
High-Level Estimation Techniques for Usage in Hardware/Software Co-Design

Jörg Henkel Rolf Ernst

C&C Research Laboratories Institut für DV –Anlagen
NEC USA, Princeton, NJ 08540 Technische Universität Braunschweig

henkel@ccrl.nj.nec.com D–38106 Braunschweig, Germany

Abstract--- High-level estimation techniques are of paramount
importance for design decisions like hardware/softwarepartition-
ing or design space explorations. In both cases an appropriate
compromise between accuracy and computation time determines
about the feasibility of those estimation techniques. In this paper
we present high--level estimation techniques for hardware effort
and hardware/software communication time. Our techniques
deliver fast results at sufficient accuracy. Furthermore, it is
shown in which way these techniques are applied in order to cope
with contradictory design goals like performance constraints and
hardware effort constraints. As a solution, we present a cost
function for the purpose of hardware/software partitioning that
offers a dynamic weighting of its components. The conducted
experiments show that the usage of our estimation techniques in
conjunction with their efficient combination leads to reasonable
hardware/software implementations as opposed to approaches
that consider single constraints only.

I. INTRODUCTION

Though complex systems–on–a–chip are already reality
([1]), accurate and fast high–level estimation techniques
are still rare. Systems–on–a–chip comprise software parts
(e.g. processor cores running a software program) and hardware
parts (dedicated hardware implementing system parts with high
performance constraints). The tradeoff between these hardware
and software parts is controlled by design constraints like limi-
tation of the die size, performance considerations, design time,
design flexibility, design re–use etc. This large variety of con-
straints makes it almost impossible or at least very hard for the
system designer to find a sophisticated compromise that best
matches these constraints in a particular case. So, the current
procedure of providing a customer with such a design is as
follows: the vendor delivers a couple of designs with slightly
different focuses to the costumer who decides for that one that
meets best his constraints. Afterwards, one or more refine-
ments on the favorite design are conducted. The whole process
is iterative and takes up to half a year. This time–consuming
and therefore expensive process could be drastically reduced
if high–level estimation methodologies would be performed
before mayor design decisions are made. The intention is to
explore the design space with respect to different design con-
straints. As a result, fast and sufficiently accurate statements
concerning a possible implementation can be obtained. At that

point the designer can be guided towards his next design steps
while preventing misleading design decisions.

In this paper we introduce some high–level estimation tech-
niques that aim at exploring the design space as well as guiding
the process of hardware/software partitioning. Due to limited
space in this paper we concentrate on two high–level estima-
tion techniques: hardware effort and hardware/software com-
munication estimation. While the first technique is useful for
estimating the implementation cost, the other techniques is part
of estimating the performance in a hardware/software system.
As mentioned above, design constraints are often manifold. As
an example, for a special class of systems–on–a–chip — hard
real–time systems — there is a hard timing constraint as well
as the constraint to keep the hardware effort as small as possi-
ble. We show in which way this contradictory constraints can
be combined into one single cost function. Furthermore, we
demonstrate that this technique — a dynamically weighted cost
function — can save hardware effort as opposed to techniques
that take into consideration one constraint at a time only.
Not less important are techniques for software run–time estima-
tion and hardware run–time estimation. As for our approach,
those techniques are described in [17, 14].

This paper is structured as follows: section II gives a short
overview of research activities in co–synthesis as far as these
approaches focus on hardware/software partitioning and pro-
vide a cost function that considers at least two different con-
straints — such as run–time and hardware effort, for exam-
ple. Other approaches to co–synthesis and especially to hard-
ware/software partitioning are not introduced here since parti-
tioning and co–synthesis are not the primary goals of that paper.
For a summary of those approaches, the interested reader is re-
ferred to [2]. The following two sections are dedicated to the
estimation of hardware effort and hardware/software commu-
nication, respectively. Each of these sections also contains an
overview of related work in that specific area rather than to
include that in section II. Afterwards, section V presents our
approach of combining these different estimation techniques
into one single cost function with the goal of meeting a real–
time constraint and at the same time minimizing the hardware
effort. For this purpose, a dynamically weighted cost func-
tion is presented. Results of this combination are presented
in section VI. However, individual results i.e. those referring
to estimation techniques solely, are presented in the according
sections. Finally, section VII gives a conclusion.

II. RELATED WORK

Rather than giving an overview of all approaches to system–
level design techniques and estimation, we introduce two ap-
proaches that explicitly describe their method of reducing the
hardware effort while meeting real–time constraints during
hardware/software partitioning. More approaches to hard-
ware/software co–design are described in [2]. Furthermore,
related work to specific high–level estimation techniques is in-
troduced within this paper in the according sections.

Kalavade and Lee [3] describe an algorithm called GCLP
to minimize hardware effort while meeting timing constraints.
The main idea is to select different cost functions during hard-
ware/software partitioning according to a criticality measure
that is computed for each possible hardware/software parti-
tioning.
Vahid and Gajski [4] use a binary search algorithm to minimize
hardware effort while meeting timing constraints during par-
titioning. They relax the contradictory goals of low hardware
effort and timing constraints by accepting all hardware efforts
below a given size rather than trying to optimize hardware
effort and timing at the same time. They use an incremen-
tal algorithm for estimating hardware effort that is adapted to
function–level partitioning [5].

Our approach handles the contradictory goals of minimizing
hardware and meeting real–time constraints by a cost function
that is dynamically weighted rather than selecting from a set of
different cost functions.

III. A HIGH-LEVEL HARDWARE EFFORT ESTIMATION

TECHNIQUE

The aim of this hardware effort estimation technique is to
obtain helpful hints about the possible hardware effort of var-
ious system parts before the final decision of partitioning into
hardware and software is done. This is one mayor difference
compared to methods who assume that a particular piece will
be implemented as a hardware in any case. As a consequence,
our technique is subject to different constraints. It should a)
deliver fast estimations, b) be as far as possible independent
from synthesis c) easily get adapted to various synthesis tools

A. Related work in high-level hardware effort estimation

The technique presented in [7] estimates hardware effort and
delay time for functional units only. They calculate a minimum
hardware effort for a given delay time or a minimum delay time
for a given amount of hardware resources. The approach de-
scribed in [8] is an extension of [7] that additionally takes into
consideration hardware effort for connectivity. The approach
described in [9] is interval based. Due to not considered data
dependencies between intervals the actual demand on resources
might be larger. In [10] a lower bound estimation technique
for data dominated applications is presented. The approach
in [11] is very complete since it takes into consideration data
path resources as well as the hardware effort for the controller
and the memory. However, statistical assumptions may lead

Fig. 1. Components to estimate: Registers, input multiplexer, modules and
output multiplexer

to larger deviations. Furthermore, it is not assumed that a
scheduling has already been performed. The method intro-
duced in [5] is one of the few that is tailored to the demands of
hardware/software co–design since it features an incremental
estimation for each possible hardware/software partitioning.
The method is accurate for coarse–grain estimation (e.g. esti-
mating whole functions or tasks) but inaccurate for small–grain
estimation (base blocks etc.).

To summarize, there are some fast but not sufficiently accu-
rate approaches available. Their inaccuracy results from their
principle: they are lower bound methods that, for example, do
not assume that a scheduling has already been performed.

Our approach is comparable to those in terms of execution
times but due to a previously performed scheduling as well as
not relying on statistical data, it promises to be more accurate.
An additional feature is the adaptation to different synthesis
tools. We made the experience that especially the controller of
a hardware design is very specific to the applied synthesis tool
i.e. hard to estimate in a general approach. Therefore, this part
of the estimation is separated from the estimation of the data
path.

B. Our Approach

Our approach takes into consideration controller as well as
data path estimation. But only the estimation of the data path is
presented here1, because the controller part needs to be adapted
to the synthesis tool we use before a satisfactory result can be
obtained. An important feature of our technique is performing
scheduling before the estimation is started.

In the following, the algorithms for estimating modules, data
registers, and multiplexer are presented (Fig. 1 gives an exam-
ple of a data path). The estimation takes place at a CDFG
(control and data flow graph) representation that is directly
derived from a C system–level description.

B.1 Modules

A module m performs an operation oi;l where i denotes the
control step it is performed in and l refers to the 3–address–code
it is part of. Let M = fm1; . . . ;mDg be the set of different

1Estimating the hardware effort of the controller is described in detail in
[6].

1) Initialize global ModulList
2) For all csi 2 CS

3) Initialize local ModulList
4) For all oi;l 2 Ol

5) Compute sorted ModulList
6) m� := first element of sorted ModulList
7) For all elements of sorted ModulList
8) m� :=current ModulType of sorted ModulList
9) If number(m�)m�2mboxglob: Mod: List >

10) number(m�)m�2lok. Mod. List
11) then
12) Increment number of ModulTypem� in
13) local ModulList by 1; goto 2)
14) Incr. # of ModulType m� in local ModulList by 1
15) update global ModulList by means of local ModulList
16) Initialize hardware effort Amod of Modules
17) For all ModulTypes of global ModulList
18) Amod := Amod + number(m�)�A(m�)

Fig. 2. Algorithm for estimating the number and types of modules

module types with D the total number. Furthermore, assume
that for each module m of type �, i.e. m� , there are one or
more instances. Figure 2 shows the algorithm for estimating
the number of necessary modules. The main loop (2) is iterated
for all control steps csi in the set of all control stepsCS. Global
and Local Module List have the same structure since they both
provide an entry for each module type and specifying their
number of them that has been used so far. Now, the inner
loop starting at (4) is iterated for all operators. The purpose
of the sorted module list is to provide all possible modules
i.e. those that might be able to execute operation oi;l. The
list is sorted in an ascending order of hardware effort for each
module. Afterwards, an initial module is selected (6). In the
following steps (9 to 13), all fitting module types are tested in
terms of previous (i.e. within another control step) instantiation.
If that is the case then this module type is assigned to the current
operator and an additional instance of this module type is not
necessary. This assignment is noted in the local module list
and afterwards the next operator is selected (12). In the other
case, the local module list is searched for an already instantiated
but in the current control step not used instance of the specific
module type. If the search fails, the first and as mentioned the
least hardware consuming module is assigned to the current
operator and the local module list is updated (14). After all
operators of a specific control step have been served, the global
module list is enlarged by as many entries as the local module
list has (15). So, after all operators and all control steps are
treated, the global module list contains the number of instances
of all module types (18).

B.2 Data Registers

Data registers hold temporary results or data that is loaded from
memory or going to be stored into memory. Since registers
are expensive, as many as possible variables should share one
register. Therefore, a life–time interval tL(X) := [csa; csb] for

1) Register#max = 0
2) Calculate all pathes P = P1; . . . ; Pn of graph G = fV; Eg

3) For all pathesPi 2 P

4) Search all locations def(i)
5) For all definitions of variables def(i)
6) Search last location use(i)
7) TL := TL [tL(i)

8) Register# = CliquePart(TL)
9) If
10) Register# > Register#max

11) then
12) Register#

max
= Register#

13) Areg = Register#max �Asingle register

Fig. 3. Algorithm for estimating the number of data registers. Graph G is a
CDFG.

each variable is calculated. In this context, csa is the control
step in which variable x is defined for the first time i.e. a
value is assigned to x. Furthermore, csb denotes the control
step in which variable x is used for the last time. Taking into
consideration that a variable can have several life time intervals
within a program execution, the set of all life time intervals of
a variable is defined. Using these definitions, figure 3 shows
the algorithm for estimating the number of necessary registers.
Starting with initializing the number of registers (1), the main
loop iterates for all paths 2 (2), (3). Then, for all variables
the set of life times are calculated (4) to (7). Afterwards, the
minimum number of registers is calculated using the clique
partitioning algorithm (8) [13]. In the followings steps (9) to
(12) the number of registers is updated and finally the hardware
effort of all necessary registers is calculated by multiplying the
number of estimated registers by the amount of gates used for
one register (13).

B.3 Multiplexer

The task of the multiplexer in a multiplex–based data path is
to distribute the values in the data registers among the modules
(ALUs, multipliers,. . .) and to forward results of operations
to registers. These both types of multiplexer are called input
and output multiplexer, respectively. The algorithm presented
in the following (input multiplexer), assumes that a module
estimation as well as estimation of data registers have already
been carried out. Consequently, at this point it is known which
value is contained in which register during each control step.
Furthermore, it is known which operation is executed it which
module. In the following, the estimation of input multiplexer
is presented (fig. 4).

The first loop (2) is iterated for all types of modules whereas
the nested loop (3) is iterated for all instances of that particular
module type. The number of input lines of a multiplexer nE
is calculated by means of jOm�;i

j i.e. the number of operators

2We have developed an algorithm for keeping the number of relevant paths
small. Consequently,we do not have to cope with a polynomial path complexity
problem as described in [12]. Our method is described in detail in [14].

1) Nmod = 0
2) For all ModulTypes 2 globale ModulList
3) For all Instances of ModulType m�

4) Nmod = Nmod + 1
5) nE = 0
6) For both Operands
7) nE = nE + jOm�;i

j

8) MuxList[Nmod] = nE
9) Amux;in = 0
10) For all Elements mi of MuxList
11) If
12) MuxList[mi] > 1
13) then
14) Amux;in = Amux;in + Amux(nE)

Fig. 4. Algorithm for estimating the number and types of input multiplexer

Fig. 5. Estimation results compared to synthesis results

that are intended to be executed in this instance of that mod-
ule (known from module estimation). The number of modules
Nmod and the according number of input lines are stored in
MuxList[]. Once, the number of multiplexer and their input
lines are known, the according hardware effort (in terms of gate
equivalents) is calculated advising an according data base.

The estimation of the output multiplexer is performed in a
similar way but omitted in this paper for lack space.

C. Estimating hardware effort: results

The result of our hardware estimation technique is the sum

Aestim = Amod + Areg + Amux + Acontrol

whereAmod,Areg ,Amux. Acontrol are the hardware effort for
modules, registers, multiplexers and the control unit, respec-
tively. As mentioned above, Acontrol is not described here.
In order to guarantee a precise comparison of our estimation
technique, the following steps are performed for each exam-
ple: high–level synthesis using our system BSS is carried out
and the resulting RTL description is fed into the SYNOPSYS
design compiler by means of the LSI 2.0 library. Output is the
hardware effort in terms of gate equivalents (1 gate equivalent
(geq) is equal to 4 transistors). See fig. 5 for the synthesis steps.
Later on, estimation results and synthesis results are compared.
Before, the adaption of estimation to synthesis is discussed: as

application method DP1 DP2 DP3

estim 10,618 9,188 9,188bpic
synth 7,697 8,848 9,101
estim 6,976 7,486 29,814hash
synth 3,093 8,267 11,773
estim 22,887 9,944 26,463huffman
synth 6,904 7,272 7,538
estim 4,020 2,411 5,849labeling
synth 1,123 2,450 2,459
estim 2,380 14,906 14,982table
synth 1,088 15,057 16,483
estim 13,290 27,700 29,130trick
synth 3,449 12,837 15,084
estim 16,060 40,614 42,413turmits
synth 3,593 3,736 12,378

TABLE I
COMPARISON OF OUR ESTIMATION TECHNIQUE FOR HARDWARE EFFORT (IN

GATE EQUIVALENTS) AND SYNTHESIS RESULTS FOR THREE DIFFERENT DESIGN

POINTS (DP1 TO DP3) OF EACH APPLICATION

5000

10000

15000

20000

25000

DP1 DP2 DP3 DP4

ha
rd

w
ar

e
ef

fo
rt

 [
ga

te
s]

design points

after synthesis

estimation technique

Fig. 6. Comparison of estimation results and synthesis results in terms of
hardware effort for the application sm1

mentioned earlier, scheduling precedes hardware estimation.
Since the scheduling method in the high–level synthesis sys-
tem BSS is a kind of path–based scheduling, we carried out our
path–based estimation technique ([14]). The controller estima-
tion is tailored to the high–level synthesis system BSS since our
experience has shown that a more general controller estimation
technique leads to unacceptable deviations. The data path on
the other hand is estimated n a more general way, as shown
above.

As an example for the experiences we conducted, fig. 6
compares estimation and real synthesis by using different de-
sign points of an application from the domain of digital signal
processing. Different design points means that either the whole
application or only parts of it have been estimated/synthesized.
Table I shows more results of other application, each time
comparing three different design points. As can be seen, all
estimation results are in the same order of magnitude. The
estimation times are only a few seconds to a few minutes as op-
posed to results obtained by synthesis who took in most cases
several hours. So, our estimation method is well suited for fast

Fig. 7. Example for our communication model

design space explorations as well as high–level estimations
to guide the designer during decisions like hardware/software
partitioning.

As can be observed, in most cases the number of estimated
gate equivalents is larger than the according number obtained
by synthesis. This is due to the fact that all the optimization
steps carried out in high–level synthesis, RTL synthesis and
logic synthesis cannot — by principle — be taken into consid-
eration during estimation.

The superiority of our approach in terms of accuracy and
run-time as opposed to other estimation approaches is due to
the following aspects: we perform a scheduling before estima-
tion of hardware effort, we use an advanced method for path
calculation [14], we rely on a fixed sequence of estimation (first
modules, then data registers and finally multiplexer) and last
but not least we separate data path and control path estimation
meaning that control path estimation is tailored to the high–
level synthesis system whereas data path estimation is more
generic.

IV. ESTIMATING HARDWARE/SOFTWARE COMMUNICATION

Our hardware/software model is as follows: a software pro-
gram is executed on a standard processor core. At several points
in the program a hardware routine is called, thereby transmit-
ting control from software to hardware. After the hardware part
has completed execution, control is given back to the software.
When control is transmitted, also data has to be transferred
from software to hardware and vice versa since both sides may
operate on the same data. The estimation technique presented
here, estimates this communication.

A. The estimation approach

Fig.7 gives an example of our model for communication es-
timation. The boxes on the left hand side symbolize a software
program, the boxes on the right hand side symbolize hardware
i.e. algorithms or part of algorithms that are implemented as
a synthesized hardware. In the middle there are different sec-
tions of shared memory where communication is performed

through. All arcs are shown symbolize data transfers. For the
purpose of simplicity, arcs representing control transmission,
are omitted. Our communication model takes into consider-
ation the data transfer into the shared memory and the data
transfer from the shared memory into the processor or into the
hardware. The effort for transmitting control from software
to hardware or vice versa, is not reflected in our estimation
technique since we found out that this part is pretty small. So,
for one piece of hardware oi that is called by software, the
following communication overhead arises:

T oi
Trans;SW!HW = T oi

Trans;SW!mem + T oi
Trans;mem!HW

(1)
The first part stems from transferring data from software to
shared memory whereas the second part stems from transfer-
ring data from the shared memory into the hardware. A similar
communication effort arises when control is from hardware to
software. In a real implementation this would mean a very large
communication effort. What happens in reality is: data that is
already in hardware (e.g. produced by hardware piece o1 in the
fig.) and used by another piece of hardware (e.g. o2 in fig.7) will
be directly transferred between these two hardware parts with-
out the detour through the shared memory, as applicable. The
problem is that estimating this more sophisticated way of com-
munication is a very computation intensive task: each piece of
hardware can potentially transmit data to each other piece of
hardware, implying a number of 2N of possible transfers, with
N the number of all hardware pieces. This is a cumbersome
way for estimation because of large estimation times. Fortu-
nately, we observed that the greatest amount of communication
arises between adjacent hardware pieces i.e. those hardware
pieces that are executed consecutively. Therefore, we restrict
our estimation only to those transfers. So, we make use of the
so–called locality of reference which means that data is likely
to be used where it is produced.[15] Fig.8 shows the algorithm
for our estimation technique. The following conventions are
valid: oi is the current piece of hardware, oi�1 and oi+1 are the
pieces of hardware that precede and succeed oi in the control
flow, respectively. Furthermore, gen[o] means the set of all
variables defined in piece o and use[o] means the set of all
variables used in piece o.3 Boi

a represents all pieces (no matter
if software or hardware) that are executed before oi and Boi

p

represents all pieces that are executed after oi.
Line (1) estimates the communication overhead of data trans-

fers from software into the shared memory according to equa-
tion 1. If there is a preceding piece of hardware (2), the com-
munication is reduced by that portion of variables that are
used and defined in the preceding piece, meaning that a direct
transfer among the hardware pieces can be performed without
the detour through the shared memory. The communication
overhead from hardware to software is calculated in a similar
manner (lines (3) to (4)). Finally, the total communication is
calculated (5).

3gen and use have the same meaning as defined in [15].

1) transfer operations from sw to shared memory
T
oi
Trans;SW!mem

= jgen
�
B
oi
a

�
\ use [oi] j

2) considering adjacent pieces of hardware
If �

exists in HW (oi�1)
�

Then

a) T oiTrans;SW!mem
= T

oi
Trans;SW!mem

�

jgen [oi�1] \ use [oi] j

3) transfer operations from hw to shared memory
Trans

oi
HW!mem

= jgen [oi] \ use
�
Bpoi

�
j

4) considering adjacent pieces of hardware
If �

exists in HW (oi+1

�
Then

a) TTrans;HW!mem = TTrans;HW!mem�jgen [oi]\
use [oi+1] j

5) number of transfer operations for hw piece oi
T
oi
Trans = T

oi
Trans;SW!mem + T

oi
Trans;HW!mem

Fig. 8. Algorithms to estimate hardware/software communication

B. Results

As a result of the above estimation technique, estimation
times are very fast: even for larger applications (about 1000
lines of code) the estimation times are within a few seconds.
The chart in fig.9 shows the percentage of savings in commu-
nication effort when using our technique (taking into consid-
eration the principle of locality of reference) as opposed to a
method that assumes for each piece of hardware a communica-
tion through the shared memory. As can be seen, the savings
are between 20% and 100%. Further studies have shown that
estimating the transfers between pieces of hardware that are not
adjacent, lead only to a slight reduction in communication but
to a much larger estimation times. Our approach for estimation
communication therefore offers a good compromise between
accuracy and estimation time and consequently it is well suited
as a high level estimation technique to explore the design space
or to guide hardware/software partitioning.

V. APPLYING OUR FAST ESTIMATION TECHNIQUES FOR

HARDWARE/SOFTWARE PARTITIONING

In the previous sections, we pointed out that our estimation
techniques are well suited for usage in design space explo-
rations and for guiding the process of partitioning a system into
hardware and software parts.

As an example for the application of our fast estimation tech-
niques, we present a dynamically weighted cost function that
aims at minimizing both, hardware effort and execution time of
a hardware/software system. However, the whole optimization
algorithm is not presented here since it is already published in
[16]. Here, we concentrate on the new part of the dynamically
weighted cost function and present new encouraging results in
section VI.

Fig. 9. Percentage of savings in communication of our technique as opposed
to a technique that is slightly faster but more conservative

A. Dynamically weighted cost function

It is assumed that for the purpose of hardware/software par-
titioning an optimization algorithm is used which optimizes by
iterative improvement. That means, for each proposed hard-
ware/software partitioning the cost function calculates the cost
in terms of the design goals (in our case meeting real–time con-
straints and minimizing the hardware effort). The optimization
algorithm proposes a new hardware/software partitioningsuntil
no more improvements are possible. Our optimization proce-
dure has been presented in [16]. Here we concentrate on our
new cost function that is dynamically weighted in order to min-
imize the hardware effort while meeting real–time constraints.
The cost function is defined as follows:

Cost = a � costT (Tsys)| {z }
time component

+ b �warea �
Area

A| {z }
area component

: (2)

We will discuss the single components in the following, es-
pecially the weighting factor warea which varies dynamically,
dependent on how close the time constraint is met. A static
weighting by using the two constant factors a and b only is not
sufficient for our purpose of meeting a real–time constraint and
minimizing the hardware effort at the same time. But before,
let us discuss another problem: since time and area have dif-
ferent physical units, we have to normalize our components.
As for the hardware component, we calculate the area of a
piece of hardware (using our estimation method presented in
section III) and divide it by the average area of all other pieces
of hardware A. Consequently, we get a relative number that is
in average close to 1.
The time component is normalized as follows:

costT (Tsys) =
jTsys � Tconstrj

Tconstr
+ 1

Here, Tconstr is the real–time constraint and Tsys is the current
execution time of the system. Since our aim is

Tsys � Tconstr

Fig. 10. Factor warea as a function of Tsys

we define the deviation jTsys � Tconstrj as cost and put it in
relation to Tconstr in order to get a unit–less number that can
be combined with the area component. The constant 1 is added
for the case where Tsys = Tconstr, meaning that in that case
the area component would totally dominate unless we add 1.

So far, the cost function has been built straight forward.
However, we would never gain our aim of meeting a real–
time constraint and minimizing the hardware effort unless we
would care about warea. A desirable behavior of warea would
be that it is 0 when we are far away from meeting the real–time
constraint. This means that in such cases timing behavior is
optimized exclusively. But when Tsys is close to Tconstr, the
area component should start to become more and more influ-
ence until Tsys is almost equal to Tconstr where warea should
be maximum. This is a dynamically weighting, meaning that
warea is dependent on the timing component. The following
definition fulfills the desirable behavior:

warea(Tsys) =

8>><
>>:

Tsys�Tthr
Tconstr�Tthr

: Tthr � Tsys � Tconstr
2�Tconstr�Tthr�Tsys

Tconstr�Tthr
: Tconstr � Tsys �

: 2 � Tconstr � Tthr
0 : else

The value of Tthr is obtained by experience. In a more appar-
ent way, warea is shown in figure 10. Unless the system timing
Tsys is far away from Tconstr, warea = 0. If Tsys is close to
Tconstr (Tthr), warea starts to increase until it becomes maxi-
mum (i.e. 1). Now the area component is dominating over the
time component. This is desirable since the time at this stage
has already been optimized. So, the dynamically weighting
offers the possibility of separating area and time dependent on
the current state — without switching to another cost function
(this might be very computation intensive). By means of the
factors a and b in equation 2 it is possible to control the extent
to which the area component should dominate during the end–
phase of the optimization procedure.

The experiments presented in the next section will show
that this technique is superior to techniques that combine time
and area in a fixed manner or that do not consider area as a
minimization goal.

Fig. 11. Savings in hardware effort using the dynamically weighted cost
function as opposed to a cost function without dynamic weighting of the
hardware component.

VI. RESULTS

In the sections III and IV results solely demonstrating the ad-
vantage of the particular estimation technique, have been pre-
sented. In this section we present results that make use of the
techniques described there as well of the estimation techniques
already published ([17, 14]). These techniques are applied to a
cost function that aims at meeting real–time constraints while
minimizing the hardware effort of a system–on–a–chip. The
main feature of that cost function is the dynamically weighted
area component as described in the previous section.

The applications have a size between about 50 lines of code
and about 600 lines of C code. They are a smoothing algo-
rithm, contour detection, an HDTV chromakey algorithm, a
hash function and a simulation program for a spacecraft. The
results are summarized in table II.

The six applications are listed in columns three to eight.
Rows one and three show the according hardware effort (in
gate equivalents) and rows two and four hold the execution
times (in clock cycles) of each application. There are two
areas in the table: the first two rows belong to a cost function
that does not feature a dynamically weighted component for
the hardware effort whereas rows three to four belong to to
the cost function described in section V. It can bee seen that
the hardware effort with the dynamically weighted hardware
component ("with") is in most cases smaller than in the case
without ("w/o"). Thereby — and that is very important — the
execution time of the application is only slightly different or
it is even the same. This reflects that our cost function can
find better solutions as opposed to a cost function that has no
dynamically weighted hardware component. The percentage
in hardware savings is summarized in fig. 11.

Another important result is that all design points could be
obtained within a few minutes. As a consequence, our estima-
tion techniques are well suited for fast design space analysis to
explore a hardware/software system.

area comp. measured "‘schub"’ "‘ww"’ "‘fractals"’ "‘hash"’ "‘kontour"’ "‘sm1"’

HW Effort 27448.0 49348.0 17605.5 64117.0 118295.0 16830.5w/o
Tsys 227077 433387 322341 5602 2374158 277429
HW Effort 26418.5 42793.0 17605.5 48150.0 59623.5 16830.5with
Tsys 226758 433472 322341 5602 2378059 277429

TABLE II
HARDWARE EFFORT USING THE DYNAMICALLY WEIGHTED COST FUNCTION AS OPPOSED TO A COST FUNCTION WITHOUT DYNAMIC WEIGHTING OF THE HARDWARE

COMPONENT.

VII. CONCLUSION

In this paper we have presented a fast high–level estimation
technique for the hardware effort as well as a fast estimation
techniques for estimating hardware/software communication.
In the second part of this paper we applied these estimation
techniques together with a fast hardware run–time and software
run–time estimation technique ([17, 14]) to a cost function that
combines a run–time constraint and a constraint to minimize
the hardware effort. This was possible through a technique of
dynamically weighting the hardware effort component. The
results have shown that this cost function in conjunction with
the fast estimation techniques leads to cheaper implementa-
tion cost (less hardware effort) while still meeting the timing
constraints. So, our technique is well suited for fast design
space explorations that can support a designer by decisions
like hardware/software partitioning.

REFERENCES

[1] TI’s 0.18 Micron Process Technology Packs 125 Mil-
lion Transistors on a Single Chip, Texas Instruments,
Published in the Internet, http://www.ti.com/corp/docs/-
pressrel/1996/96025b.htm, 1996.

[2] J. Henkel, F. Vahid, L. Ramachandran, Hard-
ware/Software Co–design of Embedded Systems, Held
as tutorial at Europ. Design and Test Conf. 97, Paris,
March 17th. 1997.

[3] A. Kalavade, E. Lee, A Global Critically/Local Phase
Driven Algorithm for the Constraint Hardware/Software
Partitioning Problem, Proc. of 3rd. IEEE Int. Workshop
on Hardware/Software Codesign, pp. 42–48, 1994.

[4] F. Vahid, D.D. Gajski, J. Gong, A Binary–Constraint
Search Algorithm for Minimizing Hardware during
Hardware/Software Partitioning, IEEE/ACM Proc. of
The European Conference on Design Automation (Eu-
roDAC) 1994, pp. 214–219, 1994.

[5] F. Vahid, D.D. Gajski, Incremental Hardware Estima-
tion during Hardware/Software Functional Partitioning,
IEEE Trans. on VLSI Systems, Vol.3, No.3, pp. 459–
464, Sept. 1995.

[6] C. Stüdemann, Implementierung eines Schätzverfahrens
für den Hardwarebedarf aus der Verhaltensbeschrei-
bung einer Hardware, Master Thesis, Institut für DV–
Anlagen, Technische Universität Braunschweig, 1996.

[7] R.J. Jain, A.C. Parker, N. Park, Predicting System–Level
Area and Delay for Pipelined and Nonpipelined De-
signs, IEEE Trans. on CAD, Vol.11, No.8, pp. 955-965,
Aug. 1992.

[8] A. Sharma, R. Jain, Estimating Architectural Resources
and Performance for High–Level Synthesis Applica-
tions, IEEE Trans. on VLSI Systems, Vol.1, No.2, pp.
175–190, June 1993.

[9] S.Y. Ohm, F. Kurdahi, N. Dutt, Comprehensive
Lower Bound Estimation from Behavioral Descriptions,
IEEE/ACM Proc. of International Conference on CAD
(ICCAD) 1994, pp. 182–186, 1994.

[10] J.M. Rabaey, M. Potkonjak, Estimating Implementation
Bounds for Real Time DSP Application Specific Circuits,
IEEE Trans. on CAD, Vol.13, No.6, pp. 669–683, June
1994.

[11] S. Narayan, D.D. Gajski, Area and Performance Esti-
mation from System–Level Specifications, University of
California Irvine, Dept. of Information and Computer
Science, Technical Report ICS-92-16, 1992.

[12] R. Camposano, Path–Based Scheduling for Synthesis,
IEEE Transactions on Computer–Aided Design, Vol. 10,
No.1, pp. 85–93, Jan. 1991.

[13] C.J. Tseng, D.P. Siewiorek, Automated Synthesis of Data
Paths in Digital Systems, IEEE Trans. on CAD, Vol. 5,
No. 3, Juli 1986.

[14] J. Henkel, R. Ernst, A Path-Based Estimation Tech-
nique for Estimating Hardware Runtime in HW/SW-
Cosynthesis, IEEE/ACM Proc. of 8th. International
Symposium on System Synthesis, pp. 116–121, 1995.

[15] A.V. Aho, R. Sethi, J.D. Ullmann, Compilers Princi-
ples, Techniques, and Tools, Addison–Wesley Publish-
ing Group, 1986.

[16] J. Henkel, R. Ernst, A Hardware/Software Parti-
tioner using a dynamically determined Granularity,
IEEE/ACM Proc. of 34th. Design Automation Confer-
ence (DAC) 1997, pp. 691–696.

[17] W. Ye, R. Ernst, Th. Benner, J. Henkel, Fast
Timing Analysis for Harware–Software Cosynthesis,
IEEE/ACM Proc. of International Conference on Com-
puter Design (ICCD) 1993, pp. 452-457, 1993.

