
High-Level Power Estimation

Paul Landman
DSP R&D Center
Texas Instruments

Dallas, Texas

Abstract
The growing demand for portable electronic devices has

led to an increased emphasis on power consumption within
the semiconductor industry. As a result, designers are now
encouraged to consider the impact of their decisions not
only on speed and area, but also on power throughout the
entire design process. In order to evaluate how well a par-
ticular design variant meets power constraints, engineers
often rely on CAD tools for power estimation. While tools
have long existed for analyzing power consumption at the
lower levels of abstraction - e.g. SPICE and PowerMill -
only recently have efforts been directed towards developing
a high-level power estimation capability. This paper sur-
veys the state of the art in high-level power estimation,
addressing techniques that operate at the architecture,
behavior, instruction, and system levels of abstraction.

1 Introduction

In the early part of this decade, it became clear that
power consumption was becoming a problem. In the high
performance arena, microprocessors began to appear that
consumed tens of watts, and the trend was toward even
higher power consumption. This placed stringent demands
on packaging and cooling systems, as well as being a major
cost and reliability issue. At the same time, the portable
consumer electronics market entered a period of rapid
growth. For these battery-operated products, there was sim-
ilar pressure to reduce power consumption and extend bat-
tery life. These factors rapidly led to the emergence of low-
power design as a key technology for the 90’s.

As designers began to place increasing emphasis on
power as a figure of merit, it became clear that while there
were tools to assist in estimating performance and area, rel-
atively few addressed power. In the last several years, the
picture has improved dramatically. Circuit- and gate-level
power analysis and estimation tools are now offered by
nearly every major EDA vendor.

While the situation is clearly improved, the problem is
still far from solved. Both academic and industrial experts

have noted that after exploiting the obvious technology and
circuit level optimizations, we are left orders of magnitude
from where we need to be. These additional reductions
must come from optimizations made at the higher abstrac-
tion levels - namely, the architecture, algorithm, and system
levels.

Unfortunately, EDA vendors offer few solutions to aid in
the exploration of the power domain at these levels. Clearly
it is not feasible (nor desirable) to specify/synthesize every
design alternative down to the gate level. Tools are needed
that operate inherently at the architecture level and above.
This has been an active area of university research for some
time now, and while there may be little to choose from com-
mercially, academic approaches have begun to appear.

This paper will describe the current state of the art in
high-level power estimation. We will begin with a proposal
for an analysis-based low-power design methodology. The
remainder of the paper will be divided into sections cover-
ing emerging architecture, behavior, instruction, and system
level power estimation techniques that support this method-
ology. In comparing the work of different researches, quan-
titative comparisons of accuracy and speed can be
misleading. Instead we will endeavor to give a qualitative
feel for how the approaches differ, and from this some con-
clusions about relative performance can be inferred.

2 An analysis-based design methodology

While logic synthesis has gained widespread acceptance
among the industrial design community, high-level synthe-
sis has found a foothold in a relatively narrow range of
applications (most notably, DSP). One of the reasons for
this is that in order to make the problem tractable, most
high-level synthesis systems are forced to assume some
fixed architectural template that is unlikely to be optimum
for all applications. This suggests that a better approach is
to rely on the designer to specify system partitionings and
architectural configurations, with the primary function of
the tools being to provide feedback on the quality of a par-
ticular solution.

The result is an analysis-based low-power design meth-
odology. Working top-down, the designer begins at the sys-
tem level, partitioning the design into off-the-shelf and
custom components. Here, the function of the tools is to aid
in producing a power budget indicating which parts of the
system will likely be the major power consumers. Rough

ISLPED 1996 Monterey CA USA
0-7803-3571-8/96/$5.00  1996

power estimates at this stage of design can save a lot of time
wasted later on optimizing the wrong part of the system.
With an initial partitioning and power budget in hand, the
designer can focus on the individual components of the sys-
tem, which may be realized as software or hardware.
Instruction-level power models of programmable proces-
sors will be useful here in helping the designer optimize the
software portions of the system. Similarly, behavior- and
RT-level power estimators will provide a much needed clas-
sification of the power efficiency of different algorithms
and architectures that might be used for the dedicated hard-
ware. At all these levels, relative accuracy in the power esti-
mates is much more important than absolute accuracy, since
what we really want to know is whether one alternative is
better than another.

In the final design stages a more traditional flow applies,
utilizing software and hardware compilers along with sche-
matic entry, logic synthesis, layout, and place and route
tools. The primary function of gate- and circuit-level power
analysis and simulation tools would then be to provide
back-end verification of power consumption with sign-off
accuracy.

As mentioned above, much of the technology to support
this low-power design methodology now exists, either com-
mercially or as university research. In the next few sections
of this paper we go on to describe the strategies that have
been proposed to realize architecture, behavior, instruction,
and system level power estimation.

3 Architecture-level power estimation

The lowest level we will consider is the architecture, or
register-transfer, level. At this level of abstraction the prim-
itives are functional blocks such as adders, multipliers, con-
trollers, register files, and SRAM’s. The difficulty in
estimating power at this level stems from the fact that the
gate, circuit, and layout level details of the design may not
have been specified. Moreover, a floorplan may not be
available, making analysis of interconnect and clock distri-
bution networks difficult.

The strategies proposed, thus far, for RT-level power
estimation can be divided into two classes: analytical meth-
ods and empirical methods.

3.1 Analytical methods

Analytical methods attempt to relate the power con-
sumption of a particular RTL description to fundamental
quantities that describe the physical capacitance and activ-
ity of a design. Since design complexity is a good first-order
measure of physical capacitance we can roughly divide the
techniques presented in this section into complexity-based
and activity-based models.

3.1.1 Complexity-based models

One strategy relies on the fact that the complexity of a
chip architecture can be described roughly in terms of “gate
equivalents”. Basically, the gate equivalent count of a
design specifies the approximate number of reference gates
(e.g. 2-input NAND’s) that would be required to implement
a particular function (e.g. a 16x16 multiplier). This number
can be specified in a library database or provided by the
user. The power required for each functional block can then
be estimated by multiplying the approximate number of
gate equivalents by the average power consumed by each
gate. An example of this technique is given by the Chip
Estimation System (CES) [1], which uses the following
expression for average power:

(1)

whereGEi is the gate equivalent count for functional block
i, Etyp is the average energy consumed by an equivalent gate
when active,CL

i is the average capacitive load per gate
including fan-out and wiring,f is the clock frequency, and
Aint

i is the average percentage of gates switching each clock
cycle within functional blocki.

One disadvantage of this technique is that all power esti-
mates are based on the energy consumption of a single ref-
erence gate. This does not take into account different circuit
styles, clocking strategies, or layout techniques. The
approximation is particularly inaccurate for specialized
blocks such as memories.

Liu and Svensson improved the situation by applying
customized estimation techniques to the different design
entities: logic, memory, interconnect, and clock [2]. For
example, the power consumed by a memory cell array is
modeled as:

(2)

where 2k is the number of cells in a row,cint is the wire
capacitance per unit length,lcolumn is the memory column
length, 2n-k is the number of cells in a column,Ctr is the
minimum size drain capacitance, andVswing is the bitline
voltage swing.

The logic component of power is estimated in a manner
conceptually similar to CES. The basic switching energy is
based on a three-input AND gate and is calculated from
fundamental technology parameters (e.g. minimum gate
width, gate length, and oxide thickness). The total chip
logic power is estimated (as before) by multiplying the esti-
mated gate equivalent count by the basic gate energy and
the activity factor. The activity factor is provided by the
user and assumed fixed across the entire chip.

Finally, interconnect length and capacitance is modeled
by a derivative of Rent’s Rule. The clock capacitance is
based on the assumption of an H-tree distribution network.

P GEi Etyp CL
i
Vdd

2+ 
 

fAint
i

i fns{ }∈
∑=

Pmemcell
2k

2
----- cintl column 2n k– Ctr+() VddVswingf=

The advantage of these complexity-based estimation
techniques is that they require very little information. Basi-
cally, just a few technology parameters, memory sizes, and
a count of gate equivalents are needed.

One disadvantage of the complexity-based methods is
that they do not model circuit activity accurately. An overall
(fixed) activity factor is typically assumed and, in fact, must
often be provided by the user. In reality, activity factors will
vary with block functionality and with the data being pro-
cessed. So even if the user provides an activity factor that
results in a good estimate of the total chip power, the pre-
dicted breakdown of power between modules is likely to be
incorrect, making it difficult to perform meaningful archi-
tectural trade-offs.

3.1.2 Activity-based models

Activity-based models address this issue to some extent.
So far all efforts in this area have focused on using the con-
cept of entropy from information theory as a measure of the
average activity in a circuit [3][4]. The basic idea is to try to
relate the power that a functional block consumes to the
amount of computational work it performs. Entropy is a
useful metric from information theory for measuring com-
putational work.

Najm [3], for example, observes that power is propor-
tional to the product of physical capacitance and activity.
He then uses area as a measure of physical capacitance and
entropy as a measure of activity:

(3)
Leveraging off previous work [5][6], the area of a block’s
average minimized implementation is related to the number
of boolean inputs,n, and to the total entropy of itsm out-
puts,Ho:

(4)

Using the approximation that entropy decreases quadrati-
cally with logic depth, he is able to estimate the average
entropy of all the nodes in a functional block as a function
of the total entropies of its inputs and outputs:

(5)

Najm’s power estimation methodology then consists of
running an RTL simulation of the design to measure the
input and output entropies of the functional blocks and
using (3)-(5) to translate these measurements into a predic-
tion of average power. Najm notes that the approach has
some significant hurdles to overcome. First, no timing
information enters into the above calculations and, there-
fore, glitching power is not accounted for in any way. Also,
there is the implicit assumption in (3) that capacitance is
uniformly distributed over all nodes.

P Capaci cetan Activity× Area Entropy×∝ ∝

Area

2n

n
-----Ho as n ∞→

2nHo for n 10≤ 
 
 

∝

Entropy
2 3⁄

n m+
------------- Hi 2Ho+()≈

Clearly, the accuracy of these techniques is limited; how-
ever, they may prove useful for relative architectural com-
parisons, which as mentioned before is the main function of
high-level power estimation tools. Still, these information
theoretical approaches are in their infancy and much work
needs to be done to demonstrate their value in practice.

All of the analytical power estimation methods described
in this section (both complexity- and activity-based) have
the advantage of requiring very little information as input.
In some sense, this is also a disadvantage in that it is diffi-
cult to capture the power attributes of different functional
blocks using only parameters such as gate equivalent count
or entropy. Therefore, power predictions based on these
techniques may not have a strong relation to real hardware.

3.2 Empirical methods

The empirical models discussed in this section offer one
possible solution to this problem. Rather than trying to
relate the power consumption of RTL components to funda-
mental parameters, the strategy here is to “measure” the
power consumption of existing implementations and pro-
duce a model based on those measurements. In other words,
these techniques employ amacromodeling approach to
architectural power estimation.

Clearly, this approach is best suited for designs that will
be built using a library-based approach, but this is not a
necessity. For example, even if a designer intends to build
the functional blocks for his architecture from scratch, it is
still likely that models based on previous implementations
will give good ballpark power figures. If no previous data is
available for a particular block, then analytical models may
be more appropriate.

The techniques that fall into the category of empirical
methods can further be subdivided into those that assume
fixed signal activities and those that account for variations
in data and instruction statistics.

3.2.1 Fixed-activity models

The first proposal for a fixed-activity macromodeling
strategy was the Power Factor Approximation (or PFA)
method [7]. The power consumed by a given architecture is
approximated by the expression:

(6)

where each functional blocki is characterized by a PFA
proportionality constantκi, a measure of hardware com-
plexity Gi, and an activation frequencyfi.

For example, the hardware complexity of a multiplier is
related to the square of the input word length, soGmult=N2.
The activation frequency is simply the frequency with
which multiplies are performed by the algorithm,fmult.
Finally, the PFA constantκmult is extracted empirically

P κiGi fi
i all blocks{ }∈

∑=

from past multiplier designs (taken from ISSCC proceed-
ings) and shown to be about 15 fW/bit2-Hz for a 1.2µm
technology at 5V. The resulting power model is:

(7)

Although the authors only explicitly discuss models for
multipliers, memories, and I/O drivers, the PFA method can
be viewed as a general technique for individually character-
izing an entire library of RT-level functional blocks. The
power models can be parameterized in terms of whatever
complexity parameters are appropriate for that block. For
instance, for the memory, the storage capacity in bits is used
and for the I/O drivers the word length alone is adequate.

The weakness of fixed-activity models, of course, is that
they do not account for the influence that data activity can
have on power consumption. For example, the PFA con-
stantκmult is intended to capture the intrinsic internal activ-
ity associated with a multiplier unit; however, since it is
taken to be a constant, there is the implicit assumption that
the inputs do not affect the multiplier activity, which is not
the case. As an example of this phenomenon, Figure 2
(which will be discussed fully in Section 3.2.2) shows how
the power consumption of an LMS noise cancellation filter
varies for different data streams.

3.2.2 Activity-sensitive models

Activity-sensitive empirical power models have been
developed in an attempt to remedy this situation. These
models endeavor to account in some way for the influence
that data activity statistics can have on power.

A simple example is the RT-level power estimation tool
called ESP [8]. Although ESP relies for the most part on a
fixed-activity model, it does provide some capability of
measuring vector-dependent power. ESP is fundamentally a
cycle-based simulator targeted at a RISC processor. As
object code is executed, ESP monitors which blocks in the
architecture are activated, adding a fixed power contribu-
tion for each. The implicit assumption is that the power
consumed by each component has been empirically mea-
sured prior to simulation. The datapath power model
accounts to some extent for input vector activity by using a
power model that has a constant portion and a portion that
is proportional to the number of bit transitionsn in the input
vector:

(8)

Another activity-sensitive architectural power analysis
tool called SPA has also been developed [9][10][11]. The
approach is based on the concept of activity profiling. Spe-
cifically, prior to power analysis, an RT-level simulation
(e.g. VHDL) of the design in question is carried out for typ-
ical instruction and data inputs. During this simulation, the
activity of the design entities and signals in the data and
control paths are monitored and recorded. These activity
statistics are then fed into power models that explicitly

Pmult κmultN
2fmult=

P Pconst n Pchange⋅+=

account for activity as well as complexity. Two different
activity models have been described - one for the datapath
and one for the control path.

The datapath activity model is referred to as the dual bit
type, or DBT, model. It is based on the observation that
fixed-point, two’s-complement data streams are character-
ized by two distinct activity regions as shown in Figure 1.
The data bits (LSB’s) exhibit activity similar to uniformly
distributed white noise. The activity of the sign bits
(MSB’s) depends on the sign transition probability, which is
re lated to the temporal data s t ream corre lat ion,

. Different empirically derived
coefficients are used to characterize the capacitance
switched in the data (CU) and sign (CS) regions of various
functional blocks:

(9)

The expression can be extended to more complex multi-
parameter models using vector notation with arrays of
capacitance (C) and complexity (N) parameters.

In the control path the activity-based control, or ABC,
model is used. Unlike datapath words which have a very
definite structure, words in the control path often are
formed by concatenation of a number of independent fields
or boolean flags. Thus, we cannot rely a priori on any par-
ticular structure when deriving an activity model for control
streams. As a result, the ABC model falls back on more tra-
ditional measures of activity: transition probability,α, and
signal probability,P. Combining these activities with com-
plexity parameters such as the number of inputs (NI), out-
puts (NO), and min-terms (NM) of a finite state machine
(FSM) block, we can derive power models for various con-
troller implementations. The model for an FSM imple-
mented in standard cells, for example, might be:

(10)

Figure 1. Bit transition activity for data streams
with varying temporal correlation, ρ

-0.99
-0.9
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
0.9

0.99

P(0→1)

0.00

0.10

0.20
0.25

0.50

02468101214

ρ

0.40

0.30

LSBMSB Bit

BP1 BP0

sign data

ρ cov Xt 1– Xt,() σ2⁄=

P NUCU NSCS+() Vdd
2 f=

P CIαININM COαONONM+() Vdd
2 f=

whereCI andCO are capacitance coefficients empirically
extracted from previous standard-cell controller implemen-
tations. SPA also includes custom models for interconnect
and memory.

A commercial tool called WattWatcher/Architect
(offered by Sente, Inc.) relies on techniques similar to those
used by SPA, particularly in the area of datapath power
modeling [12]. In addition to simulation-based activity pro-
filing, however, it also offers probabilistic activity propaga-
tion. It is capable of analyzing a 120,000 gate architecture
in 34 minutes.

One of the advantages of empirical models is that they
have a strong link to real implementations. Figure 2 com-
pares RT-level predictions from SPA to switch-level simula-
tion of a fully laid out LMS noise canceller. The figure also
shows the advantage activity-sensitive can have over fixed-
activity techniques.

4 Behavior-level power estimation

As we move up in abstraction level, power estimation
becomes even more difficult. Much less is known about a
design at the behavior or algorithm level than was known at
the architecture level. The typical approach is to assume
some architectural style or template and produce power
estimates based on it. Some of the numerous unknowns that
must be predicted include the foreground/background mem-
ory configuration, the number of memory accesses, the bus
architecture and average wire length, the number of bus
transactions, the control path complexity, and the control
line activity.

In studying this list it becomes apparent that some of
these parameters relate to the physical capacitance of the
resources being accessed, while others describe the activity
of those resources. Activity prediction is perhaps the more

Figure 2. RT-level SPA estimates vs. switch-level
simulation of an LMS noise canceller for
different data streams

2 3 4 5 6 7 8

1000

2000

3000

4000

5000

0 1

Data stream

C
ap

. s
w

itc
he

d
pe

r
sa

m
pl

e
(p

F
)

fixed-activity model

switch level
RTL (SPA)

interesting of the two problems. Behavioral power estima-
tion techniques can be roughly divided into two camps -
those that use static activity prediction and those that use
dynamic activity prediction.

4.1 Static activity prediction

The access frequency of a resource is important since the
more often a resource is activated, the more power it will
consume. The object of static activity prediction is to pro-
duce an estimate of the access frequency for different hard-
ware resources by analysis of the behavioral description of
the function to be implemented. This description could be
in the form of a C, Verilog, or VHDL program or it could be
represented as a control-data flow graph (CDFG), as is
common in high-level synthesis systems. Since only one
pass through the program is required, a key advantage of
the static profiling approach is its speed.

For programs with no data dependencies, the analysis is
quite straightforward and yields the desired access counts
for the different operations required by the algorithm. In the
more typical case where data-dependent conditionals,
branches, and loops are present the situation is more com-
plicated and we must resort either to statistical approxima-
tions or dynamic profiling techniques.

Mehra and Chandrakasan have developed a behavioral
power estimation strategy using static profiling in the con-
text of the HYPER-LP high-level synthesis system
[13][14]. The power required to execute a behavior is
expressed as:

(11)

wherefr is the access frequency of resourcer as determined
by static analysis of the CDFG. The capacitanceCr
switched when resourcer is activated is determined using
empirical fixed-activity models (see Section 3.2.1). For
example, the control path model was built by benchmarking
the switching capacitance of controllers for 46 different
design examples (see Figure 3). From the figure it’s clear
that while power models at this level of abstraction don’t
offer a high degree of absolute accuracy, they do capture
general trends, which as stated before is the real goal of
high-level power estimation.

4.2 Dynamic activity prediction

Dynamic profiling is another technique for determining
the activation frequencies of various resources. In this
approach, a simulation of the desired behavior is performed
for a user-supplied set of inputs. During this simulation,
activity statistics are gathered regarding the frequency of
various types of operations and memory accesses. These
frequencies are then plugged into a model similar to (11) to

P frCrVdd
2

r all datapath, control path,

memory, and bus resources 
 
 

∈

∑=

obtain a power estimate. The advantage, of course, is that
data dependencies are easily handled. The disadvantages
are that it’s much slower than the static approach and that it
requires the user to supply a set of typical input vectors.

One example of the dynamic approach is the Profile-
Driven Synthesis System (PDSS) [15]. The input to the sys-
tem is a behavioral subset of VHDL. Prior to simulation, the
system automatically inserts activity probes. The activation
statistics for each datapath operation type are then plugged
into what amounts to a library of fixed-activity empirical
power models. The controller FSM is assumed to be of the
PLA type and empirical power models based on simula-
tions of a randomly generated FSM benchmark set are used
to predict its power.

Power-Profiler uses a similar strategy for behavioral
power estimation [16]. One key difference is that rather
than producing a single average estimate of power con-
sumption, Power-Profiler produces a profile of power ver-
sus time. This gives the designer some feel for peak, as well
as average, power consumption. It should be noted, how-
ever, that an averaging window of one clock cycle is used,
which tends to smooth out the power peaks substantially.
Therefore, while the tool gives the designer a rough feel for
where power peaks might occur, the exact instantaneous
amplitude of those peaks is not reported.

5 Instruction-level power estimation

Most behavior-level power estimators assume architec-
tural models corresponding to dedicated hardware imple-
mentations. It is also possible to realize a given behavior in
software on a programmable instruction set processor. In
this case, an instruction-level power model is appropriate.

Tiwari et al proposed just such a model for embedded
general-purpose and DSP processors [17]. The strategy they

Figure 3. Predicted controller capacitance vs.
switch-level simulation [13]

0.0 1.0 2.0

Predicted capacitance (nF)

0.0

0.5

1.0

1.5

2.0
M

ea
su

re
d

ca
pa

ci
ta

nc
e

(n
F

)

describe is most similar to the empirical macromodeling
approach of Section 3.2. Each available instruction is
placed in a loop and executed on the target processor. Dur-
ing this process current measurements are taken, and the
average current drawn by each instruction is stored in a
table ofbase costs.

The model also handles what are referred to as inter-
instruction effects. In a real program, the change of circuit
state between two instructions leads to current consumption
that is higher than predicted by the base cost. Therefore, an
additional fixed circuit-state overhead current must be
added to the base cost for each instruction. The magnitude
of this correction factor can be determined by executing
pairs of instructions while measuring current. Additional
effects such as pipeline stalls and cache misses are also con-
sidered in the model.

To date, the model has been used to characterize the
power consumption of the Intel 486DX2, the Fujitsu SPAR-
Clite 934, and a Fujitsu embedded DSP processor. The
authors note that while accurate for most instructions, the
estimates produced for the DSP MAC instruction can err
significantly. In fact, while the base cost for a packed
MAC:LAB instruction is 36.9 mA, the overhead cost can
vary from as little as 1.4 mA to as much as 33.0 mA. The
variation is caused by the impact of operand activity on the
multiplier. In order to account for this, an activity-sensitive
model similar to those described in Section 3.2.2 would be
needed.

6 System-level power estimation

At the earliest stages of design specification we can con-
sider performing system-level power estimation. Here the
goal is to come up with a rough power budget accounting
for all the components in a system. This should include the
analog, digital, mixed signal, and even electromechanical
portions of a system. A power exploration tool at this level
of abstraction would be quite useful for identifying power
bottlenecks before any time is wasted optimizing the wrong
part of the system. It would also be helpful in determining
the best way to partition the desired functionality into indi-
vidual components. The partitioning and level of integra-
tion of a system can have a profound effect on the overall
power consumption.

A tool called PowerPlay has been recently developed
that encompasses these capabilities [18]. PowerPlay is
available as a world wide web application and employs a
spreadsheet-like interface to facilitate hierarchical design
entry and rapid exploration of design partitionings and
parameters variations (e.g. supply voltage and clock fre-
quency).

The power models used by PowerPlay leverage off the
existing high-level power estimation literature and currently
are primarily empirical in nature. The models are placed in
a hardware library and are shared among users. New mod-

els can be created easily using user-defined parameterized
expressions or values taken straight from product data
sheets. The PowerPlay framework has been used success-
fully to model the power of the InfoPad system, a portable
multimedia terminal [19]. This illustrates PowerPlay’s abil-
ity to model programmable processors, ASIC’s, memories,
FPGA’s, radio modems, and LCD displays.

7 Conclusions

The development of tools to support a low-power design
methodology has been an area of active research for the last
several years. While much of the literature deals with cir-
cuit- and gate-level techniques, a significant amount has
also been published on high-level power estimation. This
paper has made an attempt to gather the applicable research
into one place and describe how the individual pieces can
be integrated to form a coherent whole.

Power estimation strategies are now available that oper-
ate at the architecture, behavior, instruction, and even sys-
tem levels of abstraction. While the majority are from
academic circles, some tools have also begun to appear
commercially, and many more are sure to be offered in the
near future.

Even so, the field of high-level power is in its infancy.
Much remains to be done in order to demonstrate the
robustness and applicability of the techniques in a realistic
industrial setting. It is clear, however, that high-level analy-
sis tools fill a significant gap in current low-power design
methodologies, allowing designers to make more informed
decisions from the earliest stages of system implementa-
tion.

Acknowledgments

The author would like to thank Jan Rabaey for his help
during the preparation of this manuscript. Some of the
research described in this paper was funded by ARPA grant
J-FBI 93-153 and by a fellowship from the National Sci-
ence Foundation.

References

[1] K. Müller-Glaser, K. Kirsch, and K. Neusinger, “Esti-
mating Essential Design Characteristics to Support
Project Planning for ASIC Design Management,” IEEE
International Conference on Computer-Aided Design
‘91, Los Alamitos, CA, pp. 148-151, November 1991.

[2] D. Liu and C. Svensson, “Power Consumption Estima-
tion in CMOS VLSI Chips,”IEEE Journal of Solic-
State Ciruicts, pp. 663-670, June 1994.

[3] F. Najm, “Towards a High-Level Power Estimation
Capability,” 1995 International Symposium on Low-
Power Design, pp. 87-92, April 1995.

[4] D. Marculescu, R. Marculescu, and M. Pedram, “Infor-
mation Theoretic Measures of Energy Consumption at
Register Transfer Level,”1995 International Sympo-
sium on Low-Power Design, pp. 81-86, April 1995.

[5] N. Pippenger, “Information Theory and the Complexity
of Boolean Functions,”Mathematical Systems Theory,
vol. 10, pp. 129-167, 1977.

[6] K-T Cheng and V. Agrawal, “An Entropy Measure for
the Complexity of Multi-Output Boolean Functions,”
27th ACM/IEEE Design Automation Conference, pp.
302-305, June 1990.

[7] S. Powell and P. Chau, “Estimating Power Dissipation
of VLSI Signal Processing Chips: The PFA Tech-
nique,”VLSI Signal Processing IV, pp. 250-259, 1990.

[8] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago,
“Evaluation of Architecture-Level Power Estimation
for CMOS RISC Processors,”1995 Symposium on
Low-Power Electronics, pp. 44-45, October 1995.

[9] P. Landman,Low-Power Architectural Design Method-
ologies, Ph.D. Dissertation, UC Berkeley, August
1994.

[10]P. Landman and J. Rabaey, “Architectural Power Anal-
ysis: The Dual Bit Type Method,”IEEE Transactions
on VLSI Systems, pp. 173-187, June 1995.

[11] P. Landman and J. Rabaey, “Activity-Sensitive Archi-
tectural Power Analysis,”IEEE Transactions on CAD,
June 1996.

[12]WattWatcher Product Sheet, Sente Corp., Chelmsford,
MA.

[13]R. Mehra, “High-Level Power Estimation and Explora-
tion,” 1994 International Workshop on Low Power
Design, pp. 197-202, April 1994.

[14]A. Chandrakasan, M. Potkonjak, J. Rabaey, and R.
Brodersen, “Optimizing Power Using Transforma-
tions,” IEEE Transactions on Computer-Aided Design,
pp. 12-31, January 1995.

[15]N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Pro-
file-Driven Behavioral Synthesis for Low-Power VLSI
Systems,”IEEE Design & Test of Computers, pp. 70-
84, Fall 1995.

[16]R. San Martin and J. Knight, “Optimizing Power in
ASIC Behavioral Synthesis,”IEEE Design & Test of
Computers, pp. 58-70, Summer 1996.

[17]V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of
Embedded Software: A First Step Towards Software
Power Minimization,”IEEE Transactions on VLSI Sys-
tems, pp. 437-445, December 1994.

[18]D. Lidsky and J. Rabaey, “Early Power Exploration: A
World Wide Web Application,” accepted to33rd
Design Automation Conference, Las Vegas, 1996.

[19]S. Sheng, A. Chandrakasan, and R. Brodersen, “A Por-
table Multimedia Terminal,”IEEE Communications
Magazine, pp. 64-75, December 1992.

