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ABSTRACT 
Formal property verification has been an effective complement to 
pre-silicon validation of several Intel® Pentium® 4 CPU designs 
at Intel Corporation.   The principal objective of this program has 
been to prove design correctness rather than hunt for bugs.  In the 
process, we have evolved our tools and methodology and are now 
applying FPV techniques to protocol level properties.   Moving 
forward, new technologies such as GSTE and SAT offer the 
potential to significantly increase the scope of what can be 
formally verified.  This paper will discuss the application of FPV 
to validation of the Intel ® Pentium® 4 microarchitecture and 
some approaches being considered to broaden the application of 
FV techniques, particularly at a higher level of design abstraction. 

Categories and Subject Descriptors 
B.5.3 [Register-Transfer-Level Implementation]: Design Aids 
–  Verification. 

General Terms 
Design,Verification. 

Keywords 
Formal Property Verification. 

1. INTRODUCTION 
Microprocessor designs continue to increase in complexity with 
the demands to provide higher performance at lower power.  
Historical data from Intel IA-32 processor design projects 
suggests a 3 to 4 fold increase in detected pre-silicon logic bugs 
per IA-32 generation [2] (see figure 1). Advances in methodology 

and tools notwithstanding, the impending challenge to validation 
in future projects is clearly considerable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Formal Property Verification (FPV) played a significant role in 
the Pentium® 4 pre-silicon validation effort.   From our 
experiences, it is increasingly clear that improved FPV techniques 
and methodologies coupled with greater synergy with traditional 
simulation-based validation techniques will go a long way in 
meeting this challenge..  
The Pentium® 4 Processor was the first in a line of CPU designs 
at Intel on which formal property verification was applied on a 
wide scale.  The approach employed was not for FPV to replace 
any traditional simulation-based validation work, but to augment 
pre-silicon validation by focusing on proving the total correctness 
of high risk functionality.  Design validation would catch the bulk 
of the bugs quickly while FPV would follow up, “leaving no stone 
unturned,” to ensure that no corner cases remained.  We 
developed our tools and methodologies with this objective in 
mind and are fast reaching a stage where we can apply our 
techniques to verifying challenging chip level protocols.  Cutting 
edge next generation FV tools based on STE, SAT and traditional 
model checking techniques will enable us to significantly stretch 
the microprocessor verification solution space. 
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Figure 1.  Pre-silicon logic bugs per  generation. 
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Our FPV results have been very encouraging.   For the Pentium® 
4, FPV was primarily responsible for verifying the correctness of 
the entire arithmetic logic.  We were able to ensure 100% design 
coverage in these cases.  Furthermore, FPV also concentrated on 
verifying complex chip level protocols which sometimes were 
beyond the scope of effective simulation-based validation.  The 
pre-silicon effort exceeded its targeted goals of verifying the 25% 
most critical properties in two-thirds of the chip.  Properties in the 
remaining third were verified after initial silicon.    To date, there 
have been no design errors detected in areas of the chip that have 
been formally verified.  During the course of the FPV program, a 
number of difficult to discover design errors were detected.  Some 
of these errors were classified by authoritative experts in the 
project as probable pre-silicon escapees had FPV not been used in 
pre-silicon validation.  Prior to first silicon, FPV uncovered 18 
such critical bugs in the design, thus reducing the cost of post-Si 
debug or possible escape to customers.   Some of these included: 

• Floating Point Multiplication rounding error 

• Floating Point Adder incorrect carryout 

• Instruction Length Decoder incorrect length for an 
illegal instruction in a specific alignment  

• Microinstruction sequencer executed on wrong target 
after misprediction (branch recovery “safety” property) 

• Trace Cache dropped valid data - deadlock  (proof that 
data is neither created nor destroyed) 

The pre-silicon effort generated a large database of specifications 
(some 14,000), proof strategies, and proof system infrastructure.   
While the entire database hasn’t been reusable on new designs, 
significant portions of it have been reused and new proofs have 
been constructed in considerably less time (less than ½ the 
original time).  The floating point proof infrastructure in 
particular has been highly reusable, both on Pentium® 4 
proliferations and on other processor designs at Intel.  This reuse 
also identified a number of high quality bugs.  In the process, 
numerous lessons were learned and are now being applied to 
improve the effectiveness and productivity of subsequent FPV 
efforts.  
The remainder of this paper will first review the Intel® Pentium® 
4 processor formal verification program methodology and the 
techniques we found useful.  We will then discuss new tools and 
ideas we are considering for improved FPV productivity on future 
microprocessor projects. 

2. FPV METHODOLOGY 
Most of the non-floating point verification work was done with an 
LTL model checker tool and a bounded model checker developed 
at Intel [3,4].  We have found bounded model checking effective 
as a first step to speed up total correctness proof development by 
eliminating some of the reverse engineering work required to 
flesh out correct property specifications. To complete floating 
point verification, the Forte verification system was used.  Forte is 
a combined model checking (STE) and theorem proving system 
built on top of the Voss system [5]. These tools support various 
abstraction mechanisms to reduce the design complexity for 
model checking, but significant human effort is necessary to 
guide the proof process.   

Evolving methodology was particularly critical for successful 
application of our formal verification tools to industrial use.   
There were a number of environmental factors that needed to be 
considered:  

• Our task required that we work with a very low-level 
netlist RTL.  This enabled designers to optimize 
performance, but at a cost of simplicity and clarity.  

• Properties were not selected based upon what was easy 
to formally verify.  The FPV program’s objective was 
to verify the most critical properties.  Even with human 
ingenuity, tool capability limitations set limits on what 
could be verified.   

• Proofs needed to be robust.  Designs changes are 
frequent and low-level. The team’s methodology 
expected proofs would be maintained on a regular basis 
and reused across CPU projects. 

The following subsections will briefly describe techniques we 
found effective for verifying floating point operations and more 
control centric functionality.  Greater detail can be found in 
[1],[6],[7], and [8]. 

2.1 Verification of Floating Point Arithmetic 
Formal verification provides the only practical means of checking 
arithmetic operation results for the complete operand data space. 
The FPV team developed a conceptual framework that integrates 
theorem proving and model checking techniques to formally 
verify the correctness of all Pentium® 4 floating-point micro-
operations from RTL to an IEEE specification. This work covers 
multiply, divide, remainder, square root, addition, subtraction, and 
a set of auxiliary micro-operations.  The basic approach taken was 
to insert an intermediate model between the high level 
specification and the low level RTL (see Figure 2).  This 
intermediate model consists of two parts: a reference model and a 
circuit API.  The circuit API is the glue between the reference 
models and the implementation specific RTL. It adds design 
specific temporal control information about signal names, timing, 
etc.  The reference model is purely algorithmic and has been 
reused for several different design implementations.  STE was 
used to prove the correctness of the RTL with respect to the 
intermediate model and theorem proving was used to relate the 
intermediate model to the high level specification. 
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Figure 2.  Intermediate reference model. 
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Floating point multiply and divide type operations required 
additional effort as the hardware may need to iterate to complete 
the operation.  To complete the proofs we used a variant of 
traditional pre-postcondition framework for formulating temporal 
aspects of the specification [7].  Figure 3 below presents an 
abstract view of the multiplier hardware.   
 

 
 
 
A sample multiplication verification statement we proved can be 
stated as: 
IF a floating point multiplication operation is started  
AND the inputs to the multiplier are S1 and S2,  
AND expected internal constraints to the circuit hold initially, 
AND expected environment constraints hold throughout the       
          execution of the operation, 
THEN at the time, the circuit produces output W, the following  
            equation holds: 
         
 
The circuit output W, encodes the result of the multiplication 
including flags and faults.   To complete the proof, STE was used 
to prove properties on the low level RTL (steps 1 and 2) and 
theorem proving (steps 3 and 4) used to connect to the IEEE 
specification. 

1. Verify the RTL satisfies a low level bit vector relation 
between each partial product and the input sources. 

2. Verify that the expected bit-vector relation holds 
between the partial products and the rounded product.  

3. Show that the bit vector relations in A and B imply the 
corresponding mathematical relations. 

4. Prove that the mathematical relations between the input 
sources and the partial products and, the mathematical  
relation between the partial products and the rounded 

product imply the expected mathematical relation 
between the input sources and the rounded product. 

 
The approach raises both the quality of our specifications and 
proofs.  The framework (tools, methodology, and proofs) was 
constructed for the first Pentium® 4 processor, but designed to be 
very portable with minimal overhead, and will be the basis of 
future floating point proof work on proliferations.  The team has 
successfully applied the framework to several other processor 
designs.  Several unexpected, complex bugs have been quickly 
identified that might have otherwise have gone undetected during 
pre-silicon validation.  Examples include a specific interaction 
between micro-operations on different threads resulting in data 
corruption and a dataspace multiply bug. 
Machine-checked ('theorem-proved') proof compositions now 
require a far higher standard of proof than earlier methods.  
Specifications are at a higher level, corresponding more closely to 
an intuitive understanding of the operations and are more easily 
reviewed for correctness and completeness. Proof scope is 
extended to deal with issues previously ignored in datapath FV 
proofs (control behavior, dependencies between micro-
operations). 

2.2 Hierarchical Formal Verification 
Techniques 
We now rely on STE in combination with theorem proving to 
verify floating point properties.  We have also found STE to be 
very effective outside of floating-point logic, but it is limited to 
verification of finite length time interval properties.  For the bulk 
of non floating properties, we used an LTL model checker that 
supported a richer set of temporal specifications [4]. 
Unfortunately, model checking tool limitations restrict 
verification to portions of logic with on the order of hundreds of 
input and state elements.  Thus, to verify properties, both the 
properties and the implementation must be decomposed into a 
potentially great number of cases.  [1] presents several examples 
from the Pentium® 4 processor, covering decomposition 
strategies used to verify a parallel ready queue, a floating-point 
adder, and memory arrays. 
Our model checking tools combine the RTL logic with any 
assumptions on the logic and the conjectures.  The tool 
automatically reduces the problem using cone of influence 
reduction---only the part of the design that may affect the 
conjecture is considered.  Users also augment the list of 
assumptions with pruning directives that can further reduce the 
logic.  By hand crafting a list of assumptions and “free” 
directives, a user can prove a set of simpler properties that when 
combined prove the more complex property.  A property is then 
proven correct when the top-level specification, decomposition, 
and all of the assumptions have been proven.  
During our verification effort, we found that many difficult to 
prove properties could be verified through clever decompositions.  
However, the decompositions could be fairly complicated.  These 
decompositions were often fragile and required complex changes 
as the RTL evolved.  Figure 4 presents example property 
decomposition and the dependencies between the sub-
specifications. A property management system was also created to 
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report the status of each assumption and assure that all 
specifications were proven. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The guaranteeing logic needed to prove a property frequently 
spans multiple logical units.  Often only simple properties from 
other units needed to be verified independently.  To minimize the 
need for complicated protocol proofs, we developed compilation 
tools that would combine multiple units together or extract only 
the needed guaranteeing logic from multiple units so that a 
property could be proved in a single proof session.  There were a 
number of properties that required verification of complex, 
multiple unit protocols.     These proofs assured the correctness of 
individual unit properties and also found high quality bugs.  One 
example is a cross cluster 21 cycle protocol deadlock (infinite 
stall) due to resource dependencies.  This bug was the result of 
complex resource dependencies coded by multiple designers.  
Designers tend to be segregated in their areas, and it is nearly 
impossible for them to consider all 21 cycle deep possibilities.  As 
machines become wider and deeply pipelined, there is a greater 
likelihood that bugs of this nature will be inadvertently coded into 
the design and evade informal inspection.  

3. FUTURE FPV APPLICATION 
Validating the next-generation IA-32 microprocessor promises to 
be a significant challenge.  We are pursuing a two pronged 
approach to enable us to realize our goal of improving the quality 
of CPU designs.  Future CPU microarchitecture specifications 
will be likely written in a more abstract level.  [2] outlines our 
belief that a more abstract level of micro-architectural 
specification (HLM) would help slow the rate of growth for bugs 
and to enable us to find bugs earlier in the design cycle  An HLM 
will help verification handle much larger design areas than 
previously possible.  With the development and early adoption of 
cutting edge FPV techniques, specifically the STE family of tools, 
the SAT based and the next generation LTL based model 
checking tools, and theorem proving capabilities, we anticipate 
contributing significantly to the validation solution. 
During the Pentium® 4 project, we treated FPV and dynamic 
verification as essentially independent activities. Dynamic 
verification targeted bug-hunting and broad coverage objectives 
while formal verification targeted total correctness of critical 
functionality.  Though there were properties that only FV could 
cover entirely, there was a fair amount of overlap between the two 

efforts.  This was deemed to be appropriate as DV remains a more 
efficient means to identify the “obvious” bugs.  
For the next-generation project, we want to exploit synergy 
between the two techniques.  We are planning to develop a more 
integrated dynamic verification and FPV plan where we reduce 
overlap and apply the most appropriate technique to validate a 
given functionality.   
To improve overall productivity, we plan to exploit tool 
interoperability so that FV can effectively use DV simulation and 
test databases to refine and debug specifications.  We are also 
investigating the use of SAT solver technology as a bridge 
between the two worlds.   Initial results are very encouraging.  
SAT solvers provide much greater capacity, reducing or 
eliminating the need for problem decomposition. They allow us to 
do bug hunting (falsification) in addition to verification, and use 
dynamic validation to confirm or refute counter-examples. 

3.1 Improved Formal Verification Capacity 
The development of Generalized STE (GSTE) has provided an 
automated property verification tool with extremely high capacity  
that significantly extends STE to verify a richer set of properties 
 [10], [11],[12].  STE properties are (antecedent, consequent) pairs, 
where the antecedent describes a stimulus to the circuit and the 
consequent specifies the expected response. STE is capable of 
verifying very large circuits (indeed, much larger circuits than 
traditional symbolic model checkers), but at a cost: antecedents 
and consequents can only describe behavior over finite time 
intervals, therefore STE properties correspond to a weak flavor of 
temporal logic. Nevertheless, STE has seen extensive use for 
property and equivalence verification in Intel, IBM and Motorola. 
Generalized STE (GSTE) extends STE to verify properties over 
indefinitely long time intervals, while preserving STE’s high 
capacity. GSTE properties are assertion graphs, with each edge in 
the graph labeled with an STE (antecedent, consequent) pair. Also 
associated with edges are terminal or fairness conditions, enabling 
assertion graphs to capture extremely complex temporal 
properties. GSTE has been used successfully in a number of 
recent verifications that will be presented in the next section. 

4. GSTE EXAMPLES 
Our early success with GSTE has prompted us to deploy the 
technology into production use prior to its complete development.   
Consequently, valuable feedback has guided GSTE development 
and for realistic examples, we have enhanced the performance of 
GSTE to require significantly less memory and time than its 
initial release.  This early use has also greatly benefited the 
Pentium® 4 Formal Verification programs where we have 
verified significantly more complex properties than previously 
possible.  In this section, we will present three example properties 
proven with GSTE that cover logic from a Scheduler/Scoreboard 
Unit, an Instruction Queue unit, and a Memory Execution Unit.  

4.1 Scheduler/Scoreboard Unit Example 
As an early proof of concept, we looked at a previously very 
challenging Scheduler/Scoreboard unit (SSU) property that had 
been quite difficult to prove.  The logic involved (see Figure 5) 
created significant tool capacity problems, requiring that the 
original proof be decomposed into hundreds of sub-specifications.  
Creating and proving this decomposition required a significant 

Figure 4.  Property assumption proof chain. 
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amount of time and its maintenance as the design changed has 
been costly.  The goal of the new proof work was to show that a 
10x10 priority matrix would schedule the oldest microinstruction 
(“uop”) that was ready to be scheduled.  This actually expanded 
on the original proof that was only able to show a weaker 
condition that if there are uops ready to be scheduled, then some 
uop, not necessarily the oldest, would be scheduled.   Previous 
generation tool limitations also restricted the original property to 
specify behavior with respect to the 10x10 priority matrix rather 
than at the more abstracted (unit level) interface. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Using GSTE, the broader property was proved on the complete 
design presented in Figure 5.  The resulting proof has been much 
more maintainable and scalable to other Pentium® 4 proliferation 
products. 

4.2 Instruction Queue Unit Example  
The second example covers a new cross-unit property on FIFO 
buffers between the instruction queue unit (IQ), which holds and 
dispatches  microinstructions to the  Execution  Cluster, and the    
 

 

 

 

 

 

 

 

 

 

 

 

Scheduler/Scoreboard unit (SSU), which schedules them (see 
Figure 6).  The property we wanted to prove states that uops are 
neither dropped nor duplicated.    

The logic is rather complex as it is highly optimized for 
performance and as a result, a proof was well beyond the scope of 
previous approaches and tools.  Using GSTE, a proof was 
completed and has been maintained with minimal effort.  Also, 
like the SSU scheduler property, we have been able express the 
property abstractly in terms of the input and output behavior of 
the FIFO. 

4.3 Memory Execution Unit Example 
The third example covers a property on the memory execution 
unit showing that uops are cleared out of a set of registers when 
their execution should be halted.  The logic involved is again, 
very complex involving a 20 stage pipe and complicated control 
logic with feedback (see Figure 7). 

This property was originally completed with previous generation 
FV tools, but the proof had required significant decomposition 
and approximately 12 person-quarters to complete (excluding 
ramp up on the architecture and tools).  The increased complexity 
of the logic on proliferations made porting the proofs impractical, 
so a GSTE approach was taken.  A port to a first proliferation 
required only 5 person-quarters and a second proliferation (with 
yet more logic changes), only 1.5 person-quarters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

5. CONCLUSIONS 
Formal Property Verification has been an effective component in 
the Pentium® 4 validation effort.  Our objectives have been to 
prove the total correctness of critical properties, maintain these 
properties during the course of development project, and reuse 
specifications and proofs on proliferations. 
Where FPV tools were unable to consume all the guaranteeing 
logic in one verification run, properties were decomposed to 
reduce the amount of design required to prove each sub-property.  
The resulting list of assumptions was then verified separately.  In 
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Figure 6. Pentium® 4 Instruction Queue 
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many instances, the guaranteeing logic involved spanned multiple 
design components and multiple logic unit protocols were 
verified. 
We have found the greatest successes where proof strategies have 
been developed that are amenable to change and minimize the 
effort required on new architectures. Use of abstraction 
techniques, such as separating data/control issues and building 
intermediate models has required significant up-front investment, 
but has been seamlessly reused by other FPV teams at Intel. 
We anticipate using a mix of approaches to speed up productivity 
and have been very encouraged by our experiences with our tool 
suite of FPV techniques.  In addition to the tools available to us, 
methodology will play a key role in furthering the impact of 
formal methods in future CPU projects.  We are currently 
engaged in constructing a cohesive framework for the existing 
tools and anticipate they will provide a dramatic improvement on 
what we have accomplished thus far. 
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