
UC Riverside
UC Riverside Previously Published Works

Title
High-level language tools for reconfigurable computing

Permalink
https://escholarship.org/uc/item/6xg1852d

Journal
Proceedings of the IEEE, 103(3)

ISSN
0018-9219

Authors
Windh, S
Ma, X
Halstead, RJ
et al.

Publication Date
2015-03-01

DOI
10.1109/JPROC.2015.2399275
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6xg1852d
https://escholarship.org/uc/item/6xg1852d#author
https://escholarship.org
http://www.cdlib.org/


INV ITED

P A P E R

High-Level Language Tools for
Reconfigurable Computing
This paper provides a focused survey of five tools to improve productivity in
developing code for FPGAs.

By Skyler Windh, Xiaoyin Ma, Student Member IEEE, Robert J. Halstead, Prerna Budhkar,

Zabdiel Luna, Omar Hussaini, and Walid A. Najjar, Fellow IEEE

ABSTRACT | In the past decade or so we have witnessed a

steadily increasing interest in FPGAs as hardware accelerators:

they provide an excellent mid-point between the reprogramm-

ability of software devices (CPUs, DSPs, and GPUs) and the

performance and low energy consumption of ASICs. However,

the programmability of FPGA-based accelerators remains one

of the biggest obstacles to their wider adoption. Developing

FPGA programs requires extensive familiarity with hardware

design and experience with a tedious and complex tool chain.

For half a century, layers of abstractions have been developed

that simplify the software development process: languages,

compilers, dynamically linked libraries, operating systems,

APIs, etc. Very little, if any, such abstractions exist in the devel-

opment of FPGA programs. In this paper, we review the history

of using FPGAs as hardware accelerators and summarize the

challenges facing the raising of the programming abstraction

layers. We survey five High-Level Language tools for the de-

velopment of FPGA programs: Xilinx Vivado, Altera OpenCL,

BluespecBSV, ROCCC, and LegUp to provide an overview of their

tool flow, the optimizations they provide, and a qualitative

analysis of their hardware implementations of high level code.

KEYWORDS | Compiler optimization; high level synthesis; max

filter; reconfigurable computing

I . INTRODUCTION

In recent years we have witnessed a tremendous growth in

size and speed of FPGAs accompanied by an ever widening

spectrum of application domains where they are exten-

sively used. Furthermore, a large number of specialized

functional units are being added to their architectures such

as DSP units, multi-ported on-chip memories, and CPUs.

Modern FPGAs are used as platforms for configurable

computing that combine the flexibility and reprogramabi-

lity of CPUs with the efficiency of ASICs. Commercial as

well as research projects using FPGA accelerators on a wide

variety of applications have reported speed-up, over both

CPUs and GPUs, ranging from one to three orders of mag-

nitude as well as reduced energy consumption per result

ranging from one to two orders of magnitude. Application

domains have included signal, image and video processing,

encryption/decryption, decompression (text, integer data,

images, etc.), data bases [1], [2], dense and sparse linear

algebra, graph algorithm, data mining, information process-

ing and text analysis, packet processing, intrusion detection,

bioinformatics, financial analysis, seismic data analysis, etc.

FPGAs are programmed using Hardware Description

Languages (HDLs) such as VHDL, Verilog, SystemC, and

SystemVerilog that are used for digital circuit design and

implementation. In these languages the circuit to be

mapped on an FPGA is designed at a fairly low level: the

data paths and state machine controllers are built from the

bottom up, timing primitives are used to provide synchro-

nization between signals, the registering of data values is

explicitly stated, parallelism is implicit and sequential or-

dering of events must be explicitly enforced via the state

machine. Traditionally trained software developers are not

familiar with such programming paradigms. Beyond the

program development state, the tool chains are language

and vendor specific and consist of a synthesis phase where

the HDL code is translated to a netlist, mapping where

logic expressions are translated into hardware primitives

specific to a device, place and route where hardware logic

blocks are placed on the device and wires routed to

connect them. This last phase attempts to solve an NP-

complete problem using heuristics, such as simulated an-

nealing, and may take hours or days to complete depending

Manuscript received August 21, 2014; revised December 2, 2014; accepted

January 20, 2015. Date of current version April 14, 2015. This work has been supported

in part by National Science Foundation AwardsCCF-1219180 and IIS-1161997.

S. Windh, R. Halstead, P. Budhkar, Z. Luna, O. Hussaini and W. A. Najjar are with

the Department of Computer Science and Engineering, University of California at

Riverside, Riverside, CA 92521 USA (e-mail: najjar@cs.ucr.edu).

X. Ma is with the Department of Electrical and Computer Engineering, University of

California at Riverside, Riverside, CA 92521 USA.

Digital Object Identifier: 10.1109/JPROC.2015.2399275

0018-9219 � 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

390 Proceedings of the IEEE | Vol. 103, No. 3, March 2015



on the size of the circuit relative to the device size as well as

the timing constraints imposed by the user. The steepness of

the learning curve for such languages and tools makes their

use a daunting and expensive proposition for most projects.

This paper provides a qualitative survey of the currently

available tools, both research and commercial ones, for

programming FPGAs as hardware accelerators. We start

with a historical prospective on the use of FPGA-based

hardware accelerators (Section II) showing that the role of

FPGAs as accelerators emerged very shorty after their in-

troduction, as glue-logic replacements, in the 1980s. In

Section III we discuss the efficiency of the hardware com-

puting model over the stored program model and review

the challenges posed by using High-Level Languages

(HLLs) as programming tools to generate hardware struc-

tures on FPGAs. Related works and five High-Level Syn-

thesis (HLS) tools are described in Section IV, three

commercial tools: Xilinx Vivado, Altera OpenCL, Bluespec

BSV, and two university research tools: ROCCC and

LegUp. We use a simple image filter, dilation, and AES

encryption routines to describe the style of programming

these tools and explore their capabilities in implementing

compiler-based transformations that enhance the through-

put of the generated structure (Sections V and VI). Area,

performance and power results for both benchmarks are

compared in Section VII and, finally, concluding remarks

are presented in Section VIII. Note: in this paper we report

results and compare tools only to the extent allowed by the

terms of the user license agreements.

II . A HISTORICAL PERSPECTIVE

The use of FPGAs as hardware accelerators is not a new

concept. Very shortly after the introduction of the first

SRAM-based FPGA device (Xilinx, 1985) the PAM (Prog-

rammable Active Memory) [3], [4] was conceived and built

at the DEC Paris Research Lab (PReL). The PAM P0 con-

sists of a 5 � 5 array of Xilinx XC3020 FPGAs (Fig. 1)

connected to various memory modules as well as to a host

workstation via a VME bus. It had a maximum frequency of

25 MHz, 0.5 MB of RAM, and communicated on a host bus

of 8 MB/s. The PAM P1 was built using slightly newer

FPGA, the Xilinx XC3090. It operated with a maximum

frequency of 40 MHz, 4 MB of RAM, and used a 100 MB/s

host bus. It was described as ‘‘universal hardware co-

processor closely coupled to a standard host computer’’ [5].

It was evaluated using 10 benchmark codes [5] consisting

of: long multiplication, RSA cryptography, Ziv-Lempel

compression, edit distance calculations, heat and Laplace

equations, N-body calculations, binary 2-D convolution,

Boltzman machine model, 3-D graphics (including transla-

tion, rotation, clipping, and perspective projection) and

discrete cosine transform. It is interesting to note that

most of these benchmarks are still today subjects of

research and development efforts in hardware accelera-

tion. Berlin et al. in [5] conclude that PAM delivered a

performance comparable to that of ASIC chips or super-

computers, of the time, and was one to two orders of

magnitude faster than software. They also state that be-

cause of the PAM’s large off-chip I/O bandwidth (6.4 Gb/s)

it was ideally suited for ‘‘on-the-fly data acquisition and

filtering,’’ which is exactly the computational model,

streaming data, adopted by most of the hardware acceler-

ation projects that rely on FPGA platforms.

This first reconfigurable platform was rapidly followed

by the SPLASH 1 (1989) and SPLASH 2 (1992) [6]–[10]

projects at the Supercomputer Research Center (Table 1).

Each were linear arrays of FPGAs with local memory

modules. They were designed for accelerating string-based

operations and computations such as edit distance calcula-

tions. The SPLASH 2 was reported to achieve four orders of

magnitude speedup, over a SUN SPARC 10, on edit

distance computation using dynamic programming.

The PAM and SPLASH projects put the foundation of

reconfigurable computing by using FPGA-based hardware

accelerators. In the past two decades the density and speed

of FPGAs have grown tremendously: the density by several

orders of magnitude, the clock speed by just over one order

of magnitude. Both of these projects could each be easily

implemented on single moderately sized modern FPGA de-

vice. However, the main challenge to FPGAs as hardware

accelerators, namely the abstraction gap between application

Fig. 1. Architecture of the DEC PReL PAM P0 .

Table 1 Architecture Parameters of the SPLASH 1 and SPLASH 2

Accelerators

Windh et al. : High-Level Language Tools for Reconfigurable Computing

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 391



development and FPGA programming, not only remains

unchanged but has probably gotten worse due to increase

in complexity of the applications enabled by the larger de-

vice sizes. FPGA hardware accelerators are still beyond the

reach of traditionally trained application code developers.

III . HARDWARE AND SOFTWARE
COMPUTING MODELS

In this section we discuss two issues that define the com-

plexity of compiling HLLs to hardware circuits: 1) the

semantic gap between the sequential stored-program exe-

cution model implicit in these languages and 2) the effects

of abstractions, or lack thereof, on the complexity of the

compiler.

A. Efficiency and Universality
The stored program model is a universal computing

model: it is equivalent to a Turing machine with the limi-

tations on the size of the tape imposed by the virtual ad-

dress space. It can therefore be programmed to execute any

computable function. Hardware execution, on the other

hand, is not universal unless it has an attachedmicroproces-

sor. It is, however, extremely efficient. Consider an image

filter applied on a 3 � 3 pixel window over a frame: the

forall loop implemented in hardware can be both pipelined

(let d be the pipeline depth) and unrolled as to compute

multiple windows concurrently, let the unroll factor be k.
In the steady state d� k operations are being executed

concurrently producing k output results per cycle. On a

CPU, the innermost loop of a typical image filter requires

20–30 machine instructions per loop body including nine

load instructions. Assuming an average instruction level

parallelism (ILP) of two, each result takes 10–15 machine

cyclesVwhich is the ratio of the respective clock speeds of

CPUs and GPUs to FPGAs. However, that same loop can be

replicated many times on the FPGA achieving a much

higher throughput (at least an order of magnitude). Fur-

thermore, the ability to configure local customized storage

on the FPGA makes it possible to reduce the number of

memory accesses, mostly reads, by reusing already fetched

data resulting in a more efficient use of the memory band-

width and lower energy consumption per task [11]. Hence

the higher speedup or throughput observed on a very wide

range of applications using FPGA accelerators over multi-

cores (CPUs and GPUs). Further details on CPU efficiency

for image filters are discussed in Section V-A.

B. Semantics of the Execution Models
CPUs and GPUs are inherently stored-program (or von

Neumann) machines and so are the programming lan-

guages used on these. Most of the languages in use today

reflect the stored program paradigm. As such they are

bound by its sequential consistency, both at the language

and machine levels. While CPU and GPU architectures ex-

ploit various forms of parallelism, such as instruction, data

and thread-level parallelisms, they do so circumventing the

sequential consistency implied in the source code internally

(branch prediction, out-of-order execution, SIMD paralle-

lism, etc.), while preserving the appearance of a sequen-

tially consistent execution externally (reorder buffers,

precise interrupts, etc.). The compiling of a HLL code to a

CPU or GPU is therefore the translation from one stored

program machine model, the HLL, to another, the ma-

chine’s Instruction Set Architecture (ISA). In the stored

program paradigm the compiler can generate a parallel

execution only when doing so is provably safe. In other

words when the record of execution can be proved, by the
compiler, to be either identical or equivalent to the sequen-

tial execution. For example, in a single level forall loop, any
interleaving of the iterations produces a correct result.

Also, in a single threaded CPU execution the producer/

consumer relationship is not a parallel construct since the

semantics imply that all the data must be produced before

any datum can be consumed. Hence all the data is stored in

memory by the producer loop before the consumer loop

starts execution.

A digital circuit, on the other hand, is inherently paral-

lel, spatial, with distributed storage and timed behavior.

HDLs (e.g., VHDL, Verilog, SystemC, and Bluespec) are

arguably the most commonly used parallel languages. In a

digital circuit the producer/consumer relation is a parallel

structure: the data produced is temporarily stored in a local

buffer the size of which is determined by the relative rates

of production and consumption. Furthermore, any imple-

mentation would be expected to include back pressure and

synchronization mechanisms to 1) halt the production be-

fore the buffer is full and 2) stall the consumption when the

buffer is empty to achieve a correct implementation. Buf-

fering the data is not necessary when compiling individual

kernels (e.g., stand-alone filters). However, it becomes a

necessity, and often a major challenge, when compiling

larger systems. Consider data streaming through a series of

filters: buffers and back-pressure are necessary to hold the

data between filters. Automatically inferring efficient

buffering schemes without user assistance in the forms of

pragmas or annotations is a major challenge.

Edwards [12] makes the case that C-based languages are

not well suited for HLS. The major challenges described in

the paper for C-based languages apply to most HLLs. These

challenges are the lack of: 1) timing information in the

code, 2) size-based data types (or variable bit length data

types), 3) built-in concurrency model(s), 4) local mem-

ories separated from the abstraction of one large shared

memory. While all these points are valid, the main attrac-

tion of C-based languages is familiarity. Most HLS tools

using C-based languages provide workarounds for one or

more of these obstacles as described in [12].

The abstraction and semantic gaps between the hard-

ware and software computing models are summarized in

Table 2. Translating a HLL to a circuit requires a transfor-

mation of the sequential to a spatial/parallel, with the

Windh et al. : High-Level Language Tools for Reconfigurable Computing

392 Proceedings of the IEEE | Vol. 103, No. 3, March 2015



creation of custom sequencing, timed synchronizations,

distributed storage, pipelining, etc. The storage in the von

Neumann model is abstracted in a single large virtual ad-

dress space with uniform access time (in theory). The spa-

tial model is better served with multiple local small

memories. The parallelism in the von Neumann model can

be dynamic: threads are created and complete relinquish-

ing resources. In hardware every thread must be provi-

sioned with resources statically. The software model relies

on an implicit sequential consistency where all instruc-

tions execute in program order and no instruction starts

before all the previous instructions have completed execu-

tion. The hardware execution is data flow driven.

Raising the abstraction level of FPGA programming to

that of CPU or GPU programming is a daunting task that is

yet to be fully completed. It is of critical importance in the

programming of accelerators as opposed to the high-level

design of arbitrary digital circuit, which is the focus of high-

level synthesis. Hardware accelerators differ from general

purpose logic design in one important way: the starting

point of logic design is a device whose behavior is specified

by a hardware description code implemented in a HDL such

as VHDL, Verilog, SystemC, SystemVerilog, or Bluespec.

The starting point of a hardware accelerator is an existing

software application a subset of which, being frequently

executed, is translated into hardware. That subset is, quasi by

definition, a loop nest. Hopefully that loop nest is paralle-

lizable and can therefore exploit the FPGA resources. By

focusing on loop nests, the task of compiling HLLs to FPGAs

is simplified and opportunities for loop transformations and

optimizations abound. The ROCCC compiler takes this ap-

proach and is described later in this paper.

C. Related Work
As the number of tools supporting HLS for FPGAs has

increased so has the number of surveys comparing and

contrasting such tools. However, the rapidly shifting land-

scape of HLS tools for reconfigurable computing makes

most such endeavors obsolete within a few years.

A description of the historical evolution of HLS tools,

starting with the pioneering work in the 1970s can be

found in [13]. The authors offer an interesting analysis of

the reasons behind the successes and failures of the various

generations of HLS tools. While the survey is not focused

on HLS tools for FPGAs, it does mention several FPGA-

specific tools, such as Handel-C, as well as general HLS

tools that could be used for FPGAs.

The major research efforts in compiling high-level lan-

guages to reconfigurable computing are surveyed in [14].

The paper offers an in-depth analysis of the tools available

at that time.

AutoESL is described in [15]. The paper also provides

an extensive survey of HLS in general and of tools speci-

fically for FPGA programming.

In [16] the authors reviewed six high level languages/

tools based on programming productivity and generated

hardware performance (frequency, area). User experience

of using the targeted languages is recorded and normalized

as a measure of productivity in this study. However, most

of the tools evaluated in this work are no longer supported

by their developers.

An extensive evaluation of 12 HLS tools in terms of

capabilities, usability, and quality of results is presented in

[17]. The authors use Sobel edge detection to evaluate the

tools along eight specific criteria: documentation, learning

curve, ease of implementation, abstraction level, data

types, exploration, verification, and quality of the results.

Daoud et al. [18] survey past and current HLS tools.

IV. HIGH LEVEL LANGUAGE TOOLS

In this section we provide a brief description of the tools,

where they were developed, and highlight some of their

optimizations and the user experience of developing with

each tool. The following tools can be divided into two

classes: commercial software and research projects. We

first cover the commercial software, followed by the univ-

ersity research projects.

A. Xilinx Vivado HLS
Vivado High-Level Synthesis is a complete HLS envi-

ronment from Xilinx. It has been in development for the

last several years following Xilinx’s acquisition of AutoESL

[19]–[21]. Vivado HLS is available as a component of

Table 2 Features and Characteristics of Stored Program and Spatial Computation Models

Windh et al. : High-Level Language Tools for Reconfigurable Computing

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 393



Xilinx’s larger Vivado Design Suite or as a standalone tool.

Like most HLS tools, Vivado HLS is mostly oriented to-

wards core generation over full system design. It is possible

to create hybrid designs with portions of code running on a

soft-core processor communicating with custom hardware

accelerators. However, the recommended work-flow [22]

requires exporting the IP core from HLS and importing

into the full Vivado Design Suite. As a Xilinx tool, there is

significant support for different boards of multiple families

of Xilinx FPGAs (7-series Virtex, Artix, Zynq, etc.). De-

pending on requirements, the hardware accelerator can be

exported as one of several different Xilinx specific core

formats for simple integration into other products, or just

the HDL specification.

The Vivado HLS tool is built using LLVM [23], [24]

compiler framework. As such it has access to many software

optimizations (e.g., loop-unrolling, loop-rotation, dead-

code elimination, etc.). However, hardware and software

programing paradigms are inherently different so we can-

not expect all of LLVM’s optimizations to work seamlessly

for HLS. Several studies using Vivado HLS to generate

FPGA accelerators have been demonstrated, including Dy-

namic Data Structures[24], Sobel Filter [17], Control Algo-

rithms for Power Converters [25], and real-time embedded

system vision [26].

User Experience: Typical design flow (Fig. 2) starts with

C code compiled to a pure software implementation and a

self-validating testbench to verify correctness. The user

must specify the top function in the code that they wish to

synthesize to hardware. The GUI provides the user a list of

code regions (targeted at loops, function bodies, and other

bracketed regions) that can be optimized using synthesis

directives to guide the RTL generation.

At the function level, directives include inline, instan-

tiate (local optimization), dataflow (improve concurrency),

pipeline (improve throughput), and interface (function

defines an interface), among others. At the loop level,

dataflow pipelining, and the common optimizations of

loop-unrolling, loop-merging, loop-rotation, dead-code eli-

mination, etc., are also available. The interface directive

higlights an important aspect of the flexibility in Vivado

HLSVthe ability to generate user specified I/O protocols.

Documentation highlights the convenience of using

Xilinx’s AXI4 interfaces in terms of compatibility with

their IP catalog, however, the tool does not prevent custom

protocols, and thus increases portability. The tool also pro-

vides the ability to set custom bit-widths for all variables in

a design, leading to more efficient use of area.

The directives guiding the optimizations can be defined

directly in the source code using #pragmas, similar to

OpenCL code. They can also be defined separately in a

directives.tcl file that the synthesis tools will apply before

RTL generation. The second option creates the flexibility

of maintaining multiple solutions testing different optimi-

zations using the same source code. As design space ex-

ploration is a generally iterative and time consuming

process, [27] this can reduce the development time.

B. Altera OpenCL
Open Computing Language (OpenCL) is a program-

ming language originally proposed by Apple Inc. and

maintained by the Khronos Group [28]. The OpenCL spe-

cification provides a framework for programming parallel

applications on a wide variety of platforms including CPUs,

GPUs, DSPs, and FPGAs [29]. Moreover, OpenCL is a

royalty-free, cross-platform, cross-vendor standard that

targets supercomputers, embedded systems, and mobile

devices. OpenCL allows the programmers to use a single

programming language to target a combination of different

parallel computing platforms. Parallel computation is

achieved through both task-level and data-level parallelism.

The OpenCL framework provides an extension of C

(based on C99) with parallel computing capabilities and

the OpenCL APIs, which is an open standard for different

devices. In the OpenCL programming model, a host is

connected to one or more accelerator devices running

OpenCL kernels. Device vendors provide OpenCL compi-

lers and runtime libraries necessary to run the kernels. The

host program is written in standard C to query, select, and

initialize compute devices. Communication between the

host program and accelerators is established through a set

of abstract OpenCL library routines. Each accelerator

device is a collection of compute units with one or more

processing elements. Each processing element executes

code as SIMD or SPMD.

In the FPGA industry, both Altera and Xilinx have an-

nounced support of OpenCL HLS in their FPGA develop-

ment tools. Altera released an OpenCL SDK in 2013 that

supports a subset of the OpenCL 1.0 specifications. Xilinx

started to support OpenCL in their Vivado HLS tool in April

2014. In this paper we focus on the Altera OpenCL SDK.Fig. 2. Vivado HLS workflow.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

394 Proceedings of the IEEE | Vol. 103, No. 3, March 2015



The Altera OpenCL SDK provides software program-

mers an environment based on a multi-core programming

model that abstracts away the underlying hardware details

while maintaining efficient use of FPGA resources. The

Altera OpenCL compiler (AOC) is an offline compiler that

translates OpenCL to Verilog and runtime libraries for

the host application API and hardware abstractions. The

OpenCL system overview is shown in Fig. 3. Unlike the

OpenCL compiler for CPUs and GPUs, where parallel

threads are executed on different cores, AOC transforms

kernel functions into deeply pipelined hardware circuits to

achieve parallelism. AOC uses a CLANG front-end to parse

OpenCL extensions and intrinsics to produce unoptimized

LLVM IR [31]. The middle-end performs optimization with

about 150 compiler passes such as loop fusion, auto vec-

torization, and branch elimination. On the back-end, the

compiler instantiates Verilog IP and manages control flow

circuitry of loops, memory stalls, and branching. Finally

the generated kernel is loaded onto an Altera FPGA using

an OpenCL compatible hardware image. Various applica-

tions using OpenCL to program FPGA accelerators have

been demonstrated, such as information filtering [31],

Monte Carlo simulation [30], finite difference [32], parti-

cle simulations [32], and video compression [33].

User Experience: The AOC is designed for software

programmers to construct parallel FPGA applications. It

has a similar command line interface to the GCC compiler.

All OpenCL codes must be included in a single text file

before passing to the compiler. The AOC will generate

transformations, create Quartus II project files and perform

synthesis, place and route, and bitfile generation for FPGA

execution. There are several compiler optimizations that

can be applied to OpenCL code: kernel vectorization, static

memory coalescing, generating multiple compute units,

and loop unrolling. Optimizations, when invoked by the

user, are applied automatically by the compiler on the

whole code to improve processing efficiency. In addi-

tion, the programmer can specify attributes, such as

num_compute_units and num_simd_work_items, in the

source code to manually control the degree of kernel vec-

torization and parallel compute units respectively, as

shown in Fig. 4. When setting the num_simd_work_items
attribute, the data path within a compute unit is replicated

to increase throughput and can also lead to memory coa-

lescing. On the other hand, the num_compute_units attri-
bute will also duplicate all the control logic which may

increase the number of global memory access. Fig. 5 shows

the difference between these two optimizations. Both

techniques can be combined to further increase the paralle-

lism at a cost of higher memory bandwidth usage and more

FPGA resource occupation. Furthermore, AOC allows users

to specify the loop unrolling factor by setting the pre-

processor directives (#pragma unroll). In Fig. 4, the loop

iteration is unrolled 16 times. If the amount of unrolling is

not specified, AOC will fully unroll the loop. Moreover,

the AOC can perform resource-driven optimizations that

Fig. 3. OpenCL system overview, image from [30].

Fig. 4. Sample OpenCL kernel function with programmer set

attributes.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 395



analyze various combinations of compute unit number,

work group size, loop unrolling factor and number of shared

resources under the constraints of available hardware re-

sources and memory bandwidth to determine the optimal

choice of these values. The resource-driven optimizer is

invoked when the programmer sets the -O3 switch in the

compiler.

To test the OpenCL code functionality, AOC provides

an OpenCL emulator to simulate the behaviour of the

OpenCL kernel program. The emulated kernel is used as a

dynamically linked C++ library that can be called from a

host program. To compile the OpenCL code for emulation,

the -march=emulator option should be included in the

compilation. Programmers can write a host program to

verify if the OpenCL kernel works as designed. In addition,

basic C functions like printf can be used inside the OpenCL
kernel with the emulator to check intermediate values.

When the emulator is used, no compiler optimizations can

be applied. At present, there is no RTL simulations for hard-

ware programmers to test the generated Verilog kernel.

C. Bluespec System Verilog
Bluespec System Verilog (BSV) [34], [35] is a high level

hardware description language built upon the synthesize-

able subset of SystemVerilog. BSV’s behavioral model is

based on Atomic Rules and Interfaces. The rules ensure pa-
rallelism, which is well suited for complex hardware de-

signs. BSV also provides powerful abstraction mechanisms

that were previously believed to be suited only for software

applications. BSV derives most of these abstractions from

System Verilog, such as module and module hierarchies,

loops, and user-defined data types (enum, struct, tagged

union). BSV provides architectural transparencyV

meaning the programmer, not the tool, expresses the ar-

chitecture of a the design. This transparency places the tool

in an area between HLS and HDL; it abstracts away some of

the complexities of working at the hardware level, yet it

loses some of the automation provided by many HLS tools.

BSV has strong type-checking which ensures all objects are

compatible and conversion functions are valid [36]. BSV

also provides strong static checking by preventing

movement of values to/from currently unused modulesV

ensuring a synchronizing mechanism must be used to cross

clock boundaries. All of these features help eliminate tim-

ing errors.

Language Semantics: In conventional Verilog, values are

typically kept synchronized by using an always block. In
BSV Rules are used to describe how the data is moved from

one state to another. The rules are atomic in nature, mean-

ing that the execution of each rule should be considered

independently. A Rule is triggered when all of its precon-

ditions are met. Preconditions are boolean expressions,

which are purely combinational logic and do not have any

side effects. All actions within a rule occur simultaneously,

implying all rules should be composed of independent

actions. Rules help in achieving higher concurrency and

avoiding race conditions. The independent nature of rules

allows hardware to execute multiple rules concurrently.

A BSV module’s interface consists of methods instead

of a ports list. A method is similar in concept to a function,

it takes in arguments and returns a result. However, they

differ in that a method also carries with it a set of implicit

conditions. Each method has an associated Ready signal

(output port) and an Enable signal (input port) if it is an
Action method. Because BSV does not accept standard C

like the other HLS tools presented in this paper, we show a

simple BSV code to multiply two integer values for syntax

clarification (Fig. 6). The module named product provides
Product_Interface. Product_Interface has two methods. The

readResult is a Value Method, which forms the output port

of the module. The second method setValues takes three
arguments and forms the input port of the module. The

attribute synthesize tells the BSV compiler to generate a

separate hardware implementation (Verilog) of the follow-

ing module. We then define four registers of type int and
instantiate them with a BSV defined module mkReg. Fi-
nally we apply different rules to compute the product.

BSV uses a dynamic scheduler which allows multiple

rules to be executed in each clock cycle. The compiler,

guided by the scheduler, performs a detailed analysis of all

the rules and their interactions with each other and maps

the design into the clocked, synchronous hardware. This

mapping permits multiple rules to be executed in each

clock cycle, however, it may also give rise to a situation

where two or more rules conflict (e.g., limited resources).

In the absence of user guidance, the compiler arbitrarily

chooses which rule to prioritize and issues a warning. As

shown in Fig. 7, the BSV compiler makes sure that all the

control logic is dictated solely by the applicable rules, thus

functional correctness is achieved.

User Experience: Bluespec compilation can be controlled

from the Bluespec GUI or from the command line inter-

face. It is very important for the programmer to under-

stand how Bluespec language semantics get converted to

Fig. 5. OpenCL compiler optimization techniques to increase

parallelism. (a) FPGA kernel with multiple compute units.

(b) FPGA kernel of one compute unite with kernel vectorization.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

396 Proceedings of the IEEE | Vol. 103, No. 3, March 2015



RTL. For example, to interact with the module we need

ports which are formed by Bluespec interfaces [17].
The RTL code is generated by scanning each line of the

Bluespec code. All the Bluespec design entity names are

preserved in the RTL code generated by the compiler. For

example, in Bluespec, methods are used to bring data into

the module and send out of the module. Methods even-

tually form port signals of the same name in the RTL, which

makes the RTL code more readable and traceable [17].

The benefit of BSC over C-based synthesis tools is that

BSC does not invent the architecture for us. With C-based

synthesis, the designer writes an (often sequential) algo-

rithm, and the C-based tool figures out an architecture to

implement that algorithm. With BSC, the designer chooses

the architecture, writes BSV to express the desired hard-

ware implementation, and BSC generates that hardware.

However the designer may not have many choices for de-

sign exploration since the design entry is at the hardware

level.

D. LegUp 3.0 (U. Toronto)
LegUp [37], [38] is an integrated HSL environment that

is developed and maintained at the University of Toronto.

The project’s goal is to take existing C applications in their

entirety, compile and run them on an FPGA. This differs

from most HLS tools that focus on compiling only specific

regions of code to hardware. Currently, LegUp targets two

Altera platformsVa Cyclone II on the DE2 board, and a

Stratix IV on the DE4 board. Design choices like the soft-

core processor and the communication bus are tightly

Fig. 7. Scheduling of rules in BSV.

Fig. 6. Multiplication example in BSV.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 397



coupled to these specific boards, and porting them to other

platforms would be a nontrivial task. However, the hard-

ware accelerator cores themselves have only a few Altera

specific components, and can be ported with little effort.

LegUp supports three types of compilation: pure soft-

ware, pure hardware, and a hybrid approach. In a pure

software compilation, LegUp only generates assembly code

that can be run on a Tiger MIPS [39] soft-core processor,

enabling the FPGA to handle almost all of the C language

standard. However, it limits the performance and energy

efficiency. In a pure hardware compilation, LegUp gene-

rates a custom circuit for the entire application. However,

only a subset of the C language is supported for hardware

acceleration. For example, dynamic memory and recursive

functions do not make sense as a circuit. It should be noted

that these limitations are ubiquitous among all HLS tools.

In a hybrid compilation, LegUp generates a custom circuit

for only part of the application, and assembly code is

generated for the rest. LegUp keeps any hardware calls

from software transparent to the user by automatically

inserting them into the assembly code. Support exists for

both blocking and nonblocking hardware calls. Blocking

calls improve the energy efficiency, but nonblocking calls

will improve the performance.

Fig. 8 shows the complete hybrid architecture that

LegUp generates. It has a single Tiger MIPS processor and

can have multiple hardware accelerators depending on the

application. All memory data is stored in an off-chip mem-

ory, but an on-chip cache is used to improve performance.

All communication is carried across Altera’s Avalon bus

[40]. Targeting a single type of architecture has its trade-

offs. A shared global memory space prevents costly data

offloading, and assuming only one type of bus simplifies

the communication protocols. However, it results in very

specialized hardware accelerators. Their performance is

limited by the Avalon bus’s bandwidth, and cannot be ex-

tended to higher bandwidth architectures. LegUp is cur-

rently a very specific tool, but extensions could make it

more general.

Typical design flow for an application starts with the C

code compiled into a pure software implementation.

LegUp provides a built in profiler to help identify computa-

tion intensive code regions that are strong candidates for

hardware acceleration. This stage is not automated: the

user must mark functions for hardware compilation.

LegUp then generates the necessary accelerators in Verilog

and the application is recompiled to insert the necessary

hardware calls. The entire design can be simulated to ve-

rify correctness and then synthesized for the target FPGA.

These steps are repeated iteratively until the designer is

satisfied with the performance.

Similar to several other tools, LegUp is based on the

LLVM compiler framework. The impact of various LLVM

optimizations on the performance of the generated hard-

ware structures is explored in [41]. Extra passes are added

to LLVM for HLS and work in three phases: allocation,

scheduling, and binding. The allocation stage determines

the available hardware based on the target architecture and

manages the application’s constraints like clock speed and

power consumption. Scheduling orders the operations.

Currently, only as-soon-as-possible scheduling is sup-

ported, but because of LLVM’s modular design this pass

can be easily changed. Binding reduces resource utilization

for complex instructions (i.e., multiply or divide) by mul-

tiplexing the data path through a single component. A

weighted bipartite matching heuristic is used to handle the

binding problem.

User Experience: Being a research tool, LegUp is not

primarily concerned with usability. Installation can be dif-

ficult because it requires specific versions of standard

tools. The LegUp website [42] does offer an Ubuntu virtual

machine, for VirtualBox, with the tools already setup.

The user interfaces with the compiler through com-

mand line, but comprehensive makefiles and many exam-

ple are provided to help get new users started. Most

operations can be handled through a provided makefile,

from compiling and simulating to automatic project crea-

tion and synthesis. Optimizations are applied in two

locations: For hardware specific optimizations (e.g., pipe-

lining) the user needs to create a .tcl script. Common

software optimizations (e.g., loop-unrolling) can be passed

directly to the LLVM compiler through the makefile.

E. ROCCC 2.0 (UC Riverside)
The Riverside Optimizing Compiler for Configurable

Computing (ROCCC) [43] is a C to VHDL compiler built

using SUIF [44] and LLVM [45]. ROCCC was initially de-

veloped at the University of California Riverside. ROCCC

2.0 was developed by Jacquard Computing Inc. with fund-

ing from the AFRL under an SBIR contract. ROCCC 2.0 is

freely available on GitHub. The SUIF toolset is used to

implement the high-level transformations, such as loop

and array transformations, and generates an interme-

diate representation, CIRRF (Compiler IntermediateFig. 8. LegUp 3.0 target architecture.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

398 Proceedings of the IEEE | Vol. 103, No. 3, March 2015



Representation for Reconfigurable Fabrics) [46], a read-

able text file. The CIRRF code is then passed to LLVM for

further low-level optimizations and VHDL generation.

Hardware specific optimizations, such as pipelining, ex-

pression tree balancing etc., are implemented in the

second pass of LLVM. The ROCCC design puts a special

emphasis on user driven transformations and optimiza-

tions whose objective is to maximize throughput by ex-

ploiting the inherent parallelism and reducing the area

footprint of the generated code [47]. Another objective is

reducing the number of memory accesses per output result

by automatically reusing already fetched data [48].

The designs in ROCCC are divided between two ab-

stractions: systems and modules. Systems perform the

main computations that are being accelerated for the ap-

plication. They are based around for-loops that allow them

to process streams of data and access memory through

arrays. The system generated code is the only code that can

read and write external data. Modules are designed to im-

plement a specific task and are used as function calls from

systems or other modules. Both modules and systems have

a variable number of parameters that represent I/O ports

in the underlying hardware core. These abstractions pro-

vide reusability and ease of development for large systems

with multiple levels of complexity. ROCCC also allows the

addition and use of external cores in projects as if they

were another function call.

ROCCC provides a number of high-level optimizations.

They include: division elimination, multiply elimination,

loop-unrolling, module inlining, redundancy, systolic array

generation [49], loop-fusion, and Temporal Common Sub-

expression Elimination (TCSE) [50]. Additionally, ROCCC

provides some low-level optimizations. They include: max-

imize precision, copy reduction, fanout tree generation,

and arithmetic balancing. System code has access to all

these optimizations whereas modules do not have the sys-

tolic array generation, loop-fusion, and TCSE optimiza-

tions. All loops in modules are fully unrolled because

modules do not stream data. ROCCC is designed to create

platform independent hardware structures. However, by

default larger FIFOs use vendor-specific IP cores to im-

prove timing. They are wrapped in an InferredBRAM com-

ponent to allow easy portability. Similar to most C-to-

FPGA tools, ROCCC is only able to compile a subset of C

that works well with FPGAs. Features like dynamic mem-

ory allocation and recursion are not supported by ROCCC.

User Experience: ROCCC development is accomplished

through the Eclipse IDE with custom plugins for the GUI.

Since the idea behind HLS tools is to make hardware de-

velopment easier, using Eclipse provides a small learning

curve to ROCCC. Short and straightforward tutorials are

available online [51]. Those comfortable with the Eclipse

IDE will be able to produce systems at the same rate that

they would produce a software project. Adding modules

and other IP cores to projects is done through their re-

spective menu screens after choosing to import them on

the ROCCC drop-down menu. After writing the C code for

either a module or system, clicking the build button brings

up a menu process. The menu process involves selecting

optimizations, setting a pipeline preference, and managing

I/O streams. All of which have their benefits to a circuit

described in the tutorial. A deep understanding of how the

hardware works in order to test it is not required since

ROCCC provides a test bench generation process. It in-

volves including .txt files with sequences of inputs and

expected outputs. The user can then verify the circuit by

reading the console output of the simulator.

V. DILATION KERNEL EXAMPLE

In this section, we use a simple image processing opera-

tion, dilation, to demonstrate the use of various HLS tools.

Dilation sets the value of the center pixel of a window (in

our case 3 � 3) to the maximum of all values in that

window. In the case of a greyscale image, it will make

white regions brighter and reduce dark spots as shown in

Fig. 9. We start with a black and white image with the

white letters ‘‘UCR’’ crisscrossed with black lines. After

several passes of a dilation, the cross marks are removed

and a clean UCR logo shows through.

Dilation is rather amenable to comparisons because it

uses simple, straightforward C code, an efficient circuit is

not too challenging to generate, yet compilers optimiza-

tions can result in very large performance increases.

The simplest way to implement this filter that follows

directly from the sequential description from the C code

can be seen in Fig. 12(a). In this circuit, we simply register

the nine pixels within the window and then compare pairs

of two pixels to find the max of the nine pixels. While

simple to generate from the source, it has two major

drawbacksVlatency and wasted memory requests. With-

out a mechanism to save values from window to window,

we waste 66% effort refetching the same data as seen in

Fig. 10.

A slightly improved version can be seen in Fig. 12(b).

Balancing the arithmetic between the max operations

helps to reduce latency, but does nothing to help with the

memory accesses. Unintelligent use of data can cause

excessive uses of the memory subsystem, and really hinder

performanceVespecially throughput.

Fig. 9. Dilation example. (a) Crisscrossed UCR logo; (b) clean UCR logo

following dilation.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 399



Fig. 12(c) demonstrates the type of circuit we would

like to see produced by the HLS tools. By using temporal

common sub-expression elimination, we have data reuse

between windows, maximizing the utilization of the mem-

ory system. This layout allows for the streaming of three

rows of the image from memory, and we take the max of

the current column. The max is registered and shifted

through a buffer for use in the next cycle. After the initial

three cycle latency for the buffer to be filled, this circuit

can produce one pixel per cycle. We can further increase

performance by duplicating this design on the FPGA by

unrolling the inner loop. Each kernel on the device would

process overlapped streams of the image, creating data

reuse vertically as well as horizontally. This design yields

itself to low latency, good data management, and the abi-

lity to scale as the resources on the chip allow.

A final possible optimization, represented in Fig. 12(d),

uses a line buffer (supported by AOC): an entire row of the

image is shifted onto the FPGA and a window of three

pixels is used to generate the max. Great performance with

this technique is possible as long as there are enough re-

sources on the FPGA to accommodate all the necessary line

buffers. It may not be feasible when using large images.

A. CPU Implementation
In the introduction, we proposed an argument about

the efficiency of FPGAs in relation to CPUs, and how

FPGA codes can achieve their speed-up relative to tradi-

tional software. Before presenting how the various HLS

tools implement the following benchmarks, we feel it is

prudent to have a baseline software implementation

(compiled with GCC 4.6.3, -O3) for comparison.

Fig. 11 shows two implementations of the dilation filter:

in Fig. 11(a), we have a simple, direct interpretation of

dilation [taking care not to do a completely serial imple-

mentation like Fig. 12(a)] and in Fig. 11(b) a programmer

optimized version to take advantage of TCSE. Since a major

focus of this paper is how much the tool can accomplish for

Fig. 10. Overlapping region of adjacent Dilation windows can lead to

smart optimization or redundant memory requests.

Fig. 11. Simple change to access pattern and order of calculations makes a significant difference for the CPU optimization opportunities.

(a) Dilation code in C. Same code was used for the ROCCC compilation; (b) optimized dilation code in C. These optimization, along with

data reuse, are applied by the ROCCC compiler reducing the number of memory reads (Table 5).

Windh et al. : High-Level Language Tools for Reconfigurable Computing

400 Proceedings of the IEEE | Vol. 103, No. 3, March 2015



the programmer, we started with the direct implementation

to determine the level of efficiency GCC could achieve.

In the direct case, the compiled assembly for x86 has

32 instructions for the inner loop, meaning 32 machine

instructions executed for every output pixel generated.

Another issue with the assembly is the lack of register re-

use. Register allocation is a particularly hard problem with

compilers, and in this case reusing registers for the next

iteration of the loop was not identifiedVall nine pixels

used in a window are loaded with move instructions from

memory. Depending on the memory hierarchy and caching

structure, this could also be a detriment to performance.

Unrolling only provides a minor benefit to the simple

software implementation and yields a total of 60 instruc-

tions. In this case, all the compiler can accomplish is dup-

licating the body of the inner loop once, without any

register reuse between the unrolled loop bodies as evi-

denced by the 18 load requests. Overall, the code executes

30 instructions per output pixel.

In generating the optimized version of the code, we

wrote it specifically to force value reuse between itera-

tions. We implemented four different versions, including

cache blocked memory accesses to determine the best

performing implementationVrow based access and non-

memory blocking. The dilation filter by default reuses a lot

of values that will be brought to cache as it passes over the

rows, so blocking the accesses only adds overhead and

reduces performance. For value reuse, we simply precom-

pute the two maxes of the initial columns of the current

window before iterating over the rows of the image. This

minor reorganization simplifies the inner loop to only cal-

culate one new max from the input, write the output, and

then shift two of the current maxes to reuse on the fol-

lowing iteration.

The compiler performs more extensive optimizations

on this implementation. During initialization in the outer

loop, the code executes 46 instructions and stores two

results in this stage with 12 loads, for a total of 23 instruc-

tions per output pixel. Loop unrolling is able to unroll the

inner loop six iterations, for a much better stride over

the majority of the data. During this stage, the code does

18 loads and six stores and executes 76 instructions, for

12.67 instructions per output pixel.

With the best compiler optimizations applied to an al-

ready hand-optimized version of the dilation code, the

peak performance we saw was 13 instructions per output

pixel. CPUs run at an order of magnitude faster clock fre-

quencies, but still has to execute at least an order of mag-

nitude more instructions and thus, clock cycles. And that

ignores any many-cycle-stalls from memory misses. The

key point we want to highlight is that in order to achieve

that performance, a programmer had to be knowledgeable

about the possible shortcomings of the platform and spend

development time altering the source to generate the de-

sired assembly performanceVthe tools could not achieve

that independently. Contrast this to some of the following

examples where naBve code and a compiler flag are enough

to generate well optimized hardware implementations.

Fig. 12. Examples of NaBve implementations (top) versus Smart optimizations (bottom) that improve performance. (a) Zero optimizationVLack

of tree balancing causes wasted memory access and increased latency. (b) Tree balancing helps latency, but still wastes memory accesses.

(c) Example dilation circuit, using TCSE optimization. (d) Example dilation circuit, multi-line buffer.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 401



B. Vivado HLS
To implement the dilation project in VivadoHLS, we

started with the sample C code provided in the beginning

of the section, except for a minor difference in the param-

eter list. To have VivadoHLS process the input as a stream,

and thus pass the input as a pointer, a protocol must be

created to interface between the stream and the circuit.

Since the information we are interested in is how the tool

compiles the kernel and not the data passing, we elected to

use an input array of fixed size to avoid the extra overhead.

With that minor change, VivadoHLS was able to com-

pile the given source to hardware. The tool also uses the

programmer-provided software test harness to generate a

hardware testbench to validate correctness. It is possible to

go from C to VHDL without ever looking at a waveformVa

benefit to software developers without experience in hard-

ware development.

By default, VivadoHLS does not apply any optimiza-

tions. It is easy to get a working RTL solution, but the tool

will only do exactly as the programmer directs. In this

example, the first solution generated had similar perfor-

mance characteristics to Fig. 12(a). Adding simple direc-

tives to the inner loop like pipelining and unrolling and the

resulting RTL resembles Fig. 12(c).

C. OpenCL
We have implemented dilation in OpenCL by using a

single loop structure, as in AOC, nested loops should be

avoided for performance considerations [52], [53]. Note

that, for a single loop structure, the output image has the

same size as the input image. Also, the edge values may not

be correct since all loop iterations should have the same

computation. However, this is a minor issue for image

processing as edges are typically not the region of interest.

The OpenCL implementation code is shown in Fig. 13.

The code was compiled with and without optimizations

(-O3 optimizations) however the generated hardware de-

scription is not readable and it is not possible to observe

the effects of the optimizations on the generated circuits.

We did observe significant changes in the resource utiliza-

tions and the clock frequency.

D. Bluespec System Verilog
The Bluespec dilation module reads three rows of an

image matrix at a time. It forms the pipeline of incoming

data and as soon as the window of 3 � 3 is received, the

module outputs the maximum value in a window. The

Bluespec module is built similar to Fig. 12(c). The inter-

face to dilation in BSV is declared as depicted in Fig. 14.

The interface has three methods. An Action method

usually causes some state change. In this example input_in
is an Action method and brings in three inputs a,b,c into a

module. The out_data method is a Value method which

outputs data from the module. In our case we return 16 bit

wide maximum value of 3 � 3 window from the module,

which the Bluespec compiler names the same as method

name, out_data. The other two methods act as the control

signals to the outside modules. The done method termi-

nates the execution of a module and isPipeflush method let

the other module know that pipeline is being flushed. The

dilation module is shown in Fig. 15. The module begins by

importing packages and is instatiated with two parameters:

height and width of an image. As we can see in Fig. 15, rule

incr writes to wCount and rule check reads the value of

wCount, the BSC attribute descendency_urgency guides the
compiler to schedule the more urgent rules first in case

both of these rules fire in the same cycle. We then apply

rules to compute the maximum value of window. Each of

the rules have some conditions specified under which they

fire. The pseudo-code can be seen in Fig. 15.

Fig. 13. OpenCL implementation of Dilation using a single loop

structure.

Fig. 14. BSV interface to dilation module.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

402 Proceedings of the IEEE | Vol. 103, No. 3, March 2015



As a part of verification, testbenches are manually

written in Bluespec. In our case, we instantiate a dilation

module in our testbench module. We keep sliding our

window one column at a time and as soon we reach the

width of an image we slide our window by one row. We

repeat the steps until the last window can be formed. In

this testbench, the top-level interface is ‘‘Empty,’’ which

means when we see the synthesized verilog, we can see

only clock and reset lines. Bluespec provides a test driver

module for modules with ‘‘Empty’’ interfaces which applies

reset and then drives the clock indefinitely.

E. LegUp 3.0
As we previously stated LegUp targets a very specific

architecture, and this limits any generated kernel’s band-

width to two memory channels. Even though these kernels

cannot increase the number of memory channels they can

be optimized to better utilize the available bandwidth.

Table 5 shows the performance results as we apply loop

unrolling to the dilation kernel. An important note we

want to point out is that for every test, the total number of

write memory accesses is exactly the same because LegUp

only duplicates the hardware engines, but does not merge

their computations.

However, duplicating the engines does increase the

number of available memory requests. LegUp’s FSM can

then schedule the requests closer together to improve

bandwidth utilization. This also improves the number of

runtime cycles. Clock frequency is affected as the kernel is

unrolled due to larger resource utilization on the FPGA.

Overall runtime is also affected as shown in Table 5.

F. ROCCC 2.0
The ROCCC implementation of dilation starts with the

C code shown in Fig. 11(a). The same code was used in [43]

to demonstrate the TCSE optimization. The sample code

uses a modular approach which replaces each section of if-

statements with a call to a MAX module. The current ver-

sion of ROCCC would not unroll either the inner loop or the

outer loop more than twice with the modular approach. In

order for ROCCC to unroll either loop further, the code had

to be written with the max functions inlined by hand.

To take advantage of the loop unrolling, input and

output streams were added to the circuit through the

ROCCC GUI. Multiple input streams divide up the number

of memory accesses, further reducing the execution time.

Each extra window gained from loop unrolling shares the

bottom two rows with the window above it, meaning that

an extra input stream is required for the bottom row of the

new window. With no unrolling, three inputs (one input

for each row of the 3 � 3 window) and one output were

used. The amount of outputs is equal to the amount of

times the loop is unrolled and the number of inputs is two

more than the number of times the loop was unrolled. For

example, two unrolls uses four inputs and two outputs.

The circuit that ROCCC generates processes input

similar to the circuit depicted by Fig. 12(c). The MAX

component represents the if-statements sequence inside

the nested loop. Every cycle an element from each row of

the 3 � 3 window is pulled in through a FIFO. Once all

three elements of the row are in, they get compared and

the max from each row goes to the next comparison block

to produce the maximum number of the 3 � 3 window.

This specific example is a dilation circuit with three input

streams. With only one input stream there would be just

one FIFO for all three MAX components. Loop unrolling

and adding the appropriate amount of input streams

creates multiple compute units.

Fig. 15. Dilation implementation in BSV.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 403



VI. AES ENCRYPTION KERNEL EXAMPLE

The Advanced Encryption Standard (AES) [54] is a sym-

metric block cipher that can be used to encrypt and decrypt

information to protect electronic data. The AES algorithm

has become the default choice for various security services

in numerous applications [55]. The encryption process

converts plaintext into an unintelligible form known as

cipher-text, and decryption is the inverse of this process.

AES processes the data in 128-bit input blocks using a key

size of 128, 192, or 256 bits. With respect to those key sizes,

the algorithm executes 10, 12, or 14 iteration rounds of

transformations. The five core operations of the algorithm

are KeyExpansion, AddRoundKey, SubBytes, ShiftRows,

and MixColumns. A visual flow-graph of the algorithm can

be seen in Fig. 16. The input block, called the state array, is

constructed as a 4 � 4 matrix of bytes. The state array goes

through the appropriate amount of processing rounds where

the subBytes, ShiftRows, MixColumns, and AddRoundKey

steps are performed on the state array. After the final round,

the state array contains the encrypted data.

For this paper, we focused on the KeyExpansion and

MixColumns operations of the AES encryption algorithm

with a 128-bit key. Both steps of the algorithm are more

computationally intensive than the rest, meaning they do

more than a single operation on each element of the state

array. The KeyExpansion algorithm takes the four 32-bit

words of the input key and expands the key into 44 words.

The AddRoundKey operation XORs four of the key words

at a time, which requires four words for each round and an

additional four during the initial round before the main

encryption rounds begin. The SubBytes algorithm makes

use of a precomputed array of round constants and a sub-

stitution box to generate the next four words based on the

key words of the previous iteration or the initial four key

words. ShiftRows is a transposition step where the last

three rows of the state array a rotated cyclically. Finally,

the MixColumns algorithm is simply a matrix multiplica-

tion of the state array with a predefined array composed of

the values 0 � 01, 0 � 02, and 0 � 03. The arithmetic for

the matrix multiplication in this step is done in the Galois

field GFð28Þ in which addition becomes XOR and multi-

plication becomes bit shifting and XORing.

A. Implementing AES
When implementing AES in hardware, the HLS tools

divided themselves into two groups: those capable of com-

piling the entire source into functioning hardware code and

those that had to break each sub-component of the algo-

rithm into individual components to be combined by hand.

VivadoHLS and LegUp were able to compile the C

source with little or no modification, and provided good

design space exploration. LegUp also allowed the program-

mer to specify how much of the AES code should be exe-

cuted in hardware or software. To compile with the Altera

OpenCL Compiler, we simply adapt the original C code to

have one input and one output stream as the plain text and

encrypted text respectively, and add appropriate OpenCL

grammars (function qualifiers, attributes, et al.). Then the

code can be directly compiled by AOC and an executable

file is generated. However, as noted previously, there are

no human-readable Verilog files and corresponding RTL

simulation methods provided by AOC, which prevents ex-

amining the generated architecture.

ROCCC and Bluespec System Verilog, however, re-

quired more direct effort to handle AES. ROCCC is cur-

rently unable to compile source with multiple loops at the

same nesting level within the same system. Input streams

Fig. 16. AES flow graph.

Table 3 Area Utilization and Timing Results for the Pass-Through Filter

Windh et al. : High-Level Language Tools for Reconfigurable Computing

404 Proceedings of the IEEE | Vol. 103, No. 3, March 2015



must be accessed within a for-loop and all inputs will be

accessed at every iteration of the loop. In ROCCC each

system contains only one top-level loop. Multiple systems

can be configured in producer/consumer relationships. In

order to implement AES in ROCCC, each component of

AES had to be compiled as its own system and then com-

bined together. Since BSV is closer to the HDL level than

HLS, each component had to be built by hand with signi-

ficant effort on the programmer.

VII. SYNTHESIS RESULTS

In this section we report on the FPGA area and perfor-

mance results where applicable. Note that LegUP and

ROCCC were designed with different goals in mind.

LegUp focuses on compiling a large subset of the C lan-

guage. ROCCC focuses on streaming applications, which

require a smaller subset of C, with an emphasis on ex-

tensive user-directed compile-time transformations and

optimizations. We first start with a simple pass-through

filter to establish the baseline data for both tools. Results

are reported for a Xilinx Virtex-7 (XC7VX690T) using

ISE 13.4.

A. Pass-Through Filter
We compiled a pass-through Filter using ROCCC and

LegUP to obtain a baseline for the resource utilization in

each compiler. Using different unrolling factors we report

the results in Table 3. Resource utilization is reported as the

total occupied slices (LUTs and registers), BRAM, and DSP

elements. We also report the clock frequency after place-

ment and routing. However, our designs did not use pin

assignments, or did they specify a target clock frequency.

Faster results are likely possible with higher effort in the

synthesis tools.

Unrolling is handled very differently in ROCCC than in

LegUp. Since ROCCC does not support the use of arbitrary

aliases (pointers) within loop bodies, ROCCC can detect

the independence of loop iterations and generate parallel

and separate loop bodies, one for each unrolled iteration.

ROCCC does not make any assumptions regarding the in-

terface to the outside world, e.g., memory, therefore un-

rolling eight folds would require that eight data elements

can be fetched each cycle. As expected the resource utili-

zation scales linearly with the unroll factor. Pass-through is

a minimalist design, and most of its resources cannot be

shared as the design is unrolled.

LegUp supports the whole C language including point-

ers. The LegUp architecture assumes two memory chan-

nels for all memory requests. Unrolling, by hand, can

increase the number of parallel instructions within a loop

body, which in turn allows for better utilization of the two

memory channels. The compiler does not do any code

analysis to identify loop-level parallelism and exploit un-

rolling. In Table 3 we report an unroll factor of eight be-

cause it is the smallest value possible in LegUp. Parallelism

could easily be added to the LegUp design by modifying the

C code.

It is worth mentioning that, due to architectural as-

sumptions made by each compiler, LegUp does not utilize

BRAMs in its design, while ROCCC utilizes multiple

BRAMs. ROCCC generates a general-purpose kernel for

any architecture, which includes architectures having high

bandwidth and large memory latencies that often support

many outstanding requests. If the datapath should stall for

some reason, the outstanding requests will be buffered in

the BRAMs. In contrast, LegUp assumes a local cache will

handle all memory requests. Therefore, the request laten-

cies are always short and the design will have few out-

standing requests.

B. Area Utilization
In Table 4 we report the number of LUTs registers,

FIFOs and DSPs used by the LegUp and ROCCC imple-

mentation of dilation. For BRAMs, Xilinx Virtex-7 uses

FIFO36E1 blocks, which are true dual-port 36 Kb

BRAMs.

As the loop is unrolled, the area utilized by the

ROCCC implementation grows linearly (from 1065 to

10 763 LUTs) while that of LegUp stays relatively constant.

The unrolling in LegUp affects mainly the scheduling of by

FSM and does not increase the area used by the logic. In

fact, in Table 5, the number of memory reads performed

by the LegUp code stays constant while the one by the

ROCCC code decreases.

Table 4 Dilation Area Utilization

Table 5 Dilation Runtime Performance

Windh et al. : High-Level Language Tools for Reconfigurable Computing

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 405



C. Runtime Performance
Table 5 shows LegUp and ROCCC’s runtime perfor-

mance on the dilation as the kernel is unrolled. How each

tool targets streaming applications is immediately evident

in how both tools unroll their designs. As the kernel is

unrolled, LegUp will duplicate some of the hardware, but

the kernel is always limited to two memory channels. The

main performance benefits come from the FSM’s memory

scheduling. Higher unrolling means more memory request

are available sooner, which yields better bandwidth utili-

zation. In fact, unrolling less than eight is not possible in

LegUp as evidenced in the table. No unrolling unroll and

eight unrolls performs the same because there is no differ-

ence in the code. Unrolling is more like a software optimi-

zation that improves scheduling than pure hardware

replication. On the other hand, ROCCC’s focus on stream-

ing applications allows it to fully utilize any memory

channels it has available. Therefore, unrolling affects the

hardware, input channels, and output channels together.

Going from no unroll to 16 unrolls shows a 14.9X speed-

up compared to LegUp’s 2.5X speedup. Comparing the

32 unrolled versions of each, where ROCCC can assume

34 streams, ROCCC shows a 536X speedup.

D. AES Performance and Power
Table 6 shows LegUp and ROCCC’s performance and

power results for the MixColumns and KeyExpansion

algorithms in AES. Power estimates were generated using

Xilinx’s Power Estimator (XPE) version 2014.2 and using

the reported clock rate. It is interesting to note that if the

power estimation is kept to the default of 250 MHz, both

tools achieve about 13 WVmeaning very similar designs

architecturally. The main difference comes from the

different clock frequencies achieved by each tool. ROCCC

was able to perform strongest on KeyExpansion since it is

purely compute while LegUp performed well on MixCol-

umns, which benefits from the memory scheduling of

LegUps FSM.

VIII . CONCLUSION

In this paper we have addressed one of the main obstacle to

a wider adoption of FPGA-based reconfigurable hardware

accelerators, namely the programmability of FPGA de-

vices. We have shown that, historically, the use of FPGA

accelerators has immediately followed their introduction

in the mid 1980s. We have discussed the challenges that

must be overcome to raise the abstraction level of FPGA

programming to levels similar to those in software. We

have identified five high-level programming tools current-

ly available, both research and commercially, that attempt

to raise the abstraction level and make it easier for

traditionally trained software developers to write applica-

tions for FPGA accelerators. These tools are Xilinx Vivado

HLS, Altera OpenCL Compiler, Bluespec BSV, LegUp

(University of Toronto), and ROCCC (University of

California Riverside). We describe the user interaction in

using these tools and, using image dilation filter and AES

encryption algorithm, we report on how the code is ex-

pressed and compiled and discuss the resulting utilization.

A summary of the main features of these HLS tools is in

Table 7. h

Table 7 Summary of Tools Features

Table 6 AES Encryption StepsVArea, Frequency, and Power

Windh et al. : High-Level Language Tools for Reconfigurable Computing

406 Proceedings of the IEEE | Vol. 103, No. 3, March 2015



REFERENCES

[1] R. Moussalli, I. Absalyamov, M. R. Vieira,
W. Najjar, and V. J. Tsotras, ‘‘High
performance FPGA and GPU complex
pattern matching over spatio-temporal
streams,’’ GeoInformatica, pp. 1–30, 2014.

[2] R. Moussalli, M. Salloum, R. Halstead,
W. Najjar, and V. J. Tsotras, ‘‘A study
on parallelizing XML path filtering
using accelerators,’’ ACM Trans. Embed.
Comput. Syst., vol. 13, no. 4, p. 93, 2014.

[3] P. Bertin, D. Roncin, and J. Vuillemin,
Introduction to Programmable Active
Memories. Upper Saddle River, NJ:
Prentice Hall, 1989, pp. 300–309.

[4] J. Vuillemin, P. Bertin, D. Roncin,
M. Sh, H. Touati, A. H., and P. Boucard,
‘‘Programmable active memories:
Reconfigurable systems come of age,’’
IEEE Trans. Very Large Scale (VLSI) Syst.,
vol. 4, no. 1, pp. 56–69, Mar. 1996.

[5] P. Bertin, D. Roncin, and J. Vuillemin,
‘‘Programmable active memories: A
performance assessment,’’ in Parallel
Architectures and Their Efficient Use.
Paderborn, Germany, Lecture Notes in
Computer Science. New York, NY, USA:
Springer Verlag, 1992, pp. 119–130.

[6] N. K. Ratha, D. T. Jain, and D. T. Rover,
‘‘Fingerprint matching on Splash 2,’’ in
Splash 2: FPGAs in a Custom Computing
Machine. Los Alamitos, CA, USA: IEEE
CS Press, 1996, pp. 117–140.

[7] D. Buell, J. Arnold, and W. Kleinfelder, Splash
2: FPGAs in a Custom Computing Machine.
Los Alamitos, CA, USA: IEEE CS Press,
1996.

[8] N. K. Ratha, D. T. Jain, and D. T. Rover,
‘‘Convolution on Splash 2,’’ in Proc. IEEE
Symp. FPGAs Custom Comput. Mach., 1995,
pp. 204–213.

[9] D. Hoang, ‘‘Searching genetic databases on
Splash 2,’’ in Proc. IEEE Workshop FPGAs
Custom Comput. Mach., 1993, pp. 185–192.

[10] D. V. Pryor, M. R. Thistle, and N. Shirazi,
‘‘Text searching on Splash 2,’’ in Proc. IEEE
Workshop FPGAs Custom Comput. Mach., 1993,
pp. 172–178.

[11] X. Ma, W. Najjar, and A. Roy-Chowdhury,
‘‘Evaluation and acceleration of
high-throughput fixed-point object
detection on FPGAs,’’ IEEE Trans. Circuits
Syst. Video Technol., to be published.

[12] S. A. Edwards, ‘‘The challenges of
synthesizing hardware from C-like
languages,’’ IEEE Design Test Comput.,
vol. 23, no. 5, pp. 375–386, 2006.

[13] G. Martin and G. Smith, ‘‘High-level
synthesis: Past, present, and future,’’
IEEE Design Test Comput., vol. 26, no. 4,
pp. 18–25, Jul./Aug. 2009.

[14] J. M. P. Cardoso, P. C. Diniz, and
M. Weinhardt, ‘‘Compiling for reconfigurable
computing: A survey,’’ ACM Comput. Surv.,
vol. 42, pp. 13:1–13:65, Jun. 2010.

[15] J. Cong, B. Liu, S. Neuendorffer, J. Noguera,
K. Vissers, and Z. Zhang, ‘‘High-level
synthesis for FPGAs: From prototyping to
deployment,’’ IEEE Trans. Computer-Aided
Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[16] E. El-Araby, S. G. Merchant, and
T. El-Ghazawi, ‘‘A framework for evaluating
high-level design methodologies for
high-performance reconfigurable computers,’’
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1,
pp. 33–45, Jan. 2011.

[17] W. Meeus, K. V. Beeck, T. Goedemé, J. Meel,
and D. Stroobandt, ‘‘An overview of today’s

high-level synthesis tools,’’ Design Autom.
Embedded Syst., vol. 16, no. 3, pp. 31–51, 2012.

[18] L. Daoud, D. Zydek, and H. Selvaraj,
‘‘A survey of high level synthesis languages,
tools, and compilers for reconfigurable
high performance computing,’’ in Adv.
Syst. Sci., vol. 240, Adv. Intell. Syst. Comput.,
J. Swiqtek, A. Grzech, P. Swiatek, and
J. M. Tomczak, Eds. New York, NY, USA:
Springer, 2014, pp. 483–492.

[19] T. Feist, ‘‘Vivado design suite,’’ 2012, vol. 1,
Xilinx, White Paper Ver.

[20] Xilinx Vivado, 2013. [Online]. Available:
http://www.xilinx.com/tools/autoesl_
instructions.htm

[21] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang,
and J. Cong, ‘‘Autopilot: A platform-based
ESL synthesis system ,’’ High-Level Synthesis:
From Algorithm to Digital Circuit, P. Coussy
and A. Morawiec, Eds. New York, NY, USA:
Springer Verlag, 2008.

[22] S. Neuendorffer, T. Li, and D. Wang,
‘‘Accelerating OpenCV applications,’’
Xilinx, Inc.

[23] LLVM. [Online]. Available: http://llvm.org

[24] F. Winterstein, S. Bayliss, and
G. A. Constantinides, ‘‘High-level synthesis
of dynamic data structures: A case study
using Vivado HLS,’’ in Int. Conf. FPT,
Dec. 2013, pp. 362–365.

[25] D. Navarro, O. Lucia, L. A. Barragan, I. Urriza,
and O. Jimenez, ‘‘High-level synthesis for
accelerating the FPGA implementation
of computationally demanding control
algorithms for power converters,’’ IEEE
Trans. Ind. Informat., vol. 9, pp. 1371–1379,
Aug. 2013.

[26] J. Hiraiwa and H. Amano, ‘‘An FPGA
implementation of reconfigurable real-time
vision architecture,’’ in Adv. Inf. Netw. Appl.
Workshops, Mar. 2013, pp. 150–155.

[27] D. F. Bacon, R. Rabbah, and S. Shukla,
‘‘FPGA programming for the masses,’’
Commun. ACM, vol. 56, pp. 56–63, Apr. 2013.

[28] Khronos. [Online]. Available: https://www.
khronos.org/news/press/2008/12

[29] N. Trevett, ‘‘OpenCL introduction,’’ in
SIGGRAPH Asia, 2013.

[30] D. Singh, ‘‘Implementing FPGA design
with the OpenCL standard,’’ Altera Corp.

[31] D. Chen and D. Singh, ‘‘Invited paper:
Using OpenCL to evaluate the efficiency
of CPUs, GPUs, and FPGAs for information
filtering,’’ Int. Conf. Field Programmable
Logic Appl., pp. 5–12, Aug. 2012.

[32] T. S. Czajkowski, U. Aydonat, D. Denisenko,
J. Freeman, M. Kinsner, D. Neto, J. Wong,
P. Yiannacouras, and D. P. Singh, ‘‘From
OpenCL to high-performance hardware
on FPGAs,’’ Int. Conf. Field Programmable
Logic Appl., pp. 531–534, 2012.

[33] D. Chen and D. Singh, ‘‘Fractal video
compression in OpenCL: An evaluation of
CPUs, GPUs, and FPGAs as acceleration
platforms,’’ in Design Automat. Conf.,
Jan. 2013, pp. 297–304.

[34] R. S. Nikhil Arvind, ‘‘What is Bluespec?’’
SIGDA Newslett., vol. 39, pp. 1–1, Jan. 2009.

[35] R. Nikhil, ‘‘Bluespec SystemVerilog: Efficient,
correct RTL from high level specifications,’’ in
Proc. 2nd ACM IEEE Int. Conf. Formal Methods
Models for Co-Design, Jun. 2004, pp. 69–70.

[36] Bluespec SystemVerilog Reference Guide,
rev. 17, Jan. 2012.

[37] A. Canis, J. Choi, M. Aldham, V. Zhang,
A. Kammoona, J. H. Anderson, S. D. Brown,
and T. Czajkowski, ‘‘Legup: High-level
synthesis for FPGA-based processor/
accelerator systems,’’ in Proc. ACM 19th

ACM/SIGDA Int. Symp. Field Program. Gate
Arrays, 2011, pp. 33–36.

[38] A. Canis, J. Choi, M. Aldham, V. Zhang,
A. Kammoona, T. Czajkowski, S. D. Brown,
and J. H. Anderson, ‘‘Legup: An open-source
high-level synthesis tool for FPGA-based
processor/accelerator systems,’’ ACM Trans.
Embed. Comput. Syst., vol. 13, no. 2, p. 24,
2013.

[39] TigerMIPS. [Online]. Available: http://www.
program-transformation.org/tiger/mips

[40] Avalon Interface Specifications. [Online].
Available: https://www.altera.com/en_US/
pdfs/literature/manual/mnl_avalon_spec.pdf

[41] A. Canis et al., ‘‘From software to accelerators
with legup high-level synthesis,’’ in Proc. Int.
Conf. Compilers, Archit. Synthesis Embed. Syst.,
2013, p. 18.

[42] LegUp. [Online]. Available: http://legup.eecg.
utoronto.ca/

[43] J. Villarreal, A. Park, W. Najjar, and
R. Halstead, ‘‘Designing modular hardware
accelerators in C with ROCCC 2.0,’’ in Proc.
18th IEEE Annu. Int. Symp. Field-Program.
Custom Comp. Mach., May 2010, pp. 127–134.

[44] R. P. Wilson, R. S. French, C. S. Wilson,
S. P. Amarasinghe, J. M. Anderson,
S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng,
M. W. Hall, M. S. Lam, and J. L. Hennessy,
‘‘SUIF: An infrastructure for research on
parallelizing and optimizing compilers,’’
SIGPLAN Notices, vol. 29, pp. 31–37,
Dec. 1994.

[45] C. Lattner and V. Adve, ‘‘LLVM: A
compilation framework for lifelong program
analysis transformation,’’ presented at the
Int. Symp. Code Generat. Optimiza.,
Palo Alto, CA, Mar. 2004.

[46] Z. Guo, B. Buyukkurt, J. Cortes, A. Mitra,
and W. A. Najjar, ‘‘A compiler intermediate
representation for reconfigurable fabrics,’’
Int. J. Parallel Program., vol. 36, no. 5,
pp. 493–520, 2008.

[47] B. Buyukkurt, Z. Guo, and W. A. Najjar,
‘‘Impact of high level transformations within
the ROCCC framework,’’ ACM Trans.
Architect. Code Optimization, vol. 7, no. 4,
Dec. 2006.

[48] Z. Guo, B. Buyukkurt, and W. A. Najjar,
‘‘Input data reuse in compiling window
operations onto reconfigurable hardware,’’ in
ACM SIGPLAN/SIGBED Conf. Languages,
Compilers Tools Embed. Syst., New York, NY,
USA, Jun. 2004, pp. 249–256.

[49] B. Buyukkurt and W. A. Najjar, ‘‘Compiler
generated systolic arrays for wavefront
algorithm acceleration on FPGAs,’’ in Int.
Conf. Field Program. Logic Appl., Heidelberg,
Germany, 2008, pp. 655–658.

[50] J. Hammes, A. P. W. Böhm, C. Ross,
M. Chawathe, B. A. Draper, R. Rinker, and
W. A. Najjar, ‘‘Loop fusion and temporal
common subexpression elimination in
window-based loops,’’ in Proc. 15th Int. Parallel
Distrib. Process. Symp., San Francisco, CA,
2001, p. 142.

[51] Riverside Optimizing Compiler for Configurable
Computing, 2012. [Online]. Available:
http://roccc.cs.ucr.edu/

[52] Altera SDK for OpenCL Programming Guide.

[53] Altera SDK for OpenCL Best Practice Guide.

[54] FIPS PUB 197: Advanced Encryption Standard
(AES), Nat. Inst. Stand. Technol., Nov. 2001.

[55] P. Hamalainen, T. Alho, M. Hannikainen,
and T. D. Hamalainen, ‘‘Design and
implementation of low-area and low-power
AES encryption hardware core,’’ Digital Syst.
Design: Archit., Methods Tools, pp. 577–583,
2006.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 407



ABOUT THE AUTHORS

Skyler Windh is currently a graduate student in

the Embedded Systems Laboratory at the Depart-

ment of Computer Science at University of

California, Riverside, CA, USA.

His current research interests involve improv-

ing database and data mining operations using

hardware accelerators such as FPGAs and GPUS.

He has also done some work in routing algorithms

for microfluidic labs-on-a-chip.

Xiaoyin Ma (Student Member, IEEE) is currently

pursuing the Ph.D. degree at the University of

California, Riverside, CA, USA, where he received

the Master’s degree in electrical engineering in

2012. He received the Bachelor’s degree in elec-

tronic science and technology from Huazhong

University of Science and Technology, Wuhan,

China.

His research interests include embedded sys-

tems, FPGA-based code acceleration, parallel and

high-performance computing, and their applications in computer vision

and image/video processing.

Robert J. Halstead is currently pursuing the Ph.D.

degree at the University of California, Riverside,

CA, USA.

His research interests are in the area of

reconfigurable computing, HPC, and database. In

particular, he is looking at how hardware multi-

threaded techniques can be used to accelerate

irregular applications on FPGA accelerators. He

has also looked at incorporating these techniques

into HLS compiler tools to improve hardware

development times.

Prerna Budhkar is currently pursuing the Ph.D.

degree at the University of California, Riverside,

CA, USA.

Her research interest includes FPGA-based

code acceleration and its application in database

operations and graph processing.

Zabdiel Luna received the B.S. degree in comput-

er engineering from University of California,

Riverside, CA, USA, in 2014.

He is now a Software Engineer at Zodiac

Aerospace Corporation working on embedded

systems.

Omar Hussaini, photograph and biography not available at the time of

publication.

Walid A. Najjar (Fellow, IEEE) received the B.E.

degree in electrical engineering from the American

University of Beirut in 1979, and the M.S. and Ph.D.

degrees in computer engineering from the Univer-

sity of Southern California, Los Angeles, CA, USA, in

1985 and 1988, respectively.

He is a Professor in the Department of Com-

puter Science and Engineering at the University of

California, Riverside, CA, USA. His areas of re-

search include computer architectures and com-

pilers for parallel and high-performance computing, embedded systems,

FPGA-based code acceleration, and reconfigurable computing.

Dr. Najjar is a Fellow of the AAAS.

Windh et al. : High-Level Language Tools for Reconfigurable Computing

408 Proceedings of the IEEE | Vol. 103, No. 3, March 2015


