
University of California

Los Angeles

High-Level Optimization Techniques

for Low-Power Multiplier Design

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Zhijun Huang

2003



c© Copyright by

Zhijun Huang

2003



The dissertation of Zhijun Huang is approved.

Jason Cong

Babak Daneshrad

Majid Sarrafzadeh

Miloš D. Ercegovac, Committee Chair

University of California, Los Angeles

2003

ii



To my parents, Guangzhong Huang and Lanying Kan.

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Power Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Low-Power Multiplier Design . . . . . . . . . . . . . . . . . . . . 6

1.4 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Optimization of Multiplier Recoding for Low Power . . . . . . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Radix-4 Recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Some Existing Recoding Schemes . . . . . . . . . . . . . . 19

2.2.2 New Recoding Schemes . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 36

2.3 Comparison of Radix-4 and Radix-2 Multipliers . . . . . . . . . . 41

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Optimization of Multiplier Operand Representations for Low

Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Representation Conversion for Radix-2 2C Multipliers . . . . . . . 50

3.2.1 2C-SM-2C: A Straightforward Conversion . . . . . . . . . 50

3.2.2 2C-P1-2C: Conversion to SM with Postponed “+1” . . . . 55

iv



3.2.3 2C-P1-CS: Conversion to 2C Using Carry-Save Addition . 57

3.3 Representation Conversion for Radix-4 2C Multipliers . . . . . . . 59

3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Optimization of Reduction Structure for Array Multipliers . . 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Left-to-Right Array Multipliers . . . . . . . . . . . . . . . . . . . 68

4.3 Structure Optimization . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Signal Flow Optimization in [3:2]-CSA Based Array . . . . 73

4.3.2 CRAs for PP Reduction . . . . . . . . . . . . . . . . . . . 79

4.3.3 [4:2]-CSAs for PP Reduction . . . . . . . . . . . . . . . . . 81

4.3.4 Split Array: Even/odd and Upper/lower . . . . . . . . . . 83

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Results for Radix-2 LR Multipliers . . . . . . . . . . . . . 87

4.4.2 Results for Radix-4 LR Multipliers . . . . . . . . . . . . . 90

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Design of High-Performance Low-Power Multipliers . . . . . . . 96

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Partial Product Generation . . . . . . . . . . . . . . . . . . . . . 98

5.3 Partial Product Reduction by Split Array Structure . . . . . . . . 99

5.3.1 Split Array LRLF PP reduction . . . . . . . . . . . . . . . 100

5.3.2 Optimization of [3:2]-CSAs . . . . . . . . . . . . . . . . . . 104

v



5.3.3 Optimization of [4:2]-CSAs . . . . . . . . . . . . . . . . . . 106

5.4 Partial Product Reduction by Tree Structure . . . . . . . . . . . . 107

5.5 Final Addition Optimized for Arbitrary Input Arrival Time . . . . 109

5.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 114

5.6.1 Delay Comparison at Logic Level . . . . . . . . . . . . . . 114

5.6.2 Power/Delay/Area Comparison at Physical Layout Level . 116

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Signal Gating in Linear Array Multipliers . . . . . . . . . . . . . 122

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Signal Gating Schemes . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.1 General Description . . . . . . . . . . . . . . . . . . . . . . 127

6.2.2 Static Gating versus Dynamic Gating . . . . . . . . . . . . 128

6.2.3 One-Dimensional Signal Gating . . . . . . . . . . . . . . . 129

6.2.4 Two-Dimensional Signal Gating . . . . . . . . . . . . . . . 132

6.3 Bit-level Implementation . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.1 Sign-Extension Detection Logic . . . . . . . . . . . . . . . 135

6.3.2 Signal Gating Logic . . . . . . . . . . . . . . . . . . . . . . 137

6.3.3 Modification in Array Multiplier Core . . . . . . . . . . . . 139

6.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 151

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Signal Gating in High-Performance Multipliers . . . . . . . . . . 154

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

vi



7.2 Signal Gating in ULLRLF Array Multiplier . . . . . . . . . . . . 155

7.2.1 Modification of PP Bit Matrix . . . . . . . . . . . . . . . . 155

7.2.2 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . 158

7.3 Signal Gating in Tree Multiplier . . . . . . . . . . . . . . . . . . . 161

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 166

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 170

8.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . 170

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B Design and Experimental Methodology . . . . . . . . . . . . . . . 179

B.1 Logic Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.2 Artisan Standard Cell Library . . . . . . . . . . . . . . . . . . . . 180

B.3 Power/Delay/Area Estimation . . . . . . . . . . . . . . . . . . . . 182

B.4 Test Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

vii



List of Figures

2.1 Parallel radix-4 recoding. . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Serial radix-4 recoding. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Transformation and pre-computation rules. . . . . . . . . . . . . . 18

2.4 Radix-4 PP bit array in 8× 10-bit two’s-complement multiplication. 18

2.5 PR3a recoder and PP generator. . . . . . . . . . . . . . . . . . . . 20

2.6 PR3b recoder and PP generator [7]. . . . . . . . . . . . . . . . . . 23

2.7 PR3b PP generator using pass transistors. . . . . . . . . . . . . . 23

2.8 PR3c recoder and PP generator. . . . . . . . . . . . . . . . . . . . 24

2.9 PR4a recoder and PP generator. . . . . . . . . . . . . . . . . . . . 25

2.10 PR4b recoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.11 PR4b PP generators. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.12 PR5 recoder and PP generator. . . . . . . . . . . . . . . . . . . . 28

2.13 SR3 recoder and PP generator. . . . . . . . . . . . . . . . . . . . 30

2.14 NPR3a recoder and PP generator. . . . . . . . . . . . . . . . . . . 33

2.15 NPR3b recoder and PP generator. . . . . . . . . . . . . . . . . . . 33

2.16 NSR3 serial recoder. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.17 NSR4 recoder and PP generator with P2/P1/N1/zero. . . . . . . 36

2.18 NSR4 recoder and PP generator with hidden zero. . . . . . . . . 37

3.1 2C-SM-2C conversion scheme. . . . . . . . . . . . . . . . . . . . . 51

3.2 Representation conversion logic for 2C-SM-2C. . . . . . . . . . . . 52

3.3 Linear structure of simplified 2C-SM conversion. . . . . . . . . . . 53

viii



3.4 Tree structure of 2C-SM conversion (m = 9). . . . . . . . . . . . . 55

3.5 2C-P1-2C structure. . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 PP bit array in 2C-P1-2C (m = 8, n = 6). . . . . . . . . . . . . . 57

4.1 Radix-2 PP bit matrix (n=8): (a) RL; (b) LR. . . . . . . . . . . . 69

4.2 Radix-4 PP bit matrix (n=8): (a) RL; (b) LR. . . . . . . . . . . . 69

4.3 Radix-2 RL carry-save array multiplier (n=8). . . . . . . . . . . . 70

4.4 Radix-2 LR carry-save array multiplier (n=8). . . . . . . . . . . . 71

4.5 Radix-4 LR carry-save array multiplier (n=12). . . . . . . . . . . 72

4.6 Two designs of full adder. . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Scenarios of glitch generation in FA-MUX. . . . . . . . . . . . . . 75

4.8 α-τ signal flow optimization in [3:2]-CSA Linear PPR. . . . . . . 76

4.9 Radix-2 LR [3:2]-CSA array multiplier with CSSC flow (n=8). . . 77

4.10 Radix-4 LR [3:2]-CSA array multiplier with CSSC flow (n=12). . 78

4.11 Radix-2 LR CRA based PPR algorithm. . . . . . . . . . . . . . . 80

4.12 Radix-2 LR CRA based array multiplier (n=8). . . . . . . . . . . 80

4.13 1-bit [4:2]-CSA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.14 Radix-4 LR array multiplication based on [4:2]-CSAs (n=16). . . 82

4.15 High-level radix-4 LRLF algorithm. . . . . . . . . . . . . . . . . . 85

4.16 Radix-4 LRLF array multiplier (n=12). . . . . . . . . . . . . . . . 86

4.17 Radix-4 LR upper/lower array multiplier (n=16). . . . . . . . . . 87

5.1 MSB-first radix-4 PP bit array (n=12). . . . . . . . . . . . . . . . 99

5.2 High-level EOLRLF algorithm. . . . . . . . . . . . . . . . . . . . 101

ix



5.3 EOLRLF array multiplier (n=24). . . . . . . . . . . . . . . . . . . 101

5.4 Portion of a LRLF structure for upper half PPs (n=24). . . . . . 102

5.5 ULLRLF array multiplier (n=24). . . . . . . . . . . . . . . . . . . 102

5.6 High-level ULLRLF algorithm. . . . . . . . . . . . . . . . . . . . . 103

5.7 PPGR delay profiles (n=32). . . . . . . . . . . . . . . . . . . . . . 104

5.8 NAND3-based FA design (FA-ND3). . . . . . . . . . . . . . . . . 105

5.9 Two simplified M42 designs. . . . . . . . . . . . . . . . . . . . . . 107

5.10 Tree PPR with 9TXOR2 delay (n=32). . . . . . . . . . . . . . . . . 108

5.11 A special [9:4]-CSA with 3TXOR2 delay. . . . . . . . . . . . . . . . 109

5.12 Earlist-first PA carry generation algorithm (adapted from [132]). . 111

5.13 A PA example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.14 PA delay profile in EOLRLF (n=32). . . . . . . . . . . . . . . . . 113

5.15 Floorplan of tree9to4 (n=32). . . . . . . . . . . . . . . . . . . . . 119

5.16 Floorplan of ULLRLF (n=32). . . . . . . . . . . . . . . . . . . . . 120

6.1 The proposed 4-point ensemble multiplier system in [13]. . . . . . 125

6.2 The proposed low-power multiplier in [50]. . . . . . . . . . . . . . 126

6.3 General behavior of signal gating schemes. . . . . . . . . . . . . . 128

6.4 1-D gating diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 High-level algorithm of G-X. . . . . . . . . . . . . . . . . . . . . . 130

6.6 High-level algorithm of G-Y. . . . . . . . . . . . . . . . . . . . . . 131

6.7 High-level algorithm of G-P (m > NGP > n). . . . . . . . . . . . 132

6.8 2-D gating diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . 133

x



6.9 High-level algorithm of G-J. . . . . . . . . . . . . . . . . . . . . . 133

6.10 High-level algorithm of G-G. . . . . . . . . . . . . . . . . . . . . . 134

6.11 Sign-extension detection logic. . . . . . . . . . . . . . . . . . . . . 136

6.12 Timing diagram of SED with glitch elimination. . . . . . . . . . . 137

6.13 Tree structure of SED. . . . . . . . . . . . . . . . . . . . . . . . . 137

6.14 Various implementations of gating logic. . . . . . . . . . . . . . . 138

6.15 A baseline radix-2 two’s-complement array multiplier. . . . . . . . 140

6.16 The 1-D G-X scheme for two’s-complement array multiplier. . . . 141

6.17 The 1-D G-Y scheme for two’s-complement array multiplier. . . . 142

6.18 The 1-D G-P scheme for two’s-complement array multiplier. . . . 144

6.19 The 2-D G-J scheme for two’s-complement array multiplier. . . . 145

6.20 The 2-D G-G scheme for two’s-complement array multiplier. . . . 147

6.21 An example of 2-D G-G. . . . . . . . . . . . . . . . . . . . . . . . 149

6.22 Special cells in 2-D G-G. . . . . . . . . . . . . . . . . . . . . . . . 150

7.1 High-level diagram of 2-D G-G for ULLRLF. . . . . . . . . . . . . 156

7.2 Bit-level diagram of 2-D G-G in ULLRLF. . . . . . . . . . . . . . 156

7.3 The shaded region in Figure 7.2. . . . . . . . . . . . . . . . . . . . 157

7.4 LRLF for upper PPs with only [3:2]-CSAs. . . . . . . . . . . . . . 159

7.5 Cell FAP1 for (A + B + C + 1). . . . . . . . . . . . . . . . . . . . 159

7.6 Signal gating in LRLF for upper PPs. . . . . . . . . . . . . . . . . 160

7.7 2-D G-G in a tree multiplier. . . . . . . . . . . . . . . . . . . . . . 161

7.8 Bit-level diagram of 2-D G-G in a tree multiplier. . . . . . . . . . 162

xi



7.9 The shade region in Figure 7.8. . . . . . . . . . . . . . . . . . . . 163

8.1 Normalized experimental results of optimization techniques in (a)

array multipliers, (b) tree multipliers. . . . . . . . . . . . . . . . . 173

8.2 Another view of normalized experimental results in (a) array mul-

tipliers, (b) tree multipliers. . . . . . . . . . . . . . . . . . . . . . 174

B.1 Probability of being extension bit in djpeg data. . . . . . . . . . . 186

B.2 Static probability and toggle rate of each bit in djpeg data. . . . . 187

xii



List of Tables

2.1 Names and features of recoding schemes studied . . . . . . . . . . 19

2.2 PR3a recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 PR3b recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 PR3c recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 PR4a recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 PR4b recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 PR5 recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 SR3 recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 High-level comparison of existing recoding schemes . . . . . . . . 31

2.10 NPR3a recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 NSR3 recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.12 NSR4 recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.13 High-level comparison of proposed recoding schemes . . . . . . . . 37

2.14 Comparison of multipliers with different parallel recoding schemes 39

2.15 Comparison of multipliers with different serial recoding schemes . 40

2.16 Comparison of radix-2 and radix-4 32× 32-bit array multipliers . 43

2.17 Comparison of radix-2 and radix-4 32× 32-bit tree multipliers . . 43

3.1 Power distribution in 2C linear array multiplier under djpeg data . 48

3.2 Power comparison of representation conversion array schemes . . . 62

3.3 Power comparison of representation conversion tree schemes . . . 62

3.4 Area/delay comparison of representation conversion schemes . . . 63

xiii



4.1 Power distribution in 2C linear array multiplier under random data 66

4.2 Delay of the n-th column in radix-4 LR with CSSC . . . . . . . . 79

4.3 Power in radix-2 LR multipliers under random data . . . . . . . . 88

4.4 Power in radix-2 LR multipliers under djpeg data . . . . . . . . . 88

4.5 Cell area in radix-2 LR multipliers . . . . . . . . . . . . . . . . . 89

4.6 Delay in radix-2 LR multipliers . . . . . . . . . . . . . . . . . . . 89

4.7 Power in radix-4 LR multipliers under random data . . . . . . . . 91

4.8 Power in radix-4 LR multipliers under djpeg data . . . . . . . . . 91

4.9 Area in radix-4 LR multipliers . . . . . . . . . . . . . . . . . . . . 92

4.10 Delay in radix-4 LR multipliers . . . . . . . . . . . . . . . . . . . 92

5.1 Effects of FA type and SFO on logic delay in LRLF/SALRLF . . 115

5.2 Logic delay comparison of tree multipliers and LRLF/SALRLF . . 116

5.3 Power/area/delay after automatic layout (24-bit) . . . . . . . . . 118

5.4 Power/area/delay after automatic layout (32-bit) . . . . . . . . . 118

5.5 Power/area/delay after layout with guided floorplanning (32-bit) . 120

6.1 Power comparison of 2-D signal gating schemes . . . . . . . . . . 151

6.2 Delay/area comparison of 2-D signal gating schemes . . . . . . . . 152

7.1 Power comparison of 2-D G-G high-performance multipliers . . . 167

7.2 Delay/area comparison of 2-D G-G high-performance multipliers . 167

B.1 Area/delay/power characteristics of some Artisan library cells . . 181

xiv



Acknowledgments

I am deeply indebted to my advisor, Prof. Miloš D. Ercegovac, for all of

his technical, financial, and personal support during my years at UCLA. He has

been patiently guiding me and enthusiastically encouraging me throughout these

four years. He developed my skills of identifying research problems and finding

solutions precisely and clearly. What I have learned from him will benefit me

well beyond my graduation in my future research career and personal life.

I am grateful to Profs. Jason Cong, Majid Sarrafzadeh, and Babak Daneshrad

for serving on my committee. They have not only offered invaluable technical

advice, but also offered CAD tool support in my dissertation work. Moreover,

I treasure my joint-work experience with Prof. Cong and I highly appreciate

his helps in my career planning. I would also like to thank Dr. Farzan Fallah

from Fujitsu Laboratories of America, Inc., for his interest and suggestions on

my work. Thanks also go to Prof. Lei He and Prof. Sheldon Tan (UCR) for their

continuous encouragement and advice since the time I knew them. I especially

thank Ms. Verra Morgan for her efforts in making my student life joyful.

I would like to thank these wonderful friends in the Computer Science depart-

ment and Electrical Engineering department. To name a few, they are Deming

Chen, Ian Ferguson, Soheil Ghiasi, Roozbeh Jafari, Ashok Jagannathan, Fei Li,

Robert McIlhenny, John Pipan, Ankur Srivastava, Zhiwei Xu, Guichang Zhong.

They have helped me in many ways during my study at UCLA.

Most of all, I am grateful to my wife Min Zhang for her devotion, understand-

ing, and support. She is the most important source of inspiration, encouragement,

and happiness.

xv



Vita

1996 B.S. in Electronics Engineering

Fudan University, China

1999 M.S. in Electronics Engineering

Fudan University, China

2000 M.S. in Computer Science

University of California, Los Angeles

Publications

Huang Zhijun and Tong Jiarong, “An efficient FPGA logic block for word-oriented

datapath,” in Proc. 1998 Int. Conf. ASIC, Beijing, China, Oct. 1998.

Zhou Feng, Huang Zhijun, Tong Jiarong, and Tang Pushan, “An analytical delay

model for SRAM-based FPGA interconnections,” in Proc. ASP-DAC’99: Asia

and South Pacific Design Automation Conference, vol.1, pp.101-104, Jan. 1999.

Zhang Peng, Huang Zhijun, and Tong Jiarong, “A novel fault-tolerant method

of a FPGA for datapath,” in Proc. 1999 Int. Conf. CAD/Graphics, Shanghai,

China, Dec. 1999.

Z. Huang and M.D. Ercegovac, “Effect of Wire Delay on the Design of Prefix

xvi



Adders in Deep-Submicron Technology,” in Proc. 34th Asilomar Conf. Signals,

Systems and Computers, pp.1713-1717, Nov. 2000.

R. McIlhenny, Z. Huang, K. Wong, A. Schneider, and M.D. Ercegovac, “BigSky -

a tool for mapping numerically intensive computations onto reconfigurable hard-

ware,” in Proc. 34th Asilomar Conf. Signals, Systems and Computers, Nov.

2000.

D. Chen, J. Cong, M.D. Ercegovac, and Z. Huang, “Performance-driven mapping

for CPLD structures,” in Proc. FPGA’01: ACM/SIGDA Int. Symp. Field

Programmable Gate Arrays, Feb. 2001.

Z. Huang and M.D. Ercegovac, “FPGA implementation of pipelined on-line

scheme for 3-D vector normalization,” in Proc. FCCM’01: Ninth Annual IEEE

Symp. Field-Programmable Custom Computing Machines, Apr. 2001.

Z. Huang and M.D. Ercegovac, “On signal-gating schemes for low-power adders,”

in Proc. 35th Asilomar Conf. Signals, Systems and Computers, pp.867-871, Nov.

2001.

Z. Huang and M.D. Ercegovac, “Two-dimensional signal gating for low-power

array multiplier design,” in Proc. 2002 IEEE Int. Symp. Circuits and Systems,

vol.1, pp.489-492, May 2002.

Z. Huang and M.D. Ercegovac, “Number representation optimization for low-

power multiplier design,” in Proc. SPIE 2002 Advanced Signal Processing Algo-

xvii



rithms, Architectures, and Implementations XII, July 2002.

Z. Huang and M.D. Ercegovac, “Low power array multiplier design by topol-

ogy optimization,” in Proc. SPIE 2002 Advanced Signal Processing Algorithms,

Architectures, and Implementations XII, July 2002.

D. Chen, J. Cong, M.D. Ercegovac, and Z. Huang, “Performance-driven map-

ping for CPLD structures,” IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems (to appear).

Z. Huang and M.D. Ercegovac, “High-performance left-to-right array multiplier

design,” in 16th IEEE Symp. Computer Arithmetic, June 2003.

Z. Huang and M.D. Ercegovac, “Two-dimensional signal gating for low power in

high-performance multipliers,” in SPIE 2003 Advanced Signal Processing Algo-

rithms, Architectures, and Implementations XIII, Aug. 2003.

xviii



Abstract of the Dissertation

High-Level Optimization Techniques

for Low-Power Multiplier Design

by

Zhijun Huang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2003

Professor Miloš D. Ercegovac, Chair

While performance and area remain to be two major design goals, power con-

sumption has become a critical concern in today’s VLSI system design. Mul-

tiplication is a fundamental operation in most arithmetic computing systems.

Multipliers have large area, long latency and consume considerable power. Pre-

vious work on low-power multipliers focuses on low-level optimizations and has

not considered well the arithmetic computation features and application-specific

data characteristics.

At the algorithm and architecture level, this dissertation addresses low-power

multiplier design systematically from two aspects: internal efforts considering

multiplier architectures and external efforts considering input data characteris-

tics. For internal efforts, we consider recoding optimization for partial product

generation, operand representation optimization, and structure optimization of

partial product reduction. For external efforts, we consider signal gating to de-

activate portions of a full-precision multiplier. Several multiplier types are stud-

ied: linear array multipliers, leapfrog array multipliers, left-to-right linear array

xix



multipliers, split array multipliers, and tree multipliers. Experiments show that

recoding optimization and structure optimization have achieved steady power re-

duction with reduced delay for both random test data and large-dynamic-range

data. Operand representation optimization and signal gating have demonstrated

significant power saving for large-dynamic-range data with relatively small over-

head.

xx



CHAPTER 1

Introduction

1.1 Motivation

As the scale of integration keeps growing, more and more sophisticated signal

processing systems are being implemented on a VLSI chip [1][25][31]. These signal

processing applications not only demand great computation capacity but also

consume considerable amounts of energy. While performance and area remain to

be two major design goals, power consumption has become a critical concern in

today’s VLSI system design [64]. The need for low-power VLSI systems arises

from two main forces. First, with the steady growth of operating frequency and

processing capacity per chip, large current has to be delivered and the heat due to

large power consumption must be removed by proper cooling techniques. Second,

battery life in portable electronic devices is limited. Low power design directly

leads to prolonged operation time in these portable devices.

Multiplication is a fundamental operation in most signal processing algo-

rithms [101]. Multipliers have large area, long latency and consume considerable

power. Therefore, low-power multiplier design has been an important part in

low-power VLSI system design. There has been extensive work on low-power

multipliers at technology, physical, circuit and logic levels. These low-level tech-

niques are not unique to multiplier modules and they are generally applicable to

other types of modules. The characteristics of arithmetic computation in multi-

1



pliers are not considered well. Moreover, power consumption is directly related

to data switching patterns. However, it is difficult to consider application-specific

data characteristics in low-level power optimization.

This dissertation addresses high-level optimization techniques for low power

multipliers. High-level techniques refer to algorithm and architecture level tech-

niques that consider multiplication’s arithmetic features and input data charac-

teristics. The main research hypothesis of this work is that high-level optimization

of multiplier designs produces more power-efficient solutions than optimization

only at low levels. Specifically, we consider how to optimize the internal algorithm

and architecture of multipliers and how to control active multiplier resource to

match external data characteristics. The primary objective is power reduction

with small area and delay overhead. By using new algorithms or architectures, it

is even possible to achieve both power reduction and area/delay reduction, which

is another strength of high-level optimization. The tradeoff between power, area

and delay is also considered in some cases.

1.2 Power Optimization

Power refers to the number of Joules dissipated over a certain amount of time

whereas energy is a measure of the total number of Joules dissipated by a circuit.

Strictly speaking, low-power design is a different goal from low-energy design

although they are related [130][87]. Power is a problem primarily when cooling is

a concern. The maximum power at any time, peak power, is often used for power

and ground wiring design, signal noise margin and reliability analysis. Energy per

operation or task is a better metric of the energy efficiency of a system, especially

in the domain of maximizing battery lifetime.

2



In digital CMOS design, the well-known power-delay product is commonly

used to assess the merits of designs. In a sense, this is a misnomer as power ×

delay = (energy/delay)× delay = energy, which implies delay is irrelevant [87].

Instead, the term energy-delay product should be used since it involves two inde-

pendent measures of circuit behaviors. Therefore, when power-delay products are

used as a comparison metric, different schemes should be measured at the same

frequency to ensure that it is equivalent to energy-delay product comparison.

There are two major sources of power dissipation in digital CMOS circuits:

dynamic power and static power [127][11][104][130][106]. Dynamic power is re-

lated to circuit switching activities or the changing events of logic states, including

power dissipation due to capacitance charging and discharging, and dissipation

due to short-circuit current (SCC). In CMOS logic, unintended leakage current,

either reverse biased PN-junction current or subthreshold channel conduction

current, is the only source of static current. However, occasional deviations from

the strict CMOS style logic, such as pseudo NMOS logic, can cause intended

static current. The total power consumption is summarized in the following

equations [104]:

Ptotal = Pdynamic + Pstatic = Pcap + Pscc + Pstatic (1.1)

Pcap = α0→1fclk ·
∫ T

0
iVDD

(t)VDDdt = α0→1fclk · CLV 2
DD (1.2)

Pscc = α0→1fclk · Ipeak(
tr + tf

2
)VDD (1.3)

Pstatic = IstaticVDD (1.4)

Pcap in Equation 1.2 represents the dynamic power due to capacitance charging

and discharging of a circuit node, where CL is the loading capacitance, fclk is

the clock frequency, and α0→1 is the 0 → 1 transition probability in one clock

period. In most cases, the voltage swing Vswing is the same as the supply voltage

VDD; otherwise, Vswing should replace VDD in this equation. Pscc is a first-order

3



average power consumption due to short-circuit current. The peak current, Ipeak,

is determined by the saturation current of the devices and is hence directly pro-

portional to the sizes of the transistors. tr and tf are rising time and falling time

of short-circuit current, respectively. The static power Pstatic is primarily deter-

mined by fabrication technology considerations, which is usually several orders of

magnitude smaller than the dynamic power. The leakage power problem mainly

appears in very low frequency circuits or ones with “sleep modes” where dynamic

activities are suppressed [130]. The dominant term in a “well-designed” circuit

during its active state is the dynamic term due to switching activity on loading

capacitance, and thus low-power design often becomes the task of minimizing

α0→1, CL, VDD and fclk, while retaining the required functionality [26]. In the

future, static power will become increasingly important as the supply voltage

keeps scaling. To avoid performance degrading, the threshold voltage Vt is low-

ered accordingly and subthreshold leakage current increases exponentially [106].

Leakage power reduction heavily depends on circuit and technology techniques

such as dual Vt partitioning and multi-threshold CMOS [66]. In this work, we

will not consider leakage power reduction.

Power optimization of digital systems has been studied at different abstract

levels, from the lowest technology level, to the highest system level [26][27][11][130].

At the technology level, power consumption is reduced by the improvement in

fabrication process such as small feature size, very low voltages, copper intercon-

nects, and insulators with low dielectric constants [26][51]. With the fabrication

support of multiple supply voltages, lower voltages can be applied on non-critical

system blocks. At the layout level, placement and routing are adjusted to re-

duce wire capacitance and signal delay imbalances [8][86]. At the circuit level,

power reduction is achieved by transistor sizing, transistor network restructuring

and reorganization, and different circuit logic styles. At the gate level, a lot of

4



techniques have been proposed. In commercial tool Power Compiler [120], the

gate-level techniques include cell sizing, cell composition, equivalent pin swap-

ping, and buffer insertion, which produces 11% power reduction on average with

9% area increase [28]. Some other proposed techniques are gate-level signal gat-

ing [76][122][116], delay balancing [107], input synchronization [47], signal polar-

ity optimization [87], etc. At register-transfer level (RTL), clock gating has been

applied extensively to disable combinational or sequential blocks not used during

a particular period [57][128][129]. In Power Compiler [120], clock gating is ap-

plied to disable a whole register bank and operand isolation is applied to disable

a datapath unit if their outputs are not used. Precomputation is a RTL signal

gating technique which identifies output-invariant logical conditions at some in-

puts of a combinational block and then disables inputs under these conditions [4].

Retiming re-positions registers in sequential circuits so that the propagation of

spurious transitions is stopped [88]. At the architecture and system level, there

is a great amount of freedom in power optimization. Parallelism and pipeline are

two main techniques to first achieve higher-than-necessary performance and then

trade operation frequency for supply voltage reduction [27]. Control-data-flow

graph (CDFG) transformation is another efficient technique to design low power

architecture [27][91]. Asynchronous systems are investigated to avoid a global

clock signal and reduce useless computations [81][70][103]. In many event-driven

systems, components are disabled or shutdown when they are in idle states, which

is generally called power management strategy [53][57].

Although optimization techniques at all levels have achieved power reduction,

the techniques at the lowest technology level and the highest architecture/system

level are generally more efficient than techniques at middle levels. Technology-

level optimization affects three important factors CL, VDD, and fclk in power

consumption. Algorithm/architecture-level optimization affects all four factors

5



α0→1, CL, fclk, and VDD (by identifying candidates for VDD lowering). In contrast,

middle-level optimization usually affects one or two factors in a limited way.

1.3 Low-Power Multiplier Design

Multiplication consists of three steps: generation of partial products or PPs

(PPG), reduction of partial products (PPR), and final carry-propagate addition

(CPA) [74][102]. In general, there are sequential and combinational multiplier

implementations. We only consider combinational multipliers in this work be-

cause the scale of integration now is large enough to accept parallel multiplier

implementation in digital VLSI systems. Different multiplication algorithms vary

in the approaches of PPG, PPR, and CPA. For PPG, radix-2 digit-vector multi-

plication is the simplest form because the digit-vector multiplication is produced

by a set of AND gates. To reduce the number of PPs and consequently reduce

the area/delay of PP reduction, one operand is usually recoded into high-radix

digit sets. The most popular one is the radix-4 digit set {−2,−1, 0, 1, 2}. For

PPR, two alternatives exist [45]: reduction by rows [125], performed by an array

of adders, and reduction by columns [37], performed by an array of counters. In

reduction by rows, there are two extreme classes: linear array and tree array.

Linear array has the delay of O(n) while both tree array and column reduction

have the delay of O(log n), where n is the number of PPs. The final CPA requires

a fast adder scheme because it is on the critical path. In some cases, final CPA is

postponed if it is advantageous to keep redundant results from PPG for further

arithmetic operations.

Many power optimization techniques introduced in Section 1.2, especially low-

level techniques, are applicable to low-power multiplier design. These low-level

techniques that has been studied for multipliers include using voltage scaling [8],

6



layout optimization [8], transistor reordering and sizing [8], using pass-transistor

logic [2][77] and swing limited logic [48], signal polarity optimization [87], de-

lay balancing [107][87][72][16] and input synchronization [92][47]. However, these

techniques have only achieved moderate improvement on power consumption in

multipliers with much design effort or considerable area/delay overhead. The dif-

ficulty of low-power multiplier design lies in three aspects. First, the multiplier

area is quadratically related to the operand precision. Second, parallel multipliers

have many logic levels that introduce spurious transitions or glitches. Third, the

structure of parallel multipliers could be very complex in order to achieve high

speed, which deteriorates the efficiency of layout and circuit level optimization.

As a fundamental arithmetic operation, multiplication has many algorithm-level

and bit-level computation features in which it differs from random logic. These

features have not been considered well in low-level power optimization. It is also

difficult to consider input data characteristics at low levels. Therefore, it is desir-

able to develop algorithm and architecture level power optimization techniques

that consider multiplication’s arithmetic features and operands’ characteristics.

There has been some work on low-power multipliers at the algorithm and

architecture level. In [12], Bewick presented the power consumptions of different

fast multiplication designs based on ECL (Emitter Coupled Logic). Bewick’s re-

sults cannot be extended into CMOS logic because power consumption in ECL

is dominated by static power while power in CMOS is dominated by dynamic

power. In [3], Al-Twaijry studied area and performance optimized CMOS mul-

tipliers. As smaller area usually leads to less switching capacitance, the results

in [3] could provide a rough estimation of relative power consumptions in different

multiplication schemes. In [22], Callaway studied the power/delay/area charac-

teristics of four classical multipliers. In [8], Angel proposed low-power sign exten-

sion schemes and self-timed design with bypassing logic for zero PPs in radix-4

7



multipliers. In [30], Cherkauer and Friedman proposed a hybrid radix-4/radix-8

low power signed multiplier architecture. For multiplication data with large dy-

namic range, several approaches have been proposed. Architecture-level signal

gating techniques have been studied [17][18][13][70][50]. In [136], a mixed number

representation for radix-4 two’s-complement multiplication is proposed. In [97],

radix-4 recoding is applied to the constant input instead of the dynamic input in

low-power multiplication for FIR filters. In [58], multiplication is separated into

higher and lower parts and the results of the higher part are stored in a cache in

order to reduce redundant computation. In [135], two techniques are proposed for

data with large dynamic range: most-significant-digit-first carry-save array for PP

reduction [133] and dynamically-generated reduced two’s-complement represen-

tation [134]. In [111], the precisions of two input data are compared at runtime

and two operands are then exchanged if necessary so that radix-4 recoding is

applied on the operand with smaller precisions in order to generate more zero

PPs.

At the algorithm and architecture level, this dissertation addresses low-power

multiplier design systematically from two aspects: internal efforts considering

multiplier architectures and external efforts considering input data characteris-

tics. For internal efforts, we consider the optimization techniques of PPG recod-

ing, operand representation, and PPR structure. For external efforts, we con-

sider signal gating to deactivate portions of a full-precision multiplier. Several

multiplier types are studied: linear array multipliers, leapfrog array multipliers,

left-to-right linear array multipliers, split array multipliers, and tree multipli-

ers. Column reduction multipliers are not considered because column reduction

achieves similar delay and area as tree array while making the regularity much

worse [14]. As two’s-complement representation is convenient for additions of

signed integers and thus very popular in digital arithmetic systems, we assume

8



the multiplicand X and the multiplier Y are initially in radix-2 two’s-complement

representation:

X = −xm−12
m−1 +

m−2∑

j=0

xj2
j (1.5)

Y = −yn−12
n−1 +

n−2∑

i=0

yi2
i (1.6)

where n is assumed even for simplicity. The result P is an (m + n)-bit number

also in two’s-complement representation:

P = −pm+n−12
m+n−1 +

m+n−2∑

k=0

pk2
k (1.7)

1.4 Research Approach

The research approach followed in this dissertation is briefly described next. Ap-

pendix B gives a detailed description of the design and experimental methodolo-

gies used in our research.

First, we identify important factors that affect power consumption at the

algorithm and architecture level. These factors include internal architectures of

multipliers and external data characteristics.

Second, we develop high-level power optimization techniques including inter-

nal efforts and external efforts. Internal efforts are optimizations of multiplier

recoding, operand representation, and reduction structure. External efforts are

several types of signal gating. High-level first-order estimation and theoretical

analysis are conducted to evaluate the viability of each technique.

Third, we implement the proposed schemes and related previous schemes in

technology-independent structural VHDL descriptions. When necessary, VHDL

generators rather than static VHDL codes are written to facilitate design op-

timization and provide maintenance flexibility. These VHDL designs are first

9



mapped into Artisan TSMC 0.18µm 1.8-Volt standard-cell library and evaluated

using wire-load models in Synopsys design environment. Automatic layouts are

then conducted using Cadence Silicon Ensemble. For high-performance multi-

pliers, layouts with guided floorplanning are conducted to study the effect of

floorplanning. Interconnect parameters are extracted and back-annotated into

Synopsys for more precise delay and power calculation. Power estimation is

obtained through full-timing gate-level simulation. Experimental results with

comparisons of different schemes are finally presented and analyzed.

1.5 Organization

This dissertation is organized as follows. Internal efforts are addressed in Chapter

2 (optimization of multiplier recoding), Chapter 3 (optimization of operand rep-

resentation), Chapter 4 and 5 (optimization of reduction structure), respectively.

External efforts are addressed in Chapter 6 and Chapter 7 (signal gating).

Chapter 2 — Present optimization techniques of multiplier recoding.

Several new radix-4 recoding designs with lower power consumption are pro-

posed, implemented, and compared with existing radix-4 recoding designs.

With improved recoding designs, the effects of radix-4 recoding versus non-

recoding in multipliers are re-investigated by experiments.

Chapter 3 — Propose optimization techniques of operand representation.

Operand representation conversion schemes for two’s-complement multipli-

ers are proposed to utilize the low-power feature of sign-and-magnitude

representation. Techniques to reduce the cost of conversion are proposed

with power/delay tradeoff. For signed data with large dynamic range, ex-

periments show that the conversion schemes achieve large power reductions

10



with small area and delay overhead.

Chapter 4 — Present optimization techniques of reduction structure for array

multipliers.

Structure optimization techniques for the PPR step in L-R array multipliers

are proposed. These techniques include: signal flow optimization in [3:2]

carry-save adder ([3:2]-CSA) based linear PPR, carry-ripple adder (CRA)

for PPR, [4:2] carry-save adder ([4:2]-CSA) for PPR, and split structures.

Experiments show that both power and delay are improved considerably

with most of these techniques.

Chapter 5 — Propose high-performance low-power left-to-right array multipli-

ers.

To narrow the speed gap between linear array multipliers and tree multipli-

ers, reduction structure optimization techniques are combined to develop

high-performance lower-power array multipliers. Experiments indicate that

the proposed multipliers have slightly less area and power than optimized

tree multipliers while keeping the same delay for n ≤ 32. The proposed mul-

tipliers are also more regular than tree multipliers, which results in simpler

design description and less custom layout efforts.

Chapter 6 — Present signal gating schemes for linear array multipliers.

To further reduce power in multipliers with large-dynamic-range input data,

two-dimensional signal gating techniques are proposed and a class of signal

gating schemes is generalized for traditional array multipliers. Signal gating

does not change the basic structure of multipliers. Instead, multipliers

are partitioned and ancillary logic is inserted along the gating boundaries.

For input data with a large dynamic range, significant power reduction is

achieved in the experiments.

11



Chapter 7 — Propose signal gating schemes for high-performance multipliers.

Two-dimensional signal gating techniques are developed for high-performance

multipliers including tree multipliers and newly proposed left-to-right ar-

ray multipliers. Structures are tuned to simplify signal gating design. Be-

cause high-performance multipliers have more complex structures, the gat-

ing overhead is also larger. However, the net power reduction is still con-

siderable for input data with a large dynamic range in the experiments.

Chapter 8 — Give conclusion and future directions.

The contributions are summarized and an overview of all experiment results

is given. Future research directions are discussed.

Appendix A — List abbreviations.

Appendix B — Explain design and experimental methodology.

12



CHAPTER 2

Optimization of Multiplier Recoding for Low

Power

2.1 Introduction

The multiplier operand Y is often recoded into a radix higher than 2 in order to

reduce the number of partial products. The most common recoding is radix-4

recoding with the digit set {−2,−1, 0, 1, 2}. For a series of consecutive 1’s, the

recoding algorithm converts them into 0’s surrounded by a 1 and a (−1), which

has the potential of reducing switching activity. At the binary level, there are

many design possibilities. The traditional design objectives are small delay and

small area. The power issues of different designs have not been addressed well.

In this chapter, we focus on the effects of radix-4 recoding schemes in multipliers

and optimize their designs for low power. First, we give an overview and analysis

of several known recoding schemes and their designs. Then, we propose new

recoding schemes and evaluate the effects of different recoding schemes in 32×32-

bit radix-4 linear array multipliers. Finally, the best recoding schemes are chosen

and applied into both linear array and tree multipliers to compare the effects of

radix-4 recoding versus non-recoding.

Intuitively, radix-4 multipliers could consume less power than their radix-

2 counterparts as recoding reduces the number of PPs to half. However, the

13



extra recoding logic and the more complex PP generation logic may present

significant overheads. In addition, recoding introduces extra unbalanced signal

propagation paths because of the additional delay on the paths from operand Y

to the product output. Previous work [23] showed that radix-2 [3:2]-CSA tree

(Wallace tree [125]) multipliers consumed less power than Booth-recoded radix-4

multipliers although the radix-2 scheme had twice as many PPs as the radix-4

scheme. This leads us to believe that the design of recoders and PP generators

plays an important role in the overall power consumption in multipliers.

There has been extensive work on radix-4 recoding with the objectives of

high speed and small area [112][127][56][33]. Recently some work on low-power

recoding schemes has appeared. In [6][7], it was pointed out that the method of

handling “−0” in the recoding design had an impact on the power consumption.

In some recoders, “−0” was implemented as “111 · · ·11+1”, which caused unnec-

essary switching activities. Instead, “−0” should be treated in the same way as

“+0”. Furthermore, excessive switching in the PP generation was blocked when

the recoded digit is zero. In [68], the probability of zero digits after recoding

was improved from 0.25 to 0.313 by changing the pattern “12̄” and “1̄2” to “02”

and “02̄”, respectively. With this recoding modification, the power consumption

was reduced by about 4%. As mentioned earlier, [23] showed that Booth-recoded

radix-4 Wallace tree structures consumed more power than radix-2 tree structures

under random test data. This is a surprising result considering that recoding re-

duces the number of PPs by half with a significant area reduction [98]. In [22],

the gate counts of multiplier designs in [23] are presented: for 32 × 32-bit mul-

tiplication, a radix-4 Wallace tree had 51% more gates than a radix-2 tree; for

16 × 16-bit, radix-4 had 63% more gates than radix-2. Judged from this area

information, the results in [23] were explainable because larger area would have

larger power consumption by a high-level estimation. However, these designs of

14



radix-4 multipliers are inefficient in area. To fairly compare radix-2 with radix-4

multipliers, efficient radix-4 multiplier designs are needed. In [52], a race-free

Booth recoding design was proposed to eliminate glitches due to recoding. The

principle is to balance signal propagation paths by developing the fastest possible

equal paths. Such a design is not really glitch-free if buffer delay, signal fanouts

and different cell pin characteristics are considered. However, this technique indi-

cates a good direction to reduce the power and delay. This design was improved

at the transistor level by dividing the complex gate into small cascade stages [35].

The complex PP generator in [52] was slightly simplified by logic transformation

in [131].

To further reduce the number of PPs, operand Y is recoded into a radix

higher than 4, such as 8, 16, 32. In radix higher-than-4 recoding, the bottleneck

is the generation of hard PPs such as 3X which may involve a carry-propagate

step [12]. In [108], Sam and Gupta presented a generalized multi-bit recoding

algorithm in the two’s-complement system. In [124], Vassiliadis et. al. pro-

posed a signal-encoding algorithm for multibit overlapped scanning multiplica-

tion. In [12], Bewick proposed radix-8 recoding with redundant PP representa-

tions for fast multiplication. In [30], Cherkauer and Friedman proposed a hybrid

radix-4/radix-8 signed multiplier architecture as a compromise between the high

speed of a radix-4 multiplier architecture and the low power dissipation of a radix-

8 multiplier architecture. In [3], Al-Twaijry showed that radix-4 multiplier were

superior in terms of delay, while radix-8 multipliers had the smallest area-delay

product. In [29], Chen et. al. explored the programmable FIR architectures using

different radices for hardware complexity and throughput rate tradeoff. Accord-

ing to their analysis, the radix-4 approach would be a good choice to achieve a

low hardware complexity while radix 16 or higher should be considered for a high

throughput rate. In [110], Seidel et. al. proposed recoding schemes for flexible

15



radix-32 and radix-256 multiplier designs that could be implemented in shorter

pipeline stages. In this work, we restrict our study to radix-4 recoding as it is

the most widely used scheme in multipliers.

2.2 Radix-4 Recoding

For radix-4 recoding, the popular algorithm is parallel recoding or Modified Booth

recoding [83]. In parallel radix-4 recoding, Y in Equation (1.6) becomes:

Y =
n/2−1
∑

i=0

vi4
i =

n/2−1
∑

i=0

(−2y2i+1 + y2i + y2i−1)4
i (2.1)

where y−1 = 0 and vi ∈ {2̄, 1̄, 0, 1, 2}. As all bits are recoded in parallel without

data dependency, the recoded digits are available simultaneously. This process is

illustrated in Figure 2.1.

y0y1y2y3y2iy2i+1

RECRECREC

y-1=‘0’

Figure 2.1: Parallel radix-4 recoding.

In linear array radix-4 multipliers, recoded digits are used serially along the

array. In this case, serial recoding can be used [45]:

Y =
n/2−1
∑

i=0

vi4
i (2.2)

vi =







2y2i+1 + y2i + ci − 4ci+1 ∈ {1̄, 0, 1, 2} i �= n/2 − 1

−2y2i+1 + y2i + ci ∈ {2̄, 1̄, 0, 1, 2} i = n/2 − 1
(2.3)

where c0 = 0 and ci ∈ {0, 1}. Serial recoding involves a carry-propagate process,

as shown in Figure 2.2. For the last digit, a special recoding similar to parallel

16



recoding is necessary because the most-significant bit (MSB) of Y has a negative

weight. As recoded digits are generated serially and also used serially along

the linear array, there are fewer glitches due to unbalanced arrival times of PP

bits and reduction signals. In addition, most digits have only four possible values

instead of five. However, the carry propagation in the recoder itself may introduce

glitches as in the case of carry-ripple adders [80]. The asymmetry of the digit set

might also complicate the logic design.

y0y1y2y3y2iy2i+1

c0=‘0’
c1cici+1

RECRECREC
c2

Figure 2.2: Serial radix-4 recoding.

At the gate level, these bit-level algorithms are implemented by two compo-

nents: the recoder which changes Y from radix-2 to radix-4 digits and the PP

generator which multiplies recoded digits with X. Digit multiplication by 2 is

achieved by shifting one bit left. Negation is achieved by bit-complementing and

“+1” to the least significant bit (LSB). This ‘+1’ is implemented as a correction

bit cor in the PP bit matrix. Because PPs are shifted signed integers in two’s-

complement representation, sign-extensions are required to align MSB parts of

PPs. These extra bits complicate the addition step and consume extra power.

They are simplified by transformation and pre-computation with the rules shown

in Figure 2.3 [45]. The transformation rule in Figure 2.3a changes a sequence

of sign bits into a sequence with many constant bits for pre-computation. The

pre-computation rule in 2.3b computes the addition of constant bits. Shaded bits

out of the range are discarded without affecting the correctness of the result. An

example of the simplified radix-4 PP bit matrix for 8× 10-bit two’s-complement

17



multiplication is shown in Figure 2.4.

sss sss. . .

111 s’11. . .
000 00. . . 1

000 00 0. . .

000 00 0. . .1

s=0

. . .

. . .

s=1

111

111

111

111

Original

Modified

(a)

. . .111 111
1

000 00 0. . .1

Original

Reduced

(b)

Figure 2.3: Transformation and pre-computation rules.

eeeeeeeese’

coreffffffffsf’

corfggggsg’ gggg

corghhhhhhhh

corhkkkk1 sk’

cork

kkkk

1 sk’

1

1

se se

Figure 2.4: Radix-4 PP bit array in 8 × 10-bit two’s-complement mul-

tiplication.

The bit matrix has the same structure independent of recoding. However,

there are many design possibilities of recoders and PP generators depending on

how to represent radix-4 digits and generate control signals. Multipliers us-

ing different recoding schemes have different power/area/delay characteristics.

For completeness, we first analyze existing recoder and PP generator designs

[5][127][6][7][56][33][45] from the view point of low power. Then we propose new

low-power schemes for both parallel recoding and serial recoding. Finally we

evaluate the effects of different recoding schemes in 32× 32-bit linear array mul-

18



tipliers.

2.2.1 Some Existing Recoding Schemes

In parallel recoding, at least three signals are needed to represent the digit set

{2̄, 1̄, 0, 1, 2}. To achieve area/delay tradeoff, additional signals are often used.

We classify existing schemes of radix-4 recoding design by the number of control

signals. There are three classes: three-signal schemes, four-signal schemes, and

five-signal schemes. Table 2.1 lists the names and features of all schemes studied

in this Chapter, including existing schemes and newly proposed schemes. They

are different in one or more aspects of parallel/serial recoding, control signals,

zero handling, and logic organization.

Table 2.1: Names and features of recoding schemes studied

Name Feature

PR3a[5] parallel, neg/two/one

PR3b[127][7] parallel, neg/two/zero

PR3c[56] parallel, neg/pos/two

PR4a[33] parallel, neg/two/one/zero

PR4b[52][131] parallel, neg/tz/one/z

PR5[127] parallel, P2/N2/P1/N1/zero

NPR3a new, parallel, neg/two/one, unique 0

NPR3b new, parallel, neg/two/one, unique 0, neg-first

SR3[45] serial, neg/one/zero

NSR3a new, serial, neg/two/one, unique 0

NSR3b new, serial, neg/two/one, unique 0, neg-first

NSR4 new, serial, P2/P1/N1, hidden zero

19



Three-signal schemes

In three-signal schemes, one standard approach [5] is the neg/two/one based

PR3a scheme in Table 2.2. The signal cor is the correction bit for negative

numbers. The following switching expressions are deduced:

negi = y2i+1 (2.4)

twoi = y′

2i+1y2iy2i−1 + y2i+1y
′

2iy
′

2i−1 (2.5)

onei = y2i ⊕ y2i−1 (2.6)

cori = y2i+1 (2.7)

The corresponding recoder and PP generator are shown in Figure 2.5.

Table 2.2: PR3a recoding

y2i+1 y2i y2i−1 OP negi twoi onei cori

0 0 0 +0 0 0 0 0

0 0 1 +X 0 0 1 0

0 1 0 +X 0 0 1 0

0 1 1 +2X 0 1 0 0

1 0 0 −2X 1 1 0 1

1 0 1 −X 1 0 1 1

1 1 0 −X 1 0 1 1

1 1 1 −0 1 0 0 1

twoi

onei

negi

xj-1

xj PPi,j

y2i+1

y2i
y2i-1

negi

y2i+1
y2i
y2i-1

onei

twoi

Figure 2.5: PR3a recoder and PP generator.

20



The advantage of this scheme is its simplicity. But the “−0” operation is im-

plemented as 111 · · ·11 + 1 rather than 000 · · ·00. For random data, the impact

of this “−0” operation on power consumption is small because the occurrence

probability P{y2i+1y2iy2i−1 = 111} = 0.125 and separated “111 · · ·11 + 1” op-

erations have limited effects on power. For input data with a large number of

short-precision negative data, leading sign bits of negative numbers are recoded

into a series of “−0” and cascaded “111 · · ·11 + 1” operations would increase the

power consumption significantly (refer to our experimental result in Table 2.14).

In [54], an equivalent pos/two/one recoding is used. PP generation logic is op-

timized at the circuit level using pass transistors. For “−0”, the logic forces the

output to be zero and thus no correction is needed. Instead of aggressive circuit-

level optimization, explicit zero can be used to ensure a unique handling of “±0”,

which leads to the neg/two/zero based PR3b scheme. One possible design [127]

is shown in Table 2.3. From this table, the switching expressions are:

negi = y2i+1(y2iy2i−1)
′ (2.8)

twoi = y′

2i+1y2iy2i−1 + y2i+1y
′

2iy
′

2i−1 (2.9)

zeroi = y2i+1y2iy2i−1 + y′

2i+1y
′

2iy
′

2i−1 (2.10)

cori = negi (2.11)

Note that the negi expression in Equation 2.8 can be simplified to be negi = y2i+1

because zero could set PP to zero regardless of neg. For “−0”, negi = y2i+1

introduces useless switching activities.

In [6][7], the switching expressions are slightly different:

negi = y2i+1 (2.12)

zeroi = y2i+1y2iy2i−1 + y′

2i+1y
′

2iy
′

2i−1 (2.13)

twoi = (y2i ⊕ y2i−1)
′zero′i (2.14)

21



Table 2.3: PR3b recoding

y2i+1 y2i y2i−1 OP negi twoi zeroi cori

0 0 0 +0 0 0 1 0

0 0 1 +X 0 0 0 0

0 1 0 +X 0 0 0 0

0 1 1 +2X 0 1 0 0

1 0 0 −2X 1 1 0 1

1 0 1 −X 1 0 0 1

1 1 0 −X 1 0 0 1

1 1 1 −0 0 0 1 0

cori = y2i+1zero
′

i (2.15)

In these expressions, zero is used to block transitions in signal two and cor in PP

generation logic. The recoder and PP generator are illustrated in Figure 2.6. At

the circuit level, pass transistor based multiplexers are often used to implement

PP generator with reduced delay, as shown in Figure 2.7. The voltage Vcc repre-

senting ‘1’ would lose a threshold voltage VTn when passing NMOS transistors.

A feedback PMOS transistor is used to restore the voltage level from Vcc − VTn

to Vcc so that the DC current in the inverter due to the reduced voltage level

is eliminated, which permits fast and low-power operations [11]. To reduce the

number of inverters, both control signals and their complement forms can be

provided for all multiplexers.

Another three-signal recoding scheme is the neg/pos/two based PR3c scheme [56],

as shown in Table 2.4. The switching expressions are:

negi = y2i+1(y2iy2i−1)
′ (2.16)

posi = y′

2i+1(y2i + y2i−1) (2.17)

twoi = (y2i ⊕ y2i−1)
′ (2.18)

22



twoi zeroinegi

xj-1

xj

PPi,j

0

1

y2i+1

y2i
y2i-1

negi

y2i+1
y2i
y2i-1

twoi

zeroi

zeroi

Figure 2.6: PR3b recoder and PP generator [7].

xj-1

xj

PPi,j

xj’

xj-1’
negi

negi’

twoi’

twoi zeroi

Figure 2.7: PR3b PP generator using pass transistors.

cori = negi (2.19)

The recoder and PP generator are shown in Figure 2.8. Compared to the PR3b

design, both recoder logic and PP generation logic are simpler. In PR3c, gate

sharing between adjacent bits is used to reduce logic. “zero” operations are

implicitly implemented in PP generation multiplexers.

Four-signal schemes

The second class of recoding schemes is four-signal schemes. In [33], PR4a

based on neg/two/one/zero is used. The truth table is shown in Table 2.5 and

the logic expressions are:

negi = y2i+1 (2.20)

23



Table 2.4: PR3c recoding

y2i+1 y2i y2i−1 OP negi posi twoi cori

0 0 0 +0 0 0 1 0

0 0 1 +X 0 1 0 0

0 1 0 +X 0 1 0 0

0 1 1 +2X 0 1 1 0

1 0 0 −2X 1 0 1 1

1 0 1 −X 1 0 0 1

1 1 0 −X 1 0 0 1

1 1 1 −0 0 0 1 0

xj

PPi,j
0

1
0

1

negi

posi

twoi

y2i
y2i-1

y2i+1

y2i

y2i-1

twoi

posi

nxj-1

nxj

y2i+1

y2i

y2i-1

negi

Figure 2.8: PR3c recoder and PP generator.

tmp1i = y2i+1 ⊕ y2i−1 (2.21)

tmp2i = y2i+1 ⊕ y2i (2.22)

onei = y2i ⊕ y2i−1 (2.23)

twoi = tmp1i · tmp2i (2.24)

zeroi = (tmp1i + tmp2i)
′ (2.25)

cori = y2i+1zero
′

i (2.26)

where XOR gates are shared. For PP generation logic, two levels of multiplexers

are still needed. The recoder and PP generator are illustrated in Figure 2.9. The

same gate sharing technique as in PR3c is applied. Compared to PR3c, this

24



design is more complex in both recoders and PP generators. Therefore, we will

not consider this design in our work.

Table 2.5: PR4a recoding

y2i+1 y2i y2i−1 OP negi twoi onei zeroi cori

0 0 0 +0 0 0 0 1 0

0 0 1 +X 0 0 1 0 0

0 1 0 +X 0 0 1 0 0

0 1 1 +2X 0 1 0 0 0

1 0 0 −2X 1 1 0 0 1

1 0 1 −X 1 0 1 0 1

1 1 0 −X 1 0 1 0 1

1 1 1 −0 1 0 0 1 0

PPi,j
0

1

negi

xj

xj’ 0X

1X

2X

0

(two,one,zero)i

nxj-1

nxj

y2i+1 negi

y2i-1
onei

y2i

y2i+1

twoi
y2i

y2i-1 zeroi

y2i+1

Figure 2.9: PR4a recoder and PP generator.

In [52] a glitch-free neg/tz/one/z based PR4b is proposed. The recoding

scheme is presented in Table 2.6. tz covers both two and zero conditions. Extra

signal z together with tz is used to set PP to zero. To achieve equal signal propa-

gation paths, some logic is duplicated instead of being shared. The corresponding

recoder and PP generators are shown in Figure 2.10 and 2.11, respectively. The

PP generator in Figure 2.10b is an improved version [131] of the generator in

Figure 2.10a. It is shown that the paths from both X and Y to PPs consist of

only two XOR gates. These designs are not glitch-free when buffer delay, signal

25



fanouts and different cell pin characteristics are considered. Moreover, the PP

generators are more complicated than the conventional generator in Figure 2.5.

However, PR4b provides good insights into low-power recoders.

Table 2.6: PR4b recoding

y2i+1 y2i y2i−1 OP negi tzi onei zi cori

0 0 0 +0 0 1 0 1 0

0 0 1 +X 0 0 1 1 0

0 1 0 +X 0 0 1 0 0

0 1 1 +2X 0 1 0 0 0

1 0 0 −2X 1 1 0 0 1

1 0 1 −X 1 0 1 0 1

1 1 0 −X 1 0 1 1 1

1 1 1 −0 1 1 0 1 0

y2i+1

y2i
y2i-1

y2i
y2i-1

y2i+1
y2i

negk

onek

tzk

zk

Figure 2.10: PR4b recoder.

Five-signal scheme

The third class of recoding schemes is to generate five separate control signals,

P2, N2, P1, N1, and zero, corresponding to recoding digits +2, -2, +1, -1, and

0 [127][61]. The recoding table is shown in Table 2.7 and the logic expressions

are:

N2i = y2i+1y
′

2iy
′

2i−1 (2.27)

26



negk

xj

onek

tzk

zk PPk,j

nxj

nxj-1

negk

xj

onek

tzk

zk

nxj

nxj-1

PPk,j

(a)

(b)

Figure 2.11: PR4b PP generators.

P2i = y′

2i+1y2iy2i−1 (2.28)

tmpi = y2i ⊕ y2i−1 (2.29)

N1i = y2i+1 · tmpi (2.30)

P1i = y′

2i+1 · tmpi (2.31)

zeroi = y2i+1y2iy2i−1 + y′

2i+1y
′

2iy
′

2i−1 (2.32)

cori = y2i+1(y2iy2i−1)
′ (2.33)

For PP generation, pass transistor based 5-1 multiplexers are often used. The

recoder and PP generator are shown in Figure 2.12. If standard CMOS AND/OR

gates are used, signal zero is not necessary because it is implied when the other

27



four signals are all 0. Note that at most 2 out of 5 control signals would change

each time, which could somewhat offset the power inefficiency due to more control

signals than in other designs.

Table 2.7: PR5 recoding

y2i+1 y2i y2i−1 OP P2i N2i P1i N1i zeroi cori

0 0 0 +0 0 0 0 0 1 0

0 0 1 +X 0 0 1 0 0 0

0 1 0 +X 0 0 1 0 0 0

0 1 1 +2X 1 0 0 0 0 0

1 0 0 −2X 0 1 0 0 0 1

1 0 1 −X 0 0 0 1 0 1

1 1 0 −X 0 0 0 1 0 1

1 1 1 −0 0 0 0 0 1 0

xj-1

xj

PPi,j

xj’

xj-1’

N1i P1i N2i P2i

Vcc

zeroi

y2i+1
y2i
y2i-1

zeroi

y2i
y2i-1

y2i+1

N2i

P2i

y2i

P1i

y2i+1

N1i
y2i-1

Figure 2.12: PR5 recoder and PP generator.

Serial recoding scheme

For serial radix-4 recoding, there is not much previous work because its appli-

cation is limited to linear array multipliers although it has the potential of power

saving. Glitches due to unbalanced signal arrival times are reduced because re-

coded digits are generated and used serially. The power associated with negation

operation decreases as the probability of negative digits is decreased. However,

28



the use of four possible values instead of five does not necessarily simplify the

design because the digit set is not symmetric. In [45], neg/one/zero based SR3

corresponding to Table 2.8 was used:

negi = y2i+1(y2i + ci) (2.34)

onei = y2i ⊕ ci (2.35)

zeroi = y2i+1y2ici + y′

2i+1y
′

2ic
′

i (2.36)

cori = y2i+1 · onei (2.37)

ci+1 = negi (2.38)

The carry propagation in the recoders may introduce spurious transitions, which

is a negative factor for power saving. The recoder and PP generator are illustrated

in Figure 2.13. In this scheme, the use of four values does not result in a simpler

design. As mentioned earlier, a special recoding similar to the above parallel

recoding has to be used for the last digit.

Table 2.8: SR3 recoding

y2i+1 y2i ci OP negi onei zeroi cori ci+1

0 0 0 +0 0 0 1 0 0

0 0 1 +X 0 1 0 0 0

0 1 0 +X 0 1 0 0 0

0 1 1 +2X 0 0 0 0 0

1 0 0 +2X 0 0 0 0 0

1 0 1 −X 1 1 0 1 1

1 1 0 −X 1 1 0 1 1

1 1 1 −0 1 0 1 0 1

High-level comparison

A high-level comparison of power-related parameters in different existing re-

coding schemes is given in Table 2.9. The cell areas of 1-bit recoder (REC) and

29



onei zeroinegi

xj-1

xj PPi,j

0

1

y2i+1
y2i
ci

negiy2i+1

y2i

ci

ci
onei

y2i

zeroi

ci+1
0

1

xj’

Figure 2.13: SR3 recoder and PP generator.

PP generator (PPG) are measured in µm2 based on the Artisan standard cell li-

brary [10] described in Appendix B. The area of inverting logic is not included as

we assume logic polarities are optimized in the actual implementations. The delay

of REC and PPG is estimated roughly as equivalent XOR2 gate delay (TXOR2)

without considering fanout and signal transition directions. Simple gates such

as AND2 have the delay of 0.5TXOR2. Two-level AND/OR gates and MUX21

have the same delay as XOR2. The number of control lines, Nctrl, is also listed

because it reflects the buffer and interconnect requirements. u0 indicates if there

is a unique zero representation in recoding. Among existing recoding schemes,

PR3a has both the simplest recoder and the simplest PP generator. The number

of control lines in PR3a is the minimum 3. But PR3a does not have unique

zero handling. As to delay and signal balance, PR4b is the best. Although PR4b

does not have unique zero representation and some useless switching may happen

internally, z and tz would jointly set the PP output to zero for “−0”, which is dif-

ferent from PR3a. SR3 is very similar to PR3b and does not show the advantage

of serial recoding.

30



Table 2.9: High-level comparison of existing recoding schemes

Schemes AREC1b APPG1b Delay Nctrl u0

PR3a 53 43 3 3 N

PR3b 63 63 4 3 Y

PR3c 59.5 53 2.75 3 Y

PR4b 79.5 49.5 2 4 N

PR5 99 66 2.5 5 Y

SR3 69.5 63 3.5 3 N

2.2.2 New Recoding Schemes

After examining existing recoding schemes, we now propose new recoding schemes

for low power. The guidelines are as follows. In an m × n-bit radix-4 multiplier,

the total area of recoders is n
2
AREC1b while the total area of PP generators is

n
2
(m+1)APPG1b. In a 32×32-bit linear array multiplier, the recoders only occupy

less than 2% of the total cell area while the PP generators occupy over 30% of

the total area. Therefore, it is more important to simplify PP generators than to

simplify recoders for power saving. In addition, unique zero handling is desired in

order to reduce the number of unnecessary switching activities. Moreover, delay-

balanced logic designs are helpful in order to reduce glitches. This is important

because recoders and PP generators are the first two steps on the long logic paths

in multipliers and glitches have a snow-balling effect along the paths.

New parallel recoding schemes

For parallel recoding, we propose to keep the simplicity of neg/two/one PP

generator and increase the complexity of neg/two/one recoder to add the power-

efficient unique zero handling. The new scheme is NPR3a shown in Table 2.10.

31



The two changes on negi and cori are bold-faced. The new switching expressions

are:

negi = y2i+1(y2iy2i−1)
′ (2.39)

twoi = y′

2i+1y2iy2i−1 + y2i+1y
′

2iy
′

2i−1 (2.40)

onei = y2i ⊕ y2i−1 (2.41)

cori = negi (2.42)

The NPR3a recoder and PP generator are shown in 2.14. The PP generator is

the one in Figure 2.5. The only difference is negi logic in the recoder.

Table 2.10: NPR3a recoding

y2i+1 y2i y2i−1 OP negi twoi onei cori

0 0 0 +0 0 0 0 0

0 0 1 +X 0 0 1 0

0 1 0 +X 0 0 1 0

0 1 1 +2X 0 1 0 0

1 0 0 −2X 1 1 0 1

1 0 1 −X 1 0 1 1

1 1 0 −X 1 0 1 1

1 1 1 −0 0 0 0 0

In NPR3a, the signal paths in the generator are not balanced well as one and

two arrive later than X. To improve the balance and reduce glitches in subsequent

PPR logic, the XNOR negation logic is exchanged with AOI22 selection logic.

This exchange utilizes the arithmetic computation feature of −(C ·X) = C ·(−X),

which cannot be discovered by gate-level optimizations. A gate-level approach

to improve the balance is to insert some delay buffers on the fast signals, which

represents an external effort with area overhead and will not be considered here.

The resulting scheme NPR3b are illustrated in Figure 2.15. In NPR3b, the negi

32



expression in Equation 2.39 can be simplified to be negi = y2i+1 because two and

one could set PP to zero regardless of neg. For “−0”, however, negi = y2i+1

introduces more switching activities because it triggers switching in XNOR gate

while the final PP output remains at 0. Compared to the PR4b PP generator in

Figure 2.11, this new PP generator has simpler logic and one less control signal.

y2i
y2i-1

negi

y2i+1
y2i
y2i-1

onei

twoi

y2i+1

y2i

y2i-1

twoi

onei

negi

xj-1

xj PPi,j

Figure 2.14: NPR3a recoder and PP generator.

negi

xj

two’i

nxj

nxj-1

PPi,j

one’i

y2i
y2i-1

negi

y2i+1
y2i
y2i-1

one’i

two’i

y2i+1

y2i

y2i-1

negi
y2i+1( )

Figure 2.15: NPR3b recoder and PP generator.

New serial recoding schemes

For serial recoding, neg/two/one with unique zero handling can also be ap-

plied. The recoding relationship is shown in Table 2.11 and the logic expressions

are:

twoi = y′

2i+1y2ici + y2i+1y
′

2ic
′

i (2.43)

33



onei = y2i ⊕ ci (2.44)

negi = y2i+1 · onei (2.45)

cori = negi (2.46)

ci+1 = y2i+1(y2i + ci) (2.47)

This serial recoder is illustrated in 2.16. The PP generators are the same as in

NPR3a (Figure 2.14) or NPR3b (Figure 2.15). Correspondingly, the two new

serial recoding schemes are named NSR3a and NSR3b.

Table 2.11: NSR3 recoding

y2i+1 y2i ci OP negi twoi onei cori ci+1

0 0 0 +0 0 0 0 0 0

0 0 1 +X 0 0 1 0 0

0 1 0 +X 0 0 1 0 0

0 1 1 +2X 0 1 0 0 0

1 0 0 +2X 0 1 0 0 0

1 0 1 −X 1 0 1 1 1

1 1 0 −X 1 0 1 1 1

1 1 1 −0 0 0 0 0 1

y2i+1
y2i
ci

ci
onei

y2i

twoi

ci+1y2i+1

y2i

ci

y2i+1

onei
negi

Figure 2.16: NSR3 serial recoder.

Since there are only four possible values, it is attractive to use 4-1 multiplex-

ers. Similar to PR5 with P2/N2/P1/N1/zero, NSR4 with P2/P1/N1/zero is

34



developed for serial recoding. The recoding table is shown in Table 2.12. The

logic expressions are:

P2i = y′

2i+1y2ici + y2i+1y
′

2ic
′

i (2.48)

tmpi = y2i ⊕ ci (2.49)

N1i = y2i+1 · tmpi (2.50)

P1i = y′

2i+1 · tmpi (2.51)

zeroi = y2i+1y2ici + y′

2i+1y
′

2ic
′

i (2.52)

cori = N1i (2.53)

ci+1 = y2i+1(y2i + ci) (2.54)

The recoder and pass transistor based PP generator are shown in Figure 2.17.

If AND/OR gates are used, signal zero is redundant as it is implied when P2,

P1, and N1 are all 0. In this case, the recoder and PP generator are simplified

to become NSR4 with P2/P1/N1 in Figure 2.18. Now the PP generator is just

an AO222 gate, the simplest among all schemes. In Artisan library, the area of

AO222 (AOI222 + INV) is 33µm2. Because of the simplified PP generator, NSR4

is expected to have the least power consumption among serial schemes. NSR4

demonstrates the advantage of using only four values in serial recoding.

High-level comparison

A high-level comparison of power-related parameters in the proposed new

recoding schemes is given in Table 2.13. NSR4 is the scheme with hidden zero.

All proposed schemes here have three control signals, unique zero handling, and

small APPG1b. Although serial recoding only has four possible values, NSR3a and

NSR3b are not superior to NPR3a and NPR3b because the asymmetry of the

digit set and the carry bit complicate the logic. With hidden zero, NSR4 takes

the advantage of the small digit set and thus has the smallest APPG1b.

35



Table 2.12: NSR4 recoding

y2i+1 y2i ci OP P2i P1i N1i zeroi cori ci+1

0 0 0 +0 0 0 0 1 0 0

0 0 1 +X 0 1 0 0 0 0

0 1 0 +X 0 1 0 0 0 0

0 1 1 +2X 1 0 0 0 0 0

1 0 0 +2X 1 0 0 0 0 0

1 0 1 −X 0 0 1 0 1 1

1 1 0 −X 0 0 1 0 1 1

1 1 1 −0 0 0 0 1 0 1

y2i+1
y2i
ci xj

PPi,j

xj’

xj-1’

N1i P1i P2i

Vcc

zeroi

y2i

y2i+1
y2i
y2i-1

zeroi

P1i

y2i+1

N1i

P2i

ci

ci+1y2i+1

y2i

ci

Figure 2.17: NSR4 recoder and PP generator with P2/P1/N1/zero.

2.2.3 Experimental Evaluation

The recoder itself is small and does not consume much power. In a radix-4

32×32-bit linear array multiplier, the recoder consumes less than 1% of the total

power. Even the PP generator only consumes about 10% of the total power.

However, the design of recoding schemes affects the power dissipation in sub-

sequent PPR and final CPA significantly because recoding is the the first step

on the long logic paths in multipliers. Therefore, comparisons of individual re-

coders and PP generators are not enough. For this reason, we have implemented

36



y2i+1
y2i
ci

xj
PPi,j

xj’

y2i

P1i

y2i+1

N1i

P2i

ci

ci+1y2i+1

y2i

ci

P2i

P1i

N1i

xj-1

Figure 2.18: NSR4 recoder and PP generator with hidden zero.

Table 2.13: High-level comparison of proposed recoding schemes

Schemes AREC1b APPG1b Delay Nctrl u0

NPR3a 66 43 3 3 Y

NPR3b 66 46.5 2.75 3 Y

NSR3a 79.5 43 3 3 Y

NSR3b 79.5 46.5 3.5 3 Y

NSR4 89.5 33 2.5 3 Y

and simulated six existing recoding schemes and five new recoding schemes in

a 32 × 32-bit linear array multiplier framework. The final CPA is a two-level

carry-lookahead adder (CLA). All multipliers are described in structural VHDL

using technology-independent switching expressions. Multipliers differ only in

the recoding schemes. These VHDL designs are optimized and mapped into Ar-

tisan 0.18µm standard cell library using Synopsys Design Compiler. Automatic

layouts are then conducted using Cadence Silicon Ensemble. Interconnect param-

eters are extracted and back-annotated into Synopsys tools for delay and power

calculation. Two test data sets are used: random and djpeg with a large dynamic

range. The complete design and experimental methodologies are described in

37



Appendix B.

2.2.3.1 Effects of Parallel Recoding in Linear Array Multipliers

The power/area/delay comparison results of 32 × 32-bit linear array multipliers

with different parallel recoding schemes are listed in Table 2.14. The values in

parentheses are normalized values. The smallest value of each characteristic is

highlighted in boldface. As multipliers in this experiment are only different in

recoding schemes, we use the names of recoding schemes to distinguish different

multipliers. The power consumption is measured at 50MHz. The static power is

less than 1µW in all cases. As static power is irrelevant to the clock frequency and

is less than 0.1% of the total power, only dynamic power is used for comparison.

CArea is the total cell area. The actual chip area is the cell area divided by the

row utilization rates. The row utilization rates for layouts are initially set at a

high value (85%), and decrease 5% each time if the routing cannot be completed.

The rate with the densest successful layout is named as a routable rate. In

this experiment, the routable rate for the NPR3b multiplier is 80%, the rate for

NPR3a, PR5, and PR4b multipliers is 75%, and the rate for others is 70%. In this

experiment, we find no obvious relation between the areas and the routable rates.

The chip area is not used directly in comparison because the varying routable

rates affect the accuracy of the information that can be derived from the chip

area for power analysis.

The experimental results show that small PPG area and unique zero handling

play important roles in power reduction. The relationship of CAreas roughly

matches the relationship of APPG1bs in Table 2.9 and 2.13. The smaller the

APPG1b, the smaller the total area. This verifies that the area of PPG is more

important than that of REC. The delay relationship does not match well because

38



Table 2.14: Comparison of multipliers with different parallel recoding schemes

Power(mW ) (50MHz)
Schemes

Random Djpeg
CArea(µm2) Delay(ns)

PR3a 29.72 (1.00) 18.66 (1.00) 71182 (1.00) 11.00 (1.00)

PR3b 30.80 (1.04) 15.54 (0.83) 80219 (1.13) 11.15 (1.01)

PR3c 27.88 (0.94) 12.69 (0.68) 75306 (1.06) 10.73 (0.98)

PR4b 29.82 (1.00) 14.34 (0.77) 73783 (1.04) 10.93 (0.99)

PR5 26.83 (0.90) 12.59 (0.67) 79757 (1.12) 10.74 (0.98)

NPR3a 27.32 (0.92) 12.57 (0.67) 71358 (1.00) 10.31 (0.94)

NPR3b 26.13 (0.88) 12.64 (0.68) 71907 (1.01) 10.19 (0.93)

the difference of logic delay is at most 2TXOR2 while the mapping and layout

steps have many factors that may affect the overall delay. Unique zero handling

is very efficient for power reduction under djpeg test data. PR3a consumes up to

48% power than other schemes under djpeg. From PR3a to NPR3a, 33% power

reduction is achieved due to unique zero handling. Small area is also helpful in

power saving. From PR3b to PR3c, the 10 ∼ 20% power reduction mainly comes

from the 7% area reduction as both are three-signal schemes with unique zero

handling. From PR3b/PR3c to NPR3a/NPR3b, the area reduction is 5 ∼ 10%

and the power reduction is up to 20%. PR5 is an exception: PR5 has 11%

larger area than NPR3a but consumes similar power as NPR3a. This is because

control signal zero is eliminated in actual implementation due to AND/OR ex-

pressions and at most 2 signals would change for each new computation. Finally,

smaller delay and more balanced paths also help reduce the power consumption.

From NPR3a to NPR3b, 4% power reduction under random data is due to more

balanced signal paths in NPR3b.

39



Overall, NPR3b is a good choice for parallel recoding in terms of power, delay,

and area. Note that this conclusion is valid when a similar standard cell library

is used. In full-custom design with aggressive MUX and XOR implementations,

PR5 and PR3c might be competitive choices besides NPR3b.

2.2.3.2 Effects of Serial Recoding in Linear Array Multipliers

The comparison results of 32×32-bit linear array multipliers with different serial

recoding schemes are listed in Table 2.15. The names of recoding schemes are

used to distinguish different multipliers. The values in parentheses are normalized

values. NSR4 multiplier uses NSR4 recoding with hidden zero. The routable rate

for SR3 is 75% and the rate for NSR3a is 70%. The rate for NSR3b and NSR4

is 80%.

Table 2.15: Comparison of multipliers with different serial recoding schemes

Power(mW ) (50MHz)
Schemes

Random Djpeg
CArea(µm2) Delay(ns)

SR3 31.43 (1.00) 13.48 (1.00) 71431 (1.00) 10.97 (1.00)

NSR3a 28.18 (0.90) 14.35 (1.06) 71657 (1.00) 11.30 (1.03)

NSR3b 30.07 (0.96) 14.14 (1.05) 72233 (1.01) 11.21 (1.02)

NSR4 25.59 (0.81) 11.41 (0.85) 71019 (0.99) 10.60 (0.97)

The NSR4 multiplier has the least power, area, and delay. The other three

multipliers, SR3, NSR3a, and NSR3b consume 10 ∼ 26% more power than NSR4.

NSR4 is the only scheme that takes advantage of the four digit values in serial

recoding. The other three schemes use the same PP generators as their counter-

parts in parallel recoding while the recoder designs are more complex. Compared

to NPR3a and NPR3b, NSR3a and NSR3b multipliers consume up to 15% more

40



power. As recoder itself does not consume much power, the extra power con-

sumption comes from glitches due to carry propagation in serial recoding. In

NSR4, the recoder is simplified to produce three control signals and the PP gen-

erator is very simple. Despite the carry propagation in the recoder, the overall

power consumption in NSR4 is still smaller than that in parallel recoding schemes.

Therefore, NSR4 is a good choice for low-power linear array multipliers. When

there is not enough time for serial recoding, parallel recoding schemes such as

NPR3b are good candidates.

2.3 Comparison of Radix-4 and Radix-2 Multipliers

Radix-4 recoding reduces the number of PPs from n to n/2, at the cost of one

(n/2)-bit recoder and n/2 (m + 1)-bit PP generation logic. A rough estimation

of the difference in cell area between radix-4 and radix-2 multipliers is:

∆A =
n

2
AREC1b +

n

2
(m + 1)APPG1b − nmAAND2 −

n

2
mA[3:2]CSA1b (2.55)

If MUX based full adders (FAs) are used for [3:2]-CSAs, AFA = A[3:2]CSA1b =

79.5µm2 based on Artisan standard cell library [10]. For parallel recoding NPR3b,

AREC1b = 66µm2 and APPG1b = 46.5µm2. AAND2 = 13µm2. If m = n = 32,

∆A = −28, 408µm2. The areas of PPG and PPR modules in an n×n-bit radix-2

two’s-complement linear array multiplier are estimated as:

APPG = (n2 − 2n + 2)AAND2 + (2n − 2)ANAND2 (2.56)

APPR = (n2 − 3n + 2)AFA + (n − 1)AHA (2.57)

Buffers are not included. ANAND2 = 10µm2. AHA = 39.5µm2. For n = 32, the

total area of PPG and PPR, APPGR = 88, 286µm2. It can be verified that the

areas of tree multipliers are similar to those of linear array multipliers. By using

41



radix-4 recoding, the PPGR area is reduced by ∆A/APPGR = 32% for 32×32-bit

multipliers. Although recoding introduces unbalanced signal propagation paths

due to the recoding on operand Y , we believe the overall power consumption

will still be reduced because of the area advantage in radix-4 multipliers. This

conclusion is opposite to the previous work in [23].

In our comparison of radix-2 versus radix-4, three widely used structures for

PP reduction are considered: [3:2]-CSA linear array, [3:2]-CSA tree and [4:2]-

CSA tree. Tree multipliers have the smallest logic delay proportional to log(n).

However, they have irregular layout with complicated interconnects. On the

other hand, linear array multipliers have larger delay but offer regular layout and

simpler interconnects. Between [3:2]-CSA tree and [4:2]-CSA tree, [4:2]-CSA tree

is more popular due to its regularity and smaller delay [126][93][89][55][98][33].

A [4:2]-CSA has the same gate complexity as two [3:2]-CSAs. But a [4:2]-CSA

is faster than two cascaded [3:2]-CSAs because an efficient design could have

3 XOR-gate delay while each single [3:2]-CSA has 2 XOR-gate delay. For odd

numbers of PPs, the use of [3:2]-CSA tree is sometimes better than the use of

[4:2]-CSA tree because [4:2] reduction may waste resources for odd numbers.

Parallel recoding NPR3b is used for all 32 × 32-bit multipliers studied here.

NSR4 is not used because not all schemes have enough time for serial recoding.

The final CPA in all multipliers is a two-level CLA. The optimization of final

CPAs will be addressed in Chapter 5. The power consumption is tested under

both djpeg and random. For linear array multipliers, the power consumption is

measured at 50MHz, which is enough for the slowest schemes to finish computing

in the worst case. For fast tree multipliers, the power is measured at 100MHz.

The comparison results for linear array multipliers and tree multipliers are listed

in Table 2.16 and 2.17, respectively. The values in parentheses are normalized

values. The routable utilization rates are also listed for comparison.

42



Table 2.16: Comparison of radix-2 and radix-4 32× 32-bit array multipliers

Power(mW ) (50MHz)
Schemes

Random Djpeg
CArea(µm2) Delay(ns) Rate

r2-array 56.95 (1.00) 21.07 (1.00) 93721 (1.00) 15.92 (1.00) 85%

r4-array 26.13 (0.46) 12.64 (0.60) 71907 (0.77) 10.19 (0.64) 80%

Table 2.17: Comparison of radix-2 and radix-4 32 × 32-bit tree multipliers

Power(mW ) (100MHz)
Schemes

Random Djpeg
CArea(µm2) Delay(ns) Rate

r2-tree3to2 62.15 (1.00) 24.41 (1.00) 97390 (1.00) 9.02 (1.00) 65%

r4-tree3to2 39.18 (0.63) 18.88 (0.77) 73537 (0.76) 7.74 (0.86) 70%

r2-tree4to2 63.43 (1.00) 24.14 (1.00) 100101 (1.00) 8.33 (1.00) 70%

r4-tree4to2 42.57 (0.67) 19.81 (0.82) 75130 (0.75) 8.65 (1.04) 70%

After radix-4 recoding, the overall cell area is reduced about 25% in both

array multipliers and tree multipliers, which matches our our high-level estimation

above if final CPA and buffer area are included. In linear array multipliers, the

delay is also reduced 36% from radix-2 to radix-4 because the number of PPs

along the reduction path is reduced to half. However, the delay does not change

much in tree multipliers. From radix-2 to radix-4 [3:2]-CSA tree multipliers,

AND gates for PPG and two levels of [3:2]-CSAs for PPR are replaced by radix-4

recoders and PP generators, which leads to about 1.5TXOR2 gate delay reduction.

The delay reduction in the experimental result is larger (14%) because it includes

the layout effects. In radix-4 [4:2]-CSA tree multipliers, AND gates for PPG and

43



one level of [4:2]-CSAs are replaced by radix-4 recoders and PP generators. The

delay is unchanged because the delay of radix-4 recoding is similar to that of a

[4:2]-CSA (3TXOR2). In our experiment, [4:2]-CSA tree multipliers are slightly

worse than [3:2]-CSA tree multipliers because one extra level of [3:2]-CSAs is

used to add the single correction bit on the last row (Figure 2.4) in [4:2]-CSA

tree multipliers. To handle this bit, a [9:4] adder with 3TXOR2 can be developed,

which will be addressed in Chapter 5. In [3:2]-CSA tree multipliers, this correction

bit is added earlier without introducing an extra level. In this experiment, the

routable utilization rates roughly reflect the complexity of distinct architectures.

In general, tree multipliers are irregular and more complex than linear array

multipliers. Thus, the routable rates for tree multipliers are 65 ∼ 70% while the

rates for linear array multipliers are 80 ∼ 85%. From radix-2 to radix-4, the

change of routable rates depends on the relative influences of area reduction and

complicated structures.

Regarding power in linear array multipliers, radix-4 consumes 54% less power

than radix-2 under random and 40% less power under djpeg because of the 23%

area reduction and 36% delay reduction. Regarding power in [3:2]-CSA tree

multipliers, radix-4 consumes 37% less power under random and 23% under djpeg

because of the 24% area reduction and 14% delay reduction. Regarding power

in [4:2]-CSA tree multipliers, radix-4 consumes 33% less power under random

and 18% under djpeg because of the 25% area reduction. The effects of radix-

4 recoding on power in tree multipliers are smaller than the effects in array

multipliers because radix-4 recoding does not reduce the delay in tree multipliers.

Note that we haven’t considered any circuit-level delay balancing techniques here.

We have just shown the algorithmic advantage of radix-4 schemes over radix-2

schemes. When the circuit-level balancing techniques [107][87][72][16] are used,

the power consumption in radix-4 schemes can be further reduced at the cost

44



of extra chip area and circuit design effort. Our conclusion here conflicts with

the previous work in [23] where random test data were used. As indicated in

Section 2.1, the area of radix-4 Wallace tree multipliers in [23] is much larger

than the area of radix-2 multipliers, which is generally not acceptable.

The experiments also show that tree multipliers are better than linear array

multipliers using the same radix in terms of delay and power. For radix-2, tree

multipliers consume 43 ∼ 48% less delay and 42 ∼ 45% less power (using the

same frequency) than array multipliers. For radix-4, tree multipliers consume

15 ∼ 18% less delay and 19 ∼ 25% less power than array multipliers. The power

saving in tree multipliers comes from the delay reduction as tree multipliers even

has larger area than linear array multipliers. The cell areas of tree multipliers

are only 2 ∼ 7% more than those of linear array multipliers. But the complex

tree structure decreases the routability of tree multipliers by 10 ∼ 20%. Thus,

the total chip areas of tree multipliers are 20 ∼ 36% more than those of array

multipliers.

2.4 Summary

In this chapter, we have studied the power characteristics of existing radix-4

recoding schemes and proposed several new recoding schemes. The techniques we

have considered for low-power recoding are: simple PP generation, unique-zero

handling, and balanced logic design. Besides the traditional parallel recoding

schemes, serial recoding schemes are studied for linear array multipliers. By

experimental evaluation of the effects of different recoding schemes in linear array

multipliers, we find that NPR3b is a good choice for parallel recoding in terms of

power, delay, and area if a similar standard cell library is used. For linear array

multipliers, serial recoding NSR4 with hidden zero is a good choice for low power

45



because of the simplified digit set.

With optimized recoding designs, the effects of radix-4 recoding versus non-

recoding in multipliers are then studied. Both linear array multipliers and tree

multipliers are considered. Due to the reduced number of PPs, the area is reduced

25% by radix-4 recoding in 32 × 32-bit multipliers. In linear array multipliers,

the delay is also reduced 36%. The power consumption in linear array multipli-

ers is reduced 40 ∼ 54% under two test data sets. The power consumption in

tree multipliers is reduced 18 ∼ 36% under two test data sets. Overall, radix-4

recoding is a good choice for low-power multiplier design.

46



CHAPTER 3

Optimization of Multiplier Operand

Representations for Low Power

3.1 Introduction

Number representation of multiplication operands affects multiplier design and

its power consumption. The use of two’s-complement (2C) representation for

multiplication inputs and outputs is popular in digital arithmetic systems be-

cause 2C is convenient for additions of signed numbers that happen before or

after multiplication. As to internal data representation within a multiplier, how-

ever, representations other than 2C are possible. Sign-and-magnitude (SM) rep-

resentation and signed digit (SD) representation are two other widely considered

candidates. When the radix is 2, the SD representation is also called redundant

binary (RB) representation with digit set {−1, 0, 1}. Because of the redundancy

in SD representation, SD usually consume more area and power than SM and 2C

representations [67][9]. Therefore, we focus on 2C and SM representations. For

positive numbers, there is no difference between SM and 2C representations. For

negative numbers, however, all bits higher than the actual precision are extended

1’s in 2C representation, while these bits remains at 0 in SM representation.

These 0’s in SM reduce the switching activities in multipliers considerably. In

addition, zero is a natural gating signal in AND/NAND gates which are used as

47



PP generation logic in radix-2 multipliers. Overall, numbers in SM representation

have lower switching frequency than numbers in 2C representation, especially for

multimedia data [105]. Table 3.1 gives the power distribution in a 32 × 32-bit

radix-2 2C linear array multiplier (without final CPA) under djpeg test data.

Each cell(i, j) on the grid consists of an AND/NAND gate and a full adder. Only

powers in cells with (i + 1) and (j + 1) being multiples of 4 are shown for clar-

ity. The (3,31)-(31,3) diagonal cells are highlighted as they consume the largest

power in each column (except cells in the last row). The precisions of most 32-bit

djpeg data are less than 16 bits and about 30% data are negative numbers (see

Appendix B). Because of the 2C representation, the left and bottom portions of

the 2C multiplier waste a large amount of power. If SM representation is used

and the multiplier core is an unsigned multiplier, the power consumptions in the

left and bottom portions would be much smaller because the sign extension bits

remain at 0. The abnormally high power consumptions in last-row cell(31, i) are

due to inverted PP bits on this row that have more probabilities of being ‘1’ than

being ‘0’.

Table 3.1: Power distribution in 2C linear array multiplier under djpeg data

(i, j) 31 27 23 19 15 11 7 3

3 0.52 5.72 5.73 5.72 5.72 5.72 5.81 6.42

7 0.46 9.74 8.92 8.92 8.91 8.91 9.28 12.00

11 0.27 8.91 12.20 10.50 11.00 10.60 11.10 13.90

15 0.33 7.90 11.50 14.20 11.90 11.90 11.90 16.20

19 0.33 7.21 9.43 13.00 14.60 12.00 12.40 14.60

23 0.33 7.21 8.27 10.90 12.80 14.40 12.20 15.20

27 0.33 7.21 8.27 9.67 11.00 12.70 14.40 15.20

31 0.53 10.30 12.20 14.00 14.60 15.50 18.90 24.20

In this work, we consider how to utilize the low-power feature of SM repre-

48



sentation in multipliers with 2C interface. A natural idea is to convert 2C data

to SM data (2C-SM), use unsigned multipliers as the computation core, and then

convert the result back to 2C representation (SM-TC). Despite of the simplicity

of this idea, it is not clear what are good conversion schemes and if there is a need

to change the multiplication core. Moreover, how to apply the conversion effi-

ciently in radix-4 multipliers is a problem because the recoding produces negative

partial products. This chapter addresses these problems.

There has been some previous work on the power features of SM, 2C, and RB

representations. Estimating from word-level statistics, Ramprasad et. al. [105]

showed that the SM representation of multimedia signals has lower switching

frequency than 2C. They focused upon the problem of high-level power estima-

tion. No actual multiplier architectures are considered. Zheng and Albicki [136]

proposed mixed number representations for radix-4 2C multiplication. In this

scheme, the multiplicand is converted from 2C to SM while the multiplier is di-

rectly recoded into radix-4 {−2,−1, 0, 1, 2}. The SM PPs are then converted to

signed digit {−1, 0, 1} and redundant binary adder tree is used for PP reduc-

tion. The authors claimed significant improvement over previous tree multipliers

by analytical estimation. However, there is a problem in their work, which will

be addressed in Section 3.3 in detail. In [67], Keane et. al. compared several

multiplication schemes using different operand representations. They found that

multipliers using signed binary number representation is the worst in both area

and power. Recently, Angel and Swartzlander [9] compared carry save repre-

sentation with redundant binary representation in Booth-recoded radix-4 linear

array multipliers. Their experiment showed that the redundant binary scheme

in [60] consumes 32% more power than the carry save scheme but the power-delay

product is better. This comparison of power-delay products is not fair because

the redundant binary scheme is a [2:1] reduction while the carry save scheme is

49



a [3:2] reduction. A better comparison is to compare with a scheme using [4:2]

reduction. Here we have skipped Angel’s result about the EBCA scheme because

EBCA is not correct [46].

3.2 Representation Conversion for Radix-2 2C Multipli-

ers

When two operands are converted from 2C representation to SM representation,

the computation core is actually an unsigned multiplier with two sign bits treated

separately. For short-precision data, the unsigned multiplier has a lower switching

activities as leading bits of both operands often remain at 0 instead of switching

between 0 and 1.

3.2.1 2C-SM-2C: A Straightforward Conversion

A straightforward approach is to convert both X and Y from 2C representation

in Equation (1.5)-(1.6) to SM:

H = (−1)sh

m−1∑

j=0

hj2
j (3.1)

K = (−1)sk

n−1∑

i=0

ki2
i (3.2)

where sign bit sh = sx = xm−1 and sk = sy = yn−1. Note that one extra bit is

needed in SM representation because (−2n−1) is not representable in n-bit SM.

Then, SM multiplication Z = H × K is performed:

sz = sp = (−1)sh+sk (3.3)

|Z| = |H||K| =
m−1∑

j=0

hj2
j ×

n−1∑

i=0

ki2
i (3.4)

50



Finally, Z in SM representation is converted back to P in 2C. This process is

illustrated in Figure 3.1. The sign bit is computed separately as

sz = sh ⊕ sk (3.5)

We assume that two registers store input data. The conversion logic is inserted in

the previous stage before input registers. Three considerations account for such a

partition. First, the multiplier core often has the largest combinational delay and

thus determines the clock frequency. By placing the 2C-SM logic into the previous

stage which probably has less combinational delay, the clock frequency would not

be affected very much. Second, unbalanced input arrivals to the multiplication

core are avoided through registering. Third, the lower switching frequency of SM

signals helps reduce power consumption in registers.

TC-to-SM

T
C

-to
-S

M

s
h
  s

k

s
z

SM-to-TC

X

Y

s
h

s
k

Unsigned Multiplier

P

REG

REG

(m-bit)

(n-bit)

((m+n)-bit)

m∗ n-bit |H| |K|

Figure 3.1: 2C-SM-2C conversion scheme.

From 2C to SM, each operand is first extended with one sign bit. If the

number is negative, every bit except the most significant bit is complemented

51



and ‘1’ is added to the least significant bit:

H =







(xm−1, xm−1, xm−2, xn−3, · · · , x0) if xm−1 = 0

(xm−1, x
′

m−1, x
′

m−2, x
′

n−3, · · · , x
′

0) + 1 if xm−1 = 1
(3.6)

From SM to 2C, the operation is the same except that no bit extension is nec-

essary. An intuitive design of the conversion logic is shown in Figure 3.2. The

signals in 2C-SM are expressed as

C0 = xm−1 (3.7)

Ci+1 = Ci(xi ⊕ C0) for i = 1, 2, · · · , m − 2 (3.8)

hi = Ci ⊕ (xi ⊕ C0) for i = 0, 1, · · · , m − 2 (3.9)

hm−1 = Cm−1 (3.10)

sh = xm−1 (3.11)

(sign)

(a)  TC-to-SM

HA

xm-1 xm-2 xm-3 x1 x0

C0C1C2Cm-2Cm-1

(b)  SM-to-TC

HA

sz zw-2 zw-3 z1 z0

pw-1 pw-2 pw-3 p1 p0

C0C1C2Cm-2

hn-1 hn-2 hn-3 h1 h0sh

Figure 3.2: Representation conversion logic for 2C-SM-2C: (a)

2C-to-SM; (b) SM-to-2C

52



This intuitive design is further simplified by logic optimization of the carry

signals. The non-recursive form of carry signal in Equation (3.8) is

Ci+1 = (xi ⊕ C0)(xi−1 ⊕ C0) · · · (x0 ⊕ C0)C0

which is simplified to

Ci+1 = xi
′xi−1

′ · · ·x0
′C0

Then, hi is rewritten as

hi = xi ⊕ ((xi−1 + xi−2 + · · · + x0)C0)

resulting in the new recursive expressions

R1 = h0 = x0 (3.12)

Ri+1 = Ri + xi for i = 1, · · · , m − 2 (3.13)

hi = xi ⊕ (Ri · xm−1) for i = 1, · · · , m − 2 (3.14)

hm−1 = xm−1 · Rm−1
′ (3.15)

sh = xm−1 (3.16)

(sign)xm-1 xm-2 xm-3 x1 x0

R1R2Rm-2Rm-1

sh hm-1 hm-2 hm-3 h1 h0

Figure 3.3: Linear structure of simplified 2C-SM conversion.

A linear structure for Equation (3.12)-(3.16) is illustrated in Figure 3.3. The

delay of this structure is

tlinear = (m − 3)tOR2 + tAND2 + tXOR2

53



The cell area is

Alinear = (m − 2)AOR2 + (m − 1)AAND2 + (m − 2)AXOR2

For m = 32, Alinear = 1588µm2 based on Artisan standard cell library. The

linear delay is often too large to be acceptable. To speed up the computation, a

tree structure with the delay of O(log m) is developed with increased area. The

tree structure is similar to the carry-lookahead and prefix structures in fast adder

design. A 9-bit example of the tree structure is shown in Figure 3.4. For this

tree structure, the delay is reduced to

ttree = log(m − 1)tOR2 + tAND2 + tXOR2

while the area is increased to

Atree =
m − 1

2
log(m − 1)AOR2 + (m − 1)AAND2 + (m − 2)AXOR2

For m = 32, Atree = 2206µm2, 39% larger than Alinear. Another disadvantage of

this tree structure is that the fanout of some signals (except the sign) is as large

as m/2. The fanout can be restricted using the same techniques as in prefix-adder

design [71]. Note that the AND/OR gates in these structures are replaced with

NAND/NORs in actual implementations.

The computation core of 2C-SM-2C is an m×n-bit unsigned multiplier, which

has the same area complexity as an m×n-bit 2C multiplier. However, the power

consumption of this m × n-bit unsigned multiplier in 2C-SM-2C is similar to

a regular (m − 1) × (n − 1)-bit unsigned multiplier. Except the number 2m−1

converting from X = (−2m−1), all other unsigned data are representable in (m−1)

bits. This is also true for operand Y . Therefore, the m×n-bit unsigned multiplier

in 2C-SM-2C acts an (m−1)× (n−1)-bit unsigned multiplier during most of the

time. Only when X = −2m−1 or Y = −2n−1, the MSB logic switches affecting

dynamic power.

54



x7 x6 x5 x4 x3 x2 x1

x0x1x2x3x4x5x6x7x8

h0h1h2h3h4h5h6h7h8

(sign)

sh

Figure 3.4: Tree structure of 2C-SM conversion (m = 9).

3.2.2 2C-P1-2C: Conversion to SM with Postponed “+1”

The delay of the conversion can be further reduced to be roughly a constant num-

ber. The conversion from 2C to SM involves a time-consuming carry-propagation

step for “+1” when the number is negative. To avoid carry propagation, this “+1”

step in 2C-SM conversion can be postponed and integrated into the PP reduction

process. This scheme is named 2C-P1-2C. The SM-2C conversion logic is less de-

lay sensitive because the conversion and the CPA have the same computation

direction.

The 2C-P1-2C scheme is depicted in Figure 3.5. The 2C-SM conversions are

replaced by two XOR arrays, which implement

hj = xj ⊕ xm−1 for j = 0, · · · , m − 2 (3.17)

ki = yi ⊕ yn−1 for i = 0, · · · , n − 2 (3.18)

55



XOR

X
O

R

s
h
  s

k

s
z

SM-to-TC

X

Y

s
h

s
k

Unsigned Multiplier

P

REG

REG

(m-bit)

(n-bit)

((m+n)-bit)

(H+s
h
)(K+s

k
) 

Figure 3.5: 2C-P1-2C structure.

The step “+sh” and “+sk” are postponed to the unsigned multiplication part as

H =
m−2∑

j=0

hj2
j (3.19)

K =
n−2∑

i=0

ki2
i (3.20)

|Z| = (H + sh) · (K + sk) (3.21)

This unsigned multiplication core has n (m−1)-bit PPs, one (n−1)-bit PP, and

1-bit sh · sk. Thus, the total number of bits in the PP array is mn, the same as

in a regular m×n-bit 2C multiplication core (constant 1’s are not counted). But

there is one more PP row. An example of the PP bit array for an 8 × 6-bit 2C

multiplier is shown in Figure 3.6.

For the multiplication core in 2C-P1-2C, the power consumption would be

similar to an m × n-bit unsigned multiplier because they have the same number

of PP bits. In Section 3.2.1, we analyzed that the power consumption of the m×n-

bit unsigned multiplier in 2C-SM-2C is similar to a regular (m− 1)× (n− 1)-bit

56



sh ∗  K

sk ∗ H

H ∗  K

sh ∗  sk

Figure 3.6: PP bit array in 2C-P1-2C (m = 8, n = 6).

unsigned multiplier. Therefore, the power consumption of the unsigned multiplier

in 2C-P1-2C is larger than that of the unsigned multiplier in 2C-SM-2C.

3.2.3 2C-P1-CS: Conversion to 2C Using Carry-Save Addition

In above 2C-SM-2C and 2C-P1-2C schemes, two unsigned carry save vectors from

PPR are added by CPA and the result in SM representation is finally converted to

2C representation. When a slow CPA is used for final addition in the multiplier,

the effect of final SM-2C conversion on the overall delay is not obvious because

the carries in the CPA and the SM-2C conversion go in the same direction. When

a fast CPA is used and outputs are available simultaneously, however, the delay of

SM-2C conversion becomes evident. Assume the number of latest signals arriving

simultaneously from CPA is Wmax and these signals are converted using a tree

structure similar to Figure 3.4. The delay of final conversion is

Tfconv = TCPA + log(Wmax − 1)tOR2 + tAND2 + tXOR2 (3.22)

To speed up the final conversion, we first combine the sign bit and two unsigned

vectors to get two SM numbers. These two SM numbers are converted to two 2C

numbers using carry-save addition and then a CPA is used to add the two 2C

57



numbers. This scheme is named 2C-P1-CS.

After PPR, suppose the two vectors (ZS, ZC) in SM are

sz ZSw−2 ZSw−3 · · · ZS2 ZS1 ZS0

sz ZCw−2 ZCw−3 · · · ZC2 ZC1 ZC0

where w is the vector length and w = m + n. For negative numbers, the rule

of bit-complement and ‘+sz’ is applied. Consequently, the conversion of two SM

vectors to two 2C vectors is to add the following vectors

ZSw−2 ⊕ sz ZSw−3 ⊕ sz · · · ZS2 ⊕ sz ZS1 ⊕ sz ZS0 ⊕ sz

ZCw−2 ⊕ sz ZCw−3 ⊕ sz · · · ZC2 ⊕ sz ZC1 ⊕ sz ZC0 ⊕ sz

0 0 · · · 0 sz 0

The MSB sign bit sz is known in advance and omitted. The (sz + sz) on LSB

is pre-computed to be 2sz. To avoid carry propagation delay, carry-save adders

are used to produces 2C vectors (PS, PC). The shared signal sz in each column

is helpful in simplifying logic. For each carry-save adder on bit i (i �= 1), the

following logic equations are deduced

PSi = ZSi ⊕ ZCi (3.23)

PCi+1 = ZSiZCis
′

z + ZS ′

iZC ′

isz (3.24)

For i = 1, the equations are

PS1 = ZS1 ⊕ ZC1 ⊕ sz (3.25)

PC2 = (ZS1ZC1) ⊕ sz (3.26)

When ZCi is zero in some cases such as the right portion of ZC in radix-2 linear

array multipliers, these equations are further simplified.

The delay of final conversion is reduced from Equation 3.22 to

Tfconv = TCPA + MAX(tAND3 + tOR2, tXOR2) (3.27)

58



Signal sz is not on the critical path since it is precomputed and becomes available

in advance even after buffer delays. The delay overhead of final conversion is the

delay of one complex gate. However, the delay reduction comes at the cost of

power increase. Because the two inputs of final CPA are now in 2C representation,

the inherent power disadvantage of 2C for short-precision negative data appears

in the CPA.

3.3 Representation Conversion for Radix-4 2C Multipli-

ers

For radix-2 2C multipliers, representation conversion schemes are efficient in

power saving for short-precision data because leading bits of both operands in the

unsigned multiplier core often remains at 0’s and thus have very low switching

frequencies. For radix-4 multipliers, recoding itself has some good power-saving

features. The area is smaller because the number of PPs is reduced. In addition,

recoding changes a series of 1’s in Y into 0’s, which lead to zero PPs. However,

recoding also generates negative PPs even if Y is an unsigned number. If 2C is

used to represent PPs, leading bits would become 1’s for negative numbers and

switch frequently when negative numbers are mixed with positive numbers.

In [136], a mixed number representation was proposed for low-power radix-4

2C multiplication. In this scheme, the multiplicand is converted from 2C to SM

while the multiplier is directly recoded into radix-4 {−2,−1, 0, 1, 2} using Booth

recoding. Instead of using 2C representation, PPs are now generated in SM

representation. The motivation is that the PP generation in SM is much simpler.

The negation of a SM number is simply the negation of one sign bit and, thus,

it consumes much less power than the negation of a 2C number. Because SM

59



numbers are not suitable for addition, the SM PPs are converted to RB {−1, 0, 1}

and a tree of redundant binary adders (RBAs) is then used for PP reduction. The

conversion from SM to RB representation is done by grouping sign bits with each

magnitude bit, which only require some wiring. The authors claimed significant

improvement over previous tree multipliers by analytical estimation. However,

there is a problem in their work. Although the power consumption in the PP

generation circuit is reduced, the number of bit-vectors (not digit-vectors) for

PP reduction goes back to n while this number is n/2 in the traditional radix-

4 m × n-bit multipliers. Consequently, the PP reduction tree would use one

extra level of RBAs and the total number of RBAs is (n/2 − 1), in contrast to

(n/4 − 1) in the regular RBA tree multipliers [60][61][85]. RBA tree multipliers

have the similar complexity with [4:2]-CSA tree multipliers [93][89][55][98][45]. In

a 32 × 32-bit radix-4 tree multiplier based on [4:2]-CSAs, our experiment shows

that the PP generation logic accounts for about 10% power consumption while

the four CSAs on the first level of PP reduction consumes 30% of total power.

Hence, the power consumption in the extra level of RBAs would definitely exceed

the power saving in the PP generation due to SM representation. This mixed

number representation could not save power.

When the representation conversion schemes proposed here are applied to

radix-4 2C multipliers, the power saving due to representation conversion of

operand Y is minimal because the recoding produces a similar effect for neg-

ative signal bits. The main power saving comes from the conversion of operand

X if X also has a large dynamic range of signed integers.

60



3.4 Experimental Evaluation

To evaluate representation conversion schemes, we have implemented 2C-SM-2C,

2C-P1-2C and 2C-P1-CS for both radix-2 [3:2]-CSA linear array multipliers and

radix-2 [4:2]-CSA tree multipliers. The design and experimental methodologies

are described in Appendix B. To reduce the delay of 2C-SM conversion, logic

tree structures are used in 2C-SM-2C schemes. We assume that input data are

stored in two registers and conversion logic is inserted before input registers.

Both djpeg test data and random data are used. The power comparison results

are shown in Table 3.2 and Table 3.3. The values in parentheses are normalized

values. The smallest value of each characteristic among three conversion schemes

is highlighted in boldface. The power in linear array multipliers is measured at

50MHz and the power in fast tree multipliers is measured at 100MHz. The

area/delay comparison results are shown in Table 3.4. CArea is the total cell

area. The routable rate for array multipliers is 85% and the rate for tree mul-

tipliers is 70%. Note that power, delay, and area of input registers are included

in these results. The power saving under short-precision data djpeg is quite im-

pressive. For radix-2 array multipliers, the representation conversion schemes

consume only 12 ∼ 17% of the baseline r2-array-reg. For tree multipliers, the

conversion schemes consume 23 ∼ 33% of r2-tree4to2. A good feature of these

conversion schemes is that they consume at most 14% more power than non-

conversion schemes under random data. For 2C-SM-2C, the power consumption

is even slightly less than that in the non-conversion schemes. This is because SM

representation could also save power for random data although the saving is not

significant. Compared to 2C-SM-2C, 2C-P1-2C schemes consume 18 ∼ 28% more

power under djpeg and 9 ∼ 13% more power under random, which is consistent

with our analysis in Section 3.2.2. Compared to 2C-P1-2C, 2C-P1-CS schemes

61



consume 15 ∼ 26% more power under djpeg and 3 ∼ 4% more power under ran-

dom. The power overhead in 2C-P1-CS comes from the CPA with 2C inputs, as

analyzed in Section 3.2.3.

Table 3.2: Power comparison of representation conversion array schemes

Power(mW ) (50MHz)
Schemes

Random Djpeg

r2-array-reg 58.07 (1.00) 21.56 (1.00)

2C-SM-2C-array 56.82 (0.98) 2.49 (0.12)

2C-P1-2C-array 64.05 (1.10) 3.19 (0.15)

2C-P1-CS-array 66.02 (1.14) 3.66 (0.17)

Table 3.3: Power comparison of representation conversion tree schemes

Power(mW ) (100MHz)
Schemes

Random Djpeg

r2-tree4to2-reg 76.81 (1.00) 25.87 (1.00)

2C-SM-2C-tree 76.52 (1.00) 5.99 (0.23)

2C-P1-2C-tree 82.62 (1.08) 7.22 (0.28)

2C-P1-CS-tree 84.01 (1.09) 8.62 (0.33)

The representation conversion schemes have 5 ∼ 9% more area than non-

conversion radix-2 schemes. 2C-P1-2C schemes have slight less area than 2C-

SM-2C because two tree structures for 2C-SM conversion is replaced by two rows

of XOR gates. As for delay, we consider two parts: Tconv, the delay of 2C-SM or

2C-P1 conversion before input registers and Tcore, the delay of the computation

core with registers. Tconv is reduced from 2.47 ∼ 2.49ns to 1.18 ∼ 1.37ns when

62



Table 3.4: Area/delay comparison of representation conversion schemes

Delay(ns)
Schemes CArea(µm2)

Tconv Tcore Total

r2-array-reg 98325 (1.00) 0 16.49 16.49 (1.00)

2C-SM-2C-array 104792 (1.07) 2.47 17.65 20.12 (1.22)

2C-P1-2C-array 104655 (1.06) 1.18 18.08 19.26 (1.17)

2C-P1-CS-array 106698 (1.09) 1.28 17.40 18.68 (1.13)

r2-tree4to2-reg 104705 (1.00) 0 9.15 9.15 (1.00)

2C-SM-2C-tree 110949 (1.06) 2.49 10.15 12.64 (1.38)

2C-P1-2C-tree 110097 (1.05) 1.37 10.45 11.82 (1.29)

2C-P1-CS-tree 111717 (1.07) 1.29 9.94 11.23 (1.23)

the gate tree is changed to a row of parallel XORs. These parallel XORs have

a common input – the sign signal, which contributes much delay due to driving

buffers. For the same conversion technique, Tconv is the same at the logic level.

The variation in measured Tconv’s comes from the variation in automatic layouts.

Tcore in 2C-P1-2C is slightly larger than Tcore in 2C-SM-2C because 2C-P1-2C has

one more PP for reduction. The total delay, (Tconv + Tcore), of 2C-SM-2C-array

is 22% worse than that of a normal radix-2 array multiplier. For tree multipliers,

it is 38% worse. When 2C-P1-2C is applied, Tcore is reduced by 4 ∼ 7% from 2C-

SM-2C. When 2SM-2C conversion is applied, the total delay is further reduced

by 0.6ns, or 3% in the array multiplier and 10% in the tree multiplier. Compared

to the baseline multipliers, the delay in 2C-P1-CS-array is 13% worse and the

delay in 2C-P1-CS-tree is 23% worse. Because tree multipliers are much faster

than array multipliers, the delay overhead in tree multiplier is more evident. In

terms of power-delay and power-area products, all conversion schemes are still

63



much better for short-precision test data.

3.5 Summary

In this chapter, operand representation conversion schemes for two’s-complement

multipliers are proposed to utilize the low-power feature of sign-magnitude repre-

sentation. 2C-SM-2C is a straightforward conversion scheme which converts SM

numbers directly from 2C numbers and convert the SM result back to 2C using

the costly “+1” operation. 2C-P1-2C reduces the 2C-SM delay by postponing

this “+1” step and integrating it into the PP reduction process. 2C-P1-CS fur-

ther reduces the SM-2C delay by converting two SM vectors from PPR directly to

two 2C vectors before the final CPA. For a typical data set from application djpeg,

all conversion schemes reduce power consumption by more than 60% compared

to the baseline two’s-complement schemes. The overheads are 5 ∼ 9% more area

and 13 ∼ 44% more delay.

64



CHAPTER 4

Optimization of Reduction Structure for Array

Multipliers

4.1 Introduction

To reduce PP bit arrays into two carry-save vectors, several arithmetic structures

can be used. The linear array structure is one of the most popular structures

due to its simple interconnect and regular layout. As the interconnect effects

become dominant in deep sub-micron designs, architectures with regular and local

interconnects are more favorable [64]. However, array multipliers are generally

not as fast as tree multipliers. Moreover, array multipliers have an architectural

disadvantage in terms of power consumption [80][107]. A large number of glitches

or spurious transitions are generated because PP bits arrive at the same time but

are added serially and the input-to-output paths in adder cells have different

delays. Glitches cause a snow-balling effect as signals propagate through the

array. Table 4.1 presents the power distribution in a 32 × 32-bit radix-2 two’s-

complement linear array multiplier (without final CPA) under random test data.

Each cell(i, j) on the grid consists of an AND/NAND gate and a full adder.

Only powers in cells with (i + 1) and (j + 1) being multiples of 4 are shown

for clarity. Cell power consumption increases along the highlighted (3,31)-(31,3)

diagonal and the contours also move along this line. On each column j, the power

65



consumption in cell(i, j) increases linearly with i before i reaches the diagonal

position but does not change much after i crosses the diagonal. The abnormally

high power consumptions in cell(31, i) are due to inverted PP bits on this row

that have more probabilities of being ‘1’ than being ‘0’.

Table 4.1: Power distribution in 2C linear array multiplier under random data

(i, j) 31 27 23 19 15 11 7 3

3 1.17 12.00 11.30 11.20 11.50 12.30 11.80 12.00

7 1.07 21.60 26.70 26.30 26.40 26.90 26.40 26.30

11 1.05 22.30 36.90 40.40 40.50 41.60 41.50 40.90

15 0.93 22.90 37.80 52.10 56.80 55.20 56.00 55.80

19 1.11 23.00 36.90 52.50 67.80 71.10 69.40 70.30

23 1.02 22.40 37.20 52.90 68.70 84.00 86.10 84.20

27 1.07 22.10 37.20 53.10 68.30 83.60 95.80 101.00

31 1.43 26.90 43.60 61.30 81.70 99.80 118.00 137.00

Various approaches have been proposed to reduce the power consumption of

array multipliers. At the circuit level, logic styles other than conventional CMOS

logic are studied, such as complementary pass-transistor logic [2], self-timed dou-

ble pass-gate logic [72], and clocked CMOS [16]. At the architecture level, the

imbalance of signal delays is reduced by inserting ancillary logic such as latches

and buffers [80][107][47]. More aggressive architecture-level optimization is to

change the internal structure of array multipliers, especially the PPR structure.

In [84], a leapfrog structure is proposed to take advantage of the existing delay

imbalances in full adders, which is an improved structure of the even/odd split

array scheme [65][100]. In a leapfrog scheme, carry signals still go directly to the

next row in the PPR array. Only sum signals from the even (odd) row jump one

row and feed into the next even (odd) row.

Recently, Left-to-Right (LR) or most-significant-digit first array multipliers

66



have been developed and implemented. LR linear array multiplication provides

an interesting alternative to the conventional right-to-left (RL) array multipli-

cation as LR computation has the potential of saving power and delay. There

are two types of LR schemes: LR with final carry-propagate addition (CPA)

and LR without final CPA. By using on-the-fly conversion (OTFC) [40], the LR

scheme [41] was proposed to eliminate the final CPA step in conventional RL lin-

ear array multipliers. It was further discovered that glitches in LR computation

are fewer in the conventional RL computation, especially for data with a large

dynamic range. In [90], LR array multipliers and hybrid structures with com-

bined LR and RL types are studied in a generalized cellular template for different

data characteristics. The switching activities are evaluated and compared with

activities in a tree multiplier by assuming an ideal situation: the multipliers are

well balanced in delay and zero-delay model could be used. In [133], the power

consumption in the LR PPR array for Booth recoded multiplication is studied

in detail for DSP applications. In [54], a low-power LR array multiplier without

final CPA is designed using strategically placed (3,2), (5,3) and (7,4) counters

and the modified on-the-fly converter [36]. In [103], an asynchronous array mul-

tiplier with split RL upper array and LR lower array is proposed to make the

computation time faster with relatively lower power consumption.

This chapter considers how to further optimize the structure for low power

LR array multipliers. Our goal is to reduce the power consumption without

significant increase in the complexities of modules and interconnects. The follow-

ing structure optimization techniques are considered: signal flow optimization in

[3:2]-CSA linear PPR, carry-ripple adders (CRAs) for PPR, [4:2]-CSAs for PPR,

even/odd split structure, and upper/lower split structure. When exploring these

PPR optimization techniques, we only consider LR array multipliers with the

same final CPA. We will consider OTFC and delay optimized final CPA in next

67



Chapter on high-performance low-power multipliers. For simplicity, we consider

n × n-bit TC multipliers and n is an even number.

4.2 Left-to-Right Array Multipliers

In conventional RL linear array multipliers, the PPs are added in series starting

from y0X (z0X in radix-4), as shown in Figure 4.1a (4.2a). The reduction is

usually performed using [3:2]-CSAs in which carries pass to the next row. A

radix-2 8 × 8 RL multiplier is depicted in Figure 4.3. The black dots correspond

to the bit matrix in Figure 4.1a, obtained with NAND2 or AND2 gates. Each

‘+’ symbol is a full adder (FA) if there are three inputs, or a half adder (HA) if

there are only two inputs. The ‘1’ in the first row in Figure 4.1a is added as a

carry-in of the final CPA. The numbers associated with wires are signal arrival

times assuming a unit delay model as explained later. The final addition is a fast

n-bit CPA. The total cell area of a radix-2 RL multiplier is estimated as

ARL−r2 = APPG + APPR + ACPA(n) (4.1)

APPG = (n2 − 2n + 2)AAND2 + (2n − 2)ANAND2 (4.2)

APPR = (n2 − 3n + 2)AFA + (n − 1)AHA (4.3)

Buffers are not included. Using Artisan standard cell library [10], ANAND2 =

10µm2, AAND2 = 13µm2, AHA = 39.5µm2, AFA = 79.5µm2. For n = 32,

APPG = 13126 and APPR = 75160. APPG remains unchanged for all schemes

using the same radix.

In LR linear array multipliers, the PPs are added serially from yn−1X or

zn/2−1X, as shown in Figure 4.1b and 4.2b. PP reduction using CSAs is still

a popular choice here. For radix-2, a 12 × 12 LR multiplier architecture using

CSAs is illustrated in Figure 4.4. The final (n − 1)-bit CPA generates the most-

68



xxxxxxxs’1y0X:

xxxxxxxs’

xxxxxxx

xxxxxxx

xxxxxxx

x’x’x’x’x’x’x’

s’

s’

s’

s1

1

xxxxxxxs’

xxxxxxxs’

xxxxxxxs’

y0X:

y1X:

y2X:

y3X:

y4X:

y5X:

y6X:

y7X:

xxxxxxxs’y1X:

xxxxxxxs’y2X:

xxxxxxxs’y3X:

xxxxxxxs’y4X:

xxxxxxxs’y5X:

xxxxxxxs’y6X:

x’x’x’x’x’x’x’s1y7X:

(a) (b)

reductionreduction

Figure 4.1: Radix-2 PP bit matrix (n=8): (a) RL; (b) LR.

hhhhhhhh1

ggggsg’ gggg1

sk’

ffffffffsf’1

eeeeeeeese’ se se

ch

cg

cf

ce

(a) (b)

z0X:

z1X:

z2X:

z3X:

eeeeeeeese’

ceffffffffsf’

cfggggsg’ gggg

cghhhhhhhh

ch

1 sk’

1

1

se se

z0X:

z1X:

z2X:

z3X:

Figure 4.2: Radix-4 PP bit matrix (n=8): (a) RL; (b) LR.

significant half of the product. The shaded cells in the last row comprise a CRA

which generates the least-significant half of the product and a carry-in of the

final CPA. As the arrival times of these carry/sum bits match the computation

direction and speed of the CRA, there is little delay penalty due to the use of

CRA. The shaded cells on the left are used to add three bits each column from

the reduction array into two bits. These shaded cells are extra hardware unique

to LR multipliers. However, these extra cells do not increase the overall area

because the number of cells in the PPR core is reduced. The total cell area is

estimated as

ALR−r2 = APPG + APPR + Aextra + ACPA(n−1) (4.4)

APPG = (n2 − 2n + 2)AAND2 + (2n − 2)ANAND2 (4.5)

69



Final Fast CPA ‘1’

11111111111111

33333333333322

55555555554433

77777777665544

99999988776655

1111111166

131377

998877 1010

11119988 1010 1212

sumcarry

Figure 4.3: Radix-2 RL carry-save array multiplier (n=8).

APPR = (n2 − 5n + 7)AFA + (n − 2)AHA (4.6)

Aextra = (2n − 5)AFA + AHA (4.7)

APPG is the same as in Equation 4.2. APPR + Aextra = (n2 − 3n + 2)AFA + (n −

1)AHA is the same as in Equation 4.3. Thus, ALR−r2 is very close to ARL−r2.

The carry signals propagate fewer stages in RL schemes than in RL schemes,

which may reduce the power consumption in the left region. For data with a

large dynamic range, PPs corresponding to sign extension bits are located in the

upper region of an LR array. If sign extension bits switch less frequently than

other bits as in many multimedia data [75], glitches can be reduced because the

upper portion is not polluted by frequent switches in the lower portion in LR

arrangement.

In radix-4 LR multipliers, the CRA is no longer suitable to add the right half

carry/sum vectors from the reduction array because the vector bits arrive faster

than the CRA computation. To avoid becoming the critical path, CRA should

70



sumcarry

‘1’

222222222222

22

22

3344444444

3355666666

223377

99

558888

223377 55

223377 55

1010

9911111111111199775533

11 135791314
Final Fast CPA

Figure 4.4: Radix-2 LR carry-save array multiplier (n=8).

be replaced by a fast CPA. For vectors from the left part of the reduction array,

CSAs are still needed because about half columns have three bits. The total area

of a radix-4 LR multiplier is also very close to that of a radix-4 RL multiplier. A

12 × 12 multiplication example is shown in Figure 4.5.

4.3 Structure Optimization

The use of CSAs for PP reduction in LR array multiplication follows the tradition

in RL multiplication. It is unknown if it is still a good choice for LR computa-

tion or if there are other better candidates from the perspective of low power.

Detailed studies are desirable in order to explore the potential advantages of LR

multiplication. In this section, we present several structure optimization tech-

niques for low power LR array multipliers. Some of these techniques have been

also used in RL array multipliers and they are investigated here to see how they

perform in LR multipliers. For theoretical analysis, the delay of a 2-input XOR2

gate, TXOR2, is used as the base unit delay. MUX21 has the same complexity as

71



F
in

al
 F

as
t 

C
P

A

2
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
2

1
1

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

2
2

1
1

3
3

3
3

2
2

1
1

3
3

3
3

2
2

1
1

3
3

3
3

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

7
7

7
7

7
7

7
7

7
7

7
7

5
5

5
5

7
7

7
7

9
9

9
9

9
9

9
9

9
9

8
8

8
8

6
6

6
6

4
4

4
4

2
2

2
2

Figure 4.5: Radix-4 LR carry-save array multiplier (n=12).

72



XOR2. We assume that positive logic such as AND/OR could be optimized to

be negative logic NAND/NOR in actual implementation and hence no difference

is made between positive logic and negative logic. The delay of one simple gate

such as NOR2 is 0.5TXOR2. The delay of two-level complex gate such as AOI22

(AND2-NOR2) is equivalent to TXOR2.

4.3.1 Signal Flow Optimization in [3:2]-CSA Based Array

We first focus on the popular [3:2]-CSA based linear PPR structure. One reason

of large power consumption in linear array multiplication is unbalanced signal

arrivals in the adders. In order to analyze the imbalances, the behavior of the

fundamental FA in multipliers is studied here. Figure 4.6 shows two popular FA

structures. Figure 4.6a is a NAND2-based structure, FA-NAND2. Figure 4.6b is

a MUX-based structure, FA-MUX. The worst-case delays from inputs to outputs

are similar in two structure. For area, FA-MUX is superior because a MUX

is smaller and simpler than three separate NAND2s in full-custom designs and

many standard-cell based designs. We will focus on FA-MUX here. The worst-

case delay from A and B to Sum/Cout is always 2TXOR2. The delay from C

to Sum/Cout is TXOR2. The availability of Sum/Cout depends on the relative

arrival times of three inputs. We use τi to represent the arrival time of signal i.

Denote τA,B as max(τA, τB). τSum and τCout in FA-MUX are expressed as:

τSum = τCout = max(τA,B + TXOR2, τC) + TXOR2 (4.8)

Specifically,

τSum = τCout =







τA,B + 2TXOR2 if τC ≤ τA,B

τC + TXOR2 if τC ≥ τA,B + TXOR2

(4.9)

Different τ scenarios introduce different switching activities in FAs (the switch-

ing probability is denoted by α in Equation 1.2). To simplify analysis, we assume

73



A

B

C

Sum

Cout
0

1

A

B

C

Sum

Cout

(a) FA-NAND2 (b) FA-MUX

B CA

SumCout

(c) Symbol

pp

Figure 4.6: Two designs of full adder.

there is no change in signal A. This assumption is reasonable if A is connected to a

PP bit that only switches at the very beginning. In terms of power consumption,

the best scenario of signal arrivals is

τC = τB + TXOR2 (4.10)

where there is no glitches on Sum or Cout, as shown in Figure 4.7a. Partial

glitches due to inertial delay [130] (Tinertial) are generated if

τB + TXOR2 − Tinertial ≤ τC ≤ τB + TXOR2 + Tinertial (4.11)

and

τC �= τB + TXOR2 (4.12)

This situation is shown in Figure 4.7b. The shaded region is the region affected by

delay inertia. The voltage swing in partial glitches is not rail-to-rail and cannot

propagate through the next gate [96][104]. Full rail-to-rail glitches in Figure 4.7c

are generated if

τC < τB + TXOR2 − Tinertial (4.13)

or

τC > τB + TXOR2 + Tinertial (4.14)

Full glitches consume more power than partial glitches because they are rail-to-

rail transitions that could propagate through many gate stages if they are wide

74



enough to propagate [82]. Therefore, it is still beneficial to make B and C arrive

as close as possible and have a narrow pulse in the case of full glitches.

A

B

C

Sum

Cout

p

A

B

C

Sum

Cout

p

(a) No Glitches (b) Partial Glitches

A

B

C

Sum

Cout

p

(c) Full Glitches

t
xor

Figure 4.7: Scenarios of glitch generation in FA-MUX.

From the viewpoint of arithmetic computation, three input pins of an FA are

logically equivalent and exchangeable. In the PPR part of linear array multipliers,

each FA has three incoming signals Sin, Cin, and PPij. There are six possibilities

of connecting those signals to three input pins. A usual flow is to connect Cin

to C, Sin to either A or B. As A or B can be viewed as a sum pin and C as a

carry pin, this signal flow is named as SSCC. The schemes in Figure 4.4, 4.3, and

4.5 use the classical SSCC flow and τ ’s have been marked as numbers associated

with each FA output. To reduce power consumption, we propose to optimize the

signal flow based on signal switching probabilities (α’s) and arrival times (τ ’s).

This optimization algorithm is named α-τ and shown in Figure 4.8. First, PPij

is always connected to pin A instead of B. PP bits arrive at the earliest point

which we define as time 0 and only switch once. Compared to pin A and B, the

delay from pin C to Sum/Cout is only one TXOR2 delay and the switching of pin

C affects only two gates (XOR and MUX). Therefore, it is better not to use C for

PPij so that C is connected to signals with more switching activities. Between

A and B, pin A is chosen for PPij because B has less load capacitance and is

75



also reserved for high switching signals. Second, Sin/Cin are connected to B/C

according to signal τ ’s. If τSin = τCin, the one with higher switching activity is

connected to pin C because pin C affects one less gate than B. Gate-level power

estimation techniques [94][95] are used to calculate the transition probabilities

of FA input signals in the multiplier. In linear array multipliers, we find that

most Sin signals have higher switching activities than Cin signals. Therefore,

most Sin signals are connected C when τSin = τCin. The resulting structure with

Cin-to-B and Sin-to-C flows is named as CSSC.

Input: α and τ of Sin, Cin, PPij;
Output: optimized flow into input A, B, C of FA;

Connect PPij to pin A;
if τSin < τCin then

Connect Sin to pin B and Cin to C;
else if τSin > τCin then

Connect Sin to pin C and Cin to B;
else

if αSin < αCin then
Connect Sin to pin B and Cin to C;

else
Connect Sin to pin C and Cin to B;

end if
end if

Figure 4.8: α-τ signal flow optimization in [3:2]-CSA Linear PPR.

This module-level signal flow optimization is different from gate-level pin

swapping [28] in two ways. First, gate-level pin swapping only considers equiva-

lent pins of simple gates such as NAND3. It is not easy to detect the arithmetic

equivalence of module input pins when multipliers are treated in the same way

as random logic. Second, gate-level pin swapping only considers signal switching

and pin capacitance. The signal arrival times and the delay property of FAs

76



are not used. Figure 4.9 and Figure 4.10 are CSSC flow optimized structures for

radix-2 and radix-4 LR array multipliers, respectively. In radix-2 structure, about

40% FAs in PPR now have glitch-free signal arrival scenarios described before.

In radix-4 structure, 15% of FAs in PPR have better signal arrival scenarios. The

effect of CSSC flow optimization in the radix-4 architecture is not as significant

as in the radix-2 architecture because radix-4 PPs are less regular and each PP

row is shifted two-bit positions. Most FAs with improved flows happen in the

right portion of the array. In the left portion, there is no much change except

those signals affected by right-portion signals.

sumcarry

‘1’

1

222222222222

223344444444

223344556666

223344

223344

223344

556677

556677

556677889988775533

34567910
Final Fast CPA

Figure 4.9: Radix-2 LR [3:2]-CSA array multiplier with CSSC flow

(n=8).

With CSSC flow optimization, the delay in the PP reduction step is also

reduced considerably, which is advantageous to power saving. Similar flow opti-

mization has been applied in tree multipliers for high speed [99]. Along the n-th

column from the right in radix-2 LR, the delay is reduced from (2n − 5)TXOR

to (n − 1)TXOR. For n = 32, the reduction is 47%. Along the n-th column in

radix-4 LR, the delay is reduced from (n−3)TXOR to ⌊2n/3 − 1⌋TXOR, as shown

77



F
in

al
 F

as
t 

C
P

A

2
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

2
2

1
1

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

2
2

1
1

3
3

3
3

4
4

5
5

5
5

5
5

5
5

5
5

5
5

5
5

2
2

1
1

3
3

3
3

4
4

5
5

5
5

6
6

7
7

7
7

7
7

7
7

2
2

1
1

3
3

3
3

4
4

5
5

5
5

6
6

7
7

7
7

8
8

8
8

8
8

6
6

6
6

4
4

2
2

2
2

4
4

9
9

9
9

Figure 4.10: Radix-4 LR [3:2]-CSA array multiplier with CSSC flow

(n=12).

78



in Table 4.2. For n = 32, the reduction is 30%.

Table 4.2: Delay of the n-th column in radix-4 LR with CSSC

n 12 14 16 18 20 22 24 26 28 30 32 · · ·

t 7 8 9 11 12 13 15 16 17 19 20 · · ·

4.3.2 CRAs for PP Reduction

In conventional RL array multiplication, CRAs are not used for PP reduction be-

cause the delay of the reduction would be increased from (n−1)tFA to (2n−2)tFA

in radix-2 array. tFA is the delay of a FA. As for power, the carry propagation

in CRA introduces a large number of glitches when carry and sum inputs arrive

at quite different time [80], which happens in RL linear array multipliers. In LR

array multiplication, however, the use of CRA has little effect on the delay as

the CRA computation direction matches the shape of PP bit matrix. Moreover,

the number of glitches is reduced because the carry and sum inputs of most FAs

arrive at similar periods in radix-2 LR array. A high-level recursive description

of using CRAs for radix-2 PPR is

PSi = CRA(PSi+1, PPi) i = n − 2, · · · , 0 (4.15)

with PSn−1 = PPn−1 and P = PS0. A direct implementation of this recursion

requires no final CPA. However, the length of CRAs increases step by step and

excessive adders are used. A better way is to keep the length of CRAs unchanged

and use a final CPA, as described in Figure 4.11. One example of using CRAs for

LR PPR is shown in Figure 4.12. Different from CSA-based LR array multiplier

in Figure 4.4, no extra CRA or CSA is need to add carry/sum vectors.

79



PP: Partial product bit matrix;
(FS, FC): input vectors of final CPA;
PS: sum vectors from CRAs;

PSn−1[n, · · · , 0] = PPn−1[n, · · · , 0];
FS[2n − 1] = 0;
for i from n − 2 downto 0 do

FC[n + i + 1] = PSi+1[n];
FS[n + i] = PSi+1[n − 1];
PSi[n, · · · , 0] = CRA(2PSi+1[n − 2, · · · , 0], PPi[n − 1, · · · , 0]);

end for
FC[n] = PS0[n];
P [2n − 1, · · · , n] = CPA(FS[2n − 1, · · · , n], FC[2n − 1, · · · , n], 1);
P [n − 1, · · · , 0] = PS0[n − 1, · · · , 0];

Figure 4.11: Radix-2 LR CRA based PPR algorithm.

Final Fast CPA ‘1’

sum

carry
1

1

2

2

3

3

4

4

5

5

6

6

7

7

1

1

3

3

4

4

5

5

6

6

7

7

8

8

1

1

3

3

1

1

3

3

1

1

3

3

1

1

3

3

1

1

3

3

5

5

5

5

5

5

5

5

5

5

6

6

7

7

8

8

9

9

7

7

8

8

9

9

10

10

7

7

9

9

10

10

11

11

7

7

9

9

7

7

9

9

11

11

11

1113

13

12

12

Figure 4.12: Radix-2 LR CRA based array multiplier (n=8).

The total cell area of a radix-2 CRA multiplier is:

ARL−r2−CRA = APPG + APPR + ACPA(n) (4.16)

APPG = (n2 − 2n + 2)AAND2 + (2n − 2)ANAND2 (4.17)

APPR = (n2 − 3n + 2)AFA + (n − 1)AHA (4.18)

80



which is exactly the same as the area of a radix-2 RL multiplier described in

Equation (4.1)-(4.3). Common in all linear array multipliers, PPs introduce initial

glitches as they are available well ahead of other signals. For most FAs in LR

CRA based PPR, however, the carry and sum inputs arrive at similar periods

and do not introduce many glitches, as indicated by τ values in Figure 4.12. In

the left array portion, the signal τ scenarios of most FAs are actually the best

glitch-free scenarios. In the right portion, the τ differences between sum and carry

inputs of FAs are smaller than those in the CSA-based multiplier in Figure 4.4.

Therefore, we expect that CRA-based LR array multipliers consume less power

than CSA-based multipliers.

4.3.3 [4:2]-CSAs for PP Reduction

Another departure from using [3:2]-CSAs is to use [4:2]-CSAs for PP reduction in

array multipliers. [4:2]-CSAs have been widely used in tree multipliers. However,

there is little previous work on applying [4:2]-CSAs in array multipliers. A [4:2]-

CSA has the same gate complexity as two [3:2]-CSAs. But a [4:2]-CSA is faster

than two cascaded [3:2]-CSAs because an efficient design could have 3TXOR2

delay while each single [3:2]-CSA has 2TXOR2 delay. One gate-level design of

such a [4:2]-CSA is shown in Figure 4.13. When [4:2]-CSAs are applied to array

multipliers, the first [4:2]-CSA row accepts four PPs and generates two carry-save

vectors. Each subsequent [4:2]-CSA row accepts two previous carry-save vectors

and two new PPs and generates two current carry-save vectors. A 16 × 16-bit

LR array multiplier using [4:2]-CSAs is illustrated in Figure 4.14. dark dots

are PP bits. the correct bits for radix-4 recoding are shown as small circles for

distinction. Gray dots are carry/sum vectors from CSAs. An extra [3:2]-CSA is

used because of the extra PP bits due to radix-4 recoding.

81



(a) MUX-based Design (b) Symbol

0
1

0
1A

B

C
D

C
A D

Sum

Cout

Tin

Tout

SumCout

TinTout

A B C D

Figure 4.13: 1-bit [4:2]-CSA.

(a)  PP Bit Matrix

(b) Linear Array Reduction using [4:2]-CSAs

[4:2]-CSA

[4:2]-CSA

[4:2]-CSA

[3:2]-CSA

Final fast CPA

Figure 4.14: Radix-4 LR array multiplication based on [4:2]-CSAs

(n=16).

82



For h n-bit PPs in general, the area and delay of PPR using [4:2]-CSA linear

array are roughly estimated as

APPR = (
h

2
− 1)A[4:2]CSA(n) = (h − 2)A[3:2]CSA(n) (4.19)

and

tPPR = (
h

2
− 1)t[4:2]CSA = 3(

h

2
− 1)TXOR2 (4.20)

In contrast, the area and delay of PPR using [3:2]-CSA linear array are

APPR = (h − 2)A[3:2]CSA(n) (4.21)

and

tPPR = (h − 2)t[3:2]CSA = 2(h − 2)TXOR2 (4.22)

By using [4:2]-CSAs, the PPR delay is reduced about 25% while the area has

no change. The delay reduction is positive for power as less switching activities

are generated when signals propagate fewer stages. Compared to two stacked

[3:2]-CSAs, a [4:2]-CSA has more balanced structure: four inputs are not only

equivalent in logic but also equal in the worst-case delay. The balanced struc-

ture is suitable in tree multipliers because the reduction tree itself is balanced.

However, the balanced structure doesn’t match the PPR linear array structure,

which is a negative factor for power consumption. The CSSC flow optimization

technique cannot be applied here. Considering the 25% PPR delay reduction,

however, we believe that the overall power consumption in [4:2]-CSA linear array

multipliers will still be reduced.

4.3.4 Split Array: Even/odd and Upper/lower

As shown in Table 4.1, glitches cause a snow-balling effect as signals propagate

through an array multiplier. Therefore, the lower rows consume much more power

83



than the upper rows in the PPR array. If the long path of PPR could be broken

into parallel short paths, there would be a saving in power. One approach to

reduce the PPR length is to split the array into two parts and each part only

have a half number of rows. If each part is split further, a multi-level tree structure

will be finally generated. In order to keep simple interconnects and structural

regularity, we avoid further splitting.

To split the array, an even/odd scheme with even rows in one part and odd

rows in another part has been proposed [65][59]. Each part is added separately

in parallel. The final even/odd vectors from two parts are reduced to two vectors

using a [4:2]-CSA. By interleaved placement and routing, the layout regularity

of linear array multipliers is kept. The even/odd scheme was originally proposed

for speed improvement. But it is obvious that even/odd is also efficient in power.

Recently, an improved even/odd structure named leapfrog was proposed for RL

array multipliers [84]. The existing delay imbalances in FAs are utilized by con-

necting sum signals from one even (odd) row to the next even (odd) row while

connecting carry signals always to the next row. In addition, the final CSA to

add even/odd vectors are simplified to be a [3:2]-CSA. Because all the carry sig-

nals propagate through the entire array in RL multipliers, the right portion of

PPR final vectors arrive at the same time. This eliminates the possibility of fi-

nal addition optimization existing in tree multipliers and LR array multipliers.

Therefore, we combine LR computation and the leapfrog structure to develop

LR leapfrog (LRLF) array multipliers. A high-level description of radix-4 LRLF

scheme is given in Figure 4.15. The basic component is still a standard [3:2]-CSA.

However, sum signals PSi skip the next row while carries PCi go directly to the

next row.

A straightforward implementation of LRLF would result in excessive cells in

84



h = n/2: the number of PPs;
(PS, PC)i: sum and carry vectors from [3:2]-CSAs;

(PS, PC)0 = CSA(PPh, PPh−1, PPh−2);
(PS, PC)1 = CSA(PPh−3, PPh−4, PC0);
for i from 2 to h − 3 do

(PS, PC)i = CSA(PPh−3−i, PSi−2, PCi−1);
end for
(PS, PC)h−2 = CSA(PSh−3, PCh−3, PSh−4);

Figure 4.15: High-level radix-4 LRLF algorithm.

the bottom-left triangle portion of the array. To avoid excessive computation and

get better signal arrival profile from PPR, PS/PC signals entering this portion

are processed together by a (n − 3)-bit [4:2]-CSA, as illustrated by the example

in Figure 4.16. The small dots are PP bits. The dashed lines are carries and

solid lines are sum signals. Different from RL leapfrog, an (n − 3)-bit [4:2]-CSA

is required to add the left-side vectors in LRLF.

Besides even/odd splitting, another possibility is to simply divide the array

into upper and lower parts. The PPR array could still be kept regular by in-

terleaving. Each part is a smaller LR PPR array with a left-side [3:2]-CSA for

vector merging. The final upper/lower vectors are added by a [4:2]-CSA. For each

part, CSSC flow optimization is applied. This scheme is called LR-CSSC-U/L.

A high-level diagram of this scheme is shown in Figure 4.17.

4.4 Experimental Evaluation

We have implemented three radix-2 LR schemes and six radix-4 LR schemes

with different structure optimization techniques in a 32 × 32-bit linear array

multiplier framework. The design and simulation methodologies are described in

85



(n
-3

)-
b
it

 [
4
:2

] 
C

S
A

(n
-1

)-
b
it

 [
3
:2

] 
C

S
A

F
in

al
 F

as
t 

C
P

A

Figure 4.16: Radix-4 LRLF array multiplier (n=12).

86



LR PPR

LR PPR

Final fast CPA

[4:2]-CSA

Figure 4.17: Radix-4 LR upper/lower array multiplier (n=16).

Appendix B. As our major focus is on the PP reduction step, the final CPAs

in our designs are not optimized for different input arrival scenarios [99][131].

A two-level carry-lookahead adder structure is used in all designs. Fortunately,

CPAs are the final modules in all multipliers and the results on PPG and PPR

modules are not affected. Two test data sets, random and djpeg, are used in order

to capture power features in different application environments.

4.4.1 Results for Radix-2 LR Multipliers

For radix-2 LR linear array multipliers, three schemes are implemented: LR using

the default [3:2]-CSAs, LR using CRAs, and LR with CSSC flow optimization.

Other structure optimization techniques are implemented only for radix-4 LR

multipliers because radix-4 schemes are more widely used. The final CPA in

all schemes is a two-level CLA. The comparison results of power consumption

are shown in Table 4.3 and Table 4.4. The power consumption is measured

87



at 50MHz. The area results are shown in Table 4.5 and the delay results are

in Table 4.6. The baseline structure is a RL [3:2]-CSA based array multiplier.

The values in parentheses are normalized values. The smallest value of each

characteristic is highlighted in boldface. CArea is the total cell area. The routable

rate for basic LR, LR-CRA, and LR-CSSC is 80%, 5% less than the rate for the

baseline RL array multiplier. Besides the total values, power/delay/area in each

sub-module are also listed for comparison. These modules are: PPG and PPR

(PPGR), extra CSA (eCSA) and extra CRA (eCRA) in some schemes, and final

CPA in all schemes.

Table 4.3: Power in radix-2 LR multipliers under random data

Power (mW ) (50MHz)
Schemes

PPGR eCSA eCRA CPA total

RL-baseline 52.29 0 0 4.66 56.95 (1.00)

LR 50.79 2.92 2.64 4.58 60.93 (1.07)

LR-CRA 37.94 0 0 3.97 41.91 (0.74)

LR-CSSC 31.74 1.92 1.63 3.33 38.62 (0.68)

Table 4.4: Power in radix-2 LR multipliers under djpeg data

Power (mW ) (50MHz)
Schemes

PPGR eCSA eCRA CPA total

RL-baseline 19.33 0 0 1.74 21.07 (1.00)

LR 15.93 0.68 1.03 2.23 19.87 (0.94)

LR-CRA 12.23 0 0 1.53 13.76 (0.65)

LR-CSSC 9.44 0.43 0.65 1.54 12.06 (0.57)

88



Table 4.5: Cell area in radix-2 LR multipliers

CArea (µm2)
Schemes

PPGR eCSA eCRA CPA total

RL-baseline 90215 0 0 3506 93721 (1.00)

LR 85100 2315 2475 3469 93359 (1.00)

LR-CRA 89181 0 0 3506 92687 (0.99)

LR-CSSC 85692 2315 2475 3469 93951 (1.00)

Table 4.6: Delay in radix-2 LR multipliers

Delay(ns)
Schemes

PPGR eCSA eCRA CPA total

RL-baseline 13.27 0 0 2.65 15.92 (1.00)

LR 12.94 0 0.72 1.89 15.55 (0.98)

LR-CRA 13.08 0 0 2.99 16.07 (1.01)

LR-CSSC 8.05 0.42 0 2.52 10.99 (0.69)

For the basic LR scheme, the LR computation reduces the power consumption

in PPGR module by 3% under random and 18% under djpeg. Because of the

extra power in eCSA and eCRA, the overall power in basic LR is increased by

7% under random. Under djpeg, the overall power is reduced by 6% despite of

the extra power in eCSA and eCRA. This demonstrates that LR computation

is superior in power for input data with a large dynamic range. The area and

delay of LR are very close to those of RL, as we expected before. The LR-CRA

scheme improves the power consumption by 26 ∼ 35% without any delay or area

overhead. The most interesting results are from LR-CSSC which reduces the

power by 32 ∼ 43% and the delay by 31% with no area increase. If input buffer

89



and PPG delay (1.75ns) is excluded from PPGR delay, the net PPR delay is

reduced by 45% (from 11.52ns in LR to 6.3ns in LR-CSSC), which well matches

our theoretical analysis in Section 4.3.1.

The experiment results also show that the differences of power consumptions

in the final CPAs are less than 5% of the total power consumptions. Therefore,

these un-optimized final CPAs will not affect the relative behaviors of different

schemes although they may increase some errors in the absolute power consump-

tion values.

4.4.2 Results for Radix-4 LR Multipliers

For radix-4 LR linear array multipliers, six schemes are implemented: LR using

the default [3:2]-CSAs, LR using CRAs, LR with CSSC flow optimization, LR

using [4:2]-CSAs, LR leapfrog split structure, and LR upper/lower split structure

with CSSC flow optimization. The radix-4 recoding design is parallel recoding

NPR3b proposed in Chapter 2 because of its overall performance. Serial recoding

NSR4 is not used because not all LR schemes here have enough PPR delay for

serial recoding operations. The final CPA in all schemes is a two-level CLA. The

power consumption are shown in Table 4.7 and Table 4.8. The area results are

shown in Table 4.9 and the delay results are in Table 4.10. The baseline structure

is a radix-4 RL [3:2]-CSA based array multiplier. The values in parentheses are

normalized values. The smallest value of each characteristic is highlighted in

boldface. The routable rate for basic LR, LR-CRA, and LR-CSSC is 80%. The

routable rate for more complex LR-[4:2]CSA, LR-leapfrog, LR-CSSC-U/L is 75%.

Power/delay/area in each module are also listed for comparison. There are no

extra CRA modules as there is no enough time slack for CRA computation in

radix-4 schemes and they are implemented as a part of the final fast CPAs.

90



Table 4.7: Power in radix-4 LR multipliers under random data

Power (mW ) (50MHz)
Schemes

PPGR eCSA CPA total

RL-baseline 22.23 0 3.90 26.13 (1.00)

LR 20.28 1.06 4.71 26.05 (1.00)

LR-CRA 23.50 0 1.78 25.28 (0.93)

LR-CSSC 17.06 0.90 3.77 21.73 (0.83)

LR-[4:2]CSA 19.75 0.91 3.93 24.59 (0.94)

LR-leapfrog 15.46 3.12 3.57 22.15 (0.85)

LR-CSSC-U/L 13.26 3.55 3.84 20.65 (0.79)

Table 4.8: Power in radix-4 LR multipliers under djpeg data

Power (mW ) (50MHz)
Schemes

PPGR eCSA CPA total

RL-baseline 10.15 0 2.49 12.64 (1.00)

LR 7.47 0.19 3.07 10.73 (0.85)

LR-CRA 8.8 0 1.27 10.07 (0.80)

LR-CSSC 6.44 0.15 2.52 9.11 (0.72)

LR-[4:2]CSA 5.33 0.20 2.62 10.26 (0.81)

LR-leapfrog 4.00 1.01 2.40 9.87 (0.78)

LR-CSSC-U/L 4.12 0.79 2.35 9.32 (0.74)

For the basic radix-4 LR scheme, the power consumption in PPGR and eCSA

modules is reduced by 4% under random and 25% under djpeg. As for the overall

power consumption, there is no reduction under random and only 15% reduction

under djpeg because the power in the final CPA is increased. The power increase

91



Table 4.9: Area in radix-4 LR multipliers

Area (µm2)
Schemes

PPGR eCSA CPA total

RL-baseline 65816 0 6091 71907 (1.00)

LR 63315 1677 6995 71987 (1.00)

LR-CRA 68121 0 2249 70370 (0.98)

LR-CSSC 63394 1677 6995 72066 (1.00)

LR-[4:2]CSA 64921 1547 6936 73404 (1.02)

LR-leapfrog 59250 6410 7025 72695 (1.01)

LR-CSSC-U/L 60001 5868 6899 72768 (1.01)

Table 4.10: Delay in radix-4 LR multipliers

Delay(ns)
Schemes

PPGR eCSA CPA total

RL-baseline 7.54 0 2.65 10.19 (1.00)

LR 7.32 0 2.98 10.30 (1.01)

LR-CRA 8.19 0 2.47 10.66 (1.05)

LR-CSSC 6.03 0 3.16 9.19 (0.90)

LR-[4:2]CSA 5.38 0.41 3.20 8.99 (0.88)

LR-leapfrog 5.18 0.47 2.54 8.19 (0.80)

LR-CSSC-U/L 4.25 0.73 3.61 8.59 (0.84)

in the final CPA of LR is due to different signal τ scenarios. The left half inputs of

the CPA arrive in a stair-case profile with MSB being the earliest, which introduce

more glitches than the situation in RL. In other LR schemes, the scenarios are

improved because of less signal τ differences. Note that the CPA delay in the

92



basic LR scheme can be almost removed by using on-the-fly conversion to take

advantage of the stair-case profile [41][36].

Because each PP shifts two bits and there are extra correction bits, LR-CRA

is less efficient in radix-4 than in radix-2 LR multipliers. Compared to the basic

LR, LR-CRA reduces the power consumption by 7% under random and by 6%

under djpeg with 4% delay increase. The delay is increased because the carry

propagation path in each CRA row is longer than the carry save path in radix-4

LR.

LR-CSSC is still very effective. LR-CSSC achieves 15% power reduction under

djpeg and 17% reduction under random from the basic LR. The delay in LR-CSSC

is also 10% less. If input buffer and PPG delay (2.38ns) is excluded from PPGR

delay, the net PPR delay is reduced by 26% (from 4.94ns in LR to 3.65ns in LR-

CSSC), which also matches our theoretical analysis in Section 4.3.1. Considering

that LR-CSSC has the same cell area and interconnect complexity as the basic

LR, this should be a primary choice for LR array multiplier design.

With 12% delay reduction from LR, LR-[4:2]CSA only achieves 6% power re-

duction under random and 4% power reduction under djpeg. The delay reduction

in PPR and eCSA is about 26%, which matches the analysis in Section 4.3.3. The

power consumption is reduced because the signal propagation paths are shorter.

However, the power reduction is limited by the balanced structure of [4:2]-CSA

design. As we indicated before, the balanced [4:2]-CSA structure in Figure 4.13

does not match the linear reduction structure in array multipliers.

As to split structures, both schemes are efficient in power and delay reduc-

tion. Compared to basic LR, LR-leapfrog reduces 15% power under random and

8% power under djpeg. LR-leapfrog reduces 21% power under random and 13%

power under djpeg. The delay in LR-leapfrog is reduced by 20% and the delay in

93



LR-CSSC-U/L is reduced by 16%. Among all schemes, LR-CSSC-U/L has the

least power consumption under random and LR-CSSC has the least power con-

sumption under djpeg. This indicates that CSSC flow optimization is a very useful

power-saving technique in LR array multipliers. As to delay, LR-leapfrog is the

best followed by LR-CSSC-U/L. In terms of power-delay product, LR-leapfrog

and LR-CSSC-U/L are the best because array splitting reduces the PPR delay

significantly. As splitting structures are more complex, however, LR-leapfrog and

LR-CSSC-U/L are the best candidates only when small power-delay product is

the main goal.

4.5 Summary

LR linear array multiplication provides an interesting alternative to the conven-

tional RL array multiplication as LR computation has the potential of saving

power and delay. In this chapter, we have presented reduction structure opti-

mization techniques for radix-2 and radix-4 LR linear array multipliers. These

techniques include: CSSC flow optimization, CRAs for PP reduction, [4:2]-CSAs

for PP reduction, even/odd (leapfrog) split structure and upper/lower split struc-

ture. Detailed experimental results are given to compare the power/area/delay

characteristics of each 32 × 32-bit multiplication scheme. Because the optimiza-

tions are at the architecture and algorithm level, both power reduction and delay

reduction have been achieved, which demonstrates one strength of high-level op-

timization. Among different optimization techniques for LR array multipliers,

LR-CSSC is a primary choice if power is the critical concern. LR-CSSC achieves

the least power consumption in most cases with relatively small delay. When

small power-delay product is the main goal, the more complex LR-leapfrog and

LR-CSSC-U/L split array structures are better candidates. These more complex

94



PP reduction structures decreases the routable row utilization rate by 5% in our

experiment.

95



CHAPTER 5

Design of High-Performance Low-Power

Multipliers

5.1 Introduction

The structure optimizations for LR array multipliers discussed in Chapter 4 have

shown that power reduction could come from delay reduction at the architecture

and algorithm level. Following this direction, we combine these structure opti-

mization techniques to design high-performance low-power array multipliers. We

aim at low-power array multipliers with similar delay as tree multipliers while

maintaining the regularity of array structures in the precision range n ≤ 32.

Tree multipliers have the smallest logic delay proportional to log(n). How-

ever, they have irregular layout with complicated interconnects. On the other

hand, array multipliers have larger delay but offer regular layout and simpler in-

terconnects. As interconnects become dominant in deep sub-micron design [64],

architectures with regular layout and simple interconnects are preferable. Irregu-

lar layouts with complicated interconnects not only demand more physical design

effort but also introduce significant interconnect capacitances that affect delay,

power, and signal integrity [14, 64].

Modern tree multipliers use [4:2] adders [93] to reduce the PPR logic delay

and regularize the layout. To develop regular and compact layout, regularly

96



structured tree (RST) with recurring blocks [55] and rectangular-styled tree by

folding [63] were proposed. These schemes achieve regular layout at the expense

of more complicated interconnects. In [99][114], three dimensional minimization

(TDM) algorithm was proposed to design column counters of the maximal pos-

sible size with optimized signal connections, which further shortened the PPR

path by 1 ∼ 2 XOR2 gates. However, the resulting structure has more complex

wiring and layout than a [4:2]-adder based tree. In [38][69], multiplication was

divided recursively into smaller multiplications to increase layout regularity and

scalability, which essentially resulted in a hierarchical tree structure.

In conventional RL linear array multiplier design, the even/odd split struc-

ture [65, 100] was proposed to reduce both delay and power. In [84], an improved

even/odd structure leapfrog was proposed to take advantage of the delay imbal-

ances in adders. In [41], a LR carry-free (LRCF) array multiplier was proposed

where the final CPA step to produce the MS bits of the product was avoided by

on-the-fly conversion in parallel with the linear reduction. In [36], this LRCF

approach was extended to produce a 2n-bit product.

Except in LRCF, final CPAs are required and contribute significant delay in

multipliers. When PPR delay is reduced by adder trees, the delay of CPA be-

comes more evident. The optimization of the final CPA was considered in [113]

where the adder was partitioned into several conditional-sum adder (CSUMA)

blocks according to the arrival profile of the inputs. In [138], a non-heuristic

algorithm was proposed to synthesize the family of prefix adders comprising

carry-ripple, carry-increment, carry-lookahead adders (CLAs), and many more.

Starting from a serial-prefix graph, the first step of this algorithm performs all

possible depth-decreasing transformations to produce the fastest prefix structure.

The second step performs size-decreasing transformations at the cost of an in-

97



creased depth without violating the depth constraints. This algorithm results

in size-optimal parallel-prefix adder structures under arbitrary depth constraints

including non-uniform input and output signal arrival times. In [131], multi-level

CSUMAs (MLCSUMAs) were used to optimize the final adder bit by bit from

LSB to MSB, which was improved to become a generalized earliest-first (GEF)

algorithm covering both CSUMA and CLA in [132]. In [73, 121], the on-the-fly

converter for LRCF array multipliers was replaced by a multi-level carry-select

adder (CSELA) or CSUMA.

In this chapter, we combine structure optimization techniques in Chapter 4

and propose split array LRLF multipliers (SALRLF) with signal flow optimiza-

tion. From the basic LRLF structure, two types of further splitting are consid-

ered: even/odd and upper/lower. Because LRLF well maintains the regularity of

array multipliers, this new splitting does not result in a hierarchical tree structure.

Instead, SALRLF has a simpler structure than a tree multiplier and requires less

design effort. For tree multipliers, we optimize the reduction structures by de-

veloping a special [9:4] adder with only 3TXOR2 delay. Besides the optimizations

in PPR, PPG and final CPA are also optimized for delay. SALRLF is compared

with structure-optimized array multipliers in Chapter 4 as well as tree multipli-

ers. Because of the distinct structures of array and tree, physical layouts with

guided floorplanning are conducted for comparison.

5.2 Partial Product Generation

We consider radix-4 recoding only. From Chapter 2, we select parallel recod-

ing NPR3b for high-performance multipliers. Due to shifting, each PP has a 0

between PPi+1,0 and correction bit cori. To have a more regular LSB part of

each PP, PPi,0 is added with cori in advance [131]. The PP
(new)
i,0 and cor

(new)
i are

98



described as

PP
(new)
i,0 = x0 · (y2i ⊕ y2i−1) (5.1)

cor
(new)
i = y2i+1y

′

2iy
′

2i−1 + y2i+1x
′

0(y2i ⊕ y2i−1) (5.2)

Both cor
(new)
i and P

(new)
i,0 are obtained no later than other PP bits.

For high-performance array multiplier design, the generated PP bit-array is

arranged in an LR manner as shown in Figure 5.1. The grey circles are PP
(new)
i,0

and the white circles are cor
(new)
i . The sign-extension constants are used in the

first row for reduced area and delay. If they are placed on the left of each PP

row, the array reduction of PPn/2, PPn/2−1, and PPn/2−2 still requires one full

adder (FA) and (n − 3) half adders (HAs) although PPn/2 only contains one bit

cor
(new)
n/2−1. For each 1 on the left, one extra FA has to be used during reduction

and n/2 extra FAs are needed in total. When these 1’s are placed in the first row,

however, no extra FA is needed. These 1’s are assimilated using existing HAs by

modifying them to be: Sum = a ⊕ b and Carry = a + b.

1 1 1 1 1 1 1

PP0

PP1

PP2

PP3

PP4

PP5

PP6Extra

Figure 5.1: MSB-first radix-4 PP bit array (n=12).

5.3 Partial Product Reduction by Split Array Structure

The delay gap between tree multipliers and array multipliers is due to the linear

PPR structure in array multipliers. To improve the speed of array multipliers,

99



parallelism is introduced in PPR. In addition, different adder types and the signal

flow between adders also have impact on delay, area, and power.

5.3.1 Split Array LRLF PP reduction

The PPR critical path of an LRLF array multiplier in Chapter 4 is about ⌈n
2
⌉

XOR2 gates while that of an n×n-bit radix-4 tree multiplier is 3(⌈log2(
n
4
)⌉) XOR2

gates. The delay of LRLF is not comparable with the delay of tree multipliers

when n ≥ 16. To reduce PPR delay, another level of parallelism is necessary.

LRLF is used as the basic structure to maintain the regularity of array multipliers.

One approach is to split the PP bit array into even PPs and odd PPs. In each

split part, PPs are shifted four bits each row and reduced into two vectors using a

LRLF structure. The final vectors from even and odd parts are added by a (2n−

3)-bit [4:2] adder. This algorithm is named as even/odd LRLF (EOLRLF) and a

high-level description is shown in Figure 5.2. A structure example is illustrated

in Figure 5.3.

Another approach is to split the PP bit array into upper PPs and lower PPs.

In each part, PPs are shifted two bits each row and reduced into two vectors by

a LRLF structure. The final vectors from upper and lower parts are also added

by a [4:2] adder. To reduce the size of this adder, the highest carry bit from the

right-side [3:2]-CSA of LRLF in Figure 4.16 is fed into the left-side [4:2]-CSA as

T in0 instead of being a bit of the final vector. For upper half PPs, a portion

of this modified LRLF is shown in Figure 5.4. The right-side [3:2]-CSA is still

(n−3)-bit while the left-side [4:2]-CSA is (n/2−1)-bit. For low half PPs, a similar

structure is applied. In this way, only a (n+2)-bit [4:2] adder is required because

of an empty position on the (3
2
n + 1)-th column, as shown in Figure 5.5. This

algorithm is named as upper/lower LRLF (ULLRLF) and a high-level description

100



h = n/2: the number of PPs;
q = h/2: half of h and assume to be even;
(ES, EC)i: sum and carry vectors in even part;
(OS, OC)i: sum and carry vectors in odd part;

/* odd part using LRLF */
(OS, OC)0 = CSA(PPh, PPh−1, PPh−3);
(OS, OC)1 = CSA(PPh−5, PPh−7, OC0);
for i from 2 to q − 3 do

(OS, OC)i = CSA(PPh−5−2i, OSi−2, OCi−1);
end for
(OS, OC)q−2 = CSA(OSq−3, OCq−3, OSq−4);

/* even part using LRLF */
(ES, EC)0 = CSA(PPh−2, PPh−4, PPh−6);
(ES, EC)1 = CSA(PPh−8, PPh−10, EC0);
for i from 2 to q − 4 do

(ES, EC)i = CSA(PPh−8−2i, ESi−2, ECi−1);
end for
(ES, EC)q−3 = CSA(ESq−4, ECq−4, ESq−5);

/* add even and odd vectors using [4:2]-CSA */
(PS, PC) = CSA42((OS, OC)q−2, (ES, EC)q−3);

Figure 5.2: High-level EOLRLF algorithm.

1 1 1 1 1 1 1 1 1 1 1 1 1

1

Figure 5.3: EOLRLF array multiplier (n=24).

101



is shown in Figure 5.6.

111111

(n/2-1)-bit [4:2] CSA (n-3)-bit [3:2] CSA

1 1 1

Tin0

Figure 5.4: Portion of a LRLF structure for upper half PPs (n=24).

1 1 1 1 1 1 1 1 1 1 1 1 1

1

Figure 5.5: ULLRLF array multiplier (n=24).

The PPR delay of SALRLF is about (⌈n
4
+3⌉ ∼ ⌈n

4
+4⌉)TXOR2, depending on

the type of adders used. For n ≤ 32, the delay is < 11 ∼ 12 while the best result

of a tree multiplier is ≤ 9. Further splitting of the PP array reduces the layout

regularity and will not be considered. Instead, optimization of CSAs and the final

CPA will be used to narrow the remaining gap. In EOLRLF, the arrival profile

of PPR final vectors has fewer latest-arriving bits than that in tree multipliers.

Figure 5.7 shows the PPGR delay profiles in a TDM multiplier, an EOLRLF,

and a ULLRLF. The number of latest-arriving bits in EOLRLF is 5 while this

102



h = n/2: the number of PPs;
q = h/2: half of h and assume to be even;
(US, UC)i: sum and carry vectors in upper part;
(LS, LC)i: sum and carry vectors in lower part;

/* upper part using LRLF */
(US, UC)0 = CSA(PPh, PPh−1, PPh−2);
(US, UC)1 = CSA(PPh−3, PPh−4, UC0);
for i from 2 to q − 3 do

(US, UC)i = CSA(PPh−3−i, USi−2, UCi−1);
end for
(US, UC)q−2 = CSA(USq−3, UCq−3, USq−4);

/* lower part using LRLF */
(LS, LC)0 = CSA(PPq−1, PPq−2, PPq−3);
(LS, LC)1 = CSA(PPq−4, PPq−5, LC0);
for i from 2 to q − 4 do

(LS, LC)i = CSA(PPq−4−i, LSi−2, LCi−1);
end for
(LS, LC)q−3 = CSA(LSq−4, LCq−4, LSq−5);

/* add upper and lower vectors using [4:2]-CSA */
(PS, PC) = CSA42((US, UC)q−2, (LS, LC)q−3);

Figure 5.6: High-level ULLRLF algorithm.

number is 8 in TDM. The bit delay distribution in EOLRLF is also more regular.

Most bit groups in EOLRLF have 4-5 bits. But the group size varies a lot in

TDM. The final adder design could exploit these better-shaped arrival profiles in

EOLRLF to reduce delay.

Compared with EOLRLF, ULLRLF has two main advantages. First, the

shifting distance between PPs in each upper/lower part is 2 bits instead of 4,

which leads to simpler interconnects. Second, the final [4:2] adder in ULLRLF

is only (n + 2)-bit in contrast to (2n − 3)-bit in EOLRLF. On the other hand,

103



2

4

6

8

10

12

14

4812162024283236404448525660

D
el

ay

Bit

TDM-radix2
EOLRLF
ULLRLF

Figure 5.7: PPGR delay profiles (n=32).

ULLRLF has a worse arrival profile than EOLRLF. However, such a profile only

leads to just one TAO21 delay, which will be explained in Section 5.5. The overall

performance depends on the relative effects of these factors.

5.3.2 Optimization of [3:2]-CSAs

LRLF is based on [3:2]-CSAs and the basic components are FAs. Besides FA-

MUX and FA-NAND2 discussed in Chapter 4 (Figure 4.6), FA-ND3 in Figure 5.8

is another choice. Denote τA,B as max(τA, τB) and τA,B,C as max(τA, τB, τC). τSum

and τCout in FA-ND3 are expressed as:

τSum = max(τA,B + TXOR2, τC) + TXOR2 (5.3)

τCout = τA,B,C + TAO222 (5.4)

104



Compared to FA-MUX and FA-NAND2, FA-ND3 is better in logic delay because

the delay from all inputs to Cout is TAO222 (TAO222 ≈ TXOR2). As to area,

however, FA-MUX has smaller area than FA-ND3 even if pass transistors are

not used to implement FA-MUX. Since FA is the most used element in array

multipliers, smaller FA leads to smaller overall area, which is also helpful in the

reduction of power consumption and interconnect delay.

A

B

C

Sum

Cout

Figure 5.8: NAND3-based FA design (FA-ND3).

In Chapter 4, we have proposed signal flow optimization for FAs with one

input being PPij in linear array multipliers. Here we extend the signal flow

optimization to general FAs in SALRLF with the primary objective of delay

reduction. Besides FAs with one PPij input, SALRLF has FAs with no PPij

input in the extra CSA part. Signal flow optimization for delay has been applied

in TDM tree multipliers [99]. In addition to delay, signal flow optimization affects

power as studied in Chapter 4. Assume the three input signals to FA are Ain,

Sin, Cin. These input signals are sorted according to their arrival times. We

assume that the τ relationship is τAin ≤ τCin ≤ τSin. The order is arbitrary since

the inputs are functionally equivalent. In FA-ND3, the latest Sin is connected

to pin C because C is a fast input. There is no restriction on the connections

between Ain(Bin) and pin A(B) unless transistor-level difference between A and

B is considered. In FA-MUX, Sin is also connected to pin C. Between Ain and

Bin, the signal with less switching activity is connected to pin A for power saving

because pin B has less load capacitance and is used for the other one with more

105



switching activity.

5.3.3 Optimization of [4:2]-CSAs

Besides [3:2]-CSAs, there is one extra [4:2]-CSA row in LRLF. These [4:2]-CSAs

are also optimized according to input τ scenarios. The basic [4:2]-CSA module,

M42, is shown in Chapter 4 (Figure 4.13). The delay from any input A, B, C,

and D to output Sum or Cout is 3TXOR2. Each M42 actually has five inputs

because there is one intermediate signal T in. In the (n/2 − 1)-bit [4:2]-CSA for

LRLF in Figure 5.4, more than half 5-input M42s have one or more zero inputs,

which can be simplified to have smaller delay. For M42s with one zero input,

the simplification is as follows. Assume the four non-zero inputs of a simplified

M42 are A, B, C, and D with τ relation τA ≤ τB ≤ τC ≤ τD. The order is

arbitrary as all inputs are equivalent in functionality. According to input arrival

profiles, two designs with different Sum logic are developed: M42L (linear-Sum)

in Figure 5.9a and M42T (tree-Sum) in 5.9b. The arrival times of Tout and Cout

are

τTout = τB + TAND2 (5.5)

τCout = max(τB + TXOR2, τD) + TAO222 (5.6)

which are smaller than those in M42. In M42L, Sum arrives at

τlinear−Sum = max(τBCX , τD) + TXOR2 (5.7)

where τBCX = max(τB + 2TXOR2, τC + TXOR2). In M42T,

τtree−Sum = τD + 2TXOR2 (5.8)

The [4:2] adder in LRLF is designed from LSB to MSB as follows. For each

bit, sort five inputs A, B, C, D, and E (one of them being T in) according to

106



A
B

C
D

Sum

Cout
Tout

A
B

C
D

Sum

Cout

Tout

(a) M42L: linear-Sum (b) M42T: tree-Sum

Figure 5.9: Two simplified M42 designs.

arrival time and assume that τE ≤ τA ≤ τB ≤ τC ≤ τD. If no input is 0, M42

of Figure 4.13 is used. To minimize delay, five inputs E, A, B, C, and D are

connected to pin A, B, C, D, and T in in that order. If two or more inputs are 0s,

the adder is reduced to a FA or HA. If only one input is 0, it must be E because

a constant is available at the earliest time. A simplified 4-input M42 is used in

this case. Four inputs A, B, C, and D are connected to pin A, B, C, and D in

that order. M42L is used for faster Sum if τlinear−Sum < τtree−Sum. Otherwise,

M42T is used. The output Tout is fed into the next bit position and the process

is repeated. With this optimization, more than half [4:2]-CSAs are simplified and

many outputs of the [4:2] adder become available one TXOR2 earlier.

5.4 Partial Product Reduction by Tree Structure

Both tree reduction and column reduction have the smallest logic delay pro-

portional to log(n) and have irregular layout with complicated interconnects.

However, the regularity of tree reduction is better between them. To fairly com-

pare SALRLF with the fastest multipliers, we also design radix-4 tree multipliers

based on [4:2] and [3:2] CSAs with optimized signal flow. These optimized tree

multipliers eliminate the delay due to the extra PP in radix-4 TC tree multipliers

based on [4:2]-adders.

107



[4:2] CSA [4:2] CSA
[3:2] CSA [3:2] CSA [3:2] CSA

[3:2] CSA [3:2] CSA

[4:2] CSA [4:2] CSA

[4:2] CSA

[9:4] CSA

PP
16

PP
15

PP
0

PP
1

PP
14

PP
2

PP
3

PP
4

PP
5

PP
6

PP
7

PP
8

PP
9

PP
10

PP
13

PP
12

PP
11

3TXOR2

6TXOR2

9TXOR2

Figure 5.10: Tree PPR with 9TXOR2 delay (n=32).

For n = 32, the optimized tree multiplier is shown in Fig. 5.10. To avoid the

delay due to extra PP [n/2], the reduction of 9 PPs from PP [n/2−8] to PP [n/2]

is based on a [9:4]-CSA with only 3TXOR2 delay, as illustrated in Fig. 5.11. The

3TXOR2 delay is achieved as follows. By using FA-ND3, carries are computed

faster than sums. FAs with one constant inputs in the shaded CSA in Figure 5.10

are simplified to be half adders with half carry/sum delay. PSk−1 and PCk−1 are

then switched and input into two second-level [3:2]-CSAs. In the dot graph for

second-level [3:2]-CSAs, the arrival times of signals are illustrated by the gray

levels of dots: the lighter the earlier. Those signals coming directly from the first

level are marked as circles. It is shown that all FAs in the second-level [3:2]-CSAs

have one input arriving at least TXOR2 later than the other two inputs. This

late input is connected pin C of FAs to ensure one TXOR2 delay in second-level

CSAs. The only HA with two late inputs also has one TXOR2 delay because it is

a HA. The bit of PCk on the dashed-line column must be empty (zero) in order

108



to guarantee a HA with one TXOR2. To distinguish from other tree multipliers,

the radix-4 tree multiplier using this special [9:4]-CSA is named tree9to4.

1111 PPn/2

PPn/2-1

PPn/2-8

PPn/2-7

PCk

PSk

PSk-1

PCk-1

PSk-2

PCk-2

Figure 5.11: A special [9:4]-CSA with 3TXOR2 delay.

5.5 Final Addition Optimized for Arbitrary Input Arrival

Time

Final adders are optimized to match the non-uniform input arrival profiles. The

optimal final adder for tree multipliers is CSUMA-based design [113]. Efficient

design of the on-the-fly converter for LR array multipliers also corresponds to

a multi-level CSELA or CSUMA optimized for staircase signal arrivals [73].

The CSUMA/CSELA for on-the-fly converter operates in parallel with the re-

duction and introduce little CPA delay, which is different from a traditional

CSUMA/CSELA in multipliers. In [138], the fastest prefix adder (PA) structures

109



under arbitrary depth constraints are synthesized by depth-decreasing transfor-

mations (prefix graph compression) starting from a serial-prefix graph. The

family of PAs comprises carry-ripple, carry-increment, carry-lookahead adders

(CLAs), and many more. In [132], the similarity between CSUMA and CLA

is formulated and a generalized earliest-first (GEF) algorithm was proposed to

design CSUMA/CLA for arbitrary input arrival profile. The difference between

prefix graph compression and GEF is that graph compression is a recursive opti-

mization approach while GEF is a straightforward constructive approach. Both

the prefix graph transformation algorithm and the GEF algorithm can generate

adder-based on-the-fly converters given proper LR staircase signal arrivals. Thus,

we do not distinguish on-the-fly converters from CPAs because these synthesis

algorithms handle arbitrary signal arrivals.

We follow the earliest-first idea of GEF algorithm and develop an improved

version for PA design. We choose PA for final addition because the PA operators,

AO21 and AND2, are simpler than the basic CSUMA operators – a pair of

MUX21. The algorithm is outlined in Figure 5.12. The basic idea is to sort the

carry generate and alive signal pair (G, A)
L[i]
i,R[i] (denoted as GAi) according to

arrival times and combine adjacent GAs in an earliest-first manner. Two lists,

P list and T list, are maintained in the process. All (G, A) signal pairs are initially

put into P list and sorted according to arrival times. The earliest pairs are then

moved to T list. Adjacent signal pairs in T list are retrieved and combined by

operator ‘•’ from left to right. The combined pairs are put back into P list. The

iteration continues until the generation of the MSB carry bit. Other carry bits

are generated using existing (G, A) bits. A PA example for a hill-shaped arrival

profile is shown in Fig. 5.13. Black nodes in PA are computation cells and white

nodes have no logic or only buffers.

110



W : width of input data;
GAi = (G, A)

L[i]
i,R[i]: level-L[i] (G,A) in bit column i;

R[i]: the right-most bit covered by (G, A)
L[i]
i,R[i];

– step 1: level-0 (G,A) –
Plist = null; Tlist = null;
for each bit i do

L[i] = 1; R[i] = i;

generate (G, A)
L[i]
i,R[i] and put into Plist;

end for

– step 2: generate MSB-carry –
while length(Plist) + length(Tlist) > 1 do

sort Plist in delay-ascending order;
TG0 = Delay of G signal of Plist[0];
move items with TG=TG0 from Plist to Tlist;
sort Tlist in bit-descending order (MSB-first);
while two items are adjacent in Tlist do

remove them (GAi and GAj) from Tlist;

(G, A)
L[i]+1
i,R[j] = GAi • GAj ;

R[i] = R[j]; L[i] = L[i] + 1;
insert new GAi into Plist;

end while
end while

– step 3: generate other carries –
for each bit i from W − 2 downto 1 do

while R[i] �= 0 do
j = R[i] − 1; /* the bit to be combined */

(G, A)
L[i]+1
i,R[j] = GAi • GAj;

R[i] = R[j]; L[i] = L[i] + 1;
end while

end for

Figure 5.12: Earlist-first PA carry generation algorithm (adapted from [132]).

Let Wmax be the largest number of adjacent signals that arrive at the same

time. If these Wmax signals are also the latest arriving signals in a hill-shaped

111



xi  yi

Pi ,(G,A)
1
i,i

Pi = xi   yi

(G,A)
L[i]
i,R[i] (G,A)

L[j]
j,R[j]

(G,A)
L[i]+1
i,R[j]

(G,A)
L[i]
i,R[i] G

L[j]
j,R[j]

Ci+1 = G
L[i]+1
i,R[j] Si 

Pi Ci

G
1
i,i = xi yi

A
1
i,i = xi+yi

G
L[i]+1
i,R[j]  = G

L[i]
i,R[i] + A

L[i]
i,R[i] G

L[j]
j,R[j]

A
L[i]+1
i,R[j]  =A

L[i]
i,R[i] A

L[j]
j,R[j]

Si = Pi    Ci

Figure 5.13: A PA example.

arrival profile, the delay of PA for such a profile is estimated as

TPA = (log2(Wmax) + 2)TAO21 + TXOR2 (5.9)

which is not directly related to the adder width 2n. A small Wmax would lead to

a small TPA. However, the difference in TPA is just one TAO21 for most schemes

in our study because of the logarithmic relationship. One TAO21 delay could be

further eliminated from TPA if carry-select adders are used for the final stages of

the left part in hill-shaped arrival profiles [34].

There are two modifications to the original GEF. First, the adjacent signal

112



pairs in Tlist are combined from MSB to LSB rather than from LSB to MSB.

Because the path from G
L[j]
j,R[j] to G

L[i]+1
i,R[j] has one more AND gate than the path

from G
L[i]
i,R[i] to G

L[i]+1
i,R[j] in operator ‘•’, this MSB-to-LSB combining leads to an

improvement of one AND gate delay when there are odd numbers of adjacent

signals. For the example in Figure 5.14, the critical-path delay is improved by

0.5TXOR2. Second, the generation of non-MSB carry signals does not require

explicit carry decomposition or the use of GEF again to schedule the order of

operation. Instead, it is a direct merging process from MSB to LSB. As outlined

in Figure 5.12, a new GAi is recursively generated until it covers all input bits

(R[i] = 0). In the generation, existing GAj (j < i) is used automatically.

2

4

6

8

10

12

14

16

18

20
4812162024283236404448525660

D
el

ay

Bit

input
sum

sum[132]

Figure 5.14: PA delay profile in EOLRLF (n=32).

113



5.6 Experimental Evaluation

To compare the proposed SALRLFs with LRLFs in Chapter 4 and tree multipli-

ers, logic-level delay analysis is first conducted. Actual VHDL implementation

and physical layout with guided floorplanning are then performed for more real-

istic power/delay/area comparison.

5.6.1 Delay Comparison at Logic Level

VHDL generation programs for LRLF and SALRLF algorithms have been written

with the flexibility of FA selection and signal flow optimization. The comparison

results at logic level without layout effects are normalized to TXOR2 and listed

in Table 5.1. Each scheme is tested with the selection of FA-MUX or FA-ND3

and the optional signal flow optimization (SFO). TGR is the delay of PPG and

PPR. TA is the delay of the final adder. The total delay T = TGR + TA. The

smallest delay of each multiplier type is highlighted in boldface. For LRLF, the

use of FA-ND3 rather than FA-MUX reduces PPR delay and the overall delay

by 1 TXOR2. SFO reduces the delay by 1 TXOR2 except for 48-bit LRLF-ND3

where the reduction is 2. For EOLRLF, FA-ND3 reduces 1 TXOR2 in PPR but

the worse CPA input profile cancels the gain. SFO in EOLRLF-MUX reduces 1

TXOR2 but again the worse CPA input profile cancels the gain. SFO in EOLRLF-

ND3 helps reduce the overall delay by 0.5 ∼ 1 TXOR2. For ULLRLF, FA-ND3

reduces one TXOR2 in PPR, but not the overall delay. SFO only reduces PPR

delay in ULLRLF-MUX by 0.5 and also has no effect on the overall delay. Varying

FAs and applying SFO change the input arrival profiles of the final adder and

affect TA by up to 1 TXOR2. Even if there is little delay advantage, however, it is

still useful to apply SFO for power reduction, as demonstrated in Chapter 4. As

to the overall logic delay, EOLRLF is the best because of interleaved splitting.

114



Finally, it is worthwhile to note that TA does have little relation with the adder

width as explained in Equation 5.9.

Table 5.1: Effects of FA type and SFO on logic delay in LRLF/SALRLF

n = 24 n = 32 n = 48
Schemes

TGR TA T TGR TA T TGR TA T

LRLF-MUX 15 5 20 19 5 24 27 5 32

LRLF-MUX-SFO 14 5 19 18 5 23 26 5 31

LRLF-ND3 14 5 19 18 5 23 26 5 31

LRLF-ND3-SFO 13 5 18 17 5 22 24.5 4.5 29

EOLRLF-MUX 12 5 17 14 5 19 18 5 23

EOLRLF-MUX-SFO 11 6 17 13 6 19 17 6 23

EOLRLF-ND3 11 6 17 13 6 19 17 6 23

EOLRLF-ND3-SFO 11 5.5 16.5 12.5 6 18.5 16.5 5.5 22

ULLRLF-MUX 12 5 17 14 6 20 18 6 24

ULLRLF-MUX-SFO 11.5 5.5 17 13.5 6.5 20 17.5 6.5 24

ULLRLF-ND3 11 6 17 13 6 19 17 7 24

ULLRLF-ND3-SFO 11 6 17 13 6 19 17 7 24

TGR: the delay of PPG and PPR; TA: the delay of final adder; T = TGR + TA

Using the best results from Table 5.1, we now compare the delays of LRLF

and SALRLF with tree multipliers. Besides our proposed tree9to4, radix-2 and

radix-4 TDM schemes based on column reduction [99][131] are chosen because

they are the fastest multipliers at the logic level to our knowledge. The delay

comparison results are given in Table 5.2. The blank boxes with ‘–’ are because

TGRs or delay profiles from PPR are not available from literature. The original

TDM-radix4 data in [131] are normalized to our measurement base. It is shown

115



that the radix-4 tree multipliers based on our [9:4] adder design have almost the

same TPPGR as TDM schemes. For n ≤ 32, the delay of EOLRLFs is 0.5TXOR2

less than ULLRLFs and is very close to that of tree multipliers including TDM.

For larger n = 48, EOLRLF shows 13% more gate delay and ULLRLF shows 23%

more gate delay. If another level of parallelism is allowed, the delay difference

could be reduced to be within 10% while the regularity is degraded towards a

tree. We don’t consider this further parallelism here.

Table 5.2: Logic delay comparison of tree multipliers and LRLF/SALRLF

n = 24 n = 32 n = 48
Schemes

TGR TA T TGR TA T TGR TA T

TDM-radix2 10.5 – – 11.5 6 17.5 13.5 6 19.5

TDM-radix4 11 5.5 16.5 12 6 18 – – –

Tree9to4 10 6 16 11 7 18 13 7 20

LRLF 13 5 18 17 5 22 24.5 4.5 29

EOLRLF 11 5.5 16.5 12.5 6 18.5 16.5 5.5 22

ULLRLF 11 6 17 13 6 19 17 7 24

5.6.2 Power/Delay/Area Comparison at Physical Layout Level

Three radix-4 schemes for 24 × 24-bit and 32 × 32-bit multiplications are com-

pared: tree9to4, EOLRLF-MUX-SFO, and ULLRLF-MUX-SFO. Because VHDL

descriptions of TDM multipliers are not available, we use our own tree multiplier

tree9to4 instead. Optimized with a special [9:4] adder, tree9to4 has the similar

delay as TDM but is more regular. MUX-SFO based designs are chosen because

they have smaller area than ND3-SFO based designs while the overall logic delays

are very close. SFO is also applied to tree9to4 for power.

116



For layout experiments, we first conduct automatic layout and the results are

shown in Table 5.3 and 5.4. For 24 × 24-bit multipliers, power is measured at

100MHz using only random test data as we do not have 24-bit test data with a

large dynamic range. For 32× 32-bit multipliers, power is measured at 100MHz

using both random and djpeg test data. For routability, the row utilization rates

are set to 80% in 24 × 24-bit multipliers and 70% in 32 × 32-bit multipliers. We

find that it is more difficult to route a larger multiplier even for the same type.

CArea is the total area of all cells. The actual die area (excluding IO area) is

CArea divided by the row utilization rate.

The experimental results show that EOLRLFs are worse than ULLRLFs in

all measured parameters. As analyzed in section 5.3.1, EOLRLF has 2-bit more

shifting distance and an extra (n − 5)-bit [4:2] adder compared to ULLRLF,

which complicates the layout and eliminates the one TXOR2 delay advantage. For

24-bit, ULLRLF consumes 6% less power than tree9to4 and is slightly better in

area and delay. For 32-bit, ULLRLF and tree9to4 have similar area and delay

while ULLRLF consumes 8 ∼ 10% less power. Because tree9to4 is more regular

than column reduction based TDM, we believe that TDM would have worse

results than tree9to4 if physical layout is conducted. Note that the radix-4 tree

multipliers we have studied in Chapter 2 use un-optimized two-level CLAs for

final CPA. These two-level CLAs are smaller and slower than optimized PAs in

this Chapter. Because of the optimized [9:4]-CSA and final CPA, tree9to4 is 17%

faster than the radix-4 [4:2]-CSA tree multiplier in Chapter 2 while consuming

6% more power. Compared with the fastest LR-leapfrog in Chapter 4, ULLRLF

improves the delay by 12% and reduces the power consumption by 8% if power

is measured at the same frequency using random test data.

For 32×32-bit tree9to4 and ULLRLF, we further conduct layout with guided

117



Table 5.3: Power/area/delay after automatic layout (24-bit)

Schemes Power(mW ) CArea(µm2) Delay(ns)

tree9to4 26.27 (1.00) 44680 (1.00) 6.01 (1.00)

EOLRLF 25.06 (0.95) 44680 (1.00) 5.91 (0.98)

ULLRLF 24.59 (0.94) 43217 (0.97) 5.88 (0.98)

Table 5.4: Power/area/delay after automatic layout (32-bit)

Power(mW ) (100MHz)
Schemes

Random Djpeg
CArea(µm2) Delay(ns)

tree9to4 45.12 (1.00) 21.42 (1.00) 76434 (1.00) 7.18 (1.00)

EOLRLF 43.48 (0.96) 22.15 (1.03) 77711 (1.02) 7.36 (1.02)

ULLRLF 40.65 (0.90) 19.65 (0.92) 74598 (0.98) 7.25 (1.01)

floorplanning by specifying placement regions. The floorplan of tree9to4 is shown

in Figure 5.15, which is based on H-tree for symmetry and regularity [123]. Be-

cause of region constraints, the row utilization rate is relaxed to 63% from 70%

in automatic layout for routability. In addition, all blocks have to be assigned to

specific regions for delay reduction. We have tried coarser region specifications

and different floorplans and got worse results. The floorplan of ULLRLF is shown

in Figure 5.16, which is simpler and more regular than the floorplan of tree9to4.

The left-side [4:2] CSA in each part is distributed into PPR rows. Despite of

region constraints, the routable rate remains at 70%. Regions are assigned for

two big upper/lower blocks, final [4:2] adder, and CPA. The results are shown

in Table 5.5. The delay is improved by 4% from automatic layout. For ULL-

RLF, there is no area cost for this delay improvement because of the regularity

of ULLRLF. For tree9to4, the die area increases 10%. After layout with guided

118



floorplanning, ULLRLF and tree9to4 still have similar delay while ULLRLF has

13% less die area and 7 ∼ 8% less power. The power consumptions after guided

layout are slightly larger than those after automatic layout although delays are

reduced. This is because guided floorplanning is primarily for delay reduction on

the critical paths. Region constraints manually insert placement boundaries and

affect global optimization. The overall placement quality can degrade because of

overconstraining [20].

2 PPGs

2 PPGs

2 PPGs

2 PPGs

Level-1 CSA4to2

Level-1 CSA4to2

Level-2 CSA4to2

3 PPGs

Level-1 CSA3to2

Level-2 CSA4to2

Level-3 CSA4to2

CPA

3 PPGs

Level-1 CSA3to2

Level-1 CSA3to2

Level-1.5 CSA3to2

Level-1.5 CSA3to2

3 PPGs

Figure 5.15: Floorplan of tree9to4 (n=32).

119



 2PPGs & CSA3to2

2PPGs & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

CSA3to2

2PPGs & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

 PPG & CSA3to2

CPA

 3PPGs & CSA3to2

CSA3to2

CSA4to2

Figure 5.16: Floorplan of ULLRLF (n=32).

Table 5.5: Power/area/delay after layout with guided floorplanning (32-bit)

Power(mW ) (100MHz)
Schemes

Random Djpeg
CArea(µm2) Rate Delay(ns)

tree9to4 45.53 (1.00) 21.09 (1.00) 76434 (1.00) 63% 6.90 (1.00)

ULLRLF 41.72 (0.92) 19.60 (0.93) 74598 (0.98) 70% 6.99 (1.01)

5.7 Summary

In this chapter, we have studied power optimization by designing high-performance

array multipliers. SALRLF multipliers that integrates array splitting, LRLF,

120



and signal flow optimization are proposed as an alternative to tree multipliers for

n ≤ 32. From the basic LRLF structure, two types of further splitting are consid-

ered: even/odd and upper/lower. Optimizations of the designs and signal flows

in [3:2]-CSAs and [4:2]-CSAs are performed. The final product is obtained with

a prefix adder optimized to match the non-uniform arrival profile of the inputs.

For fair comparison, tree multipliers are also designed using a special [9:4]-CSAs

with 3TXOR2 delay and signal flow optimization. We find that upper/lower split-

ting outperforms even/odd splitting after layout although even/odd splitting is

a little better in gate delay at the logic level. Automatic layout experiments for

n = 24 and n = 32 indicate that the proposed ULLRLF array multipliers con-

sume 6 ∼ 10% less power than tree multipliers while keeping similar area and

delay. For n = 32, layout experiments with guided floorplanning show that the

floorplan of ULLRLF is more regular and easier to control in layout optimization.

After guided layout, the delay in both schemes is improved by 4% while ULLRLF

array multiplier has 13% less die area and 8% less power than tree multiplier.

121



CHAPTER 6

Signal Gating in Linear Array Multipliers

6.1 Introduction

Previous work on low-power multipliers often treats multipliers with little consid-

eration of application data characteristics. This is especially true for power opti-

mization techniques at the circuit and logic levels [2][6][86][47][68]. As power dis-

sipation is directly related to data switching patterns, traditional multiplier opti-

mization leads to limited power reduction. Although many application data have

large dynamic ranges with frequent short-precision numbers [15][18][115][70], mul-

tipliers are designed for the maximum possible precision. Under short-precision

input data, portions of a multiplier work only on the sign extensions and produce

unnecessary full-precision results. To eliminate unnecessary switching activities,

signal gating can be applied to deactivate the sign-extension portion.

In this chapter, we first review previous work on signal gating and its applica-

tion to low-power multipliers. Then, we generalize and propose a class of signal

gating schemes including one-dimensional (1-D) gating and two-dimensional (2-

D) gating. These signal gating schemes are then applied to linear array multipli-

ers. The applications to high-performance array and tree multipliers are described

in Chapter 7. Multimedia test data traced from a MediaBench program [79] are

used to evaluate proposed signal gating schemes because multiplication is a funda-

mental operation in most multimedia programs and multimedia data often have

122



large dynamic ranges. Signal gating is an external effort for power reduction as

it does not change the basic algorithm or architecture of multipliers.

Signal gating has been a general technique to reduce dynamic power in CMOS

digital systems. Signal gating achieves this goal by freezing the input of a logic

block with gating logic. Gating logic can be latches, registers, AND/OR gates,

or tri-state buffers. When a gating signal is active, the outputs of the gated

logic block are frozen at previous old values, or set to fixed values, to reduce

switching activity. The most common form of signal gating is clock gating at

system and architecture levels. In a microprocessor, functional units can be

deactivated by disabling their clock signals [57]. In a pipelined CPU datapath, the

clocks of some pipeline registers can be disabled if the following functional units

are inactive [129]. Even within a pipelined arithmetic unit, clock gating can be

applied carefully to disable stages with zero input values [128]. At the gate level,

individual flip-flops or gates can be activated or deactivated according to their

local behaviors. Lang et. al. [76] investigated several gated flip-flop structures in

which the clock is disabled when input signal D is the same as output signal Q of

previous clock period. Strollo et. al. [116] further removed the clock duty-cycle

limitation of previous work by gating on both latches in a flip-flop. For arbitrary

combinational logic, Tiwari et. al. [122] presented a general approach of latch

gating called guarded evaluation, which identifies gating candidates by analyzing

observability don’t care (ODC) set. At the bottom circuit level, ancillary gating

logic is merged into functional logic cells to achieve efficiency. Dougherty and

Thomas [39], for example, presented internal gating techniques which is built

into existing library cell adders at the transistor level.

In the above gating techniques, arithmetic blocks are either considered as

black boxes at high levels or as random logic at low levels. The structural and

123



computational characteristics of arithmetic logic are neglected. When an arith-

metic block is treated as a black box, the power saving is small because the

block is powered down only when the whole unit can be inactive. When signal

gating is applied at gate and circuit levels, the gating overhead is very large.

To achieve more power saving, signal gating on portions of arithmetic units has

been proposed recently. Several arithmetic types have been studied, such as

sign-detection arithmetic [42][44], accumulator [43], block-serial ALU [24], and

adder/incrementor [62]. Here we only consider signal gating in multipliers.

In [17][18], gating on portions of input signals in functional units is consid-

ered at the architecture level according to the precisions of operands. There are

several limitations in their work. First, they assume that power consumption in

multipliers scales linearly with the datapath width. This is generally not true

because the area of a multiplier increases quadratically with the width and the

switching capacitance is roughly proportional to the area by a high-level estima-

tion [23][67]. Second, there are little considerations of arithmetic details, data

switching pattern and gating overheads, which affects the evaluation accuracy. In

addition, gating on portions of input signals without internal modification does

not produce correct results in multipliers.

In [13], precision-based operation scenarios are formalized and an adaptive

power-aware system construction methodology is proposed. In such a system,

a set of functional units with different fixed widths is provided and only one of

them is enabled according to input data precision. An example of such a system

is shown in Figure 6.1. One drawback of this approach is the large area overhead.

Moreover, the wire capacitance and signal fanouts are increased significantly.

Besides these theoretical approaches, there is some work on signal-gated mul-

tipliers with implementation details. In [70], a linear array multiplier with one

124



16x16
14x14

9x911x11

MUX

P
recisio

n

D
etectio

n

X Y

P = X Y

Figure 6.1: The proposed 4-point ensemble multiplier system in [13].

hardwired constant input is partitioned into 4 bit-slices for different data preci-

sions. According to the precision of input data, from 0 up to 4 slices are activated.

Such a multiplier is designed for asynchronous matrix-vector multiplication in 2-D

DCT/IDCT. In [32], signal gating is applied in two’s-complement array multi-

pliers according to the precision of the product. In [50], an array multiplier is

partitioned into four equal-size smaller multipliers so that each can be clock-gated

separately. This scheme only works on SM or unsigned array multipliers and the

partition is not precision-optimized. Figure 6.2 depicts the proposed low-power

architecture in [50], which is a straightforward design with much longer delay.

In [134], the PPs are generated dynamically in reduced two’s-complement num-

ber representation according to the actual precision of the input multiplicand

data. The sign-extension bits in full-width partial products are changed into

constant 0’s, which reduces the switching activity in PP reduction step. The

Booth recoded PP generators are modified to include the ability of signal gat-

ing so that the outputs could be set to 0’s. The overhead consists of dynamic

precision detection logic and complicated PP generation logic.

125



X1 Y1

Mult

X1 Y0

Mult

X0 Y1

Mult

X0 Y0

Mult

N N N N

P
attern

D
etectio

n

X Y

Shift-Addition

2N

P = X Y

N/2N/2N/2N/2N/2N/2N/2N/2

X0X1

Y0Y1

X0 Y0

X1 Y0

X0 Y1

X1 Y1

P

(a)

(b)

Figure 6.2: The proposed low-power multiplier in [50].

6.2 Signal Gating Schemes

In this section, we generalize various 1-D signal gating algorithms and propose

several 2-D gating schemes for low-power multipliers. Which gating scheme

should be chosen depends on design objectives and arithmetic features of the

target applications. The power reduction depends on the frequency of short-

precision data.

126



6.2.1 General Description

We assume two’s-complement multiplication with m-bit multiplicand X, n-bit

multiplier Y , and (m + n)-bit product P . The width of the gated portion of X

is denoted as GX . Similarly, we define GY and GP . We also define the widths

of un-gated portions: NGX = m − GX , NGY = n − GY , NGP = m + n − GP .

Each w-bit two’s-complement number can be partitioned into two parts: sign

extension bits (leading zeros or ones), and significant bits including the sign bit.

The sign extension part is denoted as E and the significant part as D. WE and

WD denote the lengths of E and D, respectively. Therefore, w = WE + WD and

1 ≤ WD ≤ w.

One of our design goals is to make the signal gating structure transparent to

the rest of the system with respect to functionality. This is achieved by provid-

ing full-width input/output data interfaces. Inside the multiplier, gating logic is

inserted at some predetermined positions to identify portions of the circuit as gat-

ing candidates. Whether the candidate portion is actually gated or not depends

on runtime data precisions. The general behavior of signal gating is described

in Figure 6.3. In this graph, the width(s) of the gating-candidate portion(s) is

denoted as some general G. The first step is to detect the width(s), WE, of sign-

extension portion(s) of the variable(s) under gating consideration. If WE ≥ G,

the gating logic is activated and the multiplier works as a short-precision multi-

plier. The result is then restored to the full width by sign extension. Otherwise,

the multiplier works as a normal full-width multiplier. The final output product

is always in full precision of (m + n) bits.

127



Sign Extension Detection

X Y

m n

W
E
  >= G?

Portion(s) is gated;

Multiplier acts as 

a short multiplier

Full m x n 

Multiplier

Restore sign 

to full width

m+n m+n

Result P

noyes

m+n

w’< m+n

Figure 6.3: General behavior of signal gating schemes.

6.2.2 Static Gating versus Dynamic Gating

The ideal signal gating would dynamically deactivate the corresponding sign-

extension portion for each operand with WE > 0. This would be attractive

because the circuit adaptively responds to actual precision of operands. However,

such a dynamic gating requires gating logic for every bit, which is unacceptable

because of the large delay/area/power overhead. Alternatively, gating logic is

statically fixed at predetermined positions. When WE ≥ G, the candidate portion

of width G is gated to be inactive. Algorithms can be developed to decide the

optimal gating position based on the data precision statistics.

In static gating with only one fixed gating position, no circuit portion is

128



gated in all cases of WE < G. When WE ≥ G, only a portion of width G is

gated although more can be gated. Hence, static gating cannot maximize the

power reduction when the precisions of input data are distributed evenly over a

large range. To take advantage of the adaptive deactivation in dynamic gating,

hybrid gating can be developed. In hybrid gating, multiple gating positions

are predetermined and multiple gating lines are implemented. According to the

actual data precisions, one gating line is selected and the related circuit portion

is gated. The overhead increases as more gating lines are added and there is

some point that multiple gating lines would bring no power saving or even power

increase.

The bit-vectors of most multimedia data can be divided into three regions:

MSB region for sign bits, linear region for correlated data bits, and LSB region

for uncorrelated random data bits [75][105]. For these data, one gating line

located somewhere in the linear region is usually sufficient to achieve good power

reduction with small overhead. Therefore, we restrict our discussion to static

gating with one gating line per variable in multipliers.

6.2.3 One-Dimensional Signal Gating

1-D gating inserts a single gating line and partitions a circuit module into two

parts according to the precision of one variable. In multiplication, there are three

variables: multiplicand X, multiplier Y , and product P . Correspondingly, there

are three gating choices, namely G-X, G-Y, G-P, as illustrated in Figure 6.4. In

these diagrams, the PP bit matrices are shown as parallelograms. The shaded

portion in each scheme is inactive when the gating condition holds.

G-X Scheme

In 6.4(a), the left portion corresponding to X is gated when WEX
≥ GX . The

129



(c)

G-P: Gated when WE
P
 >= GP

(a)

G-X: Gated when WE
X
 >= GX

(b)

G-Y: Gated when WE
Y
 >= GY

Figure 6.4: 1-D gating diagrams.

high-level algorithm of G-X is described in Figure 6.5. The previous work in [70]

belongs to this G-X scheme although it only deals with a specific multiplier with

one constant input. The work in [134] is a dynamic G-X gating version as it sets

the sign-extension bits in PPs to zeros according to the actual precisions.

– step 1: sign extension detection –

xg =







0 if xm−1 = xm−2 = · · · = xNGX−1

1 otherwise

– step 2: multiplication –

if xg = 0 then

X(NG) = −xNGX−12
NGX−1 +

∑NGX−2
j=0 xj2

j

P (NG) = X(NG) × Y =
∑n

i=0 X(NG)yi2
i − X(NG)yn−12

n−1

pi = pNGX+n−1 i = NGX + n, · · · , m + n − 1

else

P = X × Y =
∑n−2

i=0 Xyi2
i − Xyn−12

n−1

end if

Figure 6.5: High-level algorithm of G-X.

G-Y Scheme

In 6.4(b), the bottom portion corresponding to Y is gated when WEY
≥ GY .

The high-level algorithm is described in Figure 6.6. Radix-4 recoding changes

130



sign-extension bits in Y to 0’s, which can be viewed as one form of G-Y gating.

– step 1: sign extension detection –

yg =







0 if yn−1 = yn−2 = · · · = yNGY −1

1 otherwise

– step 2: multiplication –

if yg = 0 then

Y (NG) = −yNGY −12
NGY −1 +

∑NGY −2
i=0 yi2

i

P (NG) = X × Y (NG) =
∑NGY −2

i=0 Xyi2
i − XyNGY −12

NGY −1

pi = pm+NGY −1 i = m + NGY , · · · , m + n − 1

else

P = X × Y =
∑n−2

i=0 Xyi2
i − Xyn−12

n−1

end if

Figure 6.6: High-level algorithm of G-Y.

G-P Scheme

In 6.4(c), the left portion corresponding to P is gated when WEP
≥ GP .

However, it is not easy to detect WEP
because WEP

= WEX
+WEY

and there are

multiple combinations of WEX
and WEY

for a given WEP
. One way to simplify

the detection of WEP
is to set GX and GY separately so that GP = GX + GY

and the gating criteria are WEX
≥ GX and WEY

≥ GY . Again, there are several

possibilities of the locations of G-P gating line and there is minor difference in

gated PP bits between each location. When m > NGP > n, the high-level

algorithm description is shown in Figure 6.7. The G-P scheme was first proposed

in [32] as a partially guarded computation technique.

131



– step 1: sign extension detection –

g =







0 if xm−1 = xm−2 = · · · = xNGX−1 and

yn−1 = yn−2 = · · · = yNGY −1

1 otherwise

– step 2: multiplication –

if g = 0 then

P (NG) =
∑n−2

i=0 yi2
i(

∑NGP−i−1
j=0 xj2

j) − yn−12
n−1 ∑NGP−n

j=0 xj2
j

pi = pNGP−1 i = NGP , · · · , m + n − 1

else

P = X × Y =
∑n−2

i=0 Xyi2
i − Xyn−12

n−1

end if

Figure 6.7: High-level algorithm of G-P (m > NGP > n).

6.2.4 Two-Dimensional Signal Gating

2-D gating inserts two gating lines for two input variables, X and Y . If the two

gating lines are jointly activated, the scheme is denoted as 2-D G-J. If they are

separately activated, the scheme is 2-D G-G (the most general case). Figure 6.8

illustrates the 2-D G-J and G-G schemes. In 6.8(a), the shaded portion corre-

sponding to upper bits of X and Y is jointly gated when both WEX
≥ GX and

WEY
≥ GY hold. In 6.8(b), the left portion of X is gated if only WEX

≥ GX

holds; the bottom portion of Y is gated if only WEY
≥ GY holds; all shaded

regions are jointly gated if both WEX
≥ GX and WEY

≥ GY hold.

It is obvious that the 1-D G-X and G-Y schemes are special cases of 2-D

gating. The 2-D gating schemes are generally more efficient in power reduction

than the 1-D scheme because more regions are gated. Algorithm descriptions of

the G-J scheme and the most comprehensive G-G scheme are given in Figure 6.9

132



(a)

G-J: joint-gated when WE
X
 >= GX and WE

Y
 >= GY

(b)

G-G: left-gated when WE
X
 >= GX ;

            bottom-gated when WE
Y
 >= GY ; 

            joint-gated when WE
X
 >= GX and WE

Y
 >= GY

Figure 6.8: 2-D gating diagrams.

and 6.10, respectively. With respect to previous work, the scenario-adaptive

ensemble system in [13] and the small-multiplier scheme in [50] can be viewed as

special architecture-level 2-D gating schemes.

– step 1: sign extension detection –

g =







0 if xm−1 = xm−2 = · · · = xNGX−1 and

yn−1 = yn−2 = · · · = yNGY −1

1 otherwise

– step 2: multiplication –

if g = 0 then

X(NG) = −xNGX−12
NGX−1 +

∑NGX−2
j=0 xj2

j

Y (NG) = −yNGY −12
NGY −1 +

∑NGY −2
i=0 yi2

i

P (NG) = X(NG) × Y (NG) =
∑NGY −2

i=0 X(NG)yi2
i − X(NG)yNGY −12

NGY −1

pi = pNGX+NGY −1 i = NGX + NGY , · · · , m + n − 1

else

P = X × Y =
∑n−2

i=0 Xyi2
i − Xyn−12

n−1

end if

Figure 6.9: High-level algorithm of G-J.

133



– step 1: sign extension detection –

xg =







0 if xm−1 = xm−2 = · · · = xNGX−1

1 otherwise

yg =







0 if yn−1 = yn−2 = · · · = yNGY −1

1 otherwise

– step 2: multiplication –

if xg = 0 and yg = 1 then

X(NG) = −xNGX−12
NGX−1 +

∑NGX−2
j=0 xj2

j

P (NG) = X(NG) × Y =
∑n

i=0 X(NG)yi2
i − X(NG)yn−12

n−1

pi = pNGX+n−1 i = NGX + n, · · · , m + n − 1

else if xg = 1 and yg = 0 then

Y (NG) = −yNGY −12
NGY −1 +

∑NGY −2
i=0 yi2

i

P (NG) = X × Y (NG) =
∑NGY −2

i=0 Xyi2
i − XyNGY −12

NGY −1

pi = pm+NGY −1 i = m + NGY , · · · , m + n − 1

else if xg = 0 and yg = 0 then

X(NG) = −xNGX−12
NGX−1 +

∑NGX−2
j=0 xj2

j

Y (NG) = −yNGY −12
NGY −1 +

∑NGY −2
i=0 yi2

i

P (NG) = X(NG) × Y (NG) =
∑NGY −2

i=0 X(NG)yi2
i − X(NG)yNGY −12

NGY −1

pi = pNGX+NGY −1 i = NGX + NGY , · · · , m + n − 1

else

P = X × Y =
∑n−2

i=0 Xyi2
i − Xyn−12

n−1

end if

Figure 6.10: High-level algorithm of G-G.

6.3 Bit-level Implementation

The gating schemes described above are conceptually simple at the algorithm

level. Careful bit-level design is necessary in order to minimize the gating over-

134



head and evaluate realistically the gating effect on power/delay/area. Major

considerations include sign-extension detection, modification on gating boundary

signals, final CPA sharing and sign extension restoring. Because of the structure

difference, linear array multipliers and high-performance multipliers (ULLRLF

and tree) are considered separately in this chapter and the next chapter. Input

data of a multiplier are stored in two registers. Upon each clock rising edge,

new data are loaded into registers and the combinational multiplier works on the

loaded data. Signal gating is applied to both input registers and combinational

multiplication logic.

6.3.1 Sign-Extension Detection Logic

Sign-extension detection (SED) is the first step in signal gating schemes. For a

variable D with the upper d bits as the gating candidate, the upper (d + 1) bits

are checked in order to detect if the upper d bits are sign extension bits. One

extra bit is necessary because the un-gated region needs at least one sign bit for

correct two’s-complement computation when the d bits are gated.

The detection logic itself simply decides if all input bits are identical, as shown

in Figure 6.11. The OR signal of the w bits (w = d + 1) indicates all inputs are

0’s whereas the NAND signal indicates all inputs are 1’s. Either case would set

‘0’ to the gating control signal g, which is ‘0’-active. g is used to disable the clock

signal of input registers as well as those signals going into the gated combinational

portion(s).

To protect the clock signal from glitches and ensure correct timing, g is latched

to be gl before controlling the clock and is registered to be gll before controlling

the combinational circuit. The timing diagram is illustrated in Figure 6.12. For

gclk, the potential glitches from g is isolated by the latch when clk is ‘1’ and is

135



SED : Sign-Extension Detection

Function:
if w bits are identical, g = 0.
gclk is disabled clk; 
gll is registered g.

clk gclk

gll

SED

(a) Symbol

D

d

q
en Latch

g

d

q
en Latch

clk

gll

gclk

gl

(b) Logic

w bits

D

w bits

Figure 6.11: Sign-extension detection logic.

eliminated by the AND gate when clk is ‘0’. Two latches in series with opposite

clock controls form a D flip-flop. Therefore, g is registered at clk’s rising edge at

the same time as data are stored into input registers.

When w is large, SED requires large fan-in AND/OR gates. To reduce the

detection time, a tree structure of logic depth (log w + 1) is built. Using 2-input

gates, an 8-bit tree structure is shown in Figure 6.13. In actual implementation,

AND/OR gates are replaced by NAND/NOR gates for better delay and area.

Gates with more than two inputs may be used to reduce the number of logic

levels. However, each level would have larger delay because of the larger gate

size. The decision depends on the implementation technology. If the data being

checked have a natural skew of arrival times, the skew should be taken into

account and a linear structure may help reduce glitches.

136



g

gl

clk

gclk

gll

Normal Period Gated Period

glitches

D

Figure 6.12: Timing diagram of SED with glitch elimination.

d1 d0d3 d2d5 d4d7 d6d1 d0d3 d2d5 d4d7 d6

g

Figure 6.13: Tree structure of SED.

6.3.2 Signal Gating Logic

Signal gating logic prevents unwanted signal switching activities from propagating

forward. There are many ways to implement signal gating logic [130]. The

137



simplest one is to insert a basic gate such as AND2 in the signal propagation

path, as shown in Figure 6.14a. For AND, when the control signal ctl is set to

‘0’, the output xo becomes ‘0’ and any further switching of input x would have

no effect on xo. Note that the change of xo to ‘0’ may trigger switching activities

in xo’s downstream circuit. Another method is to use a latch in Figure 6.14b

as blocking logic. When ctl is ‘1’, the latch is transparent to x except for small

increase in propagation delay; when ctl becomes ‘0’, xo holds the value of x at the

time right before ctl changes. As xo remains at the old value when x is gated, it

prevents signal switching in the downstream circuit. The disadvantage of latch-

based gating is the area overhead. Sometimes, a tristate buffer in Figure 6.14c

or a transmission gate in Figure 6.14d can be used in place of a latch if the

floating node problem can be solved properly [130]. When ctl is ‘0’, xo becomes

a floating node as all transistors driving the node are turned off. When the node

is left alone for a long time, charge leakage can cause the node voltage to float

to intermediate values and large short-circuit current may occur. In our study,

latches are chosen because the logic depth of gated downstream circuits could be

as large as O(n) + O(m) in m× n-bit multipliers and the power cost of resetting

signals to ‘0’ by AND2 is often higher.

(a) Simple Gate

Latch

(b) Latch

ctl

ctl

ctl

ctl

x xo

x

xx

xo

xoxo

(c) Tristate Buffer (d) Transmission Gate

Figure 6.14: Various implementations of gating logic.

138



6.3.3 Modification in Array Multiplier Core

To minimize gating overhead, it is better to insert gating logic on the bit level.

In m × n-bit radix-2 two’s-complement multiplication,

ppi,j =







yixj i = 0, · · · , n − 2; j = 0, · · · , m − 2

or i = n − 1; j = m − 1

(yixj)
′ i = 0, · · · , n − 2; j = m − 1

or i = n − 1; j = 0, · · · , m − 2

(6.1)

PPi =
m−1∑

j=0

ppi,j2
j i = 0, · · · , n − 1 (6.2)

P =
n−1∑

i=0

PPi2
i + 2n−1 + 2m−1 + 2m+n−1 (6.3)

in which 2n−1, 2m−1, and 2m+n−1 correspond to three constant 1’s. If m = n,

(2n−1 + 2m−1) can be pre-computed as 2m. FAs with constant inputs are reduced

to be half adders or inverters. The MSB bit pm+n−1 can be computed separately

as yn−1⊕xm−1. In signal gating designs, separate sign computation simplifies the

restoring steps of sign extension bits. Figure 6.15 gives an example of a 5× 5-bit

two’s-complement carry-save linear array multiplier. Input data X and Y are

stored in two input registers. The new input values are marked with superscript

(n). This is the baseline two’s-complement array multiplier considered for signal

gating.

6.3.3.1 1-D G-X

For 1-D G-X, Figure 6.16 illustrates the modifications in the PP bit matrix when

the shaded portion is gated. The number of PP bits in the shaded portion is

(GX · n). All signals entering this region are kept inactive: Y signals are frozen

by gating logic, the upper GX -bit X signals are frozen as the corresponding input

139



‘0’ ‘0’ ‘0’‘1’
FA

or: 

si,j+1 ci,j+1

ppi,j

si+1,jci+1,j+1

x4 x3 x2 x1 x0

y1

y2

y3

y4

p0

p1

p2

p3

y4 x4

p9

x2
(n) x1

(n) x0
(n)

REG
clk

x3
(n)x4

(n)

y0
(n)

y2
(n)

y1
(n)

clk

REG

y2

y1

y0

y3

y4

y3
(n)

y4
(n)

‘1’

p4p5p6p7p8p9 (sign)

‘1’

CPA

Figure 6.15: A baseline radix-2 two’s-complement array multiplier.

registers are clock-gated. Along the gating line, PP bits are inverted to become

sign bits when xgll = 0

ppi,j =







ppi,j
(b) ⊙ xgll i = 0, · · · , n − 1; j = NGX − 1

ppi,j
(b) otherwise

(6.4)

where xgll is the gating control signal and the signals with superscript (b) are the

signals defined in the baseline multiplier. “⊙” is equivalence operation XNOR.

When xgll is active, the ‘1’ originally in column (m − 1) is moved to column

(NGX − 1) and added as c1,NGX−1 = (xgll)′. Signals that come from the gated

region into un-gated region are set to 0 by xgll

si,NGX
= si,NGX

(b) · xgll i = 1, · · · , n − 1 (6.5)

A GX-bit multiplexer called SMUX is used to select between the normal CPA

output pi
(b) and the sign bits indicated by the dashed line, which can be expressed

140



as

pi = pi
(b) · xgll + pm+n−1 · (xgll)′ i = NGX + n − 1, · · · , m + n − 2 (6.6)

xxxxxxs’

xxxxxx

xxxxxx

xxxxxx

xxxxxx

x’x’x’x’x’

s’

s’

s’

s’

s
1

1

C     P    A

S M U X

sP

s’

s’

s’

s’

s’

s 

1

x’

p
m+n-1

...... p
n-2

, ...,  p
0

p
NGX+n-2

, ...,  p
n-1

G
X

NG
X

n

m

Figure 6.16: The 1-D G-X scheme for two’s-complement array multi-

plier.

Each m-bit PP in Figure 6.16 reduces to be an NGX -bit PP when gated,

which is similar to the reduced two’s-complement representation in [134]. The

difference is that the leading GX bits are set to 0’s in [134] while the GX bits

here are kept at previous values. Note that when the GX bits are set to 0’s,

signal switching activities happen in the shaded portion and also propagate into

the un-shaded portion, which consumes unnecessary power.

6.3.3.2 1-D G-Y

Gating on Y can be achieved by exchanging X and Y in the G-X scheme as the

multiplicand X and the multiplier Y are exchangeable. However, it is still mean-

141



ingful to study the G-Y scheme because the length of PP reduction is shorter

when gated and it is the basis of 2-D gating. Figure 6.17 describes the modifica-

tions in the PP bit matrix when the shaded portion is gated. The number of PP

bits in the shaded portion is (GY ·m). The G-Y scheme is more complicated than

the G-X scheme because the gated PPs have to be bypassed. Along the gating

line, the PP bits are inverted as follows

ppi,j =







ppi,j
(b) ⊙ ygll i = NGY − 1; j = 0, · · · , n − 1

ppi,j
(b) otherwise

(6.7)

When xgll is active, the special ‘1’ in column (n−1) is moved to column (NGY −1)

but still handled in the final CPA. The PP bits along the gating line corresponds

to −XyNGY −12
NGY −1 in Figure 6.6.

xxxxxxs’

xxxxxx

xxxxxx

xxxxxx

x’x’x’x’x’

s’

s’

s’

s
1

1

C     P    A

x

x

x

x

x’ x’

C     P    A

O    M    U    X

m

n

NG
Y

G
Y

x’x’x’x’x’s 
1

x’ x’

sP

p
m+n-1

p
NGY-2

, ...,  p
0

p
m+NGY-2

, ...,  p
NGY-1

......

SMUX

Figure 6.17: The 1-D G-Y scheme for two’s-complement array multi-

plier.

Two final CPAs are provided separately for the un-gated and the gated case.

These two CPAs are merged and shared in actual implementations. In the un-

gated case, an m-bit OMUX and a GY -bit SMUX jointly select the normal prod-

142



uct output indicated by the solid lines. In the gated case, OMUX selects dashed

signals from the second CPA and SMUX selects sign bits. The operation of

SMUX can be expressed as

pi = pi
(b) · ygll + pm+n−1 · (ygll)′ i = m + NGY − 1, · · · , m + n − 2 (6.8)

6.3.3.3 1-D G-P

For the 1-D G-P scheme, there is no change in the PP bit matrix. Only logic

for blocking signals into the gated region and multiplexers for sign extension

are needed, as shown in Figure 6.18. The number of PP bits in the shaded

portion depends on the relative values of m, n, GP . If m ≥ n, this number can

be expressed as

Nbitshaded =







GP (GP +1)
2

if GP ≤ n

n(2GP−n+1)
2

if n < GP ≤ m

n(2m−n+1)
2

+ (GP −m)(2n−1−GP +m)
2

if GP > m

(6.9)

If m < n, this number is counted as

Nbitshaded =







GP (GP +1)
2

if GP ≤ m

m(2GP −m+1)
2

if m < GP ≤ n

m(2n−m+1)
2

+ (GP −n)(2m−1−GP +n)
2

if GP > n

(6.10)

Whether G-P is superior to G-X and G-Y depends on the gating positions and

the switching activity in the gated region. A high-level estimation is to compare

the number of gated PP bits. For example, if GP < n and GX > n/2, G-X would

gate more PP bits than G-P; if GP ≥ n and GX ≤ n/2, G-P would gate more

bits. Accurate estimation requires a consideration of gating overhead and data

characteristics.

143



xxxxxxs’

xxxxxx

xxxxxx

xxxxxx

xxxxxx

x’x’x’x’x’

s’

s’

s’

s’

s
1

1

C     P    A

S M U X

x

x

x

x

x

x’x’

sP

p
m+n-1

p
n-2

, ...,  p
0

p
NGP-1

, ...,  p
n-1......

NG
P

G
P

m+n

n

(a)  NGP>=n

xxxxxxs’

xxxxxx

xxxxxx

xxxxxx

xxxxxx

x’x’x’x’x’

s’

s’

s’

s’

s
1

1

C     P    A

S     M     U    X

x

x

x

x

x

x’x’

sP

p
m+n-1

p
NGP-1

, ...,  p
0

p
m+n-2

, ...,  p
NGP

NG
P

G
P

m+n

n

(b)  NGP<n

Figure 6.18: The 1-D G-P scheme for two’s-complement array multi-

plier.

6.3.3.4 2-D G-J

In 2-D G-J, the registered gating control signal gll becomes ‘0’ only when both

WEX
≥ GX and WEY

≥ GY hold. Figure 6.19 illustrates major modifications in

the bit matrix for the 2-D G-J scheme. The number of PP bits in the shaded

portion is (GX · n + GY · NGX). The multiplier performs NGX × NGY -bit

multiplication when gating is active. PP bits are modified as follows

ppi,j =







ppi,j
(b) ⊙ gll i = 0, · · · , NGY − 2; j = NGX − 1 or

i = NGY − 1; j = 0, · · · , NGX − 2

ppi,j
(b) otherwise

(6.11)

The special ‘1’ in column (NGX − 1) is controlled by gll

c1,NGX−1 = (gll)′

144



Another ‘1’ in column (NGY − 1) is implemented in the CPA. When NGX =

NGY , these two 1’s may be pre-added to be ‘10’ and implemented as

c1,NGX
= (gll)′

Signals that come from the gated region into un-gated region are also controlled

by gll

si,NGX
= si,NGX

(b) · gll i = 1, · · · , NGY − 1 (6.12)

xxxxxxs’

xxxxxx

xxxxxx

xx

xxxxxx

x’x’x’x’x’

s’

s’

s’

s’

s
1

1
s’

s’

s’

1

x

x’x’

G
X

NG
X

m

n

NG
Y

G
Y

x’x’x’s 
1

x

C     P    A

C   P   A

S M U X

sP

p
m+n-1

p
NGY-2

, ...,  p
0

p
m+n-2

, ...,  p
NGX+NGY-1

O M U X

......

Figure 6.19: The 2-D G-J scheme for two’s-complement array multi-

plier.

Similar to 1-D G-Y, two final CPAs are provided here. In the un-gated case,

the NGX -bit OMUX and the (GX + GY )-bit SMUX jointly select the normal

product output indicated by the solid lines. In the gated case, OMUX selects

dashed signals from the second CPA and SMUX selects sign bits. The operation

of SMUX can be expressed as

pi = pi
(b) · gll + pm+n−1 · (gll)′ i = NGX + NGY − 1, · · · , m + n − 2 (6.13)

145



6.3.3.5 2-D G-G

The 2-D G-G scheme can be viewed as the combination of 1-D G-X, 1-D G-Y

and 2-D G-J. There are two gating control signals, xgll and ygll. In Figure 6.20,

the PP bit matrix is partitioned into four portions: top-right (TR), top-left (TL),

bottom-right (BR) and bottom-left (BL). When only xgll is active, the left two

portions (TL and BL) are gated. When only ygll is active, the bottom two

portions (BR and BL) are gated. When both are active, three portions (TL, BL

and BR) are gated. TR is always un-gated while BL is gated by either active

xgll or active ygll. The total number of PP bits being gating candidates is

(GX · n + GY ·NGX), the same as in 2-D G-J. The PP bits along the two gating

lines are modified as follows

ppi,j =







ppi,j
(b) ⊙ xgll i = 0, · · · , NGY − 2; j = NGX − 1

ppi,j
(b) ⊙ ygll i = NGY − 1; j = 0, · · · , NGX − 2

ppi,j
(b) ⊙ (xgll ⊙ ygll) i = NGY − 1; j = NGX − 1

ppi,j
(b) ⊙ xglly i = NGY , · · · , N − 1; j = NGX − 1

ppi,j
(b) ⊙ ygllx i = NGY − 1; j = NGX , · · · , M − 1

ppi,j
(b) otherwise

(6.14)

where xglly and ygllx are two special latch-controlled signals. xglly is controlled

by ygll: when ygll = 1, xglly is essentially xgll propagating transparently through

the latch; when ygll = 0, xglly is frozen at the old value of xgll. ygllx is controlled

by xgll. These two signals can be replaced by the normal gating signals xgll and

ygll without affecting the computation. The reason of using these two special

signals is to keep even xgll and ygll inactive in gated regions.

The special ‘1’ in column (NGX−1) is controlled by xgll as c1,NGX−1 = (xgll)′.

The ‘1’ in column (NGY −1) is handled in the final CPA. Signals that come from

146



xxxxxxs’

xxxxxx

xxxxxx

xx

xxxxxx

x’x’x’x’x’

s’

s’

s’

s

1
s’

s’

s’

1

x’

n

NG
Y

G
Y

x’x’x’s/s’x

C     P    AsP

p
m+n-1

p
NGY-2

, ...,  p
0

x’x’x’

s’

s 

G
X

NG
X

m

O   M    U    X

S  M  U  X

p
m+n-2

, ...,  p
NGX+NGY-1

......

I    M     U    X

1

1

s 

Figure 6.20: The 2-D G-G scheme for two’s-complement array multi-

plier.

the gated region into the un-gated region are modified as

si,NGX
=







si,NGX

(b) · xgll i = 1, · · · , NGY − 1

si,NGX

(b) · xglly i = NGY , · · · , N − 1
(6.15)

Only one final CPA is provided and the sharing is discussed here in detail.

This CPA is shared by all computation cases. The inputs of the CPA are selected

through the input multiplexer IMUX

CPAin1 =







(sNGY ,m−1, sNGY ,m−2, · · · , sNGY ,0) if ygll = 0

(sn,m−1, sn,m−2, · · · , sn,0) if ygll = 1
(6.16)

CPAin2 =







(cNGY ,m−1, cNGY ,m−2, · · · , cNGY ,1, 0) if ygll = 0

(cn,m−1, cn,m−2, · · · , cn,1, 0) if ygll = 1
(6.17)

If ygll = 1, the inputs are the normal sum/carry signals from the last row. If

147



ygll = 0, the inputs come from the (NGY − 1)-th row. In this case, the outputs

of the CPA have to be shifted GY -bit right. This shift is implemented in OMUX

where the dashed input indicates the data to be shifted. In correspondence with

X gating in the array, IMUX, CPA and OMUX are also partitioned and the left

portions of them are gated when xgll = 0.

Finally, SMUX is used for the restoring operation of sign-extension bits.

SMUX handles four sign situations

xgll = 1, ygll = 1 : pm+n−1
︸ ︷︷ ︸

sign bit

, · · · , pNGX+n−1, pNGX+n−2, · · · , p0 (6.18)

xgll = 0, ygll = 1 : pm+n−1, · · · , pNGX+n−1
︸ ︷︷ ︸

sign bits

, pNGX+n−2, · · · , p0 (6.19)

xgll = 1, ygll = 0 : pm+n−1, · · · , pm+NGY −1
︸ ︷︷ ︸

sign bits

, pm+NGY −2, · · · , p0 (6.20)

xgll = 0, ygll = 0 : pm+n−1, · · · , pNGX+NGY −1
︸ ︷︷ ︸

sign bits

, pNGX+NGY −2, · · · , p0 (6.21)

where each bit in a sign region is identical. The MSB bit pm+n−1 always indicates

the product sign sP . sP is thus computed separately in order to simplify the sign

extension operation. Denote SMUX’s solid-line input signals as pi
(b). The SMUX

operation is divided into three parts and each part has a different control signal.

For i = max(NGX + n, m + NGY ) − 1, · · · , m + n − 2,

pi = pi
(b) · (xgll · ygll) + sP · (xgll · ygll)′ (6.22)

For i = min(NGX + n, m + NGY ) − 1, · · · , max(NGX + n, m + NGY ) − 2,

pi =







pi
(b) · xgll + sP · (xgll)′ if NGX + n < m + NGY

pi
(b) · ygll + sP · (ygll)′ if NGX + n ≥ m + NGY

(6.23)

For i = NGX + NGY − 1, · · · , min(NGX + n, m + NGY ) − 2,

pi = pi
(b) · (xgll + ygll) + sP · (xgll + ygll)′ (6.24)

For i = 0, 1, · · · , NGX + NGY − 2, no sign-bit multiplexer is needed.

148



6.3.3.6 An Example of 2-D G-G in Linear Array Multiplier

Figure 6.20 shows an example implementation of the general gating scheme – 2-D

G-G. It is modified from the baseline 5 × 5-bit two’s-complement multiplier in

Figure 6.15 by inserting two gating lines at GX = 2 and GY = 2. Each register

is partitioned into two parts: one is clocked by the normal clk, the other is

clocked by the gating-controlled signal xgclk or ygclk. SED is the sign-extension

detection logic discussed in Section 6.3.1.

y0
(n)

y2
(n)

y4
(n)

y3
(n)

p0p1p2

ygll

ygll

p4p5p6p7p8 p3

y1
(n)

‘0’ ‘0’‘1’

AB

 Ag 

 Ag 

As

 Bg 

 A 

 B  B Bgs

x3
(n) x2

(n) x1
(n) x0

(n)x4
(n)

clk

clk

REG

 1    0  1    0  1    0  1    0  1    0  1    0  1    0  1    0

 1    0 1    0 1    0 1    0 1    0

 1    0  1    0  1    0

xgll

p9

 1    0

xgll

ygll

clk
xgclk

xgll

SED

clk

ygclk

ygll

SED

yi xj 

ppi,j

ppi,j

si,j+1 ci,j+1

si+1,jci+1,j+1

yi xj 

ppi,j

-- Latch controlled by xgll

-- Latch controlled by ygll

s3,0c3,1s3,1c3,2s3,2c3,3s3,3c3,4s3,4

REG

REG

REG

(sign)

FA

 1    0  1    0

x4  x2 y4  y2

ygllxgll

x3 x2 x1 x0x4

y0

y2

y4

y3

y1

xgll

ygll
 1    0

Figure 6.21: An example of 2-D G-G.

In the multiplication core, two gating lines partition the array into four parts.

149



The horizontal X gating line is controlled by xgll and the Y gating line is con-

trolled by ygll. Latches along the X gating line block those Y signals entering

the left region. Latches along the Y gating line block those X signals as well as

carry/sum signals entering the bottom region. Gating-boundary cells, labeled by

letters in the diagram, are specially modified from the baseline cells, as shown in

Figure 6.22.

xgll

As

A

ci,j+1

si,j+1

ppi,j

si+1,jci+1,j+1

B

si+1,j

ppi,j xgll

Bgs

si+1,j

ppi,j ygllx

si+1,jci+1,j+1

ygll ci,j+1

si,j+1

ppi,j ygll xgll

AB

ci,j+1

si,j+1

ppi,j

si+1,jci+1,j+1

xglly

Ag

ci,j+1

si,j+1

ppi,j

si+1,jci+1,j+1

Bg

si+1,jci+1,j+1

ygllx ci,j+1

si,j+1

ppi,j

Figure 6.22: Special cells in 2-D G-G.

The final CPA is shared through multiplexed inputs and outputs. When ygll

is active, the CPA accepts dashed-line signals from the Y gating boundary and

its output is shifted 2-bit right. The CPA itself and its input/output multiplexers

are also gated in the higher 2-bit cells when xgll is active. The MSB sign of the

product is computed separately. When xgclk is active, x2 instead of x4 indicates

the sign because x4 is frozen. When ygclk is active, y2 instead of y4 indicates

the sign. Because NGX + n = m + NGY = 8, only two multiplexer regions

with different control signals are needed for the sign restoration described in

150



Equation 6.22-6.24.

6.4 Experimental Evaluation

The proposed schemes have been implemented and simulated using the design

methodology described in Appendix B. In our experiment, the baseline scheme is

a 32× 32-bit two’s-complement carry-save linear array multiplier with two input

registers. The test data set with large dynamic range is djpeg. random is also

used in order to test the power overhead. Among three 1-D gating schemes, G-P

initially reported in [32] is chosen because it consumes less power than the other

two schemes for djpeg. For the proposed 2-D gating schemes, the gating lines

are inserted at GX = 22 and GY = 16. The method of gating position selection

is also explained in Appendix B. The power results are shown in Table 6.1 and

the area/delay results are shown in Table 6.2. The values in parentheses are

normalized values. The power consumption is measured at 50MHz. CArea is

the total cell area and the routable rate is 85%. TSED is the critical path delay of

sign-extension detection logic. Tcore is the critical path delay in the computation

stage including input registers.

Table 6.1: Power comparison of 2-D signal gating schemes

Power(mW ) (50MHz)
Schemes

random djpeg

r2-array-reg 58.07 (1.00) 21.56 (1.00)

1-D G-P 59.57 (1.03) 7.15 (0.33)

2-D G-J 59.23 (1.02) 3.92 (0.18)

2-D G-G 64.43 (1.11) 3.18 (0.15)

151



Table 6.2: Delay/area comparison of 2-D signal gating schemes

Delay(ns)
Schemes CArea(µm2)

TSED Tcore Total

r2-array-reg 98325 (1.00) 0 16.49 16.49 (1.00)

1-D G-P 104456 (1.06) 1.22 15.79 17.01 (1.03)

2-D G-J 103085 (1.05) 1.05 16.96 18.04 (1.09)

2-D G-G 110081 (1.12) 0.81 17.23 18.04 (1.09)

It can be seen that signal gating techniques are very efficient in power reduc-

tion for input data with a large dynamic range such as djpeg. Overall, signal

gating has achieved 67-85% power reduction from the baseline multiplier. 1-D

G-P reduces the power to 33%. 2-D gating schemes are generally more efficient

and further reduce the power to 15-18%. Compared to G-J, G-G consumes 19%

less power at the cost of 7% more area. From G-P to G-G, the improvement is

more than 50% with only 5% overhead in area. Under random test data, G-P

only consumes 2% more power and G-G consumes 11% more power. The de-

lay overhead of 2-D gating schemes are only 6% compared to 1-D G-P and 9%

compared to the baseline multiplier.

6.5 Summary

In this chapter, we have proposed 2-D signal gating techniques and generalized

a class of signal gating schemes for multipliers with large-dynamic-range input

data. This class includes 1-D gating schemes (G-X, G-Y, and G-P) and 2-D

gating schemes (G-J and G-G). In 2-D gating, gating lines are provided for both

operands. Different regions of the multiplier are dynamically deactivated accord-

152



ing to the precision information of each operand. These signal gating schemes are

applied into traditional linear array multipliers. The gating overhead has been

minimized by careful design of sign-extension logic, gating control logic, gating

boundary modification, final CPA sharing and sign-extension restoration. Ex-

periments with large-dynamic-range data show that 2-D G-J achieves 45% power

reduction and 2-D G-G achieves 56% power reduction with small overhead in

area and delay compared to previous work using 1-D G-P.

153



CHAPTER 7

Signal Gating in High-Performance Multipliers

7.1 Introduction

All work we are aware of on signal gating for multipliers, including our work in

Chapter 6 and previous work in [70][32][50][134], has focused on conventional lin-

ear array multipliers. In high-performance applications, tree multipliers are used

more frequently. In Chapter 2, we have shown that tree multipliers also consume

less power than traditional linear array multipliers although tree multipliers have

larger chip area. As signal gating is demonstrated to be very efficient in linear

array multipliers with large-dynamic-range data in Chapter 6, we extend it to

high-performance multipliers as an additional effort for power saving. Because

2-D G-G is the most power-efficient gating scheme, we only consider 2-D G-G

signal gating in this chapter. First, we apply 2-D G-G signal gating in high-

performance ULLRLF array multipliers. The gating boundary modification in

PP bit matrix and resource sharing to reduce overhead are described in detail.

Then, we apply 2-D G-G in tree multipliers. Because of the complex tree struc-

ture, gating boundary modification is more complex and each CSA reduction

level is considered separately. Finally, experiments with layout are conducted to

evaluate the power, delay, and area characteristics of the proposed signal gating

schemes.

154



7.2 Signal Gating in ULLRLF Array Multiplier

The two main parts of bit-level design of signal gating are the PP bit matrix

modifications along gating boundaries and resource sharing. In Chapter 5 (Fig-

ure 5.1), 1’s for sign-extension are placed together in the first row for reduced

area and delay. In signal gating, this handling of sign-extension 1’s is inconve-

nient for boundary modification. Therefore, we arrange constant 1’s back to the

left of each row as in Chapter 4 (Figure 4.2).

7.2.1 Modification of PP Bit Matrix

In ULLRLF, the PP bit matrix has already been partitioned into upper and

lower parts. If the optimal gating boundary of Y lies in one of these parts, 2-D

G-G in ULLRLF is very similar to that in traditional linear array multipliers

(Chapter 6). Here we consider the case where the Y gating boundary is exactly

the upper/lower partitioning boundary. The X gating boundary remains flexible

and can be inserted at any place in the array. A high-level 2-D gating diagram

in ULLRLF is illustrated in Figure 7.1. The PP bit matrix is partitioned into

four portions: top-right (TR), top-left (TL), bottom-right (BR) and bottom-left

(BL). Different from the 2-D gating for R-L multipliers in Figure 6.8b, the region

that is always active is BR rather than TR. The left portion of X is gated if only

WEX
≥ GX holds; the upper portion of Y is gated if only WEY

≥ GY holds; all

shaded regions are jointly gated if both WEX
≥ GX and WEY

≥ GY hold.

Figure 7.2 gives a bit-level diagram of 2-D G-G in m × n-bit ULLRLF with

m = n = 24 and GX = GY = 12. The G-Y gating line goes along the up-

per/lower partitioning boundary. The correction bit corn/4−1 is included in the

active lower region in order to complete smaller m×NGY -bit multiplication. To

155



G-G: left-gated when WE
X
 >= GX ;

            top-gated when WE
Y
 >= GY ; 

            joint-gated when WE
X
 >= GX and WE

Y
 >= GY

Figure 7.1: High-level diagram of 2-D G-G for ULLRLF.

avoid structure changes in the PPR array, corn/4−1 is postponed to the final [4:2]-

CSA instead of being added immediately. No modification in the PP bit matrix

is needed for G-Y because of the existing upper/lower partitioning. When ygll

is active, all PP bits above the G-Y gating line are gated. The G-X gating line

goes through the upper array and lower array in a stair-case way. When xgll is

active, all PP bits on the left portion of the G-X gating line are gated.

1

1

1

1

1

1

1

1

1

1

1

1

1

corn/4-1

G-X

G-Y

G-Y G-X

(PSup, PCup)

(PSlow, PClow)

Figure 7.2: Bit-level diagram of 2-D G-G in ULLRLF.

The shaded region of PP bits along the boundary is enlarged in Figure 7.3.

156



G-X

G-Y

pp0,NGx

Figure 7.3: The shaded region in Figure 7.2.

The modifications of these bits are as follows. The shaded bits to the right of the

G-X gating line are inverted when xgll = 0 or xglly = 0

ppi,NGX
=







ppi,NGX

(b) ⊙ xgll i = 1, · · · , n/4 − 1

ppi,NGX

(b) ⊙ xglly i = n/4, · · · , n/2 − 1
(7.1)

pp0,NGX
is not included as the sign bits in pp0 are handled differently. Signals

with superscript (b) are the original signals in the baseline multiplier. The shaded

bits to the left of the line are set to ‘1’ when xgll = 0 or xglly = 0

ppi,NGX+1 =







ppi,NGX+1
(b) + xgll′ i = 1, · · · , n/4 − 1

ppi,NGX+1
(b) + xgll′y i = n/4, · · · , n/2 − 1

(7.2)

pp0,NGX+1 is not included. Signal xglly is latch-controlled xgll: when ygll = 1,

xglly is essentially xgll propagating transparently through the latch; when ygll =

0, xglly is frozen at the old value of xgll. xglly is to keep xgll inactive in the gated

upper region when G-Y is applied. For the shaded bits in PP0, the modifications

are special because of the signal extension

pp0,NGX
= pp0,NGX

(b) (7.3)

157



pp0,NGX+1 = pp0,NGX

(b) · xgll′ + pp0,NGX+1
(b) · xgll (7.4)

pp0,NGX+2 = pp′0,NGX

(b)
· xgll′ + pp0,NGX+2

(b) · xgll (7.5)

The resulting bit matrix corresponds to smaller NGX × n-bit multiplication.

When G-X and G-Y are jointly active, the bit matrix corresponds to smaller

NGX × NGY -bit multiplication in the bottom-right region.

7.2.2 Resource Sharing

In LRLF for each half PPs, an (n/2-1)-bit [4:2]-CSA is used to add the left-side

vectors from leapfrog PPR and an (m-3)-bit [3:2]-CSA is used to add the right-

side vectors. In G-X, these extra CSAs (eCSAs) need to be shared between gating

and non-gating. To simplify the sharing, the left-side vectors are precomputed so

that only [3:2]-CSAs are used. The modified LRLF for upper half PPs is shown

in Figure 7.4. A special cell, FAP1, is introduced to compute (A + B + C + 1),

as illustrated in Figure 7.5. The logic expressions of FAP1 are

Stmp = A ⊕ B ⊕ C (7.6)

Cout1 = A · B + B · C + A · C (7.7)

Cout2 = Stmp (7.8)

Sum = Stmp′ (7.9)

The inverter in FAP1 is shown as a small circle in Figure 7.4. Now there are at

most three vectors from PPR and only one type of CSA is used.

In G-X, the adder cells along the gating boundary are modified to execute

smaller multiplication, as shown in Figure 7.6. The 1’s in Equation 7.2 during

G-X are implemented by modifying FAs corresponding to PPi,NGX+1
(b) to be

FAP1’s. For two left-most adders each row (except the first row) in the right

region, Pin A’s select inputs between normal PP bits and partial sum (PS) bits

158



(n/2-2)-bit [3:2] CSA

11

1

1

CinL

(m-2)-bit [3:2] CSA

Figure 7.4: LRLF for upper PPs with only [3:2]-CSAs.

B CA

Sum

Cout1 Cout2

Figure 7.5: Cell FAP1 for (A + B + C + 1).

from the previous row

Ai,NGX+1 = xgll · PPi,NGX+1
(b) + xgll′ · PSi−1,NGX+1 (7.10)

Ai,NGX+2 = xgll · PPi,NGX+2
(b) + xgll′ · PSi−1,NGX+2 (7.11)

All vectors reaching the dashed thick line are fed into eCSA and the original

paths entering the left portion are frozen by latches. Multiplexer IMUX selects

the inputs of eCSA between the vectors from normal PPR and the vectors from

the G-X boundary.

Assume that the carry-save vectors from the upper PPR portion are PSupi

and PCupi (i = 0, · · · , m + n − 1) and the vectors from the lower PPR portion

are PSlowi and PClowi (i = 0, · · · , m + n − 1). Because of shifting,

PSupi = PCupi = 0 i = 0, · · · , n/2 − 2 (7.12)

159



1

1
1 1

1

CinL

3(n/2-1)-bit IMUX

CinG

Gx-bit [3:2] CSA

Figure 7.6: Signal gating in LRLF for upper PPs.

PSlowi = PClowi = 0 i = m + n/2, · · · , m + n − 1 (7.13)

An (m + 3)-bit [4:2]-CSA adds these four vectors. As shown in Figure 7.2, this

[4:2]-CSA is shared in four situations: G-X, G-Y, G-J, and no gating. When xgll

is active, the following bits of PSlowi and PClowi on the left of the G-X line in

the [4:2]-CSA are set to 0

PSlowi = PSlowi
(b) · xgll i = n/2 + NGX , · · · , n + NGX (7.14)

PClowi = PClowi
(b) · xgll i = n/2 + NGX , · · · , n + NGX (7.15)

No action is taken on PSupi and PCupi with i = n + NGx + 1, m + n/2 + 2

because these bits are out of the product width in G-X. When ygll is active, the

following bits of PSupi and PCupi in the [4:2]-CSA are set to 0

PSupi = PSupi
(b) · ygll i = NGY + 1, · · · , m + NGY (7.16)

PCupi = PCupi
(b) · ygll i = NGY + 1, · · · , m + NGY (7.17)

The sharing of final CPA is the same as in 2-D G-G gating for linear array

multipliers. Here we do not repeat the description in Section 6.3.3.5 of Chapter 6.

160



7.3 Signal Gating in Tree Multiplier

Tree structures are quite different from array structures. It is difficult to create

a parameterized description for tree multiplier design. Instead, an individual de-

scription is used for each multiplier with a different Y operand width. On the

physical design level, it is very complex to layout a tree in a rectangular floor-

planning. For signal gating, CSAs at each level of a tree require separate consid-

erations. For these reasons, we only consider 2-D G-G for a specific m × n-bit

(m = n = 32) tree multiplier optimized with [9:4]-CSAs proposed in Chapter 5.

To simplify description, GY = n/2 as in the case of ULLRLF. GX is flexible

between 1 to m. Figure 7.7 gives a high-level diagram of 2-D G-G in this tree

multiplier. For G-Y, only one gating line is inserted. For G-X, gating lines are

inserted in CSAs on all levels.

[4:2] CSA [4:2] CSA
[3:2] CSA [3:2] CSA [3:2] CSA

[3:2] CSA [3:2] CSA

[4:2] CSA [4:2] CSA

[4:2] CSA

PP
16

PP
15

PP
0

PP
1

PP
14

PP
2

PP
3

PP
4

PP
5

PP
6

PP
7

PP
8

PP
9

PP
10

PP
13

PP
12

PP
11

G-Y

G-X

G-X

G-X

G-X

G-X

G-XG-XG-X

G-X

Figure 7.7: 2-D G-G in a tree multiplier.

To facilitate the design of gating boundaries, constant 1’s are also placed on

the left of each row as in ULLRLF signal gating. The bit-level diagram of the

161



tree multiplier in Figure 7.7 is shown in Figure 7.8. Each box corresponds to a

CSA and there are four levels of PP reduction. The G-Y gating line partitions

the PPs into group (PP0, · · · , PP7) and group (PP8, · · · , PP16) (PP16 only has

one bit cor15). The correction bit cor7 is included in the top region to complete

smaller m × NGY -bit multiplication. When ygll is active, all PP bits in the

bottom region are gated. The G-X gating line goes through all CSAs in a stair-

case way and GX = 16. When xgll is active, all PP bits on the left portion of

the G-X gating line are gated. The shaded region of PP bits along the boundary

is enlarged in Figure 7.9. These bits are modified in exact the same way as in

ULLRLF. These modifications are incorporated into actual designs by changing

the inputs of CSAs.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

G-X

G-Y

G-X

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

PP9

PP10

PP11

PP12

PP13

PP14

PP15

PP16

L2PS0

L1-1

L1-2

L1-3

L1-4

L1-5

L2-1

L2-2

L2-3

L3

L4

L2PC0

L2PS1

L2PC1

L2PS2

L2PC2

L2PS3

L2PC3

L2PS4

L2PC4

L3PS0

L3PC0

L3PS1

L3PC1

L3PS2

L3PC2

L3PS0

L3PC0

L4PS0

L4PC0

G-Y

Figure 7.8: Bit-level diagram of 2-D G-G in a tree multiplier.

162



G-X

G-Y

pp0,NGx

Figure 7.9: The shade region in Figure 7.8.

In L1-1, the inputs of 7-bit [4:2]-CSAs across the G-X line are modified

ANGX+1 = pp0,NGX

(b) · xgll′ + pp0,NGX+1
(b) · xgll (7.18)

ANGX+2 = pp′0,NGX

(b)
· xgll′ + pp0,NGX+2

(b) · xgll (7.19)

Ai = pp0,i
(b) · xgll i = NGY + 3, · · · , NGY + 7 (7.20)

BNGX+2 = pp′1,NGX

(b)
· xgll′ + pp1,NGX

(b) · xgll (7.21)

BNGX+3 = pp1,NGX+1
(b) + xgll′ (7.22)

Bi = pp1,i
(b) · xgll i = NGY + 4, · · · , NGY + 7 (7.23)

CNGX+4 = pp′2,NGX

(b)
· xgll′ + pp2,NGX

(b) · xgll (7.24)

CNGX+5 = pp2,NGX+1
(b) + xgll′ (7.25)

Ci = pp2,i
(b) · xgll i = NGY + 6, NGY + 7 (7.26)

DNGX+6 = pp′3,NGX

(b)
· xgll′ + pp3,NGX

(b) · xgll (7.27)

DNGX+7 = pp3,NGX+1
(b) + xgll′ (7.28)

where the indices of A, B, C, D are numbered according to the positions in full

(m + n)-bit width. When xgll is active, these inputs are set to constant 1’s or

inverted if they are PP bits requiring modification, or set to 0 to prevent gated

163



PP bits from affecting the addition. In L1-2, the inputs of 8-bit [4:2]-CSAs across

the G-X line are modified

ANGX+8 = pp′4,NGX

(b)
· xgll′ + pp4,NGX

(b) · xgll (7.29)

ANGX+9 = pp4,NGX+1
(b) + xgll′ (7.30)

Ai = pp4,i
(b) · xgll i = NGY + 10, · · · , NGY + 15 (7.31)

BNGX+10 = pp′5,NGX

(b)
· xgll′ + pp5,NGX

(b) · xgll (7.32)

BNGX+11 = pp5,NGX+1
(b) + xgll′ (7.33)

Bi = pp5,i
(b) · xgll i = NGY + 12, · · · , NGY + 15 (7.34)

CNGX+12 = pp′6,NGX

(b)
· xgll′ + pp6,NGX

(b) · xgll (7.35)

CNGX+13 = pp6,NGX+1
(b) + xgll′ (7.36)

Ci = pp6,i
(b) · xgll i = NGY + 14, NGY + 15 (7.37)

DNGX+14 = pp′7,NGX

(b)
· xgll′ + pp7,NGX

(b) · xgll (7.38)

DNGX+15 = pp7,NGX+1
(b) + xgll′ (7.39)

In L1-3, the inputs of 6-bit [3:2]-CSAs across the G-X line are modified

ANGX+16 = pp′8,NGX

(b)
· xgll′y + pp8,NGX

(b) · xglly (7.40)

ANGX+17 = pp8,NGX+1
(b) + xgll′y (7.41)

Ai = pp8,i
(b) · xgll i = NGY + 18, · · · , NGY + 21 (7.42)

BNGX+18 = pp′9,NGX

(b)
· xgll′y + pp9,NGX

(b) · xglly (7.43)

BNGX+19 = pp9,NGX+1
(b) + xgll′y (7.44)

Bi = pp9,i
(b) · xgll i = NGY + 20, NGY + 21 (7.45)

CNGX+20 = pp′10,NGX

(b)
· xgll′y + pp10,NGX

(b) · xglly (7.46)

CNGX+21 = pp10,NGX+1
(b) + xgll′y (7.47)

The same modifications (with different bits) happen in the inputs of 6-bit [3:2]-

CSAs in L1-4. In L1-5, the inputs of 4-bit [2:2]-CSAs across the G-X line are

164



modified

ANGX+28 = pp′14,NGX

(b)
· xgll′y + pp14,NGX

(b) · xglly (7.48)

ANGX+29 = pp14,NGX+1
(b) + xgll′y (7.49)

Ai = pp14,i
(b) · xgll i = NGY + 30, NGY + 31 (7.50)

BNGX+30 = pp′15,NGX

(b)
· xgll′y + pp15,NGX

(b) · xglly (7.51)

BNGX+31 = pp15,NGX+1
(b) + xgll′y (7.52)

xglly is used in L1-3, L1-4, and L1-5 because these CSAs are also in the G-Y

region.

From the second level, CSAs accept partial sums and carries (PS’s and PC’s)

from the previous level. Because of the gating in the first level, gating lines are

inserted in subsequent levels and CSAs across the boundaries are also modified.

In L2-1, the inputs of 8-bit [4:2]-CSAs across the G-X line are set to 0 when xgll

is active

Ai = L2PS0,i
(b) · xgll i = NGX + 8, · · · , NGX + 15 (7.53)

Bi = L2PC0,i
(b) · xgll i = NGX + 8, · · · , NGX + 15 (7.54)

In L2-2, the inputs of 6-bit [3:2]-CSAs across the G-X line are set to 0 when xglly

is active

Ai = L2PS2,i
(b) · xglly i = NGX + 22, · · · , NGX + 27 (7.55)

Bi = L2PC2,i
(b) · xglly i = NGX + 22, · · · , NGX + 27 (7.56)

In L2-3, the inputs of 4-bit [3:2]-CSAs across the G-X line are set to 0 when xglly

is active

Ai = L2PS2,i
(b) · xglly i = NGX + 28, · · · , NGX + 31 (7.57)

Bi = L2PC2,i
(b) · xglly i = NGX + 28, · · · , NGX + 31 (7.58)

165



In L3, the inputs of 4-bit [3:2]-CSAs across the G-X line are set to 0 when xglly

is active

Ai = L3PS1,i
(b) · xglly i = NGX + 28, · · · , NGX + 31 (7.59)

Bi = L3PC1,i
(b) · xglly i = NGX + 28, · · · , NGX + 31 (7.60)

The final [4:2]-CSA L4 is shared in four situations: G-X, G-Y, G-J, and no

gating. When xgll is active, the input bits on the left of G-X line are set to 0

Ai = L3PS0,i
(b) · xgll i = NGX + 16, · · · , NGX + 31 (7.61)

Bi = L3PC0,i
(b) · xgll i = NGX + 16, · · · , NGX + 31 (7.62)

No action is taken on the bits i = NGX + 32, · · · , m + n because these bits are

out of the product width in G-X. When ygll is active, the input bits below the

G-Y line are modified

Ci = L4PS0,i
(b) · xgll i = NGY , · · · , m + n (7.63)

Di = L4PC0,i
(b) · xgll i = NGY , · · · , m + n (7.64)

7.4 Experimental Evaluation

The 2-D G-G signal gating schemes for high-performance ULLRLF and tree mul-

tipliers have been implemented and evaluated using the methodology described

in Appendix B. In our experiments, the baseline schemes are 32×32-bit ULLRLF

and tree multipliers with input registers. Because of the difference in handling

constant 1’s, these multipliers are named with “new”. The test data set is djpeg

having a large number of short-precision data. random is also used in order to

test the power overhead. The gating lines are inserted at GX = 22 and GY = 16,

as explained in Appendix B. The power/delay/area comparison results after au-

tomatic layout are shown in Table 7.1 and Table 7.2. The values in parentheses

166



are normalized values. The power consumption is measured at 100 MHz. CArea

is the total cell area and the routable rate is 70%. TSED is the critical path de-

lay of sign-extension detection logic. Tcore is the delay in the computation stage

including input registers.

Table 7.1: Power comparison of 2-D G-G high-performance multipliers

Power(mW ) (100MHz)
Schemes

random djpeg

newUL-reg 46.94 (1.00) 22.52 (1.00)

newUL-GG 57.65 (1.23) 7.90 (0.35)

newtree-reg 52.49 (1.00) 26.06 (1.00)

newtree GG 62.09 (1.08) 9.05 (0.35)

Table 7.2: Delay/area comparison of 2-D G-G high-performance multipliers

Delay(ns)
Schemes CArea(µm2)

TSED Tcore Total

newUL-reg 80126 (1.00) 0 7.49 7.49 (1.00)

newUL-GG 90874 (1.13) 0.79 8.06 8.85 (1.18)

newtree-reg 82358 (1.00) 0 6.98 6.98 (1.00)

newtree GG 89780 (1.09) 0.74 7.25 7.99 (1.15)

Under djpeg test data, 2-D G-G reduces the power in newUL-reg and newtree-

reg by 65%. Between newUL-GG and newtree-GG, newUL-GG consumes 13%

less power under djpeg. Under random, 2-D G-G increases the power in newUL-

reg by 23% and the power in newtree-reg by 8%. Although the power increase

percentage in newUL-GG is larger under random, the power in newUL-GG is still

167



7% less than that in newtree-GG.

In newUL, 2-D G-G causes 13% area overhead and 18% delay overhead. In

newtree, 2-D G-G causes 9% area overhead and 15% delay overhead. The larger

area overhead in newUL is because the signals entering the left region in the

array are latched while there are no such latches in the tree. The larger delay

overhead in newUL comes from IMUX for sharing extra [3:2]-CSA (Figure 7.4).

Despite of the larger area/delay overhead, newUL-GG consumes less power than

newtree-GG because of the structure advantage.

Because constant 1’s are put on the left of each PP row and more gates are

required, the area of newUL is slightly larger than that of the original ULLRLF.

The delay is also slightly larger because there are a few more latest-arriving bits

from the middle of PPR. Thus, newtree-reg has 7% less delay than newUL-reg

while the delays of tree and ULLRLF are very close in Chapter 5.

7.5 Summary

In this chapter, we have proposed, implemented, and evaluated 2-D G-G signal

gating schemes for high-performance array and tree multipliers. In ULLRLF

array multipliers, G-Y gating line follows the boundary of existing upper/lower

partitioning. G-X gating line goes through the upper and lower LRLF arrays.

Because of the regularity of the array structure, modifications of PP bit matrix

and resource sharing are relatively simple. In tree multipliers, G-Y gating line

follows the existing partitioning of tree branches. G-X line goes through all

PPR CSAs. Because of the irregularity of the tree PPR structure, modifications

along G-X line are different for CSAs at different levels and have to be handled

separately. Experimental results indicate that 2-D G-G is also quite efficient in

168



high-performance multipliers, with 65% power reduction under test data with

large dynamic range. Although the area/delay overhead of 2-D G-G in ULLRLF

is larger than that in tree, the power consumption of 2-D G-G ULLRLF is 7 ∼

13% smaller.

169



CHAPTER 8

Conclusion and Future Work

8.1 Research Contributions

In this dissertation, we have investigated high-level optimization techniques for

low-power multiplier design. At the arithmetic algorithm and architecture level,

we have addressed the low-power design problem from two aspects: internal ef-

forts considering multiplier algorithm/architectures and external efforts consid-

ering input data characteristics. For internal efforts, we considered recoding op-

timization for partial product generation, operand representation optimization,

and structure optimization of partial product reduction. For external efforts,

we considered signal gating to deactivate portions of a full-precision multiplier.

Two classes of combinational multipliers are considered: linear array multipli-

ers and tree multipliers. Layout experiments are performed to evaluate all the

optimization techniques studied. The main contributions are as follows:

• Radix-4 parallel recoding with /neg/two/one control signals, unique-zero

handling and neg-first delay balance is proposed for high-performance mul-

tipliers. Radix-4 serial recoding with a simplified digit set and P2/P1/N1

control signals is proposed for linear array multipliers. Multipliers with

new recoding schemes have achieved over 14% power reduction compared

to those with non-optimized recoding schemes. Using the proposed recod-

ing design, the power consumptions of radix-4 multipliers are shown to be

170



much better than that of radix-2 multipliers.

• Operand representation conversion schemes for two’s-complement multi-

pliers are proposed to utilize the low-power feature of sign-and-magnitude

representation. The delay overhead in 2C-SM conversion is reduced by post-

poning the “+1” step in conversion and integrating it into the PP reduction

process. The overhead in SM-2C conversion is reduced by converting two

SM vectors from PPR directly to two 2C vectors before final CPA. For test

data with a large dynamic range, the power consumption can be reduced

by over 60% with only 7 ∼ 9% more area and 13 ∼ 23% more delay.

• From the basic L-R linear array multipliers, several structure optimization

techniques are proposed: signal flow optimization by switching carry and

sum signals in [3:2]-CSA based array, carry-ripple adders for PP reduction,

[4:2]-CSAs for PP reduction, even/odd (leapfrog) split structure and up-

per/lower split structure. Because the optimizations are at the architecture

and algorithm level, both power reduction and delay reduction have been

achieved. Among different optimization techniques for L-R array multipli-

ers, L-R-CSSC is a primary choice with a very simple structure if power is

the critical concern. When small power-delay product is the main goal, L-

R-leapfrog and L-R-CSSC-U/L split array structures are better candidates

with a simple structure.

• To approach the performance of tree multipliers while maintaining the reg-

ularity of array structure, ULLRLF array multipliers that integrate ar-

ray splitting, L-R-leapfrog, and signal flow optimization are proposed for

n ≤ 32. The delay of tree multipliers is also reduced by using a [9:4]-

CSA with 3TXOR2 delay. Layout experiments indicate that ULLRLF and

tree multipliers have similar delay while ULLRLF array multipliers con-

171



sume 6 ∼ 10% less power. The floorplan of a ULLRLF array multiplier

is also more regular and easier to control in layout optimization than that

of a tree multiplier. With the smallest power consumption and relatively

simple structure, ULLRLF becomes the best choice of high-performance

multipliers for n ≤ 32.

• 2-D signal gating schemes are proposed and studied in both traditional lin-

ear array multipliers and the proposed high-performance multipliers. Both

2-D signal gating and representation conversion are only useful for large-

dynamic-range data. Representation conversion technique is simpler while

signal gating is more power-efficient. In 2-D gating, different regions of the

multiplier are dynamically deactivated according to the precision informa-

tion of two operands. The gating overhead has been minimized by careful

design of sign-extension logic, gating control logic, gating boundary mod-

ification, final CPA sharing and sign-extension restoration. In traditional

array multipliers, 2-D signal gating schemes have achieved 45 ∼ 56% power

reduction with small overhead in area and delay compared to previous work

1-D G-P under large-dynamic-range test data. In high-performance multi-

pliers, 2-D gating is also very efficient. Because of the irregularity of the

tree structure, signal gating in tree multipliers requires much more design

efforts than in ULLRLF array multipliers. ULLRLF array multipliers with

2-D general gating also consume 7 ∼ 13% less power than tree multipliers

in our experiment.

Figure 8.1 and 8.2 summarize main experimental results of optimization tech-

niques studied in this dissertation. The results are normalized to reduce the ef-

fects of input registers, different CPAs and clock frequencies. Data in Figure 8.1

are grouped as power/delay/area characteristics. Data in Figure 8.2 are grouped

172



(a)

(b)

Figure 8.1: Normalized experimental results of optimization techniques

in (a) array multipliers, (b) tree multipliers.

173



(a)

(b)

Figure 8.2: Another view of normalized experimental results in (a)

array multipliers, (b) tree multipliers.

174



as individual schemes. Pwr random and Pwr djpeg are power consumptions un-

der random and djpeg test data, respectively. CArea is the total cell area. For

array multipliers, R2-Array is the baseline radix-2 32×32-bit multiplier, R2-Rep

is the multiplier with representation optimization, R2-GG is with 2-D G-G gat-

ing, R4-Unopt is with un-optimized radix-4 recoding, R4-Opt is with optimized

recoding, R4-Struct-Opt is with optimized recoding and reduction structure, R4-

HP is with optimized recoding and high-performance structure, R4-HP-GG is

with R4-HP and 2-D G-G gating. For tree multipliers, R2-Tree is the baseline

radix-2 32 × 32-bit multiplier, R2-Rep is the multiplier with representation op-

timization, R4-Opt is with optimized radix-4 recoding, R4-HP is with optimized

recoding and high-performance structure, R4-HP-GG is with R4-HP and 2-D G-

G gating. In array multipliers, both power and delay are reduced steadily from

R4-Unopt to R4-HP. In tree multipliers, radix-4 recoding reduces area and power

while structure optimization reduces the delay. For large-dynamic-range data,

the power reductions in representation optimization and signal gating techniques

are significant with small area and delay overhead.

Overall, this dissertation has shown that high-level optimization techniques

that consider the arithmetic computation features and application-specific data

characteristics are very efficient for low-power multiplier design.

8.2 Future Work

As an attempt to develop arithmetic algorithm and architecture level optimiza-

tion techniques for low-power multiplier design, the research presented in this

dissertation has achieved good results and demonstrated the efficiency of high-

level optimization techniques. However, there are limitations in our work and

several future research directions are possible.

175



One possible direction is radix higher-than-4 recoding. We have only consid-

ered radix-4 recoding as it is a simple and popular choice. Higher-radix recoding

further reduces the number of PPs and thus has the potential of power saving.

Because of the difficulty of generating hard PPs such as 3X, higher-radix recoding

may increase critical path delay and design complexity which are negative factors

for power. Thus, there is power/delay/area tradeoff in higher-radix recoding.

Another direction is to extend our work on signal gating to specialized multi-

pliers such as partitionable multipliers and saturating multipliers. Partitionable

multipliers are becoming important because the data precisions vary widely in

different applications [78]. For signal gating, the multipliers have already been

partitioned into several regions for gating. These partitioning techniques can

be extended to the design of partitionable multipliers and signal gating can be

applied as well. Saturating multipliers are often desirable in signal processing

and graphics applications [109]. In some cases when saturation conditions can be

determined in advance (e.g., by examining the MSB bits of two operands), the

multiplier can be turned off and replaced by simple saturation logic [49].

The third direction is data-dependent power modeling. The experimental

results in our research have been obtained for two specific data sets by using

sophisticated CAD tools from the logic level to the physical level. It is not

clear how the relative relations of different schemes would change when data

with different statistical characteristics are applied. It is desirable to develop

reliable data-dependent power models so that a methodology can be developed

to automatically select the best schemes for target applications.

176



APPENDIX A

Abbreviations

1-D G-X one-dimensional gating based on the precision of operand X

1-D G-Y one-dimensional gating based on the precision of operand Y

1-D G-P one-dimensional gating based on the precision of product P

2C two’s-complement

2C-SM-2C straightforward 2C-SM and SM-2C conversion

2C-P1-2C 2C-SM conversion with postponed “+1”

2C-P1-CS 2C-SM with postponed “+1” and SM-2C using carry-save addition

2-D G-J two-dimensional joint gating

2-D G-G two-dimensional general gating

CLA carry-lookahead adder

CPA carry-propagate adder

CRA carry-ripple adder

CSA carry-save adder

CSSC signal flow with Cin-to-B and Sin-to-C connection between FAs

CSELA carry-select adder

CSUMA conditional-sum adder

EOLRLF even/odd split LRLF array multiplier

FA full adder

GEF generalized earliest-first algorithm for adder generation

177



HA half adder

LR left-to-right

LRCF LR carry-free array multiplier

LRLF LR leapfrog array multiplier

LR-CSSC LR [3:2]-CSA array multiplier with CSSC flow

LR-CSSC-U/L upper/lower split LR array multiplier with CSSC flow

LSB least-significant bit

MSB most-significant bit

NPR3 new parallel recoding with three control signals

NSR3 new serial recoding with three control signals

NSR4 new serial recoding with four control signals

OTFC on-the-fly conversion

PA prefix adder

PP partial product

PPG partial product generation

PPR partial product reduction

PR3 parallel recoding with three control signals

PR4 parallel recoding with four control signals

PR5 parallel recoding with five control signals

REC recoding

SALRLF split array LRLF multiplier

SED sign-extension detection logic

SFO signal flow optimization for adder connections

SR3 serial recoding with three control signals

SM sign-and-magnitude

ULLRLF upper/lower split LRLF array multiplier

178



APPENDIX B

Design and Experimental Methodology

This appendix explains the design and simulation methodologies that have been

used to obtain the experimental results in this dissertation. There are many

choices for logic styles, design descriptions, and simulation methods. Our choices

and the reasons are given below.

B.1 Logic Style

CMOS (Complementary Metal Oxide Semiconductor) is the primary technology

choice in the semiconductor industry because of its many nice features such as

small area, low power, relatively simple fabrication process [104]. The main

alternative is ECL (Emitter Coupled Logic) which offers a speed advantage over

CMOS at the expense of large area and increased power consumption [12]. As

the technology scales, however, CMOS speed is catching up because the inferior

scaling properties of bipolar devices in ECL [104]. The speed of CMOS could also

be improved by using BiCMOS and dynamic CMOS. As our primary goal is low

power multiplier design, we choose static CMOS as the underlying technology.

Even within static CMOS logic style, there are many variations used for arith-

metic circuits [98][2][137]: conventional CMOS, transmission-gate CMOS, com-

plementary pass-transistor logic (CPL), etc. Many existing designs of multipliers

rely on NMOS pass transistor logic to achieve smaller area and delay. Because

179



of the poor driving capability and degraded high voltage level in NMOS pass

transistor logic, careful custom transistor-level design is necessary for circuit ro-

bustness. Pull-up PMOS transistors are often needed to force a node to be high.

To reduce the number of inverters in pass transistor logic, dual-rail signals are

often used. Dual-rail signals increase wiring complexity and switching capaci-

tance significantly. On the other hand, conventional CMOS logic style is robust

with respect to voltage scaling and transistor sizing. Conventional CMOS logic

style also has the advantages of generality and ease-of-use as standard cell based

technology libraries and logic synthesis techniques are well developed and widely

used. Zimmermann and Fichtner [137] has shown that CMOS logic style is a good

choice in most cases if low voltage, low power, and small power-delay products

are of major concern. For these reasons, we choose CMOS standard cell logic

style in this dissertation.

B.2 Artisan Standard Cell Library

The CMOS standard cell library we have used is Artisan TSMC 0.18µm 1.8-Volt

standard-cell library [10]. The area/delay/power characteristics of some basic

cells are simplified and shown in Table B.1. All cells in this table have unit drive

strength (X1). The area unit is µm2. The dynamic power unit is µW/Hz. The

unit of pin capacitance is pF . The delay unit is ns. Pdyn, Cpin, tpLH, and tpHL

are the averages of individual values for each input pin. The values in this table

are listed only for high-level quick estimation purpose. For gate-level simulation

tools such as Synopsys VSS [119], the library provides look-up table (LUT) based

non-linear delay and power models. The values in LUTs are characterized by

electrical simulations of each cell for all possible input transitions and for a wide

range of fan-in and fan-out conditions. Non-linear LUT-based models are more

180



accurate than analytical models if the size of LUT is large enough so that the

interpolations for cell conditions with no table entries also have good accuracy.

Table B.1: Area/delay/power characteristics of some Artisan library cells

Cells Area Pdyn Cpin tpLH tpHL

AND2 5.0 x 2.6 0.0214 0.0020 0.086 + 4.522CL 0.118 + 2.450CL

AOI22 5.0 x 3.3 0.0265 0.0045 0.076 + 6.723CL 0.035 + 2.725CL

AOI222 5.0 x 5.3 0.0430 0.0050 0.146 + 8.642CL 0.049 + 2.739CL

INV 5.0 x 1.3 0.0114 0.0036 0.023 + 4.512CL 0.014 + 2.401CL

MX2 5.0 x 5.3 0.0301 0.0040 0.098 + 4.520CL 0.120 + 2.474CL

MX4 5.0 x 13.2 0.0510 0.0062 0.137 + 4.528CL 0.174 + 2.579CL

MXI2 5.0 x 4.6 0.0247 0.0048 0.051 + 4.891CL 0.047 + 2.831CL

MXI4 5.0 x 15.2 0.0456 0.0038 0.205 + 4.521CL 0.199 + 2.486CL

NAND2 5.0 x 2.0 0.0152 0.0039 0.031 + 4.512CL 0.019 + 2.784CL

NOR2 5.0 x 2.0 0.0149 0.0041 0.041 + 6.722CL 0.020 + 2.407CL

OAI22 5.0 x 4.0 0.0279 0.0046 0.068 + 6.732CL 0.037 + 2.723CL

OAI222 5.0 x 5.9 0.0414 0.0049 0.107 + 6.739CL 0.063 + 3.021CL

OAI32 5.0 x 4.6 0.0348 0.0048 0.095 + 7.794CL 0.046 + 2.734CL

OR2 5.0 x 2.6 0.0203 0.0025 0.066 + 4.517CL 0.140 + 2.475CL

XNOR2 5.0 x 5.3 0.0445 0.0059 0.125 + 4.521CL 0.125 + 2.470CL

XOR2 5.0 x 5.3 0.0421 0.0059 0.119 + 4.517CL 0.127 + 2.474CL

TLAT 5.0 x 7.3 0.0215 0.0034 0.167 + 4.520CL 0.181 + 2.457CL

DFF 5.0 x 11.2 0.0313 0.0023 0.209 + 4.403CL 0.223 + 2.457CL

Artisan library also provides some synthesis optimized arithmetic cells, such

as 1-bit full adder, Booth recoder, [4:2] compressor. As the structures of these

basic cells are also one of our study objectives, we don’t use Artisan arithmetic

181



cells in order to provide a fair comparison of different schemes.

B.3 Power/Delay/Area Estimation

The best way to compare different schemes is to fabricate each design and measure

the power/delay/area characteristics of actual chips. However, the fabrication is

a rather time-consuming and expensive process, which makes it impractical to

explore many design alternatives. In this dissertation, we focus on high-level

power optimization techniques which are technology-independent as long as the

assumptions of static CMOS technology hold. With the advancement of CAD

tools, cell-based full-timing gate-level simulation (FTGS) with back-annotated

layout information can achieve the accuracy of within 10-15% of SPICE re-

sults [130][120]. As we compare different schemes under the same experimental

setting and and the primary concern is the relative performance, the absolute

errors tend to go in the same direction and thus have little effect on the relative

comparison. We choose Synopsys design environment including Design Compiler

(DC) [118], VHDL Simulator VSS [119], and Power Compiler [120], and Cadence

layout environment including Silicon Ensemble Place-and-Route [19] and Pearl

Timing Analyzer [21]. DC analyzes VHDL designs, optimizes and maps designs

into target standard-cell technologies. Silicon Ensemble accepts the netlist and

design constraints from DC and performs timing-driven automatic layout. The

layout parameters are extracted from the layout and back-annotated into Synop-

sys tools for accurate estimation. With given test data, VHDL simulator collects

switching activity information by dynamic timing simulation. Power Compiler is

a gate-level power optimization and synthesis system [28]. In our experiments,

we only use Power Compiler as a power estimation tool based on switching and

capacitance information. Using non-linear LUT-based delay and power models

182



in Artisan standard cell FTGS library, the power estimation is based on FTGS

which can capture spurious transitions or glitches.

All schemes have been implemented in technology-independent structural

VHDL descriptions. For schemes requiring internal module-level optimizations

(e.g., ULLRLF), VHDL generation programs are written to facilitate the op-

timizations and automatically produce optimized VHDL descriptions. These

VHDL designs are described with user-definable parameters, such as the mul-

tiplication size, recoding methods, and signal gating positions. The regularity of

multiplier structures is kept by describing designs in a hierarchical way. The fun-

damental components such as full adders are described in switching expressions

for technology independence. VHDL simulation is first conducted to verify the

correctness of each design. Test data are random data and some special bound-

ary data. VHDL designs are then mapped into Artisan TSMC 0.18µm 1.8-Volt

standard-cell library. We set a loose delay objective during mapping because our

logic-level design has determined the delay range and aggressive gate-level delay

minimization may lead to much larger area and power. The main objective is set

to minimize area because area minimization in general helps power saving for a

given design. The switching expressions are written in the way that they can be

easily mapped to most common library cells. For a few cases when the expres-

sions do not map to the desired cells such as OAI32, explicit manual mapping is

performed. Block boundary optimization is allowed in order to simplify inputs

with constant values across design hierarchy. According to our specification of

fanout limits, buffers are automatically inserted by DC.

There are two main ways to estimate interconnect effects in power/delay/area

characteristics. One is to extract interconnect information from the actual layout

for very accurate estimation. The other is to use wire-load models at the gate level

183



to estimate the effects of wire length and fanout on the resistance, capacitance,

and area of interconnects [118]. Semiconductor vendors provide wire load models,

based on statistical information specific to the vendors’ process. These models

include coefficients for area, capacitance, and resistance per unit length, and

a fanout-to-length table for estimating net lengths. For schemes with similar

interconnect structures, the use of wire-load models in estimation provides a

fast and fairly accurate approach. For schemes with quite different interconnect

structure, different wire-load models have to be applied carefully according to

the interconnect complexity. To get accurate information of interconnects, we

choose to perform standard-cell based automatic layout design for all schemes

we have studied using Cadence Silicon Ensemble. The design constraints in DC

are passed into Silicon Ensemble for consistency. The row utilization rates for

layouts are initially set at a high value (85%), and decrease 5% each time if

the routing cannot be completed. We name the rate with the densest successful

layout as a routable rate. The actual die area of the core region (excluding

IOs) on a chip is the total cell area (CArea) of a scheme divided by the row

utilization rate. Experiments show that the routable rates roughly reflect the

interconnect complexity of distinct multiplier schemes. In addition, the larger

the area, the lower the routable rate. For power analysis, we find that the cell

area rather than the die area has a better relation with the power because the

layout effects and the routable rates are less predictable in our experiments. For

high-performance multipliers with more complex interconnect structures, layouts

with guided floorplanning are also performed by specifying placement regions.

Guided floorplanning is primarily for delay reduction on the critical paths. Region

constraints manually insert placement boundaries and affect global optimization.

The overall placement quality can degrade because of overconstraining [20].

The layout information is extracted in several forms. Resistance and ca-

184



pacitance parasitics of interconnects are reported in reduced Standard Parasitic

Format (RSPF). Based on RSPF data, Pearl static timing analyzer is used to cal-

culate delay in Standard Delay Format (SDF) that shows interconnect and cell

delay limits. With back-annotated SDF information, Synopsys VSS performs full-

timing gate-level simulation for given test data and captures switching activity

information in Switching Activity Interchange Format (SAIF). Power Compiler

annotates the design with SAIF information and performs power analysis.

B.4 Test Data Sets

Power dissipation is directly related to input data characteristics. One scheme

may consume less power for certain data patterns but consume more power for

other data patterns. Therefore, we prepared two test data sets in order to capture

power features in different application environments. One test data set is random,

consisting of 32-bit pseudo-random data. The static probability of each bit being

‘1’ in random is 0.5 and the toggle rate of each bit is 0.25. The second data

set is djpeg, gathered by tracing the execution of 32 × 32-bit multiplication in

a 32-bit JPEG-decoding program with a typical image input (from MediaBench

Suite [79]). The program is compiled for the SPARC v8 architecture and traced

using Shade [117]. djpeg data have a large dynamic range and most data precisions

are less than 16-bit. The probability of each bit being sign-extension bit is shown

in Figure B.1. For operand1 (X), the probability of being sign-extension bit

becomes 0.9997 from the 13-th bit. For operand2 (Y), the probability becomes

0.9996 from the 18-th bit. Each probability line can be divided into three regions:

MSB region for sign extension bits, linear region for correlated data bits, and LSB

region for uncorrelated data bits. In our signal gating experiment, the gating

positions are chosen to be some point in the linear regions. In this case, they

185



are the 9-th bit position in operand1 (NGX = 10) and the 15-th bit position in

operand2 (NGY = 16).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 7 11 15 19 23 27 31

P
ro

b
a
b
ili

ty

Bit i

Operand1
Operand2

Figure B.1: Probability of being extension bit in djpeg data.

Although most MSB bits in djpeg are sign extension bits, they switch fre-

quently at the probability of 0.27 ∼ 0.33. Figure B.2 shows the static probability

and the toggle rate of each bit in djpeg. The static probability of MSB bits being

‘1’ indicates the probability of negative numbers. For operand1, the static prob-

ability and toggle rate do not change much. The range of static probability is

0.22 ∼ 0.27 and the range of toggle rate is 0.26 ∼ 0.31. Most data for operand1

are probably inverse Discrete Cosine Transform (IDCT) coefficients that are a

set of constant values for a given algorithm. In custom DSP chips, multipliers

with constant coefficients can be simplified by recoding these coefficients [45]. In

programmable DSP chips and microprocessors, general-purpose multipliers are

provided and shared among various computing situations, which is our focus.

186



For operand2, the static probability and the toggle rate change dramatically in

the LSB region because of the input image data.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 7 11 15 19 23 27 31

P
ro

b
a
b
ili

ty

Bit i

SP: probability of a bit being ‘1’

TR: probability of a bit toggling 

SP of Operand1
SP of Operand2
TR of Operand1
TR of Operand2

Figure B.2: Static probability and toggle rate of each bit in djpeg data.

187



References

[1] A. Abnous and J. Rabaey, “Ultra-low-power domain-specific multimedia
processors,” in VLSI Signal Processing, IX, pp.461-470, Oct. 1996.

[2] I. Abu-Khater, A. Bellaouar, and M. Elmasry, “Circuit techniques for
CMOS low-power high-performance multipliers”, IEEE J. Solid-State Cir-
cuits, vol.31, no.10, pp.1535-1546, Oct. 1996.

[3] H. A. Al-Twaijry, Area and Performance Optimized CMOS Multipliers.
Ph.D. dissertation, Stanford University, Aug. 1997.

[4] M. Alidina, et. al., “Precomputation-based sequential logic optimization
for low power,” IEEE Trans. VLSI Systems, vol.2, no.4, pp.426-436, Dec.
1994.

[5] F.S. Anderson, et. al., “The IBM system 360/91 floating point execution
unit,” IBM J. Res. Develop., vol.11, pp.34-53, Jan. 1967.

[6] E. de Angel and E.E. Swartzlander, Jr., “Survey of low power techniques
for VLSI design,” in Proc. 8th Annual IEEE Int. Conf. Innovative Systems
in Silicon, pp.159-169, Oct. 1996.

[7] E. de Angel and E.E. Swartzlander, Jr., “Low power parallel multipliers,”
in VLSI Signal Processing, IX, pp.199-208, Oct. 1996.

[8] E. de Angel, Low Power Digital Multiplication. Ph.D. dissertation, The
University of Texas at Austin, 1996.

[9] E. de Angel and E.E. Swartzlander, Jr., “Switching activity in parallel
multipliers,” in Proc. 35th Asilomar Conf. Signals, Systems and Computers,
pp.857-860, Nov. 2001.

[10] TSMC 0.18µm Process 1.8-Volt SAGE-X Standard Cell Library Databook.
Artisan Components, Inc., Oct. 2001.

[11] A. Bellaouar and M. Elmasry, Low-power Digital VLSI Design: Circuits
and Systems. Kluwer Academic Publishers, 1995.

[12] G.W. Bewick, Fast Multiplication: Algorithms and Implementation. Ph.D.
dissertation, Stanford University, Feb. 1994.

[13] M. Bhardwaj, R. Min, and A. Chandrakasan, “Power-aware systems,” in
Proc. 34th Asilomar Conf. Signals, Systems and Computers, vol.2, pp.1695-
1701, Nov. 2000.

188



[14] K.C. Bickerstaff, E.E. Swartzlander, Jr., and M.J. Schulte, “Analysis of col-
umn compression multipliers,” in Proc. 15th IEEE Symp. Computer Arith-
metic, pp.33-29, 2001.

[15] B. Bishop, T.P. Kelliher, and M.J. Irwin, “A detailed analysis of Medi-
aBench,” in Proc. 1999 IEEE Workshop on Signal Processing Systems,
pp.448-455, 1999.

[16] M. Borah, R.M. Owens, and M.J. Irwin, “High-throughput and low-power
DSP using clocked-CMOS circuitry,” in Proc. 1995 Int. Symp. Low Power
Design, pp.139-144, Apr. 1995.

[17] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width
operands to improve processor power and performance,” in Proc. 5th Int.
Symp. High-Performance Computer Architecture, pp.13-22, 1999.

[18] D. Brooks and M. Martonosi, “Value-based clock gating and operation
packing: dynamic strategies for improving processor power and perfor-
mance,” ACM Trans. Computer Systems, vol.18, no.2, pp.89-126, May
2000.

[19] Envisa Silicon Ensemble Reference – Version 5.3. Cadence Design Systems,
Inc, Nov. 1999.

[20] Envisa Ultra Placer Reference – Version 5.1. Cadence Design Systems, Inc,
Dec. 1999.

[21] Envisa Ultra Placer Reference – Version 5.1. Cadence Design Systems, Inc,
Dec. 1999.

[22] T.K. Callaway, Area, Delay, and Power Modeling of CMOS Adders and
Multipliers. Ph.D. dissertation, The University of Texas at Austin, 1996.

[23] T.K. Callaway and E.E. Swartzlander, Jr., “Power-delay characteristics of
CMOS multipliers,” in Proc. 13th IEEE Int. Symp. Computer Arithmetic,
pp.26-32, 1997.

[24] R. Canal, A. Gonzalez, and J.E. Smith, “Very low power pipelines using
significance compression,” in Proc. 33rd Annual IEEE/ACM Int. Symp.
Microarchitecture, pp.181-190, 2000.

[25] F. Catthoor, Unified Low-power Design Flow for Data-dominated Multime-
dia and Telecom Applications. Kluwer Academic Publishers, 2000.

189



[26] A.P. Chandrakasan, S. Sheng and R.W. Brodersen, “Low-power CMOS
digital design,” IEEE J. Solid-State Circuits, vol.27, no.4, pp.473-484, Apr.
1992.

[27] A.P. Chandrakasan and R.W. Brodersen, “Minimizing power consumption
in digital CMOS circuits,” Proceedings of the IEEE, vol.83, no.4, pp.498-
523, Apr. 1995.

[28] B. Chen and I. Nedelchev, “Power compiler: a gate-level power optimization
and synthesis system,” in Proc. 1997 IEEE Int. Conf. Computer Design,
pp.74-79, Oct. 1997.

[29] L.-H. Chen, W.-L. Liu, and O.T.-C. Chen, “Determination of radix num-
bers of the Booth algorithm for the optimized programmable FIR architec-
ture,” in Proc. 2000 IEEE Int. Symp. Circuits and Systems, vol.2, pp.345-
348, May 2000.

[30] B.S. Cherkauer and E.G. Friedman, “A hybrid radix-4/radix-8 low power
signed multiplier architecture,” IEEE Trans. Circuits and Systems – II:
Analog and Digital Signal Processing, vol.44, no.8, pp.656-659, Aug. 1997.

[31] C. Chien, Digital Radio Systems on a Chip: A Systems Approach. Kluwer
Academic Publishers, 2001.

[32] J. Choi, J. Jeon, and K. Choi, “Power minimization of functional units
by partially guarded computation,” in Proc. 2000 Int. Symp. Low Power
Electronics and Design, pp.131-136. Jul. 2000.

[33] K. Choi and M. Song, “Design of a high performance 32*32-bit multiplier
with a novel sign select Booth encoder,” in Proc. 2001 IEEE Int. Symp.
Circuits and Systems, vol.2, pp.701-704, May 2001.

[34] Y. Choi and Earl E. Swartzlander, Jr., “Design of a hybrid prefix adder
for non-uniform input arrival times,” in Proc. SPIE 2002 Advanced Signal
Processing Algorithms, Architectures, and Implementations XII, July 2002.

[35] H.-C. Chow and I-C. Wey, “A 3.3V 1GHz high speed pipelined booth multi-
plier,” in Proc. 2002 IEEE Int. Symp. Circuits and Systems, vol.1, pp.457-
460, May 2002.

[36] L. Ciminiera and P. Montuschi, “Carry-save multiplication schemes without
final addition,” IEEE Trans. Comput., vol.45, no.9, pp.1050-1055, Sept.
1996.

190



[37] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol.34,
pp.349-356, Mar. 1965.

[38] A.N. Danysh and E.E. Swartzlander, Jr. “A recursive fast multiplier,” in
Proc. 32th Asilomar Conf. Signals, Systems and Computers, pp.197-201,
Nov. 1998.

[39] W.E. Dougherty and D.E. Thomas, “Modeling and automating selection of
guarding techniques for datapath elements,” in Proc. 1999 Int. Symp. Low
Power Electronics and Design, pp.182-187, Aug. 1999.

[40] M.D. Ercegovac and T. Lang, “On-the-fly conversion of redundant into con-
ventional representations,” IEEE Trans. Comput., vol.C-36, no.7, pp.895-
897, July 1987.

[41] M.D. Ercegovac and T. Lang, “Fast multiplication without carry-propagate
addition,” IEEE Trans. Comput., vol.39, no.11, pp.1385-1390, Nov. 1990.

[42] M.D. Ercegovac and T. Lang, “Reducing transition counts in arithmetic
circuits,” in Proc. 1994 IEEE Symp. Low Power Electronics, pp.64-65, 1994.

[43] M.D. Ercegovac and T. Lang, “Low-power accumulator (correlator),” in
Proc. 1995 IEEE Symp. Low Power Electronics , pp.30-31, Oct. 1995.

[44] M.D. Ercegovac, C.A. Fabian, and T. Lang, “On reducing transition counts
in sign detection circuits,” in Proc. 30th Asilomar Conf. Signals, Systems
and Computers, pp.596-599, Nov. 1996.

[45] M.D. Ercegovac and T. Lang, Digital Arithmetic, Morgan Kaufmann Pub-
lishers, Elsevier Science Ltd., 2003.

[46] M.D. Ercegovac and T. Lang, “Comments on “A carry-free 54b*54b mul-
tiplier using equivalent bit conversion algorithm”,” IEEE J. Solid State
Circuits, vol.38, no.1, pp.160-161, Jan. 2003.

[47] C.A. Fabian and M.D. Ercegovac, “Input synchronization in low power
CMOS arithmetic circuit design,” in Proc. 31th Asilomar Conf. Signals,
Systems and Computers, pp.172-176, Nov. 1997.

[48] A.M. Fahim and M.I. Elmasry, “Low-power high-performance arithmetic
circuits and architectures,” IEEE J. Solid-State Circuits, vol.37, no.1,
pp.90-94, Jan. 1997.

[49] Farzan Fallah, personal communication, Fujitsu Laboratories of America,
Inc., 2002.

191



[50] A.A. Fayed and M.A. Bayoumi, “A novel architecture for low-power de-
sign of parallel multipliers,” in Proc. IEEE Computer Society Workshop on
VLSI, pp.149-54, Apr. 2001.

[51] J. Frenkil, “A multi-level approach to low-power IC design,” IEEE Spectrum
Magazine, pp.54-60, Feb. 1998.

[52] R. Fried, “Minimizing energy dissipation in high-speed multipliers,” in
Proc. 1997 Int. Symp. Low Power Electronics and Design, pp.214-219, Aug.
1997.

[53] G. Gerosa, et. al., “A 2.2W, 80MHz superscalar RISC microprocessor,”
IEEE J. Solid-State Circuits, vol.29, no.12, pp.1440-1454, Dec. 1994.

[54] A. Goldovsky, et. al., “Design and implementation of a 16 by 16 low-power
two’s complement multiplier,” in Proc. 2000 IEEE Int. Symp. Circuits and
Systems, vol.5, pp.345-348, 2000.

[55] G. Goto, et. al., “A 54*54-b regularly structured tree multiplier,” IEEE J.
Solid-State Circuits, vol.27, pp.1229-1236, Sept. 1992.

[56] G. Goto, et. al., “A 4.1-ns compact 54*54-b multiplier utilizing sign-select
Booth encoders,” IEEE J. Solid-State Circuits, vol.32, pp.1676-1682, Nov.
1997.

[57] M.K. Gowan, L.L. Biro, and D.B. Jackson, “Power considerations in the
design of the Alpha 21264 microprocessor,” in Proc. 35th Design and Au-
tomation Conf, pp.726-731, 1998.

[58] C.-Y. Han, H.-J. Park, and L.-S. Kim, “A low-power array multiplier using
separated multiplication technique,” IEEE Trans. Circuits and Systems –
II: Analog and Digital Signal Processing, vol.48, no.9, pp.866-871, Sept.
2001.

[59] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quantitative
Approach, 2nd Edition. Morgan Kaufmann Publishers, Inc., 1996.

[60] X. Huang, et. al., “High-performance VLSI multiplier with a new redundant
binary coding,” Journal of VLSI Signal Processing, vol.3, pp.283-291, Oct.
1991.

[61] X. Huang, W.-J. Liu, and B.W.Y. Wei, “A high-performance CMOS redun-
dant binary multiplication-and-accumulation (MAC) unit,” IEEE Trans.
Circuits and Systems I: Fundamental Theory and Applications, vol.41,
pp.33-39, Jan. 1994.

192



[62] Z. Huang and M.D. Ercegovac, “On signal-gating schemes for low-power
adders,” in Proc. 35th Asilomar Conf. Signals, Systems and Computers,
pp.867-871, Nov. 2001.

[63] N. Itoh, et. al., “A 600-MHz 54*54-bit multiplier with rectangular-styled
Wallace tree,” IEEE J. Solid-State Circuits, vol.36, no.2, p.249-257, Feb.
2001.

[64] International Technology Roadmap for Semiconductors, 2001 Edition.

[65] J. Iwamura, et. al., “A high speed and low power CMOS/SOS multiplier-
accumulator,” Microelectronics Journal, vol.14, no.6, pp.49-57, Nov.-Dec.
1983.

[66] J. Kao, S. Narendra, and A. Chandrakasan, “subthreshold leakage model-
ing and reduction techniques,” in Proc. 2002 Int. Conf. Computer-Aided
Design, pp.141-148, Nov. 2002.

[67] G. Keane, J. Spanier, and R. Woods, “The impact of data characteristics
and hardware topology on hardware selection for low power DSP,” in Proc.
1998 Int. Symp. Low Power Electronics and Design, pp.94-96, Aug. 1998.

[68] K-Y. Khoo, Z. Yu, and A.N. Willson, Jr. “Improved-Booth encoding for
low-power multipliers,” in Proc. 1999 IEEE Int. Symp. Circuits and Sys-
tems, vol.1, pp.62-65, May 1999.

[69] J. Kim and E.E. Swartzlander, Jr., “Improving the recursive multiplier,” in
Proc. 34th Asilomar Conf. Signals, Systems and Computers, pp.1320-1324,
Nov. 2000.

[70] K. Kim, P.A. Beerel, and Y. Hong, “An asynchronous matrix-vector mul-
tiplier for discrete cosine transform,” in Proc. 2000 Int. Symp. Low Power
Electronics and Design, pp.256-261, Jul. 2000.

[71] S. Knowles, “A family of adders,” in Proc. 14th IEEE Symp. Computer
Arithmetic, pp.30-34, 1999.

[72] U. Ko, P.T. Balsara, and W. Lee, “A self-timed method to minimize spu-
rious transitions in low power CMOS circuits,” in Proc. 1994 IEEE Symp.
Low Power Electronics, pp.62-63, Oct. 1994.

[73] R.K. Kolagotla, H.R. Srinivas, and G.F. Burns, “VLSI implementation of a
200-MHz 16*16 left-to-right carry-free multiplier in 0.35 mu m CMOS tech-
nology for next-generation DSPs,” in Proc. IEEE 1997 Custom Integrated
Circuits Conf., pp.469-472, May 1997.

193



[74] I. Koren, Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs,
New Jersey, 1993.

[75] P.E. Landman and J.M. Rabaey, “Architectural power analysis: the dual bit
type method,” IEEE Trans. Very Large Scale Integration (VLSI) Systems,
vol.3, no.2, pp.173-187, 1995.

[76] T. Lang, E. Musoll, and J. Cortadella, “Individual flip-flops with gated
clocks for low power datapaths,” IEEE Trans. Circuits and Systems – II:
Analog and Digital Signal Processing, vol.44, no.6, pp.507-516, June 1997.

[77] C.F. Law, S.S. Rofail, and K.S. Yeo, “A low-power 16× 16-b parallel mul-
tiplier utilizing pass-transistor logic,” IEEE J. Solid State Circuits, vol.34,
no.10, pp.1395-1399, Oct. 1999.

[78] Ruby B. Lee, “Computer arithmetic – a processor architect’s perspective,”
in Proc. 15th IEEE Symp. Computer Arithmetic, Keynote Presentation,
June 2001.

[79] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “MediaBench: a tool for
evaluating and synthesizing multimedia and communications systems,” in
Proc. 30th Annual IEEE/ACM Int. Symp. Microarchitecture, pp.330-335,
Dec. 1997.

[80] J. Leijten, J. van Meerbergen, and J. Jess, “Analysis and reduction of
glitches in synchronous networks,” in Proc. 1995 European Design and Test
Conf., pp.398-403, March 1995.

[81] M.J.G. Lewis, Low Power Asynchronous Digital Signal Processing. Ph.D.
dissertation, University of Manchester, Oct. 2000.

[82] Y.J. Lim, et. al., “A statistical approach to the estimation of delay-
dependent switching activities in CMOS combinational circuits,” in Proc.
33rd Design Automation Conference, pp.445-450, June 1996.

[83] O.L. MacSorley, “High-speed arithmetic in binary computers,” IRE Pro-
ceedings, vol.49, pp.67-91, 1961.

[84] S.S. Mahant-Shetti, P.T. Balsara, and C. Lemonds, “High performance
low power array multiplier using temporal tiling,” IEEE Trans. Very Large
Scale Integration (VLSI) Systems, vol.7, no.1, p.121-124, March 1999.

[85] H. Makino, et. al., “An 8.8-ns 54*54-bit multiplier with high speed redun-
dant binary architecture,” IEEE J. Solid-State Circuits, vol.31, pp.773-783,
June 1996.

194



[86] P. Meier, R. Rutenbar, and L. Carley, “Exploring multiplier architecture
and layout for low power,” in Proc. IEEE Custom Integrated Circuits Conf.,
pp.513-516, May 1996.

[87] P.C.H. Meier, Analysis and Design of Low Power Digital Multipliers. Ph.D.
dissertation, Carnegie Mellon University, 1999.

[88] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits for
low power,” in Proc. 1993 Int. Conf. Computer-Aided Design, pp.398-402,
Nov. 1993.

[89] J. Mori, et. al., “A 10 ns 54*54-b parallel structured full array multiplier
with 0.5 mu m CMOS technology”, IEEE J. Solid-State Circuits, vol.26,
p.600-606, Apr. 1991.

[90] K. Muhammad, D. Somasekhar, and K. Roy, “Switching characteristics
of generalized array multiplier architectures and their applications to low
power design,” in Proc. 1999 IEEE Int. Conf. Computer Design, pp.230-
235, Oct. 1999.

[91] E. Musoll and J. Cortadella, “High-level synthesis techniques for reduc-
ing the activity of functional units,” in Proc. 1995 Int. Symp. Low Power
Design, pp.99-104, Apr. 1995.

[92] E. Musoll and J. Cortadella, “Low-power array multipliers with transition-
retaining barriers,” in Proc. Int. Workshop on Power and Timing Modeling
Optimization and Simulation (PATMOS), pp.227-238, October 1995.

[93] M. Nagamatsu, et. al., “A 15-ns 32*32-b CMOS multiplier with an im-
proved parallel structure,” IEEE J. Solid-State Circuits, vol.25, pp.494-497,
Apr. 1990.

[94] F. Najm, “Transition density: a new measure of activity in digital circuits,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol.13, no.2, pp.310-323, Feb. 1993.

[95] F. Najm, “A survey of power estimation techniques in VLSI circuits,” IEEE
Trans. Very Large Scale Integration (VLSI) Systems, vol.2, no.4, pp.446-
455, Dec. 1994.

[96] F. Najm, “Low-pass filter for computing the transition density in digital
circuits,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 13, no. 9, pp.1123-1131, Sep. 1994.

195



[97] C.J. Nicol and P. Larsson, “Low power multiplication for FIR filters,” in
Proc. 1997 Int. Symp. Low Power Electronics and Design, pp.76-9, Aug.
1997.

[98] N. Ohkubo, et. al., “A 4.4 ns CMOS 54*54-b multiplier using pass-transistor
multiplexer,” IEEE J. Solid-State Circuits, vol.30, pp.251-257, March 1995.

[99] V.G. Oklobdzija, D. Villeger, and S.S. Liu, “A method for speed optimized
partial product reduction and generation of fast parallel multipliers using
an algorithmic approach,” IEEE Trans. Comput., vol.45, no.3, pp.294-306,
March 1996.

[100] Y. Oowaki, et. al., “A sub-10-ns 16*16 multiplier using 0.6-um CMOS tech-
nology,” IEEE J. Solid-State Circuits, vol.SC-22, no.5, pp.762-767, Oct.
1987.

[101] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.
Prentice Hall, 1989.

[102] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. Ox-
ford University Press, New-York, 2000.

[103] Chan-Ho Park, et. al., “Asynchronous array multiplier with an asymmetric
parallel array structure,” in Proc. 2001 Conference on Advanced Research
in VLSI, pp.202-212, March 2001.

[104] J.M. Rabaey, Digital Integrated Circuits: a Design Perspective. Prentice
Hall, 1996.

[105] S. Ramprasad, N.R. Shanbha, and I.N. Hajj, “Analytical estimation of sig-
nal transition activity from word-level statistics”, IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol.16, no.7, pp.718-733,
July 1997.

[106] K. Roy and S.C. Prasad, Low-power CMOS VLSI Circuit Design. Wi-
ley&Son, 2000.

[107] T. Sakuta, W. Lee, and P.T. Balsara, “Delay balanced multipliers for low
power/low voltage DSP core,” in Proc. 1995 IEEE Symp. Low Power Elec-
tronics, pp.36-37, Oct. 1995.

[108] H. Sam and A. Gupta, “A generalized multibit recoding of two’s comple-
ment binary numbers and its proof with application in multiplier imple-
mentations,” IEEE Trans. Comput., vol.39, no.8, pp.1006-1015, Aug. 1990.

196



[109] M.J. Schulte, et. al., “Integer multiplication with overflow detection or
saturation,” IEEE Trans. Comput., vol.49, no.7, pp.681-691, July 2000.

[110] P.-M. Seidel, L.D. McFearin, and D.W. Matula, “Binary multiplication
radix-32 and radix-256,” in Proc. 15th IEEE Symp. Computer Arithmetic,
pp.23-32, June 2001.

[111] N.-Y. Shen and O.T.-C. Chen, “Low-power multipliers by minimizing
switching activities of partial products,” in Proc. 2002 IEEE Int. Symp.
Circuits and Systems, vol.4, pp.93-96, May 2002.

[112] P.J. Song and G. De Micheli, “Circuit and architecture trade-offs for high-
speed multiplication,” IEEE J. Solid-State Circuits, vol.26, pp.1184-1198,
Sept. 1991.

[113] P.F. Stelling and V.G. Oklobdzija, “Designing optimal hybrid final adders
in a parallel multiplier using conditional sum blocks,” in Proc. 15th IMACS
World Congress Scientific Computation, Modeling, and Applied Math.,
Aug. 1997.

[114] P.F. Stelling, et. al., “Optimal circuits for parallel multipliers,” IEEE Trans.
Comput., vol.47, no.3, pp.273-285, March 1998.

[115] M. Stephenson, J. Babb, and S. Amarashinghe, “Bitwidth analysis with
application to silicon compilation”, ACM SIGPLAN Notices, vol.35, no.5,
pp.108-120, May 2000.

[116] A.G.M. Strollo, E. Napoli, and D. De Caro, “New clock-gating techniques
for low-power flip-flops,” in Proc. 2000 Int. Symp. Low Power Electronics
and Design, pp.114-119, 2000.

[117] Shade User’s Manual. Sun Microsystems, Inc., 1993.

[118] Design Compiler User Guide. Synopsys, Inc., Nov. 2000.

[119] VHDL Simulator Reference Manual. Synopsys, Inc., Nov. 2000.

[120] Power Compiler Reference Manual. Synopsys, Inc., Nov. 2000.

[121] N. Takagi and T. Horiyama, “A high-speed reduced-size adder under left-
to-right input arrival,” IEEE Trans. Comput., vol.48, no.1, pp.76-80, Jan.
1999.

197



[122] V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: pushing power
management to logic synthesis/design,” IEEE Trans. Computer-Aided De-
sign of Integrated Circuits and Systems, vol.17, no.10, pp.1051-1060, Oct.
1998.

[123] J.D. Ullman, Computational Aspects of VLSI, Computer Science Press,
Inc., 1983.

[124] S. Vassiliadis, E.M. Schwarz, and B.M. Sung, “Hard-wired multipliers with
encoded partial products,” IEEE Trans. Comput, vol.40, no.11, pp.1181-
1197, Nov. 1991.

[125] C.S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electronic
Computers, vol.EC-13, pp.14-17, Feb. 1964.

[126] A. Weinberger, “4:2 carry-save adder module,” IBM Technical Disclosure
Bull., vol.23, Jan. 1981.

[127] N.H.E. Weste, K. Eshraghian, Principles of CMOS VLSI Design. Addison-
Wesley Publishing Company, 1993.

[128] T. Xanthopoulos and A.P. Chandrakasan, “A low-power IDCT macrocell
for MPEG-2 MP@ML exploiting data distribution properties for minimal
activity,” IEEE J. Solid-State Circuits, vol.34, No.5, pp.693-703, 1999.

[129] Wu Ye and M.J. Irwin, “Power analysis of gated pipeline registers,” in 12th
Annual IEEE Int. ASIC/SOC Conf, pp.281-285, 1999.

[130] G.K. Yeap, Practical Low Power Digital VLSI Design. Kluwer Academic
Publishers, 1998.

[131] W.-C. Yeh and C.-W. Jen, “High-speed Booth encoded parallel multiplier
design,” IEEE Trans. Comput., vol.49, no.7, pp.692-701, July 2000.

[132] W.-C. Yeh, Arithmetic Module Design and its Application to FFT. Ph.D.
dissertation, National Chiao-Tung University, 2001.

[133] Z. Yu, L. Wasserman, and A.N. Willson, Jr. “A painless way to reduce
power dissipation by over 18% in Booth-encoded carry-save array multipli-
ers for DSP,” in Proc. 2000 IEEE Workshop on Sigal Processing Systems,
pp.571-580, Oct. 2000.

[134] Z. Yu, et. al., “The use of reduced two’s-complement representation in low-
power DSP design,” in Proc. 2002 IEEE Int. Symp. Circuits and Systems,
vol.1, pp.77-80, May 2002.

198



[135] Z. Yu, The Use of Signal Representations in Synthesis and Low-Power De-
signs for Data-Path Circuits. Ph.D. dissertation, University of California,
Los Angeles, 2002.

[136] M. Zheng and A. Albicki, “Low power and high speed multiplication design
through mixed number representations,” in Proc. 1995 IEEE Int. Conf.
Computer Design, pp.566-570, Oct. 1995.

[137] R. Zimmermann and W. Fichtner, “Low-power logic styles: CMOS versus
pass-transistor logic,” IEEE J. Solid-State Circuits, vol.32, no.7, pp.1079-
1090, July 1997.

[138] R. Zimmermann, Binary Adder Architectures for Cell-Based VLSI and their
Synthesis. Ph.D. dissertation, Swiss Federal Institute of Technology, Zurich,
1997.

199


