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Heterogeneous multiprocessing is the future of chip design with the potential for tens to hundreds
of programmable elements on single chips within the next several years. These chips will have
heterogeneous, programmable hardware elements that lead to different execution times for the
same software executing on different resources as well as a mix of desktop-style and embedded-
style software. They will also have a layer of programming across multiple programmable elements
forming the basis of a new kind of programmable system which we refer to as a Programmable
Heterogeneous Multiprocessor (PHM). Current modeling approaches use instruction set simulation
for performance modeling, but this will become far too prohibitive in terms of simulation time for
these larger designs. The fundamental question is what the next higher level of design will be.
The high-level modeling, simulation and design required for these programmable systems poses
unique challenges, representing a break from traditional hardware design. Programmable systems,
including layered concurrent software executing via schedulers on concurrent hardware, are not
characterizable with traditional component-based hierarchical composition approaches, including
discrete event simulation. We describe the foundations of our layered approach to modeling and
performance simulation of PHMs, showing an example design space of a network processor explored
using our simulation approach.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Modeling techniques,
performance attributes; I.6.5 [Simulation and Modeling]: Model Development—Modeling
methodologies

General Terms: Performance, Design

Additional Key Words and Phrases: Computer-aided design, performance modeling, system mod-
eling, schedulers, heterogeneous multiprocessors

1. INTRODUCTION

Virtually everyone agrees that heterogeneous multiprocessing is the future of
chip design with the potential for tens to hundreds of programmable elements

This work was supported in part by ST Microelectronics and the National Science Foundation under
Grants 0103706 and CNS-0406384. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views of the NSF.
Authors’ address: ECE Department, Carnegie Mellon University, Pittsburgh, PA 15213; email:
{jpaul,thomas,acassidy}@ece.cmu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1084-4309/05/0700-0431 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 3, July 2005, Pages 431–461.



432 • J. M. Paul et al.

on single chips within the next several years [IEEE Round Table Discussion
2001] . These chips will have heterogeneous hardware elements (the processors
and interconnects) that lead to different execution times for the same software
tasks that execute on them as well as heterogeneity with respect to the types of
software. Some software will have fixed and limited performance most typical
of embedded or real-time systems, while other software will be constrained only
by the capacity of the underlying processing element(s) and communications
channels most typical of desktop-style computing and servers. The processing
elements will be coordinated by several layers of schedulers and will commu-
nicate with busses and even networks on chip [Benini and De Micheli 2002].

The complexity of both the new hardware capabilities and software appli-
cations will require designers to develop higher levels of modeling for efficient
design. All successful modeling strategies eliminate excessive low-level design
complexity while not over-limiting the design space. Cycle accurate register-
transfer level (RTL) design, instruction set architectures (ISAs), and software
objects, all captured the essence of what designers had already been doing in
an elegant way. They identified design elements—features of a level of design
abstraction that represented what could be changed about a design and what
was assumed to be fixed. Lower-level details were eliminated until after many
high-level, high-impact design decisions were explored and made.

We believe there are two fundamental challenges that need to be solved
if this new level of design is to be enabled. First, new design elements will
need to be defined that include new programmer’s views, scheduling decisions,
task mappings, communication strategies, and configurations of heterogeneous
processing elements (PEs). Second, the resolution of these new design elements
as design layers must permit meaningful performance modeling to take place
in the absence of full model detail.

Performance modeling for programmable systems has traditionally been
done at the ISS-level or below because it is the only accepted way of allowing
the state update of the system-level program to be resolved to simulation time.
However, not only is the execution time of ISS-level simulation far too slow for
effective design exploration of future multiprocessor systems, but the level of
detail required limits early design exploration; full software programs and pro-
cessor models are currently required. For single chip systems, with on the order
of ten processor resources, the simulation of full software models executing on
ISS-level processor models is analogous to booting an O/S on a cycle-accurate
simulation of a single processor—it can take many days to produce a single
result. For single chip designs, there will be many design trade-offs to explore.
Days must be turned into hours or minutes while still preserving meaningful
performance-based simulation.

In achieving this, the move to levels above ISS is not straightforward. At this
higher level of single chip design, complexity, design decisions about hardware
resources, scheduling decisions, and software programs are all interrelated.
Small design decisions about any of these can affect the state trajectory of
the concurrent system and thus the accuracy of high-level performance mod-
els. The development of new simulation foundations that can resolve the key
design concerns of software sequence to hardware sequence in the absence of
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ISS-level detail while still preserving meaningful accuracy for highly concur-
rent heterogeneous multiprocessor systems is challenging but essential.

We refer to this higher level as Programmable Heterogeneous Multiproces-
sors (PHMs), emphasizing that not only will individual PEs be considered pro-
grammable, but the chip will also be considered programmable as a whole. The
level includes layers of programming and thus layers of sequencing, where in-
tra and interlayer sequencing all contribute to the overall performance of the
programmable system. In this article, we describe the PHM level of design and
the modeling foundation needed for it. We start by motivating the conceptual
difference in high-level modeling when design elements are viewed as encap-
sulated and interconnected components vs. layers of scheduling where there is
some globalization of elements in each layer. We argue that programming is se-
quencing within individual layers where layers are based on the globalization
of access to collections rather than encapsulation. Sequencing between layers
must then be resolved (eventually to hardware) for meaningful performance
modeling to take place. Then we describe why existing simulation foundations
fail to capture this layering above the ISS-level. We describe our work in a high-
level, layered performance modeling environment, the modeling environment
for software and hardware (MESH), and show how we modeled a network pro-
cessor so that meaningful performance-motivated design decisions take place
in the absence of full (ISS-level) detail.

While MESH is still in its early stages, this article contributes the founda-
tion for MESH, motivating how a new level of performance modeling tools for
programmable systems must be based upon layering instead of components if
efficient designs will be discoverable in reasonable design time.

2. COMPONENT HIERARCHY VS. FUNCTIONAL LAYERING

Components are a natural way to model the two-dimensional spatial composi-
tion of physical systems where design elements are isolated and both encapsu-
lated and interconnected by wire-like interfaces. Design elements for physical
component-based computation systems include transistors, gates, and regis-
ters. However, software functionality does not naturally follow these rules of
hierarchical containment and wire-like interfaces. Software directs how a col-
lection of resources is scheduled in a global way, in contrast to the local schedul-
ing of encapsulated components. This globalization permits data-dependent
scheduling of shared access to system resources. Intuitively, sharing is the op-
posite of encapsulation, implying overlap and contention resolution rather than
component isolation. In this section, we compare models that use a component-
containment hierarchy with those that capture a layered design approach. Thus
we motivate why it is important to capture high-level abstractions for layering
in programmable system design.

2.1 Component-Containment Hierarchies

A component-containment hierarchy is shown in Figure 1 for three different
levels. While a simple diagram, it illustrates several important concepts associ-
ated with component-based design. The components and interconnect contained
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Fig. 1. Component-containment hierarchy.

in a level represent the topological organization of the design at that level of
detail—level C in the figure might be Boolean logic gates while Level B repre-
sents three parts of the next state logic. When all of the components of a level
match implementable elements, for example, components from a cell library,
the logic design is complete. The higher levels in Figure 1 are abstractions to
aid the designer; they provide the designer with less detailed views of the entire
system. Thus, they are not a part of the implementation, but rather separate
views of the system. The views between levels are related by rules for detail
reduction and interface resolution, the most common of which is for physical,
electrical systems where wires serve to bundle elements into components.

Components and their interconnections are commonly represented math-
ematically by graph models with vertices and edges. In the middle level (B)
of the figure are three components, B1-B3. A component at any level is com-
pletely independent of the other components at that level. Its behavior is con-
tained completely within the component. The only effects one component has
on another are those communicated explicitly along the wires that connect the
components. There are no side effects among the components. The encapsula-
tion of functionality is one of the primary advantages of the use of components
as an abstraction for physical design where wired interconnect is the basis for
integration.

The second advantage of components as a basis for abstraction is the sim-
plification afforded by using more-abstract (thus fewer) components than in
the detailed levels. In physical models, the interconnect between the levels is
preserved as depicted in the figure by the numbers of wires that are used for
information exchange at the different levels. Each of the components of level
B is composed of a nonoverlapping subset of the components in Level C. The
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hierarchy is strict. A component on a lower level is a part of only one com-
position at the higher level. Because the common wire interface is preserved
across levels in physical models, substitution of identical functionality using a
different implementation is permitted and containment is preserved.

2.2 Functional Grouping by Layers

In this section, we contrast layered design with component-based design. Pro-
grammable systems such as uniprocessors that execute programs, networks
which have programmable protocols at the top of a stack, and multiprocessors
which support concurrent processes and threads are organized into design lay-
ers [Dijkstra 1968]. Each layer is a logical collection of functions (sometimes
called services) and data objects that support the higher layers of the system.
The services are globalized, that is, made available to the whole next higher
design layer for scheduling as a collection. Globalization in the formation of a
logical collection is the key difference between layered design and component-
based design. Each layer may also contain private (encapsulated) state and
may have the ability to schedule its services among multiple requestors at
higher levels, but the formation of a collection of services is what distinguishes
layers from components. Put another way, rather than integrate components
with a prespecified interface abstraction (a wire), layers provide novel means
of scheduling collections, even dynamically with decisions determined at run-
time, as a part of the design of the system. In contrast to a strict hierarchy,
more than one function in a higher layer may use a service of a lower layer
in the same design; a scheduler must be provided to arbitrate how the service
is accessed. Thus resources may be shared with sharing decisions determined
at runtime. This layered view results in many features most commonly associ-
ated with programming including dynamic memory management, the sharing
of registers, the ability to execute m tasks on n resources, and packet-based
communications. By providing services, lower layers support the upper layers
of design where schedulers become important design elements that resolve one
layer to the next.

Consider a software program that requires floating point arithmetic. It may
execute unchanged on a processor without a floating point unit implemented
directly in hardware. The calculation can still be made by the fixed point proces-
sor but at a cost in overall system performance. The model is based on layering
of software on hardware. Both program and processor combine to lead to overall
system performance.

In contrast to hierarchical containment [Eker et al. 2003] where each level
represents a different view of the entire system, the system implementation
of a layered model is not complete without some representation from all of the
design layers (i.e., their functions, state, and schedulers) working together. Full
detail may not be required at each layer, high-level models may suffice—this is
the view of the research described in Section 4. The important point is that all
layers contribute to the overall physical system that results.

Although layering might appear to complicate a design by needing to repre-
sent all layers, it actually simplifies system design through functional grouping
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Fig. 2. Layered design—software on hardware.

into layers. Further, it permits more flexible use of resources because schedulers
become design elements. For example, by grouping functionality into software
function calls that encapsulate a service, that service may need to be provided
only once in a lower layer. If the system can be scheduled to reuse this service
without hampering overall required system performance, considerable savings
can result. This ability to share resources, taken one step further, results in
a unique form of design flexibility afforded by software programs; the actual
scheduling of system resources can be determined at system runtime. Further,
the more the higher layers are independent of the implementation of the lower
design layers, the more the layers can be reused in many systems. However, this
independence results in systems for which hard deadlines are more difficult to
guarantee.

2.3 Forming Layers of Software on Hardware

A major feature of layered systems is in the flexibility of the scheduling they pro-
vide, including the ability to model data-dependent execution and to accommo-
date nondeterminism. Component-based, hierarchical hardware systems are
scheduled when they are designed, meaning that for a given input vector, the
sequence of logical operations and value propagations on wires are known. How-
ever, in layered software systems, the actual scheduling of entities in the upper
layers is determined at system runtime. In these systems, there is scheduling
state in the layers that selects what to execute next in response to the data
that is presented to the system and nondeterministic coordination of system
elements prevalent in multiprocessor systems such as bus access times and
packet arrival times. A software program is a layered portion of an overall
computation system, relying on hardware to carry out its functionality and af-
fording the possibility that overall system behavior can be more flexible through
runtime scheduling.

Consider a concurrent system in which M logical tasks are mapped to R
physical resources (M > R). This is illustrated in Figure 2, where Layer A in-
cludes tasks A1-A9 which execute on resources C1-C8. Despite the fact that
the lower layer of Figure 2 is the same as the lower level of Figure 1 several
factors distinguish Figure 2 from Figure 1 . First, the design elements on Layer
A can overlap. This captures the resource sharing modeled by software. For
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example, the same function, service, or memory location may be utilized by
many software tasks, resulting in the conceptual overlap of these tasks. Tasks
that share services are not isolated from each other but may have side effects
on execution sequence by the overlapping resources. These side effects may
include actual functional calculations, overall system performance effects, or
both. Second, the number of design elements in Layer A actually exceeds the
number of design elements in the lower layer (C). This is common in many pro-
grammable systems where the overall functionality of a programmed system
exceeds the functionality of the individual units in the processor(s) on which
the software executes. Third, Layer A is not a more abstract view of Layer C
but another portion of the overall system design. While Layer C can represent
the physical hardware of a system such as a multiprocessor that has yet to be
programmed, the overall programmed system can not be resolved to a single
component-containment hierarchy.

Finally, there is an explicit contract between the design layers. Layer A is re-
solved to Layer C via a logical grouping of all of the resources provided by Layer
C. The way design elements are grouped and provided to the upper layers is in
the form of a contract such as a specification for how the lower layer is accessed
by a software program, that is, an Instruction Set Architecture (ISA). This is
shown on the diagram as Layer B. The relationship between layers is formed
by a logical grouping of the design elements in the lower layer and the way
they are scheduled. For single issue microarchitectures, Layer C is all of the
resources provided by the microarchitecture including all support for computa-
tion, communication, and control. Layer A is the program. Layer B is the ISA
that resolves the two layers. However, for concurrent systems, Layer B is an-
other design layer which, in itself, can include state, computation, and control.
In this case, layer B is a layer of scheduling and protocols that resolve logically
concurrent computation entities to physically-concurrent computation entities.
As such, it is an important part of a programmable, concurrent design often
designed in concert with some knowledge of the end-application. In general,
this resolution can be thought of as another layer such as a layer of scheduling
which can serve as a bridge between the end-application and the underlying
hardware which is key to performance-based design.

Note the contrast to Figure 1, where the contract between design levels is
implicit—the wires preserve scheduling through each level of abstraction. By
contrast, the explicit scheduling between design layers is shown on the figure
as Layer B. Conceptually Layer A executes on Layer C as resolved by Layer B.
Layer B provides the possibility for grouping the resources of Layer C in new
and potentially dynamic ways. By contrast to the component-containment hier-
archy of Figure 1, the layers of Figure 2 show that the higher layer of design is
not constrained by the topology of the lower layer; this supports the observation
that there may be more (and an even unbounded number of) software elements
in Layer A than there are design elements in Layer C. This permits the num-
bers, types, and sequence of software design elements to be determined after the
hardware is designed and even, in some cases, after the system is programmed.
This flexibility results in a system that is actually more powerful than one de-
scribed in a pure hardware design, graph-style with encapsulated components.
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3. PROBLEMS WITH CURRENT SIMULATION FOUNDATIONS

Because they are based only on physical sequencing, continuous Time (CT),
Discrete Time (DT), and Discrete Event (DE) [Zeigler et al. 2000] do not cap-
ture programmatic design elements that logically group resources. Programs
are inputs to these models when they are used to capture low-level hardware
and not a part of the model. In this section, we show how a layered execution
semantic is fundamentally different from CT, DT, and DE by developing it from
a fundamental event model and discuss how it resolves software to hardware
timing without relying upon Instruction Set Simulators.

3.1 Foundations Based on Physical Time

Simulators of models based on physical time use events to maintain a time-
ordered list of state updates for a system where events are coupled to physical
time. More generally, an event has a tag and a value e = (t, v). The value
v ∈ V, the set of all values in the system, is the result of a calculation. The tag
indicates a point in a sequence of events where the value is calculated. Thus a
tag may represent physical time or a less restricted ordering. The definition of
an event model as a pair of data and time values is not new, and the notions
that digital systems include both logical and physical sequencing [Seitz 1980]
as well as partially- and totally-ordered sequences [Zeigler et al. 2000] are both
well established. We adopt the nomenclature in [Lee et al. 1998] referring to a
time value in an event tuple as a tag.

Threads are an ordered set of N events,

Th = {e1, . . . , eN},
where the ordering is specified by the tags of the events and N may be considered
infinite. Event ei < ej iff T(ei) < T(ej), where T(ex) represents the tag of event ex.

Computer systems contain two kinds of event ordering, logical and physical.
The tags used in physical ordering represent a physical time basis; there is a
real, physical interval of time between tags i and j when i .neq. j. Clearly, a
physically-ordered system is totally ordered. The tags used in logical ordering
specify a sequence which is not physically based. The basic difference between
logical and physical ordering is that in logical ordering, the intervals, or differ-
ence between two events, do not relate back to physical intervals or global time.
The magnitude of interval sizes between any two events in a logically-ordered
system is undefined.

At a high level of system design, logical ordering often arises from functional
modeling of the desired system behavior. The logical events are ordered accord-
ing to a basic system time tick, but the tick has no meaning that relates to
a physical design. The functional model merely prescribes an order to system
events. For data-dependent, programmable systems, a basic assumption is that
reordering the logical events of a thread (i.e., reordering the time tags) is al-
lowable as long as data precedences are not violated. Thus, logical ordering can
imply some design flexibility.

Assume that the thread event sequence,

Th = {e1, e2, . . . , ei, . . .},
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is a high-level model. As yet, we will not denote this thread event sequence as
being either logically or physically ordered, we will only describe it as a thread
event sequence so that we can use it to compare and contrast a basic modeling
difference between systems designed with logical vs. physical ordering.

Because the events of a high-level model typically represent a relatively
large amount of functional advancement; we term them macro states or macro
events. These macro events imply several other states or events which have
relatively less functional advancement; we term these micro states or events.
If the macro states are totally ordered, such as in a system in which time
tags are ordered by physical intervals or are otherwise totally ordered as in a
purely sequential software program, they allow for substitution on micro event
sequences, allowing the sequence to be rewritten as

Th = {(e11, e12, . . . , e1j, . . .), (e21, e22, . . . , e2j, . . .), . . .}.
Thus, each macro event, ei, is seen to contain a sequence of micro events, ei1,ei2,
. . . eij. Each macro event triggers a sequence of micro events which is presumed
functional and atomic by the macro events. If the macro events are totally
ordered, then the micro events must complete before the next macro event—
at the micro-level, the events used to model the gates within a register must
complete before the register is considered to be updated at the macro level.
Each micro event sequence in turn may contain another micro event sequence.
This is the physical decomposition of a component-containment hierarchy which
ultimately results in simple design elements that can be modeled with relatively
simple functions.

The hardware design process resolves logical events to physical events by
coupling or binding them at design time either directly in the design components
that the designer manipulates or in the synthesis process. A logic synthesis tool
binds Boolean algebraic functions which are logical events to gates which, when
specified as library cell components, can be considered to be physical events.
Synthesis tools make this design-time specification. Conceptually, the physical
events have been scheduled at design time.

3.2 Performance Modeling

Software differs from hardware because, in general, it captures runtime deci-
sion making about how system resources are scheduled from the instruction
to the thread level. System resources can include datapath elements, memory,
processor resources, bus and network bandwidths. The runtime decisions can
be affected by a variety of factors, including internal system data, system input,
the speed and size of system resources, and the sharing of system resources by
factors outside the control of the system designer. The dynamic, runtime shar-
ing of the system resources leads to the need for modeling the performance of
programmable designs.

The performance modeling of programmable systems is distinctly different
from the modeling of systems for which performance is specified. One way to see
this is to consider how timing is calculated by a simulation. We define a system
to have sequence-invariant physical timing (SIPT) if physical time delays for a
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calculation do not vary from one input set to the next regardless of any prior set
of data presented to the system. Time delays for such systems can be accurately
specified for a given set of input data without regard to execution history, that is,
the data that has been previously presented to the system. A common example
of this might be a synchronous finite state machine (FSM) designed using the
process described previously. All of the processing is designed to take place
within a well-defined clock period. Regardless of what input is presented to
the FSM, timing analysis was used in design to determine that the processing
of the next state and output functions will occur within the clock period. The
FSM’s performance can accurately be specified a priori.

Systems with sequence-variant physical timing (SVPT) cannot be modeled
with fixed time delays for a given input set; the actual execution time is de-
pendent upon the prior execution history of the system which is captured in its
internal state. As a very simple illustration, consider a pipelined processor. Nor-
mally, the processor completes the execution of an instruction per cycle. How-
ever, when certain instruction sequences occur, a stall is required, slowing down
the pipeline and thus the system’s performance. Note that the processor’s FSM
still has sequence-invariant physical timing. But, when we consider the higher
layers of design where the input is a data-dependent sequence of instructions
and data, the processor’s instruction processing has sequence-variant physical
timing. The history of instructions interact to affect overall system performance
with respect to the optimal case for which the pipeline is designed.

As an analogy, consider the way calculated data is contrasted for combina-
tional logic vs. a finite state machine (FSM). Combinational logic is defined by
calculating the same result regardless of prior sets of information presented
to the logic. An FSM is defined as having state that affects the calculation of
its outputs for a given set of input; prior information presented to the system
affects the current calculation of system output for an FSM. Note that while an
FSM is sensitive to prior execution history when it comes to data calculation,
its timing is insensitive to prior execution history. It is actually an SIPT design
style.

Combinational logic and FSMs result in distinctly different categories for
design. Similarly, SIPT and SVPT result in different categories of design. SIPT
systems tend to be hardware designs and embedded systems with fixed execu-
tion cycles. SVPT systems afford far greater flexibility by capturing nondeter-
ministic interactions of system elements and data-dependent execution times
within parts of the system. Both SIPT and SVPT systems can be simulated.
However, performance modeling is required in order to capture SVPT designs.

The SIPT follows naturally from the logical and physical sequencing which is
one and the same thing for physically-specified systems. While logical sequenc-
ing can imply a certain amount of design flexibility, including runtime decision
making, that flexibility has been removed, and performance is fixed for hard-
ware designs. While specification can result in a performance-optimized design,
it can also require a large amount of upfront design time to explore the space for
the optimal design as well as it can limit the responsiveness of the design to a
wide variety of situations. Thus, programmable solutions have dominated most
computer designs for the past several decades. However, performance modeling
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for programmable SVPT designs have been limited to ISS-level models that re-
solve the actual sequence of instructions to a physical time-base supplied by
a processor model. This level is becoming too detailed for meaningful design
of complex multiprocessor programmable systems. Performance modeling of
multiprocessor programmable systems must be rooted in physical modeling for
meaningful timing information, while resolving the layered execution of soft-
ware in which timing is not specified as a physical model. In the next section, we
more fully explain why traditional simulation approaches only capture SIPT
designs and are not adequate to capture high-level performance modeling of
SVPT designs.

3.3 Widely Used Simulation Foundations

A variety of simulation foundations have been developed for the physical mod-
eling of digital systems using the event model. The events are physical because
the time tags are totally ordered, with sized intervals between any two time
values. Simulators of physical systems use values of time that relate back to
numbers, most typically the counting numbers. Physical models are required
for performance analysis. However, the introduction of physically-sequenced
events into the simulation semantic has traditionally forced software to be an
input to the model. That is the only way logical and physical tags have been
related in computer models. Effectively, this is resolving a logical model to a
physical model by building a model of the actual computer system that resolves
the layering.

Continuous time (CT) simulators are the most fundamental model of phys-
ical systems. CT simulators model differential equations using numerical in-
tegration techniques. State is advanced at evenly spaced time ticks; physical
events tags have value nT where T is constant and n increments from 0. This
tick approximates continuous time change in models of the physical world with
discrete intervals. As T goes towards 0, implying ever-greater numbers of sim-
ulation cycles for the same amount of time being simulated in the continuous
domain, the error goes towards zero as the model approaches an exact repre-
sentation of the system being modeled.

Discrete time (DT) simulators model a system that is inherently discrete (as
opposed to CT simulators) by selecting a time period T between which nothing
of interest is presumed to happen in the system being modeled. When all state
advancement is calculated in each time period (interval) of a digital signal
processing (DSP) system, the system is exact and not merely an approximation.
Time is therefore discrete and not continuous. Thus, if the complexity of the
computation that occurs each cycle in a DT system does not exceed the physical
capacity of a digital computer to compute it each and every cycle (accounting
for numerical representation as well), the error is zero.

Discrete Event (DE) simulators differ from both CT and DT in that not all
system state is recalculated for each simulation time interval. DE models are
a faster means of executing CT or DT models if there are many elements in a
system that do not update their local state each cycle which is the case for many
digital system models. This is achieved by associating a time advance function
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with the state advance function right in the model specification. Unlike CT and
DT models, DE models associate time values with individual design elements
that form the model as opposed to a global interval that applies to all system
functionality. DE has evolved into a semantic, even resulting in unique design
elements that arise not so much because they represent parts of real designs,
but because they are consistent with design languages such as Verilog, VHDL,
and System C [see http: //www.systemc.org/] .

The time advance function is captured in hardware description languages
(HDLs) as a delay (e.g., #delay in Verilog) which designers use to annotate gate-
level and functional-level blocks. These time values imply the physical interval
required to execute the functionality. Thus, DE models inherently bind physical
time with functional, logical specifications at the level of the individual design
element. Performance is specified at the level of the individual design element.
The time annotation of physical intervals forces the design elements of DE to
carry out the functionality in the time specified regardless of the execution his-
tory of the rest of the system. When a DE system is presented with a given
input dataset, the time required to calculate the result is not dependent upon
the prior system inputs. The inputs propagate through the system elements at
prespecified execution times until outputs are calculated. Thus DE simulations
model systems with SIPT. By contrast, software is written to execute relative to
the resources it is assigned to; it executes with SVPT. While additional software
adds functional complexity to the system, it does not, at the same time, specify
the physical machine to carry out the functionality. That is why most accurate
performance models are at the ISS-level where software is an input to a phys-
ical model and otherwise not a design element of the model. Those that try to
model software as a design element tend to specify its performance with time
annotations in the same manner as a physical time-tag simulation foundation
for hardware. This ultimately results in software serving as a specification for
hardware—a physical model—instead of modeling something that executes on
hardware.

4. A NEW SIMULATION FOUNDATION

In contrast to HDLs, general software languages do not provide physical time as
a basic semantic construct in the language. Thus, software is modeled using log-
ical events which specify logical precedence. The resolution of logical events to
physical events does not occur until software runtime when a scheduler directs
that the software execute. A simulation foundation must capture this resolution
in order to model sequence variant physical timing. In this section, we describe
the simulation foundation of Modeling Environment for Software and Hard-
ware (MESH) [Cassidy et al. 2003; Paul and Thomas 2002; Paul et al. 2002].

4.1 Logical-To-Physical Event Resolution in Software

Consider a concurrent software system with at least two logical threads.
Whereas two hardware physical threads are totally ordered, the logical threads
are partially ordered. A partially-ordered system has at least two logical tags t
and t′ for which we do not know if t < t′ or t′ < t. Thus, assuming events ea and
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eb are partially ordered, one resolution to a physical (total) order is the event
sequence

Th = {. . . , ea, eb, . . .},
while another correct resolution is

Th = {. . . , eb, ea, . . .}.
Another possible resolution is that they will have the same physical tag; they
will be concurrent, for instance in a multi-issue processor. Describing a system
with a partially-ordered sequence allows greater flexibility in the design of the
system; partially-ordered events give rise to alternate implementations of the
system where actual concurrency and ordering can be determined at runtime.

Optimization of concurrent software executing on concurrent hardware re-
quires the software to be considered with respect to its underlying machine—the
nuances of how the logical events resolve to physical events. Two observations
support this. As discussed before, adding or subtracting a thread (software
process) or processor from a concurrent system does not tell the designer if
the system will be faster or slower. The second is that relationships between
containment and detail in hardware-like components are not preserved when
modeling the logical on physical layering of software on hardware execution.

To see this, consider the decomposed thread event sequence from Section 3.1:

Th = {(e11, e12, . . . , e1j, . . .), (e21, e22, e23, . . . , e2j, . . .), . . .}.
If we were assuming a physical ordering view, the ordering of events in the
decomposed, more detailed micro-event sequence can be implied by the substi-
tution on design elements. For instance, registers can be decomposed into gates
which may, in turn, be decomposed into transistors. The execution sequence is
preserved as detail is added to a design—the micro event sequence is contained,
component-style, by the macro event.

However, hardware is not a more detailed model for software. Rather, soft-
ware executes on hardware. For instance, a network may make a packet avail-
able to a waiting software task (modeled as logical events e22, e23, etc.), permit-
ting the interleaving of the above events in the more detailed model as

Th = {e11, e22, e23, e12 . . .}.
In this case, the parentheses that implies the containment is removed since the
order on events is not preserved by containment. In a layered system, the event
ordering—the runtime execution sequence—of higher design layers is affected
by the execution sequencing of lower layers. Further, the execution of event
e12 is delayed for an arbitrary period of time because events e22 and e23 were
inserted in the execution due to an outside data-dependency.

4.2 Two Dimensions of Scheduling Required

We have seen that the physical time-tag foundations of discrete event sim-
ulation do not capture the execution of software because logical events are
interpreted as physical events. Our approach to simulation has two dimen-
sions of scheduling: that of the physical events based on integer-valued global
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Fig. 3. A slice of the layering.

simulation time and that of self-timed scheduling of the logical events that are
resolved to physical time by schedulers. This permits performance modeling
of concurrent software executing on concurrent hardware, thus capturing
systems with SVPT.

Concurrent, multithreaded software system design requires scheduling the
logical threads on concurrent hardware resources. Consider a system with M
logical threads of execution executing on R resources, where M > R. We define
the physical event sequences in the system as a sequence for each resource as
shown here:

In our notation, logical and physical thread sequences will have a base notation
of ThL and ThP, respectively. To the physical thread notation, we add a subscript
(ThPr) to denote the physical events of resource r, for r = 1, . . . , R. The events
are a totally-ordered sequence with time tag T(ePrt).

We also add to the logical thread notation to let ThLrm denote the logical
thread m which is mapped to resource r. Each physical resource, r, can, in
general, support M r logical threads (M r indicates r as a subscript of M). Thus,
M = M 1 + · · · + M R. These threads are mapped by the resource’s scheduler UPr
to a physical thread ThPr. Each UPr (as shown in the following) is a scheduling
function that logically interleaves the M r threads on resource r. M r is typically
unbounded.

The mapping described previously is illustrated in a high-level MESH dia-
gram as shown in Figure 3. Note how the diagram emphasizes layered thread
relationships as well as the overlap of information shared by multiple resources.
Thus, it does not appear as a traditional component diagram where software
on hardware is not captured.
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Fig. 4. The atomic groupings shown are executed left or right, as the sequence R1, R2, RR is implied
by the rate-based interleaving of the resources.

Logical events have no implication on physical interval sizes; logical event
ordering in and of itself does not model performance. However, the schedulers
map these logical events to physical events, thus capturing performance.

In general, the events of the threads ThLrm are grouped by the scheduler
and assigned to execute on a resource. The current state and computational
complexity of the functionality executed between logical events determines the
order and extent of computation that executes in a given physical time slice on
a given resource. In so doing, each scheduler on a resource r has access to the
logical event sequences of M r threads as shown.

Alternately, a logical collection of schedulers, mapped to individual resources,
may be formed as

ULi = {UP1, UP2, . . . , UPR},
allowing scheduling to be considered as a single, common, logical scheduling
context across multiple processing resources with cooperative scheduling.

Now consider R concurrent resources, three of which (1, 2, and R) are shown
in Figure 4. As physical entities, the resources can be interleaved by the rela-
tive interval sizes implied between the physical events; this is the time-based
scheduling. Consider the one subsequence of physical events: eP12, eP23, ePR1, as
shown from left to right. (Note that the second subscript of the events (time t)
represents time within the timebase of the physical thread; these are not global
time tags. Global time is calculated from the relative rates of interleaving of the
physical resources.) The scheduler of each resource selects logical threads to be
executed in the physical time period implied by each event. Here, scheduler UP1
might select the events shown in the box: eL113, eL122, eL123, implying a logical
interleaving—resource sharing among threads—on Resource 1. (Each of these
logical events could represent a large amount of software functionality.) This
is the self-timed scheduling in our approach since decisions about logical event
sequences are made in concert with data dependencies from data generated
elsewhere in the system.
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Considering only the three resources shown in Figure 4, the actual event
sequence of logical threads in the example is

Th = {. . . , eL113, eL122, eL123, eL222, eLR11, eLR21, eLR22, . . .}
as implied by the boxed events. This sequence is the system trajectory or the
actual execution sequence of the system’s logical events over physical time.

The trajectory can be affected by many high-level factors such as resource
rates, scheduling policies, and data dependencies. For instance, an increase in
the computation power of a resource, say Resource 2, could allow it to execute
an extra logical event as part of eP23. The selection of which extra event to
schedule is determined by UP2. If this extra event, say eL233, was being waited
for by thread ThLR3 on Resource R, then scheduler UPR might make a different
scheduling decision, executing eLR31along with other logical events on R instead
of those shown in Figure 4. The resulting thread sequence with eL233 and eLR31
inserted would be

Th = {. . . , eL113, eL122, eL123, eL222, eL233, eLR11, eLR31, eLR21, . . .}.
If the software in this system were modeled solely with DE-like physical time
durations, its dependence on properties of individual resources would not be
captured.

Our approach allows for the functional execution times, resource access de-
lay, and communication delay to be calculated by the simulation where actual
physical times are affected by the interaction of the system elements. This in-
teraction results in internal system state which can affect the performance of
the system over time without affecting its overall functional correctness; the
system has SVPT. Put another way, the physical intervals required to execute
logical functionality are not prespecified by designers as in DE simulations but
calculated by the simulation based upon the systems’ prior execution history
and performance capabilities of the resources in the system.

Finally, the example in Figure 4 further illustrates how modeling based solely
on hierarchical containment is inappropriate for PHM systems. Here, a change
in Resource 2 affected a change in the logical scheduling on Resource R, violat-
ing the basic notions of component-containment. Significantly, it also illustrates
the need to simulate both logical and physical scheduling. The actual trajec-
tory of the system over time (its performance) is calculated by the simulation
through the interaction of heterogeneous design elements with the separate
(logical and physical) time bases of software and hardware.

4.3 MESH Simulation—An Operational View

Our system view (Figure 5) is a layered one, where the base level is the hardware
architecture. On top of that, we model schedulers and protocols that give the
top-level software tasks access to the underlying architecture. Heterogeneous,
hardware resource models are shown on the left as Processors (Pi), memories
(Mi), busses (Bi), hardware devices (Hi), and networks (Ni).

In the middle of Figure 5 is a layer of scheduler and protocol models
that group resources in an overlapping manner, capturing both inter and in-
traresource sharing decisions. At the right is the concurrent software layer.
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Fig. 5. A system-level design scenario.

(Many more layers may be in a programmable system.) MESH is unique in
providing a layered modeling basis above ISS models and in using schedulers
to model concurrent, high-level software running on high-level models of pro-
cessor resources. The resolution of timing through design layers where unre-
stricted software executes on hardware models is what distinguishes our work
from component-based, ported models that propose component-like software
elements [Cesário et al. 2001; Cornea et al. 2003] and are focused on the de-
velopment of a ubiquitous, wire-like interface to which all software compo-
nents adhere and the separation of function and architecture [Keutzer et al.
2000]. Unlike approaches in which message-passing between components is
optimized and resolved to platforms through middleware [Cornea et al. 2003],
our modeling is more fundamental, making no assumptions about the struc-
ture of software components. Interestingly, the design of software components
for just single processor systems can be problematic when it comes to perfor-
mance modeling [Sitaraman et al. 2001], and a primary reason for using soft-
ware components in the first place, reuse, has failed to capture anything like
the reusability of hardware components [Glass 1998]. Further, our approach
is not limited to application-specific systems where the application is assumed
to be a given [Gharsalli et al. 2002] but captures the evolutionary nature of
software applications. Our focus on the timing resolution of model elements
distinguishes us from approaches that unite the timing models of separate
simulation domains [Richter and Ernst 2002].

Rather, we focus on the simultaneous development of software and hardware
as different design elements that can not be distilled to a single component-like
model [Grattan et al. 2002]. Further, we agree that the performance and real-
time demands of future single chip designs will necessitate the development of
multiple heterogeneous multiprocessor architectures [Wolf 2003] that will be
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semicustom and where the resultant parallel processors can only be effectively
performance-optimized if the software is designed in concert with the underly-
ing architecture [Karim et al. 2004; Skillicorn and Talia 1998]. Only our vision
also includes schedulers as separate design elements that can optimize software
execution on semicustom hardware [Paul et al. 2003].

In MESH, the schedulers also enable performance modeling by resolving the
different timing of software and hardware. Schedulers serve multiple purposes
in real programmable heterogeneous multiprocessing systems. At a local level,
they select the logical thread which will have access to a physical resource. At a
more global level, schedulers are layered to coordinate the activity of multiple
resources. Thus, schedulers are important design elements that model resource
sharing.

Figure 3 illustrates MESH’s layered logical-on-physical relationship. A dy-
namic number of logical threads (the software, labeled as ThL11 . . . ThL1n) are
shown at the top of the diagram. Their execution is scheduled onto a single
resource (a processor, modeled as a physical thread, ThP1) by a scheduler UP1.
The UPi threads are actually models of schedulers in the system that can make
scheduling decisions based on the state of the threads being scheduled and
other system state. This scheduling resolves the logical events of the software
threads to physical timing. Thus the schedulers serve two roles: (1) modeling
scheduling decisions and (2) resolving logical computation to physical time.
Figure 3 shows a single vertical slide of a model—a complex system would have
many resources (ThPi) along with their schedulers and logical threads.

The resource threads are scheduled to activate based on simulation time; at
each timed activation, they provide resource power to their scheduler which
then selects a logical thread to execute based on its state (e.g., is it waiting for
data or not). ULi threads can also logically group resources for inter-resource
scheduling as shown by the dashed oval going off of the figure. This permits
M threads to be dynamically mapped to N resources, for example, a pthread
scheduler.

The key here is that the schedulers and logical threads use consume calls
to resolve the logical computation of the software threads to the physical re-
source power provided by the resource thread. Consume calls enclose a set of
logical events where these events do not exchange information between phys-
ically concurrent resources. The consume calls are inserted by the software
writer and appear as callbacks to the scheduler. For instance, an annotation
of “consume(9)” indicates that 9 computational units have been consumed by
the software since the preceding consume call. The scheduler resolves this com-
putational consumption to the underlying resource which is time based. The
software thread may continue executing if the resource has more computa-
tion power left during its simulation interval, the thread is ready, and a more
critical (shared) resource is not required to execute. Given a more powerful
processor, it would execute more logical events per activation giving a different
state trajectory.

An example of how consume calls work is illustrated in Figure 6. The
figure shows the three levels of the MESH model as n logical threads,
ThLi1, . . . ThLin,which are interleaved to execute on a physical resource, ThPi.
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Fig. 6. Timing resolution illustration.

Many more physical resources are presumed to exist in the system. A single
physical resource is shown in the figure in order to more fully explain the resolu-
tion of logical to physical sequencing within a given resource. The interleaving
of the execution of the logical threads is controlled by scheduler UPi that resides
on physical resource ThPi. The scheduler captures the logical decision making
of which thread should execute on a given resource next, the same as a real
scheduler would on a real processing element. However, in MESH, these same
schedulers serve the additional purpose in the simulation environment of re-
solving logical complexity to physical capacity. This enables the logical sequenc-
ing to be performance-simulated with execution times determined by resource
capabilities. In turn, the interleaving of physical resources captures the overall
performance of the system because inter-resource information exchange is both
data and resource capacity dependent.

On the right of Figure 6, lines of source code, abstracted as “calculation/
decision” blocks, are labeled by number as CD1 . . . CD4. The calculation/
decision blocks imply one or more lines of source code which may or may not
include the possibility of decision making, that is conditionals such as if state-
ments and loops. The inclusion of conditionals is what distinguishes CD blocks
from basic blocks. MESH annotations are shown as consume calls which are
functional calls to the MESH simulator. The consume call’s parameters capture
the amount of complexity between successive consume calls. Since consume
call parameters can be calculated from runtime data in the simulation, they
can represent the performance impact of conditionals and loops without having
to annotate source code at the basic block level. The code between two succes-
sive consume calls is also known as a code fragment. For example, in logical
thread ThLin, there are two consume calls with two different sets of parame-
ters: consume (x1, y1) and consume (x2, y2). The first consume call states that
x1 units of computational complexity associated with feature Fx on resource
ThPi, and x2 units of computational complexity associated with feature Fy on
resource ThPi have occurred since the preceding consume call in thread ThLin.
Since the proceeding consume call has not been shown, it may be assumed that
the top of the source code shown is either the top of the thread or the beginning
of a new block of code to be annotated by consume calls. If this is the case,
then CD1 and CD2 together imply x1, y1 units of computational complexity
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as related to the features of resource ThPi. Similarly, CD3 implies x2 and y2
units of computational complexity as related to features Fx and Fy of resource
ThPi.

The resource features can relate to whatever features are considered signif-
icant by the system modeler. MESH simulations have used consume calls that
imply numbers of instructions which tends to work fairly well for RISC-style
processors. However, the presence of processor features that separate instruc-
tions into categories necessitates the grouping of source code into styles that
map to processor features. For example, the presence of a Multiply-Accumulate
(MAC) unit on a RISC-style processor allows source code that can take advan-
tage of the MAC unit to behave significantly better than if the MAC unit were
not there. In this case, the complexity of the source code falls into two categories:
general purpose instructions, and MAC-style instructions. This is but one ex-
ample of the many that are possible as source code styles and resource features
become new design elements. Significantly, the performance effects of CD blocks
can be captured without the need to include full source code. For example, the
presence of a computation that has locally data-dependent performance effects,
but where the actual computed result does not otherwise affect decision making
in the system, can be captured in a single line of code. One example of this is
the time to calculate successive MPEG frames. The performance effects of the
calculations are data-dependent but the calculations are not necessary to model
if loading effects are being simulated at a high level. When MESH models are
executed with full source code, they are typically two orders of magnitude faster
than ISS-level simulations. In actual experiments, we have measured MESH
runtimes on the order of seconds, while corresponding ISS-level simulations
have been on the order of minutes. With this additional simplification, MESH
simulations can execute even faster while they allow system-level designers to
think in abstract terms that affect overall system performance.

Within a period of time defined by the frequency, f, of execution of ThPi,
resource ThPi can carry out a fixed amount of computation. This amount of
computation is captured by the X, Y portion of the tuple that defines the re-
source, also shown in Figure 6. Resource ThPi is powerful enough to carry out X
units of computation of type Fx and Y units of computation of type Fy in 1/f unit
time. Each resource in the system can execute the set of logical threads that
are mapped to it so long as the amount of computation within the unit time im-
plied by 1/f is not exhausted. If this is the case, then resource ThPi continues to
execute logical threads or logical thread fragments until its execution budget
is exhausted. Once the execution budget of a resource is exhausted, another
resource in the simulation executes. Because the actual amount of computa-
tion that occurs within a period of simulation time is affected by data values
in the logical threads, performance is calculated in MESH by resolving logical
sequencing to physical sequencing, both inter and intrathread.

Significantly, this view is consistent with ISS simulations when processing
resources are modeled at instruction or cycle-accurate rates, and software is
instrumented at the assembly language level. Thus, our modeling basis has a
path to physical design. However, the goal of MESH is to be able to explore
designs well above the ISS-level.
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Fig. 7. Network processor system architecture.

5. NETWORK PROCESSOR EXAMPLE

We modeled and simulated a network processor to illustrate our approach
[Cassidy et al. 2003]. Network processors are interesting in part because they
have very simple functionality—they route packets from input ports to output
ports. Functional models of network processors do little to help network proces-
sor designers. The art of network processor design is in the many performance
trade-offs that lead to a rich design space. Performance modeling is required
to provide network processor designers the ability to explore this design space
rapidly so that an optimal design is more likely to be found.

Our approach is not limited to network processor designs. The usefulness
of high-level performance modeling in any system with a rich performance-
relative design space can easily be inferred. In MESH, designers can model
the resource interactions and resource sharing that leads to SVPT which is
required for performance modeling of programmable designs and designs in
which resources are shared in a data-dependent manner. The MESH model
simulates the effects of these interactions at system runtime under a variety
of system loading and system configuration scenarios.

5.1 Design Space

The network processor, shown in Figure 7, is an embedded multiprocessor SoC.
Chip multiprocessing (CMP) techniques are used to enhance system perfor-
mance by processing control and data functions separately and further par-
allelizing the processing of data packets across several programmable cores.
Many elements of the Example Network Processor (ENP) are based on the
Intel IXP1200 network processor [Intel Corp. 2001]. Our ENP is composed of
three microengines (uE’s), based on the Intel IXP instruction set, a StrongARM
processor, three types of shared memory, IXP1200 Control and Status Register
(CSR) set, and a set of Tx/Rx FIFOs. The ENP is our baseline design around
which we explored a broader design space using the logical and physical thread
relationships described earlier.
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We tested nine physical and logical design changes which are included in
Figure 7.

(1) 1 memory arbiter vs. 3 memory arbiters
(2) 2 uE’s vs. 3 uE’s
(3) IP lookup on ARM vs. on uE
(4) arbitration: Hierarchical v. Round Robin
(5) memory arbiter utilization time: 8 vs. 4 cycles
(6) Scratch memory access time: 9 vs. 18 cycles
(7) IP lookup table format: 4 vs. 8-bit IP lookups
(8) with/without Tx CRC in transmit thread
(9) control port polling: fast vs. slow

By combining these modifications, a space of 512 different designs can be
explored. Significantly, this set of design modifications includes changes in each
of the layers of MESH, that is, software, schedulers, and resources.

Contention on the processor and memory busses is accounted for in the mem-
ory arbiter as well as base memory and bus latency modeled with a constant
time value. Two different models of the memory arbiter were utilized, as dis-
cussed later in this section.

There are four primary software application functions running on the pro-
cessing elements, a receive function, an IP address lookup-function, a transmit
function, and a control port function. The IP address lookup-function performs
a shortest prefix match-lookup on the packet destination address using the IP
lookup table [Waldvogel et al. 1997] stored in SRAM. The control port function
resides on the ARM while the other functions usually reside on two or three of
the microengines. This creates a separation of the control and data plane and
makes use of the heterogeneous processor resources.

5.2 Two Levels of Modeling

We developed an ISS-level model in order to validate the high-level MESH sim-
ulation results. The ISS model is composed of the actual multiprocessor system
model, the application software, and cross compilers to generate binaries for the
processor cores. The multiprocessor system model is derived from a GNU ISS
model of the ARM processor. A processor model of the microengines is written
in “C” as well as the memory arbiter, shared memories, FIFO’s, the testbench,
and other system logic. A GNU cross compiler is used to generate executable
binaries for the ARM processor from “C” code. The cross compiler in the Intel
IXP1200 Developers Workbench [Intel Corp.] is used to generate microengine
binaries from IXP microcode (IXP assembly language).

Thus, we modeled and simulated the design space discussed in Section 5.1
at both the ISS-level as well as the MESH-level. The MESH-level models were
considerably less detailed with source code annotated with consume statements
as discussed in Section 4.3. In particular, the models of the programmable cores
are simplified considerably. The ISS models a programmable core with detailed
micro architectural functional units, such as the pipeline, instruction decode,
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Fig. 8. Example thread relationships.

arithmetic units, and register file. In contrast, the MESH model does not actu-
ally execute the instruction stream. Rather, the application software is a logical
thread executed by the simulator host processor. The consume calls capture the
logical to physical timing resolution.

For these experiments, the software applications were instrumented by cor-
relating the performance of the baseline MESH model with the baseline ISS
model. This was done in order to validate the MESH model against the ISS
model. A design methodology is currently under development that will allow
the development of high-level models independently of this step.

Each high-level resource has a computational budget and a frequency of ex-
ecution, representing the computational power of the processor. In this design
example, the frequencies in the MESH model are chosen so that 16 clock cycles
in the ISS equal unit frequency in the MESH model. Every programmable core
runs at the same system clock frequency in order to match the ISS architec-
ture, although this is not required to be the case [Paul et al. 2002]. The test-
bench and interface to the system are identical for both the ISS and the MESH
model.

Using the notation of Section 4, the MESH simulation has thread relation-
ships labeled as follows and shown in Figure 8. While a very simple diagram
with only twelve thread relationships (future systems will contain hundreds
if not thousands), four things distinguish the figure. First, the performance
dependencies of software executing on hardware are emphasized. Second, com-
mon contexts which require resources to cooperate are emphasized. Third,
the layered thread diagram is fundamentally different from a component di-
agram. Fourth, the thread types (Table I) are heterogeneous both inter and
intralayer.

—ThP1, ThP2, ThP3: rate-based models of uEs 1-3
—ThP4: a rate-based model of the ARM processor
—ThP5: a rate-based model of the memory arbiter
—ThP6: a rate-based model of the system testbench
—UP1, UP2, UP3: schedulers local to, uEs 1-3
—UP4: scheduler local to the ARM processor
—UP5: scheduler on the memory arbiter
—UL1: logical scheduler; co-operation of UP1-UP4
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Table I. Glossary of Threads Types

ThLij—One of j logical threads (software) that will
execute on processor i.
ThPi—A Model of the ith physical resource in the
system, such as a processor.
UPi—A scheduler that selects logical threads
intended to execute on resource ThPi.
ULi—A logical scheduler that can schedule M threads
to N resources. For example, a pthread scheduler.

—ThL1, ThL2: Rx and Tx packet functionality
—ThL3: IP routing functionality
—ThL4: control port functionality

UL1 and UP5 are shown coupled because the memory arbiter cooperates with
the logical scheduling of the rest of the system (as discussed later). Design
changes 1, 2, 3, 6 involve adding or subtracting a physical thread (ThPi) from
the system, changes 7–9 involve adding, subtracting, or modifying a logical
system thread (ThLi), and changes 1, 4, 5 involve modifying one of the scheduler
threads (UPi and so ULi).

5.3 Communications Modeling in MESH

For the network processor example, communications takes place on the bus.
This is modeled in both the MESH and ISS-level models by the memory arbiter.
In MESH, the memory arbiter is a common resource model and all resources
connected to it belong to it. This is shown in Figure 8 as UL1. In MESH, high-
level models of communications are captured as penalties, dependent on the
state and physical resource capabilities of the communications being modeled.
Ideally, communication does not hinder processing. Busses with infinite band-
width, caches that never miss, and networks that never drop packets appear
ideal to the computation the rest of the system carries out. MESH captures this
by modeling communications as a penalty. Shared memory access and message-
passing forms of communication are modeled as a resource common to a set of
other processing resources that hinders state exchange when there is an excess
of demand placed upon its physical capacity (its bandwidth), when there is a
programmatic choice made because the communications media must be shared
and so conflicts must be arbitrated via some type of protocol, or both. In MESH,
a protocol is a scheduler that arbitrates shared information exchange rather
than shared access to a processor by a set of threads. Thus, communications is
modeled as a common resource with underlying physical capacity and logical
scheduling to which sets of other processor resources belong. A variety of com-
munications models, in both level of modeling detail and communications type,
are possible [Bobrek et al. 2004].

5.4 Functional Performance Model of Memory Arbitration

In the network processor system, a primary interprocessor interaction is the
sharing of the memory resource. If one processor is reading or writing memory,
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another must stall until the memory bus returns to the idle state. All accesses
are officiated by the memory arbiter. In the ISS, accesses to shared memory
are explicitly modeled in the hardware architecture, initiated by load and store
instructions to shared memory regions. In the MESH model, shared memory
accesses are instrumented in the software layer. Shared memory accesses make
a function call to the memory arbiter. The high-level memory arbiter affects the
consume budget of each processor, creating stalls during contention, emulat-
ing the performance behavior of the low-level system. Thus, we developed two
models of the memory arbiter in order to establish a relationship between detail
and accuracy for critical design elements.

The functional performance model of the memory arbiter determines an ap-
propriate penalty to be levied on the access to shared memory. A simple first-
order arbiter penalty function, based on the accesses in the current and previous
high-level periods, models delay contention as a linear function based on the
number of accesses in the previous high-level period (16 ISS cycles). Head-to-
head contention is modeled with a simple step function. The first access in the
high-level period executes with zero penalty and subsequent accesses in the
same period have a uniform 1/4 period penalty imposed.

A more complex, but also more realistic, exponential functional specification
was also developed. The behavior is more realistic as bus delay increases ex-
ponentially as a function of bus usage [Hennessy and Patterson 1996]. Both
the delay contention and head-to-head penalty functions are specified as ex-
ponential functions. Both are based on the number of accesses in the previous
high-level period as well as the position of the access within the order of accesses
in the current period (for more details, see Richter and Ernst [2002]).

5.5 Design Exploration Experiments

We measured the average speed-up over the header match lengths for both
the MESH and ISS models. The performance of the network processor design
is evaluated based on the maximum number of packets per second the archi-
tecture is able to forward. All packets are 64-bytes in length, the worse case
scenario. The packet destination address is adjustable in the testbench, and
the lookup match length is determined by the routing table entries as well as
the packet destination address. The binary design decision experiments were
run across a range of fixed match length destination addresses. The design
space exploration experiments were run with a random Poisson distribution
of match lengths. Results were compared between the high-level MESH model
with the first-order model of the memory arbiter, the high-level MESH model
with the exponential functional performance model of the memory arbiter, and
the ISS.

Table II summarizes the average and maximum error for the MESH with re-
spect to the ISS model for nine design modifications (the first and last columns
of Table II are discussed later). The results in Table II reflect the more detailed,
exponential functional model of the memory arbiter. Of the nine experiments,
seven have an average percent of error of less than 5%, and seven have a max-
imum percent of error of less than 5%. This error is due to limitations in the
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Table II. Binary Design Decisions Using an Exponential Memory Arbiter Model in MESH

Design ISS MESH Avg. Max Binary
Change Index Avg. Speed-up Avg. Speed-up % Error % Error Decision Correct
1 9.5% 11.4% 1.9% 3.8% Y
2 −4.1% −3.3% 1.0% 3.5% Y
3 −74.0% −66.4% 27.3% 39.2% Y
4 2.1% 0.8% 1.6% 3.7% Y
5 8.6% 9.3% 2.1% 4.2% Y
6 7.0% 8.7% 1.8% 3.5% Y
7 21.7% 19.3% 1.9% 3.5% Y
8 −0.7% −0.4% 2.2% 4.0% Y
9 −13.0% −8.9% 5.0% 8.1% Y

Table III. Binary Design Decisions Using a First-Order Memory Arbiter Model in MESH

Design ISS MESH Avg. Max Binary
Change Index Avg. Speed-up Avg. Speed-up % Error % Error Decision Correct
1 9.5% 8.4% 0.5% 3.0% Y
2 −4.1% −1.8% 2.9% 3.6% Y
3 −74.0% −66.7% 27.3% 34.7% Y
4 2.1% 0.7% 1.2% 3.0% Y
5 8.6% 5.4% 2.4% 5.0% Y
6 7.0% 8.3% 1.9% 3.0% Y
7 21.7% 17.5% 2.9% 9.2% Y
8 −0.7% +/−0.5% 1.6% 3.9% ???
9 −13.0% −6.5% 8.1% 11.0% Y

functional performance model of the memory arbiter and inaccuracies in in-
strumenting the software applications. Design change 3 has a rather large
error because that change to the software application running on the ARM
was instrumented by a completely uncalibrated guess by the designer. Inter-
estingly, the designer initially thought the segment of code was unimportant in
the larger system; we include the result to illustrate that sometimes designer
intuition can be incorrect.

The comparison of the average speed-up over the header match lengths for
both the MESH and ISS models using a less detailed, first-order functional
model shows similar results in allowing the MESH model to characterize the
design space. These results are shown in Table III . With the less detailed model,
seven of the experiments have an average percent of error of less than 5%, and
five have a maximum percent of error of less than 5%.

5.6 Binary Classification of Performance

Significantly, the error is never enough to recommend a design decision that
negatively affects performance or vice-versa for either level of detail in the
functional model of the memory arbiter when using a high-level MESH model.
This binary or “thumbs up vs. thumbs down” classification of a design decision
captures the essence of decision making in high-level modeling. So long as the
error does not exceed the ability to make an informed decision, the high-level
model permits the design space to be efficiently explored with considerably
reduced model development and simulation time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 10, No. 3, July 2005.



Modeling and Simulation of Single-Chip Multiprocessors • 457

Fig. 9. System performance gain.

The binary decision, shown in the last column of both Table II and Table III,
is made based on whether the speed-up of both models is in the same di-
rection. Of the nine architectural modifications, all nine were correctly iden-
tified when using the exponential model of the memory arbiter. Eight of
nine were correctly indicated by the high-level design when using a first-
order model of the memory arbiter and the ninth was indeterminate. Design
change 8, removing the transmit CRC function, shows an indeterminate re-
sult in Table III due to trying to model a fine-grained design trade-off at the
high level. The effect of the change is too small to be captured, disallowing
a binary decision to be made. Importantly however, both high-level MESH
models allow designers to converge on the optimal or near-optimal designs
in the design space of the network processor. These results are discussed
next.

Each of the nine modifications listed were tested individually according to
performance improvement or degradation, ignoring the magnitude of the per-
cent of error. Modifications were made to both the MESH and the cycle-accurate
ISS models in order to verify the results. Figure 9 is a representative result,
showing the increase in performance as the bus utilization is decreased from
8 to 4 cycles per transaction (design change 5). The horizontal axis is ‘Lookup
Match Length,’ a data-dependent parameter, and the vertical axis is the number
of thousands of packets per second (Kpps) forwarded by the network processor.
Visually, the performance of both models corresponds very closely as the lines
nearly overlap one another. The lower pair of curves denotes the performance
before the design modification, while the upper pair indicates the performance
after the change. This shows an increased performance at each match length
predicted by both models; the MESH and ISS curves shift together with the
design modification.
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Fig. 10. Successive design changes.

Table II and Table III summarize all nine design modifications for each level
of detail of the memory arbiter model according to whether the modification can
be evaluated correctly in terms of performance improvement or degradation.
The design change index is the modification as previously listed. The binary
decision is made based on whether the speed-up of both models is in the same
direction. When the binary decision is correct, both models agree that the de-
sign change either improved or negatively impacted performance. Significantly,
these experiments show that correct design decisions can be made even with a
substantial, absolute percent of error.

5.7 Design Space Exploration

The design space was then explored across successive design changes in the
order of their expected speed-up ranking. We include results only for the expo-
nential model of the memory arbiter and discuss the results for the first-order
model of the memory arbiter. Figure 10 shows performance as design enhance-
ments are added. The sequence A-F shows a particular design exploration path
using two uE’s. Points As-Fs were created along the same design path, except
using three uE’s (design change 2) instead of two. The graph shows the number
of thousands of packets per second (Kpps) forwarded by the network processor
vs. a design change step for both MESH and ISS. Adding the third microengine
initially produces a performance degradation (also shown in Table II). How-
ever, in combination with other changes, such as increasing the number of
memory arbiters, a performance improvement is seen. When using the expo-
nential model of a memory arbiter, the MESH model predicts an optimal specific
combination of five design modifications (Fs) which is one of the two optimal
design change sets found in the detailed, low-level model (Es, Fs) as shown in
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Fig. 11. Exhaustive design exploration.

Figure 10. When using a first-order model of the memory arbiter, the MESH
model predicts the same specific combination of five design modifications (Fs)
as the best overall design. Thus, the high-level model correlates to the under-
lying system that it represents, giving designers the ability to manipulate the
coarse-grained, heterogeneous design elements in a broad design space in order
to achieve a favorable system with near optimal performance.

Finally, we ran an exhaustive search of the design space as shown in
Figure 11. Using six of the nine design parameters, 64 architectures were eval-
uated for both the first-order and the exponential model of the memory arbiter.
The top five MESH designs select five of the top seven ISS designs for both the
exponential and first-order memory arbiter model. Across all 64 design points,
the average percent of error is only 1.8% and the maximum percent of error is
only 6.7% for the exponential model of the memory arbiter. When using a first-
order model of the memory arbiter, the top five MESH designs again select five
of the top seven ISS designs despite the fact that the average percent of error for
these five design points is 8.4%. This emphasizes that high-level approaches do
not need to reach an absolute optimal design. Rather, after convergence upon
a design region in a high-level design space, a more detailed design space can
be explored with lower-level tools.

6. CONCLUSIONS

SoCs are becoming programmable heterogeneous multiprocessor systems with
rich mixtures of concurrent software functionality executing on multiple hard-
ware resources as directed by software schedulers. Practical design explo-
ration of these complex systems requires high-level performance-informed
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design with modeling and simulation well above the instruction set simulator
level.

We illustrated how programmable systems require fundamentally different
models from pure hardware systems. Thus the high-level modeling, simulation,
and design of these systems will increasingly pose unique challenges, represent-
ing a break from traditional hardware and software design. Layered modeling
for software was contrasted with component-containment for hardware models.
From this basis, we defined and developed a layered approach to modeling and
simulating SoCs. This approach represents a new category of design that fo-
cuses on capturing the interacting effects of the execution of layered concurrent
software on concurrent hardware well above the ISS-level.

The layers capture the logical sequence base of software models along with
the physical time base of hardware models. By defining a layer of scheduling
between these bases, we provide an intuitive means of modeling how the ex-
ecution of the logical events of a software model are resolved to the physical
time events of a high-level hardware model. Interestingly, the intuitive notion
of scheduling corresponds to a key design element in Programmable Hetero-
geneous Multiprocessor systems where a layer of programming resides on top
of a layer of individually programmable elements. Thus our approach captures
the fundamental aspects of PHM systems: software models, schedulers, and
high-level hardware models.

We presented MESH which implements our layered modeling approach
in a simulation environment where designers can model the performance of
programmable designs and designs in which resources are shared in a data-
dependent manner. We illustrated MESH by modeling and simulating a net-
work processor where performance modeling is required to provide network
processor designers with the ability to explore a rich design space. The MESH
model simulated the effects of system runtime interactions under a variety of
system loading and system configuration scenarios. The usefulness of high-level
performance modeling in any system with a rich performance-relative design
space can easily be inferred.
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