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Summary. *Successful and effective content-based access to digdab requires fast, ac-
curate and scalable methods to determine the video contesrnatically. A variety of con-
temporary approaches to this rely on text taken from speéittinvthe video, or on matching
one video frame against others using low-level charattesitike colour, texture, or shapes,
or on determining and matching objects appearing withirvitleo. Possibly the most impor-
tant technique, however, is one which determines the pcesenabsence of a high-level or
semantic feature, within a video clip or shot. By utilizingzéins, hundreds or even thousands
of such semantic features we can support many kinds of cohteed video navigation. Criti-
cally however, this depends on being able to determine venetich feature is or is not present
in a video clip. The last 5 years have seen much progress idev&opment of techniques
to determine the presence of semantic features within vitleis progress can be tracked in
the annual TRECVid benchmarking activity where dozens séaech groups measure the ef-
fectiveness of their techniques on common data and usingeam, anetrics-based approach.
In this chapter we summarise the work done on the TRECVid-tegél feature task, show-
ing the progress made year-on-year. This provides a fairiypmehensive statement on where
the state-of-the-art is regarding this important task,just for one research group or for one
approach, but across the spectrum. We then use this pastnagoirgy work as a basis for
highlighting the trends that are emerging in this area, &edquestions which remain to be
addressed before we can achieve large-scale, fast andleetigh-level feature detection on
video.*
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1 Introduction

Searching for relevant video fragments in a large collectibvideo clips is a much harder
task than searching textual collections. A user’s inforamaheed is more easily represented
as a textual description in natural language using highHewncepts that directly relate to
the user’s ontology which relates terminology to real watiects and events. Even though
raw video clips lack textual descriptions, low-level sigpeocessing techniques can however
describe them in terms of color histograms, textures ete.fatt that there exists a mismatch
between the low-level interpretation of video frames aredrépresentation of an information
need as expressed by a user is called the “semantic gap” [20].

Up to this point in time, video archives have overcome thessdin gap and can facilitate
search by manual indexing of video productions, which isrg eestly approach. The meta-
data produced this way often lacks descriptions at the shet,Imaking retrieval of relevant
fragments at the shot level a time-consuming effort. Everldvant video productions have
been found, they have to be watched completely in order t@wattown the search selection
to the relevant shots.

A promising approach to make search in video archives mdicezft and effective is to
develop automatic indexing techniques that produce desmms at a higher semantic level
that is better attuned to matching information needs. Sndbxing techniques produce de-
scriptions using a fixed vocabulary of so-caltedh-level features also referred to asemantic
concepts. Typical examples of high-level features are objects sultar’, persons such as
‘Madeline Albright’, scenes such as ‘sky’ or events likerfdane takeoff’. These descrip-
tors are named high-level features to make a clear distimatiith low-level features such
as colour, texture and shape. Low-level features are usagass for the detection of high-
level features. In turn (and this is the main reason why tieycalled features), the high-level
features can be used as features by a higher level intetipretaodule, combining different
high-level features in a compositional fashion, e.g. ‘clDAfire’.

Semantic concept indexing has been one of the objects of sfutie TRECVid bench-
marking evaluation campaign. More background about TREGY/presented in Sections 2
and 3 of this chapter. Section 4 subsequently discussesiti@pal results and trends in the
five iterations of the high-level feature detection taskamiged in each year during the period
2002-2006.

High-level feature detectors are usually built by traininglassifier (often a support vec-
tor machine) on labeled training data. However, develogiatgctors with a high accuracy
is challenging, since the number of positive training exe®\s usually rather small, so the
classifier has to deal with class imbalance. There is alsoga hariation in example frames
and the human labeling contains errors. From a developnuéntt @f view, it is a challenge to
find scalable methods that exploit multiple layers of righresentations and to develop fusion
configurations that are automatically optimized for indisal concepts. If the accuracy of such
a detector is sufficiently high, it can be of tremendous hetpafsearch task, especially if rele-
vant concepts exist for the particular search query. Fomgie, the performance of the query
“Find two visible tennis players” benefits from using the thigvel feature “tennis game”.
Of course the size of the concept lexicon and the granulefitiie ontology it represents are
seminal for the applicability of concept indexing for séar®ver the last few years, the lex-
icon size of state-of-the-art systems for content basedovatcess has grown from several
tens to several hundreds and there is evidence that highfkstures indeed improve search
effectiveness and thus help to bridge the semantic gap.
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However, there are several open research problems linkeding automatic semantic
concept annotation for video search. Experience from fias/ef benchmarking high-level
feature detectors at TRECVid has raised several issues.éaffdan a few here:

e The choice of a proper lexicon depends on the video collectiw the envisaged queries,
and no automatic strategy exists to assist in constructiny a lexicon.
The accuracy of a substantial number of concepts is too jpdoe helpful.
The stability of the accuracy of concept detectors when ngp¥iom one collection to
another has not been established yet.

Section 5 will discuss these and other open issues in some dedail and formulate an out-
look on how to benchmark concept indexing techniques in timeileg years.

2 Benchmarking Evaluation Campaigns, TREC, and TRECVid

The Text Retrieval Conference (TREC) initiative began i811@s a reaction to small collec-
tion sizes used in experimental information retrieval (#R)hat time, and the need for a more
co-ordinated evaluation among researchers. TREC is rumdW\ational Institute of Stan-
dards and Technology (NIST). It set out initially to benchkidoe ad hoc search and retrieval
operation on text documents and over the intervening demade half spawned over a dozen
IR-related tasks including cross-language IR, filterifgyfiom web data, interactive IR, high
accuracy IR, IR from blog data, novelty detection in IR, IRrfr video data, IR from enter-
prise data, IR from genomic data, from legal data, from spata,djuestion-answering and
others. 2007 was the 16th TREC evaluation and over a hundssdirch groups participated.
One of the evaluation campaigns which started as a trackn/itREC but spawned off as an
independent activity after 2 years is the video data traskywh as TRECVid, and the subject
of this paper.

The operation of TREC and all its tracks was established ftmstart and has followed
the same formula which is basically:

Acquire data and distribute it to participants;
Formulate a set of search topics and release these to partisisimultaneously and en
bloc;

e Allow up to 4 weeks of query processing by participants angept submissions of the
top-1000 ranked documents per search topic, from eactcipeati;

e Pool submissions to eliminate duplicates and use manuass@s to make binary rele-
vance judgments;

e Calculate Precision, Recall and other derived measuresufimitted runs and distribute
results;

e Host workshop to compare results;

The approach in TREC has always been metrics-based — farosirevaluation of search
performance — with measurement typically being some vésiahPrecision and Recall.
Following the success of TREC and its many tracks, many aimaifaluation campaigns
have been launched in the information retrieval domainaltigular, in the video/image area
there are evaluation campaigns for basic video/image sisa#s well as for retrieval. In all
cases these are not competitions with “winners” and “lddeus they are more correctly ti-
tled “evaluation campaigns” where interested parties @rchmark their techniques against
others and normally they culminate in a workshop where tesuk presented and discussed.
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TRECVid is one such evaluation campaign and we shall sed@slefahat in section 3, but
first we shall look briefly at evaluations related to videogassing.

ETISEO (Evaluation du Traitement et de I'Interprétatien®equences Vidéo) [3] was an
evaluation campaign that ran in 2005 and 2006. The aim wastoage vision techniques for
video surveillance applications and it focussed on therreat and interpretation of videos
involving pedestrians and (or) vehicles, indoors or outdpobtained from fixed cameras.
The video data used was single and multi-view surveillarfcareas like airports, car parks,
corridors and subways. The ground truth consisted of maamuabtations and classifications
of persons, vehicles and groups, and the tasks were deteldt@alization, classification and
tracking of physical objects, and event recognition.

The PETS campaign (Performance Evaluation of Tracking &é&iliance) [6] is in its
10th year in 2007 and is funded by the European Union throiglrP6 project ISCAPS (In-
tegrated Surveillance of Crowded Areas for Public Secu¥ETS evaluates object detection
and tracking for video surveillance, and its evaluationlg® anetrics based. Data in PETS
is multi-view/multi-camera surveillance video using up4aameras and the task is event
detection for events such as luggage being left in publicqgda

The AMI (Augmented Multi-Party Interaction) project [2]urided by the European
Union, targets computer enhanced multi-modal interagtiociuding the analysis of video
recordings taken from multiple cameras, in the context otings. The project coordinates
an evaluation campaign where tasks include 2D multi-petsaking, head tracking, head
pose estimation and an estimation of the focus-of-atter{f@A) in meetings as being either
a table, documents, a screen, or other people in the med@tiig)is based on video analysis
of people in the meeting and what is the focus of their gaze.

ARGOS [9] is another evaluation campaign for video contematlysis tools. The set of
tasks under evaluation have a lot of overlap with the TREQ¥%ks and include shot bound
detection, camera motion detection, person identificatimeo OCR and story boundary de-
tection. The corpus of video used by ARGOS includes broadcdshews, scientific docu-
mentaries and surveillance video.

Although even these evaluation campaigns in the video domsén multiple domains
and genres as well as multiple applications, some of whiehiormation retrieval, they
have several things in common, including the following:

they are all very metrics-based with agreed evaluationgzioes and data formats;
they are all primarily system evaluations rather than usgaiuations;
they are all open in terms of participation and make theinltesand some also their data,
available to others;

e they are all have manual self-annotation of ground truth esrtralized assessment of
pooled results;
they all coordinate large volunteer efforts, many witHdiiponsorship funding;
they all have growing participation;
they all have contributed to raising the profile of their aqpggion and of evaluation cam-
paigns in general;

What we can conclude from the level of activity in evaluat@@mpaigns such as the above,
and the TRECVid campaign which we will cover in the next sattis that they are established
within their research communities as the means to carrya@uparative evaluations.
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3 The TRECVid Benchmarking Evaluation Campaign

The TREC Video Retrieval Evaluations began on a small sce001 as one of the many
variations on standard text IR evaluations hatched withinlarger TREC effort. The mo-
tivation was an interest in expanding the notion of “infotima” in IR beyond text and the
observation that it was difficult to compare research resultvideo retrieval because there
was no common basis (data, tasks, or measures) for sciastifiparison. TRECVid's two
goals reflected the relatively young nature of the field atithe it started, namely promotion
of research and progress in video retrieval and in how toullgdbenchmark performance.
In both areas TRECVid has often opted for freedom for pardiats in the search for effec-
tive approaches over control aimed at finality of resultdsThbelieved appropriate given the
difficulty of the research problems addressed and the cumaturity of systems.

TRECVid can be compared with more constrained evaluatisirguarger-scale testing
as in the Face Recognition Grand Challenge (FRGC) [1] antdércontext of benchmark-
ing evaluation campaigns it is interesting to compare tliwws$R and image/video processing
mentioned above, with such a “grand challenge”. The FRGQiii$ dn the conclusion that
there exist “three main contenders for improvements in facegnition” and on the defini-
tion of 5 specific conjectures to be tested. FRGC shares vRBAVid an emphasis on large
data sets, shared tasks (experiments) so results are airteyaand shared input/output for-
mats. But FRGC differs from TRECVid in that FRGC works with chumore data and tests
(complete ground truth is given by process of capturing)datare controlled data, focus on
a single task, only non-interactive systems, and evalnaiidy in terms of verification and
false accept rates. This makes it quite different from TRECV

The annual TRECVid cycle begins more than a year before tigettavorkshop as NIST
works with the sponsors to secure the video to be used aridesidssociated tasks and mea-
sures. These are presented for discussion at the Novembleshep a year before they are to
be used. They need to reflect interests of the sponsors aaswetiough researchers to attract
a critical mass of participants. With input from particigmand sponsors, a set of guidelines
is created and a call for participation is sent out by earlgr&ary. The various sorts of data
required are prepared for distribution in the spring andyesummer. Researchers develop
their systems, run them on the test data, and submit the tfiatponanual and automatic eval-
uation at NIST starting in August. Results of the evaluatiare returned to the participants in
September and October. Participants then write up theik ad discuss it at the workshop in
mid-November — what worked, what didn’t work, and why. Thepdasis in this is on learning
by exploring. Final analysis and description of the workampleted in the months following
the workshop and often include results of new or correct@eements and discussion at the
workshop. Many of the workshop papers are starting pointpéer-reviewed publications,
with a noticable effect on the scientific programme of mudtitia conferences. Over the last
few years, about 50 publications per year were reportingisieeof a TRECVid test collection.

The TRECVid tasks which have been evaluated are shot boydégection, detection of
concepts or high-level features within shots, automatieat®n of story bounds in broad-
cast TV news, three kinds of search (automatic, manual aeckictive) and automatic video
summarisation. In this chapter we gather together the worlednd the contributions of the
TRECVid high-level feature detection task since it staited002. We analyse its impact and
we enlist what we believe to be the outstanding challengddikely developments.
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4 The TRECVid high-level Feature Detection Task

In this section we present a year-on-year summary of eadtedirst 5 iterations of TRECVid
in terms of the feature detection task, tracking the devakq of the task and of system
approaches over the years. Before we do that, however, welteshe overall task definition
and the evaluation measures we used.

High-level feature extraction, important in its own riglmoba promising basis for search,
was added at the urging of participants in 2002. The featested have ranged over objects,
people, and events with varying degrees of complexity thaitarsome features very similar
to topic text descriptions. Features have mostly been chaith an eye to their likely use in
search. Unlike search topics, feature definitions are knowatdvance of testing and contain
only a short text description.

The TRECVid standard for correctness in annotation of festitaining data and judging
of system output is that of a human — so that examples whiclemsedifficult for systems
due to small size, occlusion, etc., are included in the imgidata and systems that can detect
these examples get credit for them — as should be the caseat system. This differs from
some evaluations (e.g. FRGC) in which only a subset of exasritplat meet specified criteria
are considered in the test. We want the TRECVid test cotlastto be useful long after the
workshop and year in which they are created and even if sysiteprove dramatically.

Since in video there is no visual correlate of the word as ailyegecognizable, reusable
semantic feature, one of the primary hypotheses being exahin TRECVid is the idea that,
given enough reusable feature detectors, such featurds pi@y something like the role
words do in text IR. Of course, many additional problems -hsag how to decide (automati-
cally) which features to use in executing a given query — ierttabe solved [7].

The task definition for high-level feature detection is akofes: given a collection of
video, a set of high-level features and a common set of shotdaries, return for each feature
the list of the top video shots from the collection, rankeclbading to the highest probability of
the shot containing the feature. In the initial year of TRE( the list was set to 1,000 though
we later set the size of the submitted list to 2,000. Eacligigating group was allowed to
submit multiple “runs”, where each run was a variant of tlehitgque they had developed for
feature extraction.

One of the basic goals of TRECVid is to allow each group to camahe effectiveness
of its algorithms on a given test set. This goal is more funelaa than the ability to compare
two groups’ systems or to measure the improvement of systegrstime — even though the
latter two capabilities are highly desirable.

A feature is defined as being present in the shot if it is pref@mat least 1 frame, so
there is no concept of a feature being present for only paatsifot and the presence of each
feature is assumed to be binary. Each of the submitted ruresafdh of the features from each
of the participating groups were then pooled, duplicatesored, and the pool of shots was
manually assessed for the presence/absence of the fe®ssrening the presence of a feature
in a shot to be binary is a simplification adopted becauseebénefits it afforded in pooling
the results and in approximating recall and this was coetinia all iterations of TRECVid.

When assessing the results of feature detection we empoyittely usedrec_eval soft-
ware to calculate standard information retrieval measuesause in the initial years of the
evaluation not all groups submitted results for all featuvee calculated and presented the av-
erage precision for each feature for each group, ratherabgregating performance measures
at the group or run levels. That changed in 2006.

One interesting aspect of the feature detection task wasrtivision of development data
which could be used by participating groups to train theatdiee detection systems. The goal
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was to have groups train their systems on a common trainitgsefaas that would afford
more direct comparisons of systems and approaches ratirerctimparisons of the quality
and amount of training data used. To that end we defined anddeb sets of training data
and encouraged participating groups to use this data fmiricatheir systems. In the latter
years this training data consisted of manually annotatetsgtrovided as part of large-scale
community-based video annotation activities, an aspetRECVid which really allowed the
benchmark to focus on system approaches rather than datbdits.

4.1 TRECVid 2002

TRECVid 2002 was the second year of the TRECVid activity anithat time the evaluation
was still one of the “tracks” of TREC [19]. One of the lessorslearned from the first year, in
2001, was that there is more to searching than the searchndskat the automatic detection
of some kind of semantic features was a necessary pre-iegoiany kind of quality retrieval.
With that in mind we decided to include a task on automatituieadetection for shots and to
schedule the submission deadline for this in such a wayhkeaiutputs of the feature detection
task could be used by participants in the search task. Atmimi, this would allow a group
which was taking part in both feature detection and searahstothe output of their own
feature detectors in running their own search task. Howewsh is the spirit of co-operation
in TRECVid that it became the norm that everybody’s feat@tction submissions are made
available to every group taking part in the search task. phizides a great boost for the
smaller groups or groups who wish to concentrate on the ls¢ask rather than on feature
detection.

In 2002 we defined 10 features to be used, shown in column 1bdé #al with the feature
number in parentheses, and these were suggested in onditessions among TRECVid
participants. The video data in that year was taken fromrtermet Archive and Open Video
projects and slightly over 5 hours,@48 shots in total) were used as test data for the feature
detection task. The nature of the video was documentary dndagional broadcast video.
Common shot boundaries were provided by one of the partitspand 9 groups of the 17
total participants in TRECVid 2002 submitted a total of 1Bgdior assessment, and each was
fully assessed manually for the presence of each of the 10ré=a

Figure 1 presents the performance of runs which are at theemedabove, submitted by
participating groups, for each feature. Included as a ddite in this figure is the baseline
for a random feature detector. There is an artificial uppeitlon average precision for some
features (8 and 9) caused by the fact that groups submittedxarmam of 1,000 shots and
these features have more 882 and 1221 respectively) features than could be identified in a
single 1,000-shot submission. From this graph we can sé¢hth@erformance on some fea-
tures includingspeech (8), instrumental sound (9) andoutdoors (1), is OK, while the absolute
performance levels of others is poor, and none are great.

Summarising the approaches taken in 2002, we can say thabtbedly fall into two
approaches. The first of these was to hand-label shots foctharence of each of the features,
to automatically extract low-level characteristics likdaur, texture, motion, etc. from these
shots, and then to train some automatic classifier like actimector machine to recognise
the high-level features from the low-level features. Theose approach taken in 2002 was
to exploit feature-specific characteristics and to use a-facogniser to recognise faces, to
use audio characteristics to recognise speech occurretec&f the two approaches, the first
is the one which is scalable to large numbers of features lamame which has grown in
importance since 2002. One other characteristic of they éaalture detection approaches is
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that all approaches treated the detection of each featunelegendent, something which has
changed recently.



2002 2003 2004 2005 2006
Outdoors (1) — — — Outdoors (8)
Indoors (2) Indoors (11) — — —
Face (3) — — — Face (19)
People (4) People (13) People walk/run (35)] People walk/run (38) Person (20)
Walking/Running (24)
People-Marching (35)
Crowd (18) Government-Leader (21)
Corporate-Leader (22)
Police/Security (23) Military personnel (2
Cityscape (5) Building (14) — Building (42) Building (9) Urban (16)

Landscape (6)
Text Overlay (7)
Speech (8)
Instrumental Sound (
Monologue (10)

Female Speech (18)
)
News subject monologue (2
News subject face (12)
Road (15)
Vegetation (16)
Animal (17)
Car/truck/bus (19)
Aircraft (20)
Non-studio (22)
Sports (23)
Weather news (24)
Zoom in (25)
Physical violence (26)
Madeleine Albright (27)

1) —
Road (37)
Train (31)
Airplane takeoff (34)

Basket score (33)

Physical violence (36
Madeleine Albright (29
Boats/ships (28)
Bill Clinton (30)
Beach (32)

Mountain (44)

Car (47)

Sports (46)

Waterscape/Waterfront (4
Explosion/Fire (39)
Map (40)
U.S. Flag (41)
Prisoner (45)

3)

Mountain (12)

Road (13)
Vegetation (11)
Animal (26)
Car (30) Bus (31) Truck (32)
Airplane (29)
Studio (7)
Sports (1)

Weather news (3)
Boat/Ship (33)
Waterscape/Waterfront (17)
Explosion/Fire (36)
Maps (38) Charts (39)

US flag (28)
Prisoner (25)
Sky (14)

Snow (15)
Entertainment (2)
Desert (10)
Computer/TV-screen (27)
Natural-Disaster (37)

toioSIgg omMes3d PIND I L

Table 1. Features Used in Various TRECVid campaigns. (Note thatifeatwere re-numbered starting at 1 in the 2006 TRECVid cagnpa
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Fig. 1. Performance of high-level Feature Detection In TRECVid200

4.2 TRECVid 2003

In 2003, TRECVid branched out on its own and was not a trackiwihe TREC framework,
reflecting the importance that the activity was already ignan the research field [18]. The
track defined a set of 17 features to be detected, shown irettend column of Table 4.1,
again with the feature numbers in parentheses. Some of fibeisEes were repeated from the
previous year e.gndoors (11) andpeople (13), some were close variants suchciyscape
(5) moving tobuilding (14) and speech (8) moving tofemale speech (18), and the rest were
completely new. Of these new ones, some were predicted ag bery difficult, such as
physical violence (26) while others we could expect to be easier, suclveather news (24).
As in the previous year, evaluation was based on the averagesion of each feature in each
submitted run, and participants were asked to submit afispao 2,000 shots containing
each of the features. The rest of the task was the same as2n 200

The data used for feature detection in 2003 consisted ofdbest TV news from ABC,
CNN and C-Span, and contained many advertisements anthfastig shots associated with
the news, as well much studio footage of anchorpersons.a\ 6660 hours (32,318 shots)
were used for the evaluation, a big step-up in size, and lipgreubmitted a total of 60 runs
which were pooled and only partially assessed because détpe ramp-up in submissions
and data volume from the data used in 2002.

Figure 2 shows the performance of the top 10 runs submitteeldfich of the 17 features.
What is important in Figure 2 is not which group or which rud te the best performance, but
the values of those best-performing runs for each featueecaM see that for some features
like weather news (24) and sporting event (23) the best performance was excellent, that for
many of the features the performance was mediocre, and dhaofme such ason-studio
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11. Indoors
12. News subject face
13. People
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15. Road
16. Vegetation
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Fig. 2. Performance of Top-10 high-level Feature Detections patufe in TRECVid 2003

setting (22) andphysical violence (26) performance was quite poor. Figure 2 also shows the
median performance across all 60 submitted runs.

One of the notable things about the 2003 evaluation was thedinction of a collabora-
tive annotation of the training data allowing most of thetjogating groups to use the same
training data. This activity was led by IBM Research and imed personnel from 23 groups
volunteering to manually annotate some portion of the 6a$10@itraining data with 133 la-
bels or semantic features [11]. Having this shared commainitry data, now with common
annotations, allowed more groups to develop generic featatection methods, for example
using automatic machine learning techniques such as siygaior machines. Also provided
to the TRECVid organisers, and the participants, was theubatf an automatic speech recog-
nition system applied to both the training and test dataciitiawhich many groups used in
developing their systems.

The main lesson learned from 2003 was that we could comfgrtaimp up to 60 hours
of test data and that there were enough groups able to catpietask on that volume of data
to make it worthwhile. Also learned was the value of havindnared training dataset, in our
case a shared annotation of video using semantic features.
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4.3 TRECVid 2004

In 2004 the TRECVid feature detection task [10] used the sdata source as in 2003 in
order to minimise start-up costs for participants and tovabome stability for participants in
completing the task. The track defined defined a set of 10rfesto be detected, shown in
the third column of Table 4.1 with the feature numbers in ptireses. Some of these features
were repeated, e.Road (37), some were variations such Agplane takeoff (34) instead of
Aircraft (20), and others were new e.Boats/ships (28) andBill Clinton (30). Evaluation was
the same as in 2003, based on average precision per feaukated from submissions of up
to 2,000 shots using a common shot boundary. Speech trarssasere also provided for the
collection of 60 hours (33,367 shots) of broadcast TV newmfthe same TV sources as in
2003 used in the evaluation of feature detection. Trainatg grrovided to participants, who
were encouraged to use this common training data, compitigedevelopment data used in
2003, which had been annotated manually as part of a commustaion activity, and the
submitted and evaluated runs from 2003.

Pooling of submitted runs was carried out differently toyiwas years. Each submitted
run was divided into strata of depth 25 and the depth of théspsbich were assessed manu-
ally, for each feature, varied according to the number & stiots found for that feature. This
allowed us to spread the scarce resource of assessor tineeevemly among the features to
be assessed, in accordance with the “rate” at which shd{sdomtaining each feature were
found.
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Fig. 3. Performance of Top-10 high-level Feature Detections patUfe in TRECVid 2004

A total of 83 runs were submitted by 12 groups who completedehture detection task
in 2004 and Figure 3 shows the performance of the top 10 ribsisied from among those 83
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runs, for each feature across all submitted runs. Figure@silows the median performance
for each feature. Results across different features orai@ &gried greatly in their mean and
top performancesMadeleine Albright (29) in particular shows wide variability in detection
performance whildBasketball score (33) stands out with high scores. The latter feature was
designed to be difficult (i.e. involving a scoring event)t hurned out to be easy, since most
basketball shots shown in news shows involve a score, sctiteteof basketball shots, for
which discriminative textual features can be used, is saffic

Having some features common across the years allows divegparison of approaches
over time and we can see that the best runMadeleine Albright (27/29) improved, while
Road (15/37) andPhysical violence (26/36) were about the same. For the rest of the features
used in 2004 taken as a whole they were more difficult tharetbged in 2003. The features
occurred also more rare in the collection, the average Ifatiei® shots per 1,000 test shots
was 13 in 2004 versus 21 in 2003. However, an analysis of gegueecision versus number
of true shots did not show a correlation.

Half of the 12 participating groups completed submissiansall 10 features, showing
an increasing trend towards generic or feature-neutrabagpes, which did have strong per-
formance in terms of effectiveness. Most of the approachksnt by the groups addressed
ways of combining or fusing the output of low-level featurabysis on the shots. Some used
support vector machines, others used other approachésas@@aussian mixture models, etc.

4.4 TRECVid 2005

The search task in TRECVid in the years prior to 2005 had atba strong dependence on
the automatic speech recognition provided to participamtsvolve. In an attempt to move
participating groups away from this dependency and to fgreater concentration on exploit-
ing the visual and audio aspects of video for video retriePRECVid 2005 [16] introduced
a new source of video data where the text was errorful andiahke. Once again, as in 2003
and 2004, we used broadcast TV news but this time it was takem English- Arabic- and
Chinese-language sources, broadcast in November 200daElotanguage we acquired auto-
matic speech recognition output and for the non-Englislicesuwe provided machine trans-
lation into English. We again provided common shot bouregaand common keyframes that
groups could work with. The data used in the feature detedask consisted of 40 hours
(45,765 shots), indicating a much higher shot change rateeivideo than previously. Even
though the genre of video was the same as previously, breg@itanews, groups felt a need
for a new source of training data for feature detection aradtear collaborative annotation of
39 features was completed [24], with 24 groups particigitmthe annotation activity using
annotation tools donated by IBM Research and by Carnegi¢éoMeélniversity. Almost all
submitted runs (nearly 80%) used this training data alone.

The feature detection task used 10 features, selected tordhaisers from an early ver-
sion of the LSCOM (Large-Scale Concept Ontology for Multdizg ontology which had been
under construction specifically for broadcast TV news [IBlse are shown in the fourth col-
umn of Table 4.1 and included repeated, new and variatidorfes Evaluation metrics were
the same as previously, though for this year all submisdimnsach feature were pooled and
evaluated to a depth of 250 shots, requiring a total of 76idd&idual shot judgments.

Twenty-two groups completed the feature detection taskObb2(a near doubling over
the previous year) and they submitted a total of 110 runspstimll of which contained sub-
missions for each of the 10 features and Figure 4 shows tlierpemnce of the top 10 runs
submitted for each feature. From that graph we can see thactres for features are higher
than in 2004, despite the fact that there are new data squandserrorful text from speech
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Fig. 4. Performance of Top-10 high-level Feature Detections patufe in TRECVid 2005

recognition and machine translation. The sole feature @ common to both 2004 and
2005 People walking/running (35/38)) showed the same level of performance for the top-
performing runs across the two years, though we cannot meachtich into that because of
the different data sources. The techniques used by patikgpgroups continued to show the
emergence of fusion methods, and some addressed the @eleati combination of specific
low-level visual features (colour, texture, etc.) for diffnt semantic features.

4.5 TRECVid 2006

The fifth and final year of this retrospective on TRECVid featdetection [17] used the same
data sources as in the previous year, broadcast TV newsda thnguages namely English
(NBC, CNN and MSNBC), Arabic (LBC and HURRA) and Chinese (G@&TPHOENIX and
NTDTV), taken from the same period in time. However one défece from the previous year
was that the feature detection task was run on almost 15 lmdwideo or 79,484 individual
shots. This represented a large step up in size.

In TRECVid 2006, participants were required to submit resstdr all 39 individual fea-
tures defined by the LSCOM workshop as “LSCOM-Lite”, rathert some self-selected sub-
set thereof. This was intended to further promote the useédgc means of training feature
detectors. Of these 39 features, the number to be evaluaadalty was at first kept small
(10) so as to make the assessment manageable in this iles&TIRECVid. However, work by
Yilmaz and Aslam [25] had resulted in methods for estimatitepdard system performance
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measures using relatively small samples of the usual judysets so that larger numbers
of features could be evaluated using the same amount ofrjgdgifort. Using the TRECVid
2005 high-level feature task results, an analysis of the eswnate for average precision —
inferred average precision (infAP) — at various levels afgment sampling (80%, 60%, 40%
and 20%) showed very good estimation of average precisiterins of actual values of the
measures. Thus we decided to use this approach in evaldatihge detection performance
in TRECVid 2006 using a 50% sample of the usual feature tadgment set and this allowed
us to judge 20 features from each group rather than the Zfilipiplanned. For each feature,
all submissions down to a depth of at least 100, and 145 orageewere added to the pools
from which a 50% sample was judged.

Participants in the evaluation were given access to the aMditlichallenge data which
included 101 low-level features as well as estimated 101idMitl high-level concept occur-
rences in the 2005 and 2006 test data, plus the manual aionstain the development data
for 449 features taken from the fuller LSCOM ontology whiddhalso been provided in the
previous year as training data. That meant that there watbao159 hours of annotated
training/development data for those who needed it | As usgahlso provided common shot
boundaries and common keyframes for groups to work on. Tirout the previous iterations
of the feature detection task most groups had come to depernieokeyframe as the shot
representative and had applied their feature detectidmigaes to the keyframe rather than
the whole shot. As we know, the definition of a feature ocawreein a shot is that the feature
can occuranywhere in the shot, and participants take something of a risk by wgrion the
keyframe only. In 2006, however, 8 of the 30 teams completiegtask looked at more than
just the keyframe in deciding whether a feature was presetitd shot, and this is a useful
development which we expect to see continued.

The TRECVid feature detection task in 2006 resulted in 3Qpgsosubmitting a total of
125 runs and the top 10 runs for each of the 20 features that awaluated are shown in
Figure 5. Of these submitted runs, support vector machirestdl the dominant classifier
with robust results. Good systems were those which combiapresentations at multiple
granularities (local, regional, global) with use of satipnint representations gaining ground.
Good systems also combined various types of features (codture, shape, edges, acoustic,
face, text). Many interesting multi-modal and conceptdnséxperiments were carried out and
multi-concept fusion still seems of limited use, perhapsabse there are not enough concepts
that support each other in the relatively small set of 39 iis@906.

4.6 Data

Data is the element of the evaluation with the fewest degreésedom. While one can rumi-
nate about ideal test collections, in practice when orgagigesources for a large evaluation
like TRECVid one more often takes what one can get — if it caalldte useful — and acqui-
sition of video data from content providers has always befficut in TRECVid. TRECVid
has formally evaluated systems against produced videora@605 and 2006 has explored
tasks against unproduced, raw video as well.

Produced video

¢Fromthe 11 hours of video about NIST used for a feasibagyin 2001, TRECVid moved in
2002 to 73 hours of vintage video mainly from the Internethve [4] — a real collection still
needing a search engine to find video for re-use. Partigpmiownloaded the data themselves.
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Fig. 5. Performance of Top-10 high-level Feature Detections pealiated Feature in
TRECVid 2006

Then in 2003 TRECVid began working on broadcast TV news videm a narrow time
interval — a new genre, much more consistent in its prodoctadues than the earlier data,
and larger in size. Data set sizes made it necessary to shiidko on hard drives — a method
that has worked well with the exception of one year in whicbugs with older versions of
the Windows operating system could could not access drivégessize used.
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Another important change was the shift to two-year cycleishthe same genre enough
data was secured so that training and test data could bedpobim the first year, with the
training data annotated and re-used in the second yeamgduhith only new test data would
be provided. This reduced the overhead of system buildeaptied) to new video, reduced
the overhead of training data annotation and maximizedsis and removed a “new genre”
factor from influencing results in the second year of theeyTRECVid 2006 completed the
second such two-year cycle. Test/training data amounts(ins) have grown as follows: 2003
(66/67), 2004 (70/0), 2005 (85/85), 2006 (158/0). The viake2003-2004 was from English-
speaking sources. In 2005 and 2006 Chinese- and Arabitisgesources were added to the
mix. Automatic machine translation was used to get Englsth from Chinese and Arabic
speech.

We have learned that broadcast news video has special tdrastics with consequences
for the evaluation and systems used to detect featureshlgidy produced, dominated by
talking heads, and contains lots of duplicate or near dafgimaterial. Highly produced news
video exhibits production conventions that systems wikhebut with negative consequences
when detectors learned on one news source are applied toeanaith different production
conventions. This a real problem which systems need to aohémd makes it important that
the training data come from multiple sources. There areférdifit sources and 11 different
programs in the 2006 test data and a significant number ofl&eatsources did not occur in
the training data.

Much of broadcast TV news footage is visually uninformatgsthe main information is
contained in the reporter’s or anchorperson’s speech. Mhises the TRECVid search task
more difficult because the topics ask fadeo of objects, people, events, etmt information
about them. Video of a reporter talking about person X do¢eydself satisfy a topic asking
for video of person X. The search task is designed this wagilseeit models one of two work
situations. One is a searcher looking at open source vidteisted in objects, people, events,
etc. that are visible but not the subject the speech tradke@mnintended visual information
content about people, infrastructure, etc. The other tiitnas a video producer looking for
clips to “re-purpose”. The original intent often reflectedtihe speech track is irrelevant. Of
course, the speech track (or text from speech) can be vepjuhét finding the right neigh-
borhood for browsing and finding the video requested by sapies. But even when speech
about X is accompanied by video of X they tend to be offsetrireti

Highly produced news video also exhibits lots of duplicatenear duplicate segments
due to repeated commercials, stock footage, previews ofrgpsegments, standard intro and
exit graphics, etc. Measuring the frequency of variousssoftduplicates or near duplicates
is an unresolved research issue, as is assessing theidgsteifect they may have on basic
measures such as precision and recall.

4.7 Measurements

The TRECVid community has not spent significant amountsroétdebating the pros and
cons of various measures of effectiveness as applied toethtere detection task. Instead
we have profited by battles fought long ago in the text IR comitgu\While the choice of a
single number (average precision or inferred averagegioceito describe generalized system
performance is as useful (e.g., for optimization, resultgbs) as it is restrictive, TRECVid
continues the TREC tradition of providing various additibmiews of system effectiveness
for their diagnostic value and better fit for specific appimas and analyses.

For feature extraction TRECVid adopted the family of prigis and recall-based mea-
sures for system effectiveness that have become standénih wie TREC (text) retrieval
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community. Additional measures of user characteristiebalior, and satisfaction developed
by the TREC interactive search track over several years agopted for use by interactive
video search systems.

5 Discussion: achievements and future directions

The importance of feature detection as a task has grown beesars. The number of groups
working on features benchmarking increased over the yeans 9, 10, 12 and 22 to 30 in
2006. Now more groups participate in high-level featuré thsn in the search task. In the
first few years, the potential use of concept detectors farcbewas only a hypothesis, and
it was unclear whether a generic approach to building cantefectors would be feasible. A
number of recent studies did specifically study this hypsithdndeed, experiments show that
there is a clear positive correlation between search peeoce and the number of available
high-level concept detectors[21]; experiments also sstggebenefit of combining multiple
detectors[15, 21]. Concepts can mutually reinforce eablerofi.e. a concept detector can
fruitfully exploit the output of other detectors for reldteoncepts). The targeted effort to
design a concept ontology for broadcast news, LSCOM [5],atss been very influential,
since it created the possibility to use the semantic relatlmetween concepts for the search
task. The impact of the use of concepts on search perform@gmmends on the accuracy of
their corresponding detectors. A recent simulation stimbs that even the use of many low
accuracy detectors can improve search results substanpiavided the lexicon consists of
several thousand concepts [8]. It is important to realipaigiin that designing and evaluating
concept ontologies is still an open research problem. LS@@d/been designed for broadcast
news. Other video genres such as home video, drama or sameeilvideo require alternative
ontologies. An example is the recently announced ontologhéme video [12], with a focus
on family life and travel scenes.

Five years of feature detection benchmarking have resutteal certain consolidation
with regards to the main architecture/approach for bujjdiemantic concept detectors. Most
TRECVid systems have from the beginning treated featurectien as a supervised pattern
classification task based on one key frame for each shot. fideybeen converging on generic
learning schemes over handcrafted detector construciitirealesire to increase the set of fea-
tures to a hundred and an order of magnitude beyond [5] hasgrad scalability of learning
scheme becomes critical. The TRECVid 2006 feature taskgrézed this by requiring sub-
missions for 39 features of which 10 were evaluated.

Naphade and Smith [14] surveyed successful approachesfectibn of semantic fea-
tures used in TRECVid systems and abstracted a common piogegspeline including fea-
ture extraction, feature-based modeling (using e.g., Sansnixture models, support vector
machines, hidden Markov models, and fuzzy K-nearest neighbfeature-specific aggrega-
tion, cross-feature and cross-media aggregation, crssept aggregation, and rule-based
filtering. This pipeline may accommodate automatic feaspecific variations [22]. They
documented over two dozen different algorithms used in #réous processing stages and
note a correlation between number of positive training gamand best precision at 100.

Snoek et al. [23] identified a common architecture for TREClature extraction sys-
tems and experimental variations including unimodal v@raultimodal content analysis and
early versus late fusion. They also point out some of theigapibns of the choices made and
cite evidence that different features may require diffeegproaches.

Beyond the above generalizations, conclusions aboutivelaffectiveness of various
combinations of techniques are generally possible onlhéncbontext of a particular group’s
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experiments as described in their site reports in the TRE@vbceedings. In 2005, groups
found evidence for the value of local over global fusion, tiinjual over monolingual runs,
multiple over single text sources (Carnegie Mellon Uniitgjsparts-based object representa-
tion (Columbia University), various fusion techniquesass features and learning approaches
(IBM), automatically learned feature-specific combinasi@f content, style, and context anal-
ysis, and a larger (101) feature set (University of Amstarda

Still, each year the question is faced of how the communitg agole can learn from
100+ experiments. Tradition has always been to minimizérobaver the structure of the ex-
periments for individual sites. Now approaches are codatitig, and it may become more at-
tractive to control more factors in the experimental sgttmorder to make submissions more
comparable across sites. One way to facilitate meta-asalfexperiment results across sites
is to classify systems based on an ontology of experimehtzites that has been constructed
for the design of a concept detector architecture. A prelani classification scheme was used
for a post hoc classification of runs during TRECVid 2006 [ &X]more principled submis-
sion metadata annotation effort is underway for TRECVid2@0more rigorous way to focus
(part of) the attention of the entire TRECVid on a particuksearch question is to include one
or more required runs, that have to meet a particular camdéig. use of a particular dataset
for training, or are limited to visual only information. Atier option would be to settle on an
agreed (baseline) architecture and set of components a@r twadeduce the number of factors
affecting results. So far, TRECVid has focused on facitigia benchmark infrastructure for
within-site experiments, and a gradual change towardsastifigr across site comparisons to
facilitate meta-studies of important well-defined reshdrgpotheses is contemplated in order
to enable the quantification of the relative utility of thengaechniques that are studied in the
high-level feature task.

The basics of the high-level feature benchmark have onlyngéd gradually over the
years. It is important to provide the community with a staleim, which enables the mea-
surements of year to year increments. Still, every year sema&ll changes are introduced
to increase the effectiveness and generalizability of #peements, while maximizing the
impact of the limited assessment time. The choice of featitself has always been difficult,
since the test collection needs enough positive exampésept, but not too many. The feature
choice has always been balanced across several categmiser{, object, event). Especially
the definition of event features have been refined in ordetitaugate work on the analysis
of complete shots rather than keyframes. For TRECVid, 8ggalid analyze more than just
one keyframe per shot. In the broadcast news domain, shefaidy short, for longer shots,
it might make sense to annotate the presence of a feature frathe level.

A recurring question is whether the performance of higleldeature detection is im-
proving over the years. This cannot be answered, since tiasetechanges every year, even
if some features remain in the task. In order to make such gadson we would at least
need to have a reference system run on both test datasetage tiee difference in the test
data. In addition the use of average precision is sometimestipned. The advantage of mean
average precision is that it is a stable measure, which ¢drmsaid about precision oriented
measures such as precision@10. The high-level featuretidetéask in itself is an example
of an intrinsic evaluation, where the performance is mesabwith respect to a ground truth.
Features are important for search. But how can featurestisfity be used by users during a
search task,and do we deal with varying accuracies of @ete@tThere are many important
aspects related to the actual use of concept detectorsdmisthat are not measured by the
current task.

Looking ahead, there are still many open issues and chalédpefore large scale concept
detection is well understood. We mention a few:
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e What are the limits on the generalizability of detectors,, ihow reusable are the detec-
tors, and how can we measure this in an affordable way giveffiuttther constraint that
changing data sets is expensive ?

e What are the issues in moving from one video genre to anotdep\genre — can it be
done ?

e What are the necessary sizes for a training set for HLF madeiarning ? What is the
necessary accuracy for manual annotation of developméatda

e Are there issues of execution speed for HLF detection, émipetf we want to scale up
to very large-sized archives. Can we do this on-the-fly, atcetime ?

In summary, the TRECVid high-level feature detection task healized an important
testbed for concept detection architectures that haveepraw be an important performance
enhancing component in video search systems. By maintpmibalance between stability
and gradual refinements in the experimental set-up, thishas allowed the community to
make increments in scale and (although harder to measuestdeeffectiveness. Future ex-
periments should be more focused on quantifying the rolesstof the technology, how well
can detectors be applied in different domains, and on betraparability of the experiments
across sites and across collections in order to answer caityrwide high-level research
questions.
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