
High Level Formal Verification of Next-Generation
Microprocessors

 Tom Schubert

DPG CPU Design Validation
Intel Corporation

JF4-451
2111 NE 25th Ave

Hillsboro, OR 97124-5961

Tom.Schubert@intel.com

ABSTRACT
Formal property verification has been an effective complement to
pre-silicon validation of several Intel® Pentium® 4 CPU designs
at Intel Corporation. The principal objective of this program has
been to prove design correctness rather than hunt for bugs. In the
process, we have evolved our tools and methodology and are now
applying FPV techniques to protocol level properties. Moving
forward, new technologies such as GSTE and SAT offer the
potential to significantly increase the scope of what can be
formally verified. This paper will discuss the application of FPV
to validation of the Intel ® Pentium® 4 microarchitecture and
some approaches being considered to broaden the application of
FV techniques, particularly at a higher level of design abstraction.

Categories and Subject Descriptors
B.5.3 [Register-Transfer-Level Implementation]: Design Aids
– Verification.

General Terms
Design,Verification.

Keywords
Formal Property Verification.

1. INTRODUCTION
Microprocessor designs continue to increase in complexity with
the demands to provide higher performance at lower power.
Historical data from Intel IA-32 processor design projects
suggests a 3 to 4 fold increase in detected pre-silicon logic bugs
per IA-32 generation [2] (see figure 1). Advances in methodology

and tools notwithstanding, the impending challenge to validation
in future projects is clearly considerable.

Formal Property Verification (FPV) played a significant role in
the Pentium® 4 pre-silicon validation effort. From our
experiences, it is increasingly clear that improved FPV techniques
and methodologies coupled with greater synergy with traditional
simulation-based validation techniques will go a long way in
meeting this challenge..
The Pentium® 4 Processor was the first in a line of CPU designs
at Intel on which formal property verification was applied on a
wide scale. The approach employed was not for FPV to replace
any traditional simulation-based validation work, but to augment
pre-silicon validation by focusing on proving the total correctness
of high risk functionality. Design validation would catch the bulk
of the bugs quickly while FPV would follow up, “leaving no stone
unturned,” to ensure that no corner cases remained. We
developed our tools and methodologies with this objective in
mind and are fast reaching a stage where we can apply our
techniques to verifying challenging chip level protocols. Cutting
edge next generation FV tools based on STE, SAT and traditional
model checking techniques will enable us to significantly stretch
the microprocessor verification solution space.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

800 2240

7855

25000

Pentium® Pentium®
Pro

Pentium® 4 Next?

Figure 1. Pre-silicon logic bugs per generation.

1.1

1

Our FPV results have been very encouraging. For the Pentium®
4, FPV was primarily responsible for verifying the correctness of
the entire arithmetic logic. We were able to ensure 100% design
coverage in these cases. Furthermore, FPV also concentrated on
verifying complex chip level protocols which sometimes were
beyond the scope of effective simulation-based validation. The
pre-silicon effort exceeded its targeted goals of verifying the 25%
most critical properties in two-thirds of the chip. Properties in the
remaining third were verified after initial silicon. To date, there
have been no design errors detected in areas of the chip that have
been formally verified. During the course of the FPV program, a
number of difficult to discover design errors were detected. Some
of these errors were classified by authoritative experts in the
project as probable pre-silicon escapees had FPV not been used in
pre-silicon validation. Prior to first silicon, FPV uncovered 18
such critical bugs in the design, thus reducing the cost of post-Si
debug or possible escape to customers. Some of these included:

• Floating Point Multiplication rounding error

• Floating Point Adder incorrect carryout

• Instruction Length Decoder incorrect length for an
illegal instruction in a specific alignment

• Microinstruction sequencer executed on wrong target
after misprediction (branch recovery “safety” property)

• Trace Cache dropped valid data - deadlock (proof that
data is neither created nor destroyed)

The pre-silicon effort generated a large database of specifications
(some 14,000), proof strategies, and proof system infrastructure.
While the entire database hasn’t been reusable on new designs,
significant portions of it have been reused and new proofs have
been constructed in considerably less time (less than ½ the
original time). The floating point proof infrastructure in
particular has been highly reusable, both on Pentium® 4
proliferations and on other processor designs at Intel. This reuse
also identified a number of high quality bugs. In the process,
numerous lessons were learned and are now being applied to
improve the effectiveness and productivity of subsequent FPV
efforts.
The remainder of this paper will first review the Intel® Pentium®
4 processor formal verification program methodology and the
techniques we found useful. We will then discuss new tools and
ideas we are considering for improved FPV productivity on future
microprocessor projects.

2. FPV METHODOLOGY
Most of the non-floating point verification work was done with an
LTL model checker tool and a bounded model checker developed
at Intel [3,4]. We have found bounded model checking effective
as a first step to speed up total correctness proof development by
eliminating some of the reverse engineering work required to
flesh out correct property specifications. To complete floating
point verification, the Forte verification system was used. Forte is
a combined model checking (STE) and theorem proving system
built on top of the Voss system [5]. These tools support various
abstraction mechanisms to reduce the design complexity for
model checking, but significant human effort is necessary to
guide the proof process.

Evolving methodology was particularly critical for successful
application of our formal verification tools to industrial use.
There were a number of environmental factors that needed to be
considered:

• Our task required that we work with a very low-level
netlist RTL. This enabled designers to optimize
performance, but at a cost of simplicity and clarity.

• Properties were not selected based upon what was easy
to formally verify. The FPV program’s objective was
to verify the most critical properties. Even with human
ingenuity, tool capability limitations set limits on what
could be verified.

• Proofs needed to be robust. Designs changes are
frequent and low-level. The team’s methodology
expected proofs would be maintained on a regular basis
and reused across CPU projects.

The following subsections will briefly describe techniques we
found effective for verifying floating point operations and more
control centric functionality. Greater detail can be found in
[1],[6],[7], and [8].

2.1 Verification of Floating Point Arithmetic
Formal verification provides the only practical means of checking
arithmetic operation results for the complete operand data space.
The FPV team developed a conceptual framework that integrates
theorem proving and model checking techniques to formally
verify the correctness of all Pentium® 4 floating-point micro-
operations from RTL to an IEEE specification. This work covers
multiply, divide, remainder, square root, addition, subtraction, and
a set of auxiliary micro-operations. The basic approach taken was
to insert an intermediate model between the high level
specification and the low level RTL (see Figure 2). This
intermediate model consists of two parts: a reference model and a
circuit API. The circuit API is the glue between the reference
models and the implementation specific RTL. It adds design
specific temporal control information about signal names, timing,
etc. The reference model is purely algorithmic and has been
reused for several different design implementations. STE was
used to prove the correctness of the RTL with respect to the
intermediate model and theorem proving was used to relate the
intermediate model to the high level specification.

Executable

Reference

RTL

High level
spec

Circuit API

Theorem proving
(assisted)

STE (automatic, highly
reusable)

Figure 2. Intermediate reference model.

22

Floating point multiply and divide type operations required
additional effort as the hardware may need to iterate to complete
the operation. To complete the proofs we used a variant of
traditional pre-postcondition framework for formulating temporal
aspects of the specification [7]. Figure 3 below presents an
abstract view of the multiplier hardware.

A sample multiplication verification statement we proved can be
stated as:
IF a floating point multiplication operation is started
AND the inputs to the multiplier are S1 and S2,
AND expected internal constraints to the circuit hold initially,
AND expected environment constraints hold throughout the
 execution of the operation,
THEN at the time, the circuit produces output W, the following
 equation holds:

The circuit output W, encodes the result of the multiplication
including flags and faults. To complete the proof, STE was used
to prove properties on the low level RTL (steps 1 and 2) and
theorem proving (steps 3 and 4) used to connect to the IEEE
specification.

1. Verify the RTL satisfies a low level bit vector relation
between each partial product and the input sources.

2. Verify that the expected bit-vector relation holds
between the partial products and the rounded product.

3. Show that the bit vector relations in A and B imply the
corresponding mathematical relations.

4. Prove that the mathematical relations between the input
sources and the partial products and, the mathematical
relation between the partial products and the rounded

product imply the expected mathematical relation
between the input sources and the rounded product.

The approach raises both the quality of our specifications and
proofs. The framework (tools, methodology, and proofs) was
constructed for the first Pentium® 4 processor, but designed to be
very portable with minimal overhead, and will be the basis of
future floating point proof work on proliferations. The team has
successfully applied the framework to several other processor
designs. Several unexpected, complex bugs have been quickly
identified that might have otherwise have gone undetected during
pre-silicon validation. Examples include a specific interaction
between micro-operations on different threads resulting in data
corruption and a dataspace multiply bug.
Machine-checked ('theorem-proved') proof compositions now
require a far higher standard of proof than earlier methods.
Specifications are at a higher level, corresponding more closely to
an intuitive understanding of the operations and are more easily
reviewed for correctness and completeness. Proof scope is
extended to deal with issues previously ignored in datapath FV
proofs (control behavior, dependencies between micro-
operations).

2.2 Hierarchical Formal Verification
Techniques
We now rely on STE in combination with theorem proving to
verify floating point properties. We have also found STE to be
very effective outside of floating-point logic, but it is limited to
verification of finite length time interval properties. For the bulk
of non floating properties, we used an LTL model checker that
supported a richer set of temporal specifications [4].
Unfortunately, model checking tool limitations restrict
verification to portions of logic with on the order of hundreds of
input and state elements. Thus, to verify properties, both the
properties and the implementation must be decomposed into a
potentially great number of cases. [1] presents several examples
from the Pentium® 4 processor, covering decomposition
strategies used to verify a parallel ready queue, a floating-point
adder, and memory arrays.
Our model checking tools combine the RTL logic with any
assumptions on the logic and the conjectures. The tool
automatically reduces the problem using cone of influence
reduction---only the part of the design that may affect the
conjecture is considered. Users also augment the list of
assumptions with pruning directives that can further reduce the
logic. By hand crafting a list of assumptions and “free”
directives, a user can prove a set of simpler properties that when
combined prove the more complex property. A property is then
proven correct when the top-level specification, decomposition,
and all of the assumptions have been proven.
During our verification effort, we found that many difficult to
prove properties could be verified through clever decompositions.
However, the decompositions could be fairly complicated. These
decompositions were often fragile and required complex changes
as the RTL evolved. Figure 4 presents example property
decomposition and the dependencies between the sub-
specifications. A property management system was also created to

…

Partial Products
 generator

 Booth
Encoder

Exponent
datapath

 WallaceTree
Adder Network

Rounder logic

C

O

N

T

R

O

L

S1 S2

Mantissa
datapath

)2̂*1̂(ˆ SSroundW =

Figure 3. Floating point multiplier implementation

33

report the status of each assumption and assure that all
specifications were proven.

The guaranteeing logic needed to prove a property frequently
spans multiple logical units. Often only simple properties from
other units needed to be verified independently. To minimize the
need for complicated protocol proofs, we developed compilation
tools that would combine multiple units together or extract only
the needed guaranteeing logic from multiple units so that a
property could be proved in a single proof session. There were a
number of properties that required verification of complex,
multiple unit protocols. These proofs assured the correctness of
individual unit properties and also found high quality bugs. One
example is a cross cluster 21 cycle protocol deadlock (infinite
stall) due to resource dependencies. This bug was the result of
complex resource dependencies coded by multiple designers.
Designers tend to be segregated in their areas, and it is nearly
impossible for them to consider all 21 cycle deep possibilities. As
machines become wider and deeply pipelined, there is a greater
likelihood that bugs of this nature will be inadvertently coded into
the design and evade informal inspection.

3. FUTURE FPV APPLICATION
Validating the next-generation IA-32 microprocessor promises to
be a significant challenge. We are pursuing a two pronged
approach to enable us to realize our goal of improving the quality
of CPU designs. Future CPU microarchitecture specifications
will be likely written in a more abstract level. [2] outlines our
belief that a more abstract level of micro-architectural
specification (HLM) would help slow the rate of growth for bugs
and to enable us to find bugs earlier in the design cycle An HLM
will help verification handle much larger design areas than
previously possible. With the development and early adoption of
cutting edge FPV techniques, specifically the STE family of tools,
the SAT based and the next generation LTL based model
checking tools, and theorem proving capabilities, we anticipate
contributing significantly to the validation solution.
During the Pentium® 4 project, we treated FPV and dynamic
verification as essentially independent activities. Dynamic
verification targeted bug-hunting and broad coverage objectives
while formal verification targeted total correctness of critical
functionality. Though there were properties that only FV could
cover entirely, there was a fair amount of overlap between the two

efforts. This was deemed to be appropriate as DV remains a more
efficient means to identify the “obvious” bugs.
For the next-generation project, we want to exploit synergy
between the two techniques. We are planning to develop a more
integrated dynamic verification and FPV plan where we reduce
overlap and apply the most appropriate technique to validate a
given functionality.
To improve overall productivity, we plan to exploit tool
interoperability so that FV can effectively use DV simulation and
test databases to refine and debug specifications. We are also
investigating the use of SAT solver technology as a bridge
between the two worlds. Initial results are very encouraging.
SAT solvers provide much greater capacity, reducing or
eliminating the need for problem decomposition. They allow us to
do bug hunting (falsification) in addition to verification, and use
dynamic validation to confirm or refute counter-examples.

3.1 Improved Formal Verification Capacity
The development of Generalized STE (GSTE) has provided an
automated property verification tool with extremely high capacity
that significantly extends STE to verify a richer set of properties
 [10], [11],[12]. STE properties are (antecedent, consequent) pairs,
where the antecedent describes a stimulus to the circuit and the
consequent specifies the expected response. STE is capable of
verifying very large circuits (indeed, much larger circuits than
traditional symbolic model checkers), but at a cost: antecedents
and consequents can only describe behavior over finite time
intervals, therefore STE properties correspond to a weak flavor of
temporal logic. Nevertheless, STE has seen extensive use for
property and equivalence verification in Intel, IBM and Motorola.
Generalized STE (GSTE) extends STE to verify properties over
indefinitely long time intervals, while preserving STE’s high
capacity. GSTE properties are assertion graphs, with each edge in
the graph labeled with an STE (antecedent, consequent) pair. Also
associated with edges are terminal or fairness conditions, enabling
assertion graphs to capture extremely complex temporal
properties. GSTE has been used successfully in a number of
recent verifications that will be presented in the next section.

4. GSTE EXAMPLES
Our early success with GSTE has prompted us to deploy the
technology into production use prior to its complete development.
Consequently, valuable feedback has guided GSTE development
and for realistic examples, we have enhanced the performance of
GSTE to require significantly less memory and time than its
initial release. This early use has also greatly benefited the
Pentium® 4 Formal Verification programs where we have
verified significantly more complex properties than previously
possible. In this section, we will present three example properties
proven with GSTE that cover logic from a Scheduler/Scoreboard
Unit, an Instruction Queue unit, and a Memory Execution Unit.

4.1 Scheduler/Scoreboard Unit Example
As an early proof of concept, we looked at a previously very
challenging Scheduler/Scoreboard unit (SSU) property that had
been quite difficult to prove. The logic involved (see Figure 5)
created significant tool capacity problems, requiring that the
original proof be decomposed into hundreds of sub-specifications.
Creating and proving this decomposition required a significant

Figure 4. Property assumption proof chain.

top level specificationtop level specification

44

amount of time and its maintenance as the design changed has
been costly. The goal of the new proof work was to show that a
10x10 priority matrix would schedule the oldest microinstruction
(“uop”) that was ready to be scheduled. This actually expanded
on the original proof that was only able to show a weaker
condition that if there are uops ready to be scheduled, then some
uop, not necessarily the oldest, would be scheduled. Previous
generation tool limitations also restricted the original property to
specify behavior with respect to the 10x10 priority matrix rather
than at the more abstracted (unit level) interface.

Using GSTE, the broader property was proved on the complete
design presented in Figure 5. The resulting proof has been much
more maintainable and scalable to other Pentium® 4 proliferation
products.

4.2 Instruction Queue Unit Example
The second example covers a new cross-unit property on FIFO
buffers between the instruction queue unit (IQ), which holds and
dispatches microinstructions to the Execution Cluster, and the

Scheduler/Scoreboard unit (SSU), which schedules them (see
Figure 6). The property we wanted to prove states that uops are
neither dropped nor duplicated.

The logic is rather complex as it is highly optimized for
performance and as a result, a proof was well beyond the scope of
previous approaches and tools. Using GSTE, a proof was
completed and has been maintained with minimal effort. Also,
like the SSU scheduler property, we have been able express the
property abstractly in terms of the input and output behavior of
the FIFO.

4.3 Memory Execution Unit Example
The third example covers a property on the memory execution
unit showing that uops are cleared out of a set of registers when
their execution should be halted. The logic involved is again,
very complex involving a 20 stage pipe and complicated control
logic with feedback (see Figure 7).

This property was originally completed with previous generation
FV tools, but the proof had required significant decomposition
and approximately 12 person-quarters to complete (excluding
ramp up on the architecture and tools). The increased complexity
of the logic on proliferations made porting the proofs impractical,
so a GSTE approach was taken. A port to a first proliferation
required only 5 person-quarters and a second proliferation (with
yet more logic changes), only 1.5 person-quarters.

5. CONCLUSIONS
Formal Property Verification has been an effective component in
the Pentium® 4 validation effort. Our objectives have been to
prove the total correctness of critical properties, maintain these
properties during the course of development project, and reuse
specifications and proofs on proliferations.
Where FPV tools were unable to consume all the guaranteeing
logic in one verification run, properties were decomposed to
reduce the amount of design required to prove each sub-property.
The resulting list of assumptions was then verified separately. In

receiving logic

10x10
priority matrix

ready logic

Staging and
C

A
M

 m
atch

scheduling logic

D
elivering logic

uop

alloc

ready

stop

init

out

sched

receiving logic

10x10
priority matrix

ready logic

Staging and
C

A
M

 m
atch

scheduling logic

D
elivering logic

uop

alloc

ready

stop

init

out

sched

Figure 5. Pentium® 4 SSU Scheduler

Figure 6. Pentium® 4 Instruction Queue

Thread 0

Thread 1

Full0

Data0

Data1

Full1

Up to 4
uops per
cycle
from IQ Stall0

Stall1

Thread 0

Thread 1

Full0

Data0

Data1

Full1

Up to 4
uops per
cycle
from IQ Stall0

Stall1

uops

= Clear Registers

Bogus (external)

control logic w/feedback

R

SA
A

T
pi

pe
lin

e

Each register

R

R

R

R

R

R

R

R

R

R

R

R

R

uops

= Clear Registers

Bogus (external)

control logic w/feedback

R

SA
A

T
pi

pe
lin

e

Each register

R

R

R

R

R

R

R

R

R

R

R

R

R

Figure 7. Pentium® 4 Memory Unit

55

many instances, the guaranteeing logic involved spanned multiple
design components and multiple logic unit protocols were
verified.
We have found the greatest successes where proof strategies have
been developed that are amenable to change and minimize the
effort required on new architectures. Use of abstraction
techniques, such as separating data/control issues and building
intermediate models has required significant up-front investment,
but has been seamlessly reused by other FPV teams at Intel.
We anticipate using a mix of approaches to speed up productivity
and have been very encouraged by our experiences with our tool
suite of FPV techniques. In addition to the tools available to us,
methodology will play a key role in furthering the impact of
formal methods in future CPU projects. We are currently
engaged in constructing a cohesive framework for the existing
tools and anticipate they will provide a dramatic improvement on
what we have accomplished thus far.

6. ACKNOWLEDGEMENTS
The work described in this paper was completed by a large FPV
team over the past 5 years---too many to name here. I would
particularly like to thank Naren Narasimhan, Rajnish Ghughal,
Bob Bentley, John O’Leary, Eli Singerman, and Jin Yang and for
their valuable feedback and assistance in writing this paper.

7. REFERENCES
[1] R. Beers, R. Ghughal, and M. Aagaard, “Applications

of Hierarchical Verification in Model Checking.”
FMCAD 2000 (published in CHARM 2001
proceedings).

[2] B. Bentley, “High level validation of next-generation
microprocessors”, IEEE International Workshop on
High Level Design Validation and Test, 2002.

[3] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A.
Tacchella, and M. Y. Vardi, “Benefits of Bounded
Model Checking in an Industrial Setting”, International

Conference on Computer-Aided Verification (CAV),
2001.

[4] R.Fraer, G.Kamhi, B.Ziv, M.Vardi, L.Fix, “Efficient
Reachability Computation Both for Verification and
Falsification”, Proceedings of International Conference
on Computer-Aided Design, (CAV’00).

[5] S. Hazelhurst and C-J Seger, “Symbolic trajectory
evaluation.” In T. Kropf, editor, Formal Hardware
Verification, chapter 1, pagers 3-78. Springer Verlag;
New York, 1997.

[6] R. Kaivola and K. Kohatsu, “Proof Engineering in the
Large: Formal Verification of Pentium®4 FP Divider”,
CHARM 2001.

[7] N. Narasimhan and R. Kaivola, “Verification of
Pentium®4 Multiplier with Symbolic Simulation &
Theorem Proving”, DATE 2001.

[8] J. O’Leary, S. Zhao, R. Gerth, and C.-J. H. Seger,
“Formally Verifying IEEE Compliance of Floating-
Point Hardware”, Intel Technology Journal, Q1 1999.

[9] C.-J. H. Seger and R. E. Bryant, “Symbolic trajectory
evaluation”, Formal Methods in System Design, 1994.

[10] J. Yang and A. Goel, “GSTE through a case study”,
International Conference on Computer-Aided Design
ICCAD, 2002.

[11] J. Yang and C.-J. H. Seger, “Introduction to
Generalized Symbolic Trajectory Evaluation”,
International Conference on Computer Design (ICCD),
2001. A revised version will appear in IEEE
Transactions on VLSI.

[12] J. Yang and C.-J. H. Seger, “Generalized Symbolic
Trajectory Evaluation: Abstraction in action”, Fourth
International Symposium on Formal Methods in
Computer-Aided Design (FMCAD), 2002.

66

