with-
out the detour through the shared memory, as applicable. The
problemisthat estimating this more sophisticated way of com-
munication isavery computation intensive task: each piece of
hardware can potentially transmit data to each other piece of
hardware, implying anumber of 2V of possibletransfers, with
N the number of al hardware pieces. Thisis acumbersome
way for estimation because of large estimation times. Fortu-
nately, we observed that the greatest amount of communication
arises between adjacent hardware pieces i.e. those hardware
pieces that are executed consecutively. Therefore, we restrict
our estimation only to those transfers. So, we make use of the
so—called locality of reference which means that datais likely
to be used whereit is produced.[15] Fig.8 shows the agorithm
for our estimation technique. The following conventions are
valid: o; isthe current piece of hardware, 0;_; and 0,1 arethe
pieces of hardware that precede and succeed o; in the control
flow, respectively. Furthermore, genfo] means the set of all
variables defined in piece o and use[o] means the set of dl
variablesused in piece 0.3 B2 representsall pieces (no matter
if software or hardware) that are executed before o; and By
represents all pieces that are executed after o;.

Line (1) estimatesthe communication overhead of datatrans-
fers from software into the shared memory according to equa-
tion 1. If there is a preceding piece of hardware (2), the com-
munication is reduced by that portion of variables that are
used and defined in the preceding piece, meaning that a direct
transfer among the hardware pieces can be performed without
the detour through the shared memory. The communication
overhead from hardware to software is calculated in a similar
manner (lines (3) to (4)). Finally, the total communication is
calculated (5).

3gen and use have the same meaning as defined in [15].

1) transfer operations from sw to shared memory
T;;angSW—»mem = |gen I:Bgl] Nuse [0’] |
2) considering adjacent pieces of hardware
I
(exists_in_HW(oi_l))
Then

a7

Trans,SW—mem =
|gen [oi—1] Nuse [o:] |
3) transfer operations from hw to shared memory
Transpiy_ o om = |gen [0i] Nuse [Bpo’] |
4) considering adjacent pieces of hardware
If

T

Trans,SW—mem

(exists-in-HW(oHl)
Then
a) TTTans,HW—»mem = TTTans,HW—»mem - |96n [01]ﬁ
use [oi1] |
5) number of transfer operations for hw piece o,
TO, — TO,

+ 17
Trans Trans,SW—mem Trans, HW —mem

Fig. 8. Algorithms to estimate hardware/software communication

B. Results

As aresult of the above estimation technique, estimation
times are very fast: even for larger applications (about 1000
lines of code) the estimation times are within a few seconds.
The chart in fig.9 shows the percentage of savingsin commu-
nication effort when using our technique (taking into consid-
eration the principle of locality of reference) as opposed to a
method that assumes for each piece of hardware acommunica-
tion through the shared memory. As can be seen, the savings
are between 20% and 100%. Further studies have shown that
estimating the transfers between pieces of hardware that are not
adjacent, lead only to a dight reduction in communication but
toamuch larger estimation times. Our approach for estimation
communication therefore offers a good compromise between
accuracy and estimation time and consequently it iswell suited
asahighlevel estimationtechniqueto explorethe design space
or to guide hardware/software partitioning.

V. APPLYING OUR FAST ESTIMATION TECHNIQUES FOR
HARDWARE/SOFTWARE PARTITIONING

In the previous sections, we pointed out that our estimation
techniques are well suited for usage in design space explo-
rationsand for guiding the process of partitioningasysteminto
hardware and software parts.

Asan examplefor theapplication of our fast estimation tech-
niques, we present a dynamically weighted cost function that
aimsat minimizing both, hardware effort and execution time of
ahardware/software system. However, thewhol e optimization
algorithmisnot presented here since it isaready published in
[16]. Here, we concentrate on the new part of the dynamically
weighted cost function and present new encouraging resultsin
section V1.

100 —

£ o

=l —

<

Q

<=

o

> -

o

5

G 10 + 2 |
=] §=

< ~

= Sy o] s %0
R Y B B g S| s |5 2
z Ny ey R S
Q o~ S| |=

g S S S S
o

>

o

—

o

E

applications

Fig. 9. Percentage of savingsin communication of our technique as opposed
to atechniquethat is dlightly faster but more conservative

A. Dynamically weighted cost function

It isassumed that for the purpose of hardware/software par-
titioning an optimization agorithmis used which optimizes by
iterative improvement. That means, for each proposed hard-
ware/software partitioning the cost function cal cul ates the cost
intermsof the design goal s (in our case meeting real—time con-
straintsand minimizing the hardware effort). The optimization
algorithm proposesanew hardware/software partiti oningsuntil
no more improvements are possible. Our optimization proce-
dure has been presented in [16]. Here we concentrate on our
new cost function that isdynamically weighted in order tomin-
imize the hardware effort while meeting real—time constraints.
The cost function is defined as follows:

A
Cost = a - costp(Tsys) +b - Warea - % . (2)
—_——
—— ———

time component
area component

We will discuss the single components in the following, es-
pecially the weighting factor wg,., Which varies dynamically,
dependent on how close the time constraint is met. A static
weighting by using the two constant factors ¢ and b only is not
sufficient for our purpose of meeting areal—time constraint and
minimizing the hardware effort at the same time. But before,
let us discuss another problem: since time and area have dif-
ferent physica units, we have to normalize our components.
As for the hardware component, we calculate the area of a
piece of hardware (using our estimation method presented in
section 111) and divideit by the average area of dl other pieces
of hardware A. Consequently, we get arelative number that is
in average closeto 1.

The time component is normalized as follows:

|Tsys -
Tconstr

Here, 1'.ons¢r isthered—time constraintand 7, , isthe current
execution time of the system. Sinceour am s

Tconstr|

costr (Toys) = +1

Tsys S Tconstr

Fig. 10. Factor wqrea asafunction of Ty«

we define the deviation |T;,; — T.onsetr| 8 cOst and put it in
relation to 7., iN Order to get a unit—-ess number that can
be combined with the area component. The constant 1 isadded
for the case where 7y, = T%onsir, Mmeaning that in that case
the area component would totally dominate unless we add 1.

So far, the cost function has been built straight forward.
However, we would never gain our aim of meeting a real—
time constraint and minimizing the hardware effort unless we
would care about w,.,. A desirable behavior of w,,., would
bethat itisOwhen weare far away from meeting thereal—time
constraint. This means that in such cases timing behavior is
optimized exclusively. But when 7, isclose to 1o s¢r, the
area component should start to become more and more influ-
ence until 7, isamost equal to 7'.oy,5;, Where wy,., should
be maximum. Thisis a dynamically weighting, meaning that
Wareq 1S dependent on the timing component. The following
definition fulfills the desirable behavior:

Tsys=Tinr .
Tcoj;ystr_Tthr VTanr < TSys < Teonstr
2Tconstr—1Lthr—Tsys .
warea(Tsys) = Teonstr—Tinr HMeonstr < TSys <
12 Tconstr - Ehr
0 selse

Thevalue of 13, is obtained by experience. In amore appar-
ent way, wg,.q iISshowninfigure 10. Unlessthe systemtiming
Tyys isfar away from 1ionsir, Warea = 0. If Ty, isclose to
Teonstr (Linr), Wareq Startsto increase until it becomes maxi-
mum (i.e. 1). Now the area component is dominating over the
time component. Thisis desirable since the time at this stage
has already been optimized. So, the dynamically weighting
offersthe possibility of separating area and time dependent on
the current state — without switching to another cost function
(this might be very computation intensive). By means of the
factorsa and b in equation 2 it is possible to control the extent
to which the area component should dominate during the end—
phase of the optimization procedure.

The experiments presented in the next section will show
that thistechnique is superior to techniques that combine time
and area in a fixed manner or that do not consider area as a
minimization goal.

60

50

40

30

20

hardware savings [%]

10

Lo

schub

ww fractals hash kontour sm1

Fig. 11. Savingsin hardware effort using the dynamically weighted cost

function as opposed to a cost function without dynamic weighting of the
hardware component.

VI. RESULTS

Inthesectionslll and IV resultssolely demonstrating the ad-
vantage of the particular estimation technique, have been pre-
sented. In this section we present results that make use of the
techniques described there as well of the estimation techniques
aready published ([17, 14]). These techniquesare appliedto a
cost function that aims at meeting real—time constraints while
minimizing the hardware effort of a system—on—a—chip. The
main feature of that cost function is the dynamically weighted
area component as described in the previous section.

The applications have a size between about 50 lines of code
and about 600 lines of C code. They are a smoothing algo-
rithm, contour detection, an HDTV chromakey agorithm, a
hash function and a simulation program for a spacecraft. The
results are summarized intablell.

The six applications are listed in columns three to eight.
Rows one and three show the according hardware effort (in
gate equivaents) and rows two and four hold the execution
times (in clock cycles) of each application. There are two
aress in thetable: the first two rows belong to a cost function
that does not feature a dynamically weighted component for
the hardware effort whereas rows three to four belong to to
the cost function described in section V. It can bee seen that
the hardware effort with the dynamically weighted hardware
component ("with") is in most cases smaller than in the case
without ("w/0"). Thereby — and that is very important — the
execution time of the application is only dightly different or
it is even the same. This reflects that our cost function can
find better solutions as opposed to a cost function that has no
dynamically weighted hardware component. The percentage
in hardware savingsis summarized in fig. 11.

Another important result is that al design points could be
obtained within afew minutes. As a consequence, our estima-
tiontechniquesare well suited for fast design space analysisto
explore a hardware/software system.

| aeacomp. | measured | "'schub™ | "ww” | "‘fractals” | "*hash™ | "‘kontour™ | "‘sm1" |
wio HW Effort 27448.0 | 49348.0 17605.5 | 64117.0 118295.0 | 16830.5
Tsys 227077 | 433387 322341 5602 2374158 | 277429
with HW Effort 26418.5 | 42793.0 17605.5 | 48150.0 59623.5 | 16830.5
Tsys 226758 | 433472 322341 5602 2378059 | 277429
TABLEII
HARDWARE EFFORT USING THE DYNAMICALLY WEIGHTED COST FUNCTION AS OPPOSED TO A COST FUNCTION WITHOUT DYNAMIC WEIGHTING OF THE HARDWARE
COMPONENT.

VIl. CONCLUSION

In this paper we have presented a fast high—evel estimation
technique for the hardware effort as well as a fast estimation
techniques for estimating hardware/software communication.
In the second part of this paper we applied these estimation
techniquestogether with afast hardware run—timeand software
run—time estimation technique ([17, 14]) to acost function that
combines a run—time constraint and a constraint to minimize
the hardware effort. This was possible through a technique of
dynamically weighting the hardware effort component. The
results have shown that this cost function in conjunction with
the fast estimation techniques leads to cheaper implementa
tion cost (less hardware effort) while still meeting the timing
constraints. So, our technique is well suited for fast design
space explorations that can support a designer by decisions
like hardware/software partitioning.

REFERENCES

[1] TI's 0.18 Micron Process Technology Packs 125 Mil-
lion Transistors on a Sngle Chip, Texas Instruments,
Published in the Internet, http://www:.ti.com/corp/docs/-
pressrel/1996/96025b.htm, 1996.

J. Henkel, F. Vahid, L. Ramachandran, Hard-
ware/Software Co—design of Embedded Systems, Held
as tutorial at Europ. Design and Test Conf. 97, Paris,
March 17th. 1997.

A. Kdavade, E. Lee, A Global Critically/Local Phase
Driven Algorithmfor the Constraint Hardware/Software
Partitioning Problem, Proc. of 3rd. IEEE Int. Workshop
on Hardware/Software Codesign, pp. 42-48, 1994.

F. Vahid, D.D. Ggjski, J. Gong, A Binary—Constraint
Search Algorithm for Minimizing Hardware during
Hardware/Software Partitioning, IEEE/ACM Proc. of
The European Conference on Design Automation (Eu-
roDAC) 1994, pp. 214-219, 1994.

F. Vahid, D.D. Gaski, Incremental Hardware Estima-
tion during Hardware/ Software Functional Partitioning,
IEEE Trans. on VLS| Systems, Vol.3, No.3, pp. 459—
464, Sept. 1995.

C. Stiidemann, Implementierung eines Schatzverfahrens
fur den Hardwarebedarf aus der \erhaltensbeschrei-
bung einer Hardware, Master Thesis, Institut fur DV—
Anlagen, Technische Universitat Braunschweig, 1996.

(2]

(3]

[4]

(5]

(6]

[7] R.J.Jain, A.C. Parker, N. Park, Predicting System-Level
Area and Delay for Pipelined and Nonpipelined De-
signs, |[EEE Trans. on CAD, Vol.11, No.8, pp. 955-965,
Aug. 1992.

A. Sharma, R. Jain, Estimating Architectural Resources
and Performance for High-Level Synthesis Applica-
tions, IEEE Trans. on VLS| Systems, Vol.1, No.2, pp.
175190, June 1993.

SY. Ohm, F Kurdahi, N. Dutt, Comprehensive
Lower Bound Estimation from Behavioral Descriptions,
IEEE/ACM Proc. of International Conference on CAD
(ICCAD) 1994, pp. 182-186, 1994.

JM. Rabaey, M. Potkonjak, Estimating Implementation
Boundsfor Real Time DSP Application Specific Circuits,
IEEE Trans. on CAD, Vol.13, No.6, pp. 669-683, June
1994,

S. Narayan, D.D. Ggjski, Area and Performance Esti-
mation from System-Level Specifications, University of
Cdlifornia Irvine, Dept. of Information and Computer
Science, Technical Report ICS-92-16, 1992.

R. Camposano, Path—Based Scheduling for Synthesis,
| EEE Transactions on Computer—Aided Design, Val. 10,
No.1, pp. 85-93, Jan. 1991.

C.J. Tseng, D.P. Siewiorek, Automated Synthesisof Data
Pathsin Digital Systems, |IEEE Trans. on CAD, Vol. 5,
No. 3, Juli 1986.

J. Henkd, R. Ernst, A Path-Based Estimation Tech-
nique for Estimating Hardware Runtime in HW/SW-
Cosynthesis, |IEEE/ACM Proc. of 8th. International
Symposium on System Synthesis, pp. 116-121, 1995.

A.V. Aho, R. Sethi, J.D. Ullmann, Compilers Princi-
ples, Techniques, and Tools, Addison-Wesley Publish-
ing Group, 1986.

J. Henkel, R. Ernst, A Hardware/Software Parti-
tioner using a dynamically determined Granularity,
IEEE/ACM Proc. of 34th. Design Automation Confer-
ence (DAC) 1997, pp. 691-696.

[17] W. Ye, R. Erngt, Th. Benner, J. Henkel, Fast
Timing Analysis for Harware-Software Cosynthesis,
|[EEE/ACM Proc. of International Conference on Com-
puter Design (ICCD) 1993, pp. 452-457, 1993.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

