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Abstract
This paper describes the principles of high level

modeling of digital hardware circuits using the Extended
Timing Diagrams (ETD) formalism which adds conditions,
events, action expressions and particular constraints to
traditional timing diagrams. Hierarchy and concurrency are
integrated too such that a full top-down design becomes
possible, enhancing in the same time the readability.
While for simulation purposes, the implementation of the
formalism generates behavioral VHDL (VHSIC Hardware
Description Language) models, a dedicated high-level
translator generates VHDL code for synthesis. Both the
ETD formalism and its implementation are part of
MODES, a more complex modeling expert system
including complementary editors.

Keywords: VHDL-generation from high-level speci-
fications, VHDL and CAD framework developments

1: Introduction

ETD is part of the MODES Modeling Expert
System [1] project aimed at supporting hardware engineers
in their efforts to create behavioral models of digital
devices using VHDL [7]. The MODES CASE tool
provides various editors, for truth-tables and finite state
machines, etc. It also includes a selection and a
specification tool for the reuse of existing models or parts
of them and the instanciation of existing generic models
respectively. Furthermore, a rule based system, under
development, supports the user through a guided
man/machine dialogue for the selection of convenient
generic models and performs on-line verification of
completeness and consistency of specifications introduced.

The aim of this paper is to present a method that allows
the creation of bus oriented models (e.g., in VHDL) from
annotated timing diagrams. Since hardware engineers are
familiar with such circuit representations, the ETD
formalism aims to stay close to this way of thinking.

Traditional timing diagrams do not effectively describe
the behavior of a circuit, or its functionality. They only

represent signal wave-forms at the I/O pins. Therefore we
introduce the notion of extended timing diagrams. ETD's
include wave-form descriptions and action expressions that
may be attached through constraints to events or
conditions.

It is not necessary to use the whole wave-form to
describe the functionality of the circuit: the entry point of
the timing diagram is arbitrary and only some parts of the
diagram contain useful information. Obviously the wave-
forms show the response of the circuit to some stimuli
applied to its inputs. This fact is illustrated in the example
of figure 1 which represents the reset and the load processes
of a counter.

At a first glance, the two processes are independent,
their relative positions in the diagram have no importance.
The useful information is attached to the events
CLR'rising and LOAD'falling. Nevertheless, the
information is not complete, e.g., CLR has priority on
LOAD, implicit information the user has to consider.

t_p2t_p1

Clr

Load

Data

Q Data0

t_s t_h

Figure 1: Datasheet example
With the ETD approach, we resolve this ambiguity

through the introduction of particular constraints that are
used to link events and conditions. Furthermore, we add
hierarchy and concurrency, allowing for more readable
representations.

1.1: Related previous work

Harel's papers [9,10] and the article of Vahid, Narayan
and Gajski [11] introduce to the field of reactive system
design, using hierarchy and concurrency. For the specific
domain of timing diagrams, the present work has been
based on the following four papers. Borriello described the
possibility to model hardware using timing diagrams [2].
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Amon, Borriello and Séquin introduce a similar approach
to timing diagram modeling [5]: behavior and timing
constraints are described separately. Another approach has
been developed by Dufresne, Khordoc and Cerny [3],
introducing the notion of hierarchy and concurrency in
timing diagrams. The timing diagrams were described with
dynamic structures in VHDL. Finally a major source of
information for this paper is Schlör [12] who introduces a
possible approach of system design and verification using
timing diagrams, but does not support a full graphical
representation of the behavior of the reactive system.

1.2: Organization of the paper

The paper first presents the important definitions and
terms of the formalism. Then, the notions of concurrency
and hierarchy are introduced. In paragraph 3, we develop
the semantics of ETD's. Next, the evaluation scheme (§4)
and the principles of high-level simulation are introduced
(§5), followed by timing constraint checks (§6). In
paragraph 7, the VHDL code generation is illustrated with
an example, presenting the path from ETD representation
over the VHDL code generated to a net-list created with a
synthesis tool. Finally, the results are discussed.

2. Terms and definitions

A design represents the top hierarchical level of the
system: it is composed of various diagrams at different
levels of hierarchy. Each diagram includes one (no
concurrency) or more (concurrency) sub-diagrams, standing
each for a graphical representation of an ETD. An ETD
contains one or more events and conditions that trigger
action expression in association with different classes of
constraints. If an action expression is not linked to any
event or condition through a constraint, it is considered to
be a default action expression for the wave-form. This
feature can be used to initialize or to define implicit
behavior of a signal when a particular sub-diagram is
activated.

With the help of constraints, conditions and events are
kept in relation. We distinguish the following types of
constraints: simultaneous constraints  define a condition of
simultaneity between two events or conditions. Conflict
constraints disallow two events or conditions to be active
at the same time. Forward constraints are used to build
causal relations between signals as well as hold-time or
minimum/maximum pulse width checks. Backward
constraints can be used to define timing constraints such as
setup-time. Finally, it is possible to define loops with a
particular kind of backward constraint, the loop constraint.
For example, this feature will be useful when waiting for a
sequence of n falling edges of the clock. The different
classes of constraints are shown in figure 2.
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Figure 2: Event and constraint classes

Hierarchy and concurrency are important in hardware
modeling: for simulation, synthesis and test. These two
concepts enable a better readability of the design and
therefore decrease significantly the debugging time.
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Figure 3: Terms and definitions

2.1: Concurrency

This feature reflects the fact that electronic devices are
composed of coupled modules that together perform a
given functionality. In the ETD formalism, concurrency is
implemented at two levels. First, sub-diagrams contained
in the same diagram are by definition concurrent. Second,
each wave-form of a sub-diagram may contain several in-
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dependent events, that are considered to be concurrent too.
2.2: Hierarchy

Through this concept, the condition for an event at a
given level of hierarchy can be refined at a lower level of
hierarchy in a hierarchical diagram, enabling top-down
modeling and a better readability of the design. The
example of figure 3 above shows the different ETD
concepts defined before. The hierarchy concept implies the
override children notion for the evaluation scheme.

This feature enables to bypass the evaluation of a child
diagram if, at the higher level of hierarchy, the
simultaneous constraint or conflict constraint linked to the
diagram  is not active. In the case of forward constraint, the
child diagram becomes active as soon as the corresponding
constraint has been activated.

2.3: Chain concept

For the evaluation of the activity scheme, we must
introduce a new term: a chain. This object represents a
chain of event/conditions linked with constraints.

A starting event/condition is the first occurring
event/condition in a chain: a notion introduced to solve the
dependencies between two levels of hierarchy. The forward
constraint in the higher level of hierarchy is implicitly i n
relation with every starting events/conditions of every sub-
diagrams at the lower hierarchical level. In the special case
of a simultaneous constraint or conflict constraint, the
constraint at the higher level is implicitly linked to every
events/conditions at the lower level.

An ending event/condition in a chain is the event/
condition of a chain that has no forward constraints starting
from it.

3: Semantics of ETD

For the semantic analysis of the design, we first define
the following sets of objects.

I: set of input ports
O: set of output ports
Event: set of events
Cond: set of conditions
Const: set of constraints
Action: set of action expressions
Chain: set of chains
Diag:set of diagrams
Sub-diag: set of sub diagrams

A design des can be represented with the following
semantic:

des = (I, O, top_diagram), top_diagram ∈  Diag
Similarly, we can define a diagram, a sub-diagram and a

chain.
diag = (Sub-diag)
sub-diag = (Chain)

chain = (Events, Cond, Const, Action, Diag)
An event e is defined either as a couple <x,value> where

x ∈  I and value is the new value of signal x  or as a single
value <x> to test any changes of the signal x. A condition
c can also be represented with a couple <x,value> where
value represents here the current value of signal x. An
action expression a is defined with two values <x,expr>,
where x ∈  O and expr is an expression that will determine
the new value of signal x.

Simultaneous constraints sim(u,v) and conflict con-
straints conf(u,v) define simultaneity relations between u
and v where u ∈  Events ∪  Cond and v ∈  Events ∪  Cond
∪  Diag. A forward constraint for(e,e',t_min,t_max) can
only be defined between two events or an event and a
diagram (hierarchy) and implies that the event e' (or any
starting event of the diagram) occurs at time
t ∈  [t(e)+t_min,t(e)+t_max].

Similarly, a backward constraint back(e,e',t_min,t_max)
means that event e has occurred at time t ∈  [t(e')-
t_max,t(e')-t_min]. An action constraint act(u,a,t_prop) is
used to define a propagation delay t_prop between a
triggering event/condition u and an action expression a.

Finally, a loop constraint loop(e,e',init,exit,incr), can
be considered as a special case of the backward constraint
and is used to implement counters, where init is the
initialization value of the counter, exit is the exit condition
and incr is the increment expression.

Forward constraints can be chained to define sequences
of events/conditions to be observed before an action is
initiated. On the contrary, it is not possible to do the same
with backward constraints because the system is supposed
to be causal.

4: Evaluation scheme

A verification phase precedes the evaluation of the
design: consistency checks, syntax and semantic checks,
uniqueness of default action expressions, etc. Obviously,
erroneous specifications cannot be corrected and lead to
malfunctions of the models.

During the evaluation of the ETD, priority is given first
to simultaneous/conflict constraints, next to loop
constraints and finally to forward sequential constraints.

4.2: Activity

The notion of activity can be applied to diagrams, sub-
diagrams, events, conditions, actions and constraints. A
diagram or a sub-diagram is said to be active if its related
constraint is active. By default, the top diagrams and sub-
diagrams of the design are always active.

During simulation, only active diagrams - and by
extension sub-diagrams - are evaluated, improving the
speed of simulation in an important way (see overriding
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children). Formally, the activity of the different objects
used in ETD formalism can be defined as follows:

act(des) =true
act(top_diag) = true
act(diag) = (act(diag) + Σact(for(e,diag)))

*Πact(sim(u,diag))*Πact(conf(u,diag))
act(sub_diag) = act(diag)
act(chain) = (act(start_event) + act(chain))

* not act(end_event) * act(sub_diag)
act(e<x,value>) = act(sub_diag) * Πact(sim(u,e))

* Πact(conf(w,e)) * (Σact(for(v,e))
+Σact(loop(e',e)) + not act(chain))
* (x = value) * (x'event)

act(e<x>) = act(sub_diag) * Πact(sim(u,e))
* Πact(conf(w,e)) * (Σact(for(v,e))
+ Σact(loop(e',e)) + not act(chain))
* (x'event)

act(c<x,value>) = act(sub_diag) * (Πact(sim(u,e))
+ Πact(conf(v,e)) + not act(chain))
* (x = value)

act(a<x,value>) = act(sub_diag) * Σact(action(u,a))
act(action(u,a,t_p)) = act(u) after t_p
act(for(e,e') = act(sub_diag) * [act(for(e,e') + act(e)]

* not act(e') * not(Σact(loop(e,e")))
act(loop(e,e') = act(sub_diag) * [act(loop(e,e') + act(e)]

* not act(e') * not exit
act(back(e,e') = act(sub_diag) * [act(back(e,e') + act(e)]

* not act(e')
act(sim(u,v)) = act(sub_diag) * act(u) * act(v)
act(conf(u,v)) = act(sub_diag) * (act(u) xor act(v))

Finally, the simultaneous and conflict constraints have
the following property:

act(sim(u,v)) =act(sim(v,u))
act(conf(u,v)) =act(conf(u,v))

5: High-Level simulation

In order to verify as soon as possible the correct
functionality of a design, a simulation must be possible at
the level of abstraction used for specification. Thus a
simulation tool will be provided at the ETD level.

The simulation process runs top-down through the
hierarchy. At each level, all "next" events of active chains
are evaluated. If they are true, the respective constraints and
action expressions are executed. For the case where an
active constraint is linked to a hierarchical diagram, the
diagram is activated. Default action expressions are
executed upon entry into a sub-diagram prior to the
evaluation of the events. Figure 4 shows a possible
representation of this recursive evaluation process.

The horizontal axis represents the simulation time. A
time step represents the time between two events. The
resolution is the minimum amount of time required

between two events. While the concurrency stepping axis
illustrates the evaluation of the concurrent events at a
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Figure 4: Simulation process
given simulation time, hierarchy stepping stands for
iterative evaluation of hierarchical levels.

ETDs have been introduced for the specification of
digital devices. Nevertheless, they can also be used for the
representation of the simulation results. Obviously, the
structuring feature of hierarchy disappears: the ETDs are
flattened.

6: Timing constraint checks

As introduced in the paragraph dealing with the
semantics, the ETD formalism includes several timing
constraint checks: setup, hold and minimum pulse width.

Note that if the timing constraints of forward and
backward constraints are violated, the corresponding
constraint is not deactivated, but a warning message is
displayed during the simulation process.

According to Liu and Pawlak [4], the implementation of
the timing constraint checks in VHDL can be realized with
concurrent procedure calls, described in a VHDL package
called ETD_Standard. This method offers two major
advantages: the same procedure can be used to define
different timing constraints and the VHDL code is hidden
to the programmer.

7: Translation into VHDL

The translation into simulatable and synthesisable
VHDL i s done according to the evaluation scheme
described before. The different activity algorithms are
translated into a finite state machine structure, preserving
hierarchy and concurrency of the ETD design.

Basically, the timing diagrams are asynchronous.
Therefore, an explicit clock signal is not necessary for the
evaluation of the design. For simulation purposes, this
asynchronous mode is preserved. For synthesis in turn, the
asynchronous structure cannot always be used due to the
limitations of the currently available commercial
synthesizers: usually, one single signal per VHDL process
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can be tested for a triggering edge. Hence, if multiple edges
have to be checked, the circuit must be transformed into a
synchronous finite state machine. Nevertheless, the
functionality can be preserved under the condition that
between two triggering events, the evaluation of the
complete circuit can be performed: the clock period must
be sufficiently small with respect to the input event rate.

An explicit synchronous running mode can be selected
by specifying the clock signal of the circuit for both
simulation and synthesis VHDL code generation:
implicitly, each signal is evaluated at each active edge of
the clock.

Top

CS

D

5ns

ZZZZZZZZ

A

D

A

Select

Select

Read

RD

WR

mode

D AXXXXXXXX

A
10ns

10ns

Write

WR

RD

mode

A D

D

10ns

[300ns,∞)

[300ns,∞)

[50ns,∞)

[50ns,∞)

[50ns,∞)

[50ns,∞)

Figure 5: PPI design

8: Discussions

The ETD formalism is well suited for asynchronous bus
functional models, since it is easy to define timing
constraints between asynchronous signals. Nevertheless, it
remains possible to design other types of digital reactive
systems. However, the relative simplicity of the action
expression authorized by the formalism may cause some
difficulties to implement complex behavior of output
signals.
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8.1: Example

In the following example, we show the description of a
programmable peripheral interface PPI. The mode signal
determines the direction of the I/O port A. Figure 5 shows
the ETD graphical representation, table 6 the corresponding
simulatable VHDL code.

Library work;
Use work.ETD_Standard.all;
Entity PPI is
  Port (
    CS       : in STD_ULOGIC;
    RD       : in STD_ULOGIC;
    WR      : in STD_ULOGIC;
    mode   : in STD_ULOGIC;
    D          : inout STD_LOGIC_VECTOR(7 downto 0);
    A          : inout STD_LOGIC_VECTOR(7 downto 0);
  );
End PPI;
Architecture Behavioral of PPI is
Begin

  Check_backward(A'changing, RD'falling,
  50 ns,Time'High,WARNING,"Backward check RD->A");
  Check_forward(RD'falling,RD'rising,
  300 ns,Time'High,WARNING,"Forward check RD->RD");
  Check_forward(A'changing,RD'rising,
  50 ns,Time'High,WARNING,"Forward check RD->A");
  Check_backward(D'changing, WR'falling,
  50 ns,Time'High,WARNING,"Backward check WR->D");
  Check_forward(WR'falling,WR'rising,
  300ns,Time'High,WARNING,"Forward check WR->WR");
  Check_forward(D'changing,WR'rising,
  50 ns,Time'High,WARNING,"Forward check WR->D");
 
  Process(CS,RD,WR,mode,D,A)
  Begin
    A<=A;
    D<=D;
    If ( CS = '1' ) Then
      D <= "ZZZZZZZZ" after 5 ns;
    End if;
    If ( CS = '0' ) Then
      If ( RD = '1' and WR = '1' ) Then
        D <= "XXXXXXXX" after 10 ns;
      End if;
      If ( RD = '0' and WR = '1' and mode = '0' ) Then
        D <= A after 10 ns;
      End if;
      If ( WR = '0' and RD = '1' and mode = '1' ) Then
        A <= D after 10 ns;
      End if;
    End if;
  End Process;
End Behavioral;

Table 6: PPI - Simulatable VHDL code
With a second, more specific code translator, VHDL

code for synthesis can be generated. Unlike the code
example of table 6, the synthesisable VHDL code does not
contain anymore "after" clauses, "wait" clauses and timing
constraint checks. Figure 7 shows the result of the
synthesis of the VHDL code realized with the SYNOPSYS
Synthesizer.



Figure 7: PPI - Net-list

8.2: Future work
In a next phase, ETD will be integrated into a user-

friendly tool, allowing for more thorough testing of the
formalism. Therefore, the present results should be
considered as preliminary. Hopefully, ETD will finally be
integrated into MODES.

9: Conclusions

The aim of the ETD (Extended Timing Diagram)
formalism is the convenient high-level specification of
behavioral digital models through the use of annotated
hierarchical and concurrent timing diagrams. Since the
ETD form of representation is close to the one used in
conventional wave-form diagrams used in data sheets,
ETDs are well accepted by hardware engineers.

The internal representation of the ETDs has been
implemented in the form of FSMs. They are then used
both for high-level simulation and translation into VHDL
according to a common evaluation scheme. Furthermore,
they can be translated into synthesisable VHDL for fast
prototyping.

While ETDs can be used independently, they have been
conceived as a complement to the existing high-level
specification tools of the MODES[1] project. The user
should finally be free to specify each part of a model with
the most convenient behavioral editor of MODES. The
system then integrates the respective elements into a single
simulatable model, which can be translated into standard
HDLs.

Many of the elements of MODES already exists, i.e.
the BEMCharts formalism[8] for the high-level
specification of FSMs, commercially available under the
name of SPeeDCHART™[6]. Our current interest is
focused on the integration of design elements originating
from different specification sources.
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