
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998 1061

High-Level Power Modeling,
Estimation, and Optimization

Enrico Macii, Massoud Pedram,Member, IEEE, and Fabio Somenzi

Abstract—Silicon area, performance, and testability have been,
so far, the major design constraints to be met during the devel-
opment of digital very-large-scale-integration (VLSI) systems. In
recent years, however, things have changed; increasingly, power
has been given weight comparable to the other design parameters.
This is primarily due to the remarkable success of personal
computing devices and wireless communication systems, which
demand high-speed computations with low power consumption.
In addition, there exists a strong pressure for manufacturers
of high-end products to keep power under control, due to the
increased costs of packaging and cooling this type of devices.
Last, the need of ensuring high circuit reliability has turned out
to be more stringent. The availability of tools for the automatic
design of low-power VLSI systems has thus become necessary.
More specifically, following a natural trend, the interests of the
researchers have lately shifted to the investigation of power
modeling, estimation, synthesis, and optimization techniques that
account for power dissipation during the early stages of the design
flow.

This paper surveys representative contributions to this area
that have appeared in the recent literature.

Index Terms—Behavioral and logic synthesis, low power de-
sign, power management.

I. INTRODUCTION

I N ORDER to shorten the overall time-to-market of new
products, today’s electronic systems are designed from

specifications given at a very high level of abstraction. This
novel design paradigm is made possible by the recent avail-
ability of electronic design automation (EDA) tools that can
take, as input, the description of a system expressed in a
hardware description language (HDL) like VHDL or Verilog,
and that can automatically produce the corresponding gate-
level implementation with very limited human intervention.
From there, well-established technology can be exploited to
generate transistor-level netlists and layout masks.

Fig. 1 summarizes the flow of operations that are required
to go from a system-level specification to an architecture made
of a processor, a memory, a few register-transfer level (RTL)
macrocells, and some glue and steering logic (in the form of a
gate or switch-level netlist). Depending on the application, dif-
ferent constraints (e.g., performance, area, power, testability)
must be satisfied during the various phases of the flow.

Manuscript received September 4, 1997; revised June 20, 1998. This paper
was recommended by Associate Editor M. Papaefthymiou.

E. Macii is with the Politecnico di Torino, Torino 10129 Italy.
M. Pedram is with the Department of Electrical Engineering Systems,

University of Southern California, Los Angeles, CA 90089 USA.
F. Somenzi is with the University of Colorado, Boulder, CO 90309 USA.
Publisher Item Identifier S 0278-0070(98)08592-3.

When the target is a low-power application, the search for
the optimal solution must include, at each level of abstraction,
a “design improvement loop.” In such a loop, a power an-
alyzer/estimator (shown in gray in Fig. 1) ranks the various
design, synthesis, and optimization options, and thus helps
in selecting the one that is potentially more effective from
the power standpoint. Obviously, collecting the feedback on
the impact of the different choices on a level-by-level basis,
instead of just at the very end of the flow (i.e., at the gate
level), enables a shorter development time. On the other hand,
this paradigm requires the availability of power estimators, as
well as synthesis and optimization tools, that provide accurate
and reliable results at various levels of abstraction.

In this paper, we review some of the techniques for high-
level power modeling, estimation, and optimization that have
appeared recently in the literature. In particular, we focus on
the software, behavioral, and RT levels, since these are the
areas where most of the research efforts have been concen-
trated in the last few years. On the other hand, we do not
discuss traditional logic-level (and below) techniques, since
this subject is out of the scope of this paper (the interested
reader may refer to [1]–[4] for excellent surveys on this topic).

II. M ODELING AND ESTIMATION

It has been pointed out in the introduction that the
availability of level-by-level power analysis and estimation
tools that are able to provide fast and accurate results
are key for increasing the effectiveness of automatic
design frameworks organized as shown in Fig. 1. We start
this section with a concise description of techniques for
software-level estimation (Section II-A). We then move
to the behavioral level (Section II-B), where we discuss
existing power-estimation approaches that rely on information-
theoretic (Section II-B1), complexity-based (Section II-B2),
and synthesis-based (Section II-B3) models. Last, we focus
our attention to designs described at the RT level (Section II-
C). This is the area where most of the research activity
on power modeling and estimation has been concentrated
in recent times; we cover two of the most investigated
classes of methods, namely, those relying on regression-
based models (Section II-C1) and on sampling-based models
(Section II-C2).

As mentioned in the introduction, power-estimation tech-
niques working below the RT level have reached a solid degree
of maturity, since they have been studied for quite a long time
now; therefore, we do not treat them in this paper.

0278–0070/98$10.00 1998 IEEE

1062 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

Fig. 1. Low-power design flow.

A. Software-Level Power Estimation

The first task in the estimation of power consumption of a
digital system is to identify the typical application programs
that will be executed on the system. A nontrivial application
program consumes millions of machine cycles, making it
nearly impossible to perform power estimation using the
complete program at, say, the RT level. Most of the reported

results are based onpower macro-modeling,an estimation
approach that is extensively used for behavioral and RT-level
estimation (see Sections II-B and II-C).

In [5], the power cost of a CPU module is characterized by
estimating the average capacitance that would switch when the
given CPU module is activated. In [6], the switching activities
on (address, instruction, and data) buses are used to estimate

MACII et al.: POWER MODELING, ESTIMATION, AND OPTIMIZATION 1063

the power consumption of the microprocessor. In [7], based
on actual current measurements of some processors, Tiwariet
al. present the following instruction-level power model:

Energy

where Energy is the total energy dissipation of the program,
which is divided into three parts. The first part is the summa-
tion of the base energy cost of each instruction (is the
base energy cost and is the number of times instruction

is executed). The second part accounts for the circuit state
(is the energy cost when instructionis followed by

during the program execution). The third part accounts for
energy contribution of other instruction effects such as
stalls and cache misses during the program execution.

In [8], Hsiehet al.present an approach, calledprofile-driven
program synthesis,to perform RT-level power estimation for
high-performance CPU’s. Instead of using a macro-modeling
equation to model the energy dissipation of a microproces-
sor, the authors use a synthesized program to exercise the
microprocessor in such a way that the resulting instruction
trace behaves (in terms of performance and power dissipation)
much the same as the original trace. The new instruction
trace is however much shorter than the original one and
can hence be simulated on an RT-level description of the
target microprocessor to provide the power-dissipation results
quickly.

Specifically, this approach consists of the following steps.

1) Perform architectural simulation of the target micropro-
cessor under the instruction trace of typical application
programs.

2) Extract a characteristic profile, including parameters
such as the instruction mix, instruction/data cache miss
rates, branch prediction miss rate, pipeline stalls, etc.,
for the microprocessor.

3) Use mixed integer linear programming and heuristic
rules to gradually transform a generic program template
into a fully functional program.

4) Perform RT-level simulation of the target microproces-
sor under the instruction trace of the new synthesized
program.

Notice that the performance of the architectural simulator
in gate-vectors/second is roughly three to four orders of
magnitude higher than that of an RT-level simulator.

This approach has been applied to the Intel Pentium pro-
cessor (which is a superscalar pipelined CPU with 8-KB,
two-way, set-associative data, instruction and data caches,
branch prediction, and dual instruction pipeline) demonstrating
three to five orders of magnitude reduction in the RT-level
simulation time with negligible estimation error.

B. Behavioral-Level Power Estimation

Conversely, from some of the RT-level methods that will
be discussed in Section II-C, estimation techniques at the
behavioral level cannot rely on information about the gate-

level structure of the design components and hence must
resort to abstract notions of physical capacitance and switching
activity to predict power dissipation in the design.

1) Information-Theoretic Models:Information-theoretic ap-
proaches for high-level power estimation [9], [10] depend
on information-theoretic measures of activity (for example,
entropy) to obtain quick power estimates.

Entropy characterizes the randomness or uncertainty of a
sequence of applied vectors and thus is intuitively related to
switching activity, that is, if the signal switching is high, it
is likely that the bit sequence is random, resulting in high
entropy. Suppose the sequence containsdistinct vectors and
let denote the occurrence probability of any vectorin
the sequence. Obviously, . The entropy of the
sequence is given by

where denotes the base 2 logarithm of. The entropy
achieves its maximum value of when . For an

-bit vector, . This makes the computation of the exact
entropy very expensive. Assuming that the individual bits in
the vector are independent, then we can write

where denotes the signal probability of bitin the vector
sequence. Note that this equation is only an upper bound on
the exact entropy, since the bits may be dependent. This upper
bound expression is, however, the one that is used for power-
estimation purposes. Furthermore, in [9], it has been shown
that, under the temporal independence assumption, the average
switching activity of a bit is upper bounded by one-half of its
entropy.

The power dissipation in the circuit can be approximated as

Power

where is the total capacitance of the logic module
(including gate and interconnect capacitances) and is the
average activity of each line in the circuit, which is, in turn,
approximated by one-half of its average entropy . The
average line entropy is computed by abstracting information
obtained from a gate-level implementation. In [10], it is
assumed that the word-level entropy per logic level reduces
quadratically from circuit inputs to circuit outputs, whereas in
[9] it is assumed that the bit-level entropy from one logic level
to the next decreases in an exponential manner. Based on these
assumptions, two different computational models are obtained.

In [9], Marculescuet al. derive a closed-form expression
for the average line entropy for the case of a linear gate
distribution, i.e., when the number of nodes scales linearly
between the number of circuit inputsand circuit outputs .

1064 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

The expression for is given by

where and denote the average bit-level entropies of
circuit inputs and outputs, respectively. is extracted from
the given input sequence, whereas is calculated from a
quick functional simulation of the circuit under the given input
sequence or by empirical entropy propagation techniques for
precharacterized library modules. In [10], Nemani and Najm
propose the following expression for :

where and denote the average sectional (word-
level) entropies of circuit inputs and outputs, respectively. The
sectional entropy measures and may be obtained
by monitoring the input and output signal values during a
high-level simulation of the circuit. In practice, however, they
are approximated as the summation of individual bit-level
entropies and .

If the circuit structure is given, the total module capacitance
is calculated by traversing the circuit netlist and summing
up the gate loadings. Wire capacitances are estimated using
statistical wire-load models. Otherwise, is estimated by
quick mapping (for example, mapping to three-input universal
gates) or by information-theoretic models that relate the gate
complexity of a design to the difference of its input and output
entropies. One such model proposed by Cheng and Agrawal
in [11], for example, estimates as

This estimate tends to be too pessimistic whenis large;
hence, in [12], Ferrandiet al. present a new total capacitance
estimate based on the number of nodes (i.e., two–to–one
multiplexors) in the ordered binary decision diagram represen-
tation of the logic circuit as follows:

The coefficients of the model are obtained empirically by doing
linear regression analysis on the total capacitance values for a
large number of synthesized circuits.

Entropic models for the controller circuitry are proposed
by Tyagi in [13], where three entropic lower bounds on the
average Hamming distance (bit changes) with state set
and with states are provided. The tightest lower bound
derived in this paper for a sparse finite-state machine (FSM)

(i.e., , where is the total number
of transitions with nonzero steady-state probability), is the
following:

where is the steady-state transition probability fromto
, is the Hamming distance between the two states,

and is the entropy of the probability distribution .
Notice that the lower bound is valid regardless of the state
encoding used.

2) Complexity-Based Models:These models relate the cir-
cuit power dissipation to some notion ofcircuit complexity.
Example parameters that influence the circuit complexity
include the number and the type of arithmetic and/or Boolean
operations in the behavioral description, the number of states
and/or transitions in a controller description, and the number of
cubes (literals) in a minimum sum-of-products (factored-form)
expression of a Boolean function.

Most of the proposed complexity-based models rely on the
assumption that the complexity of a circuit can be estimated
by the number of “equivalent gates.” This information may
be generated on-the-fly using analytical predictor functions or
retrieved from a precharacterized high-level design library. An
example of this technique is thechip estimation system[14],
which uses the following expression for the average power
dissipation of a logic module:

Power Energy

where is the clock frequency, is the gate equivalent
count for the component, Energy is the average inter-
nal consumption for an equivalent gate (it includes parasitic
capacitance contributions as well as short-circuit currents)
per logic transition, is the average capacitive load for
an equivalent gate (it includes fanout load capacitances and
interconnect capacitances), and is the average output
activity for an equivalent gate per cycle. is estimated
statistically based on the average fanout count in the circuit
and custom wire-load models. is dependent on the
functionality of the module. The data are precalculated and
stored in the library and are independent of the implemen-
tation style (static versus dynamic logic, clocking strategy),
library-specific parameters (gate inertia, glitch generation, and
propagation), and the circuit context in which the module
is instantiated. This is an example of an implementation-
independent and data-independent power-estimation model.

In [15], Nemani and Najm present a high-level estimation
model for predicting the area of an optimized single-output
Boolean function. The model is based on the assumption that
the area complexity of a Boolean function is related to
the distribution of the sizes of the on-set and off-set of the
function. For example, using the “linear measure,” the area
complexity of the on-set of is written as

MACII et al.: POWER MODELING, ESTIMATION, AND OPTIMIZATION 1065

where the set of integers consists of the
distinct sizes of the essential prime implicants of the on-set
and weight is the probability of the set of all minterms in
the on-set of , which are covered by essential primes of size

but not by essential primes of any larger size. The area
complexity of the off-set of is similarly calculated.
Hence, the area complexity of functionis estimated as

The authors next derive a family of regression curves (which
happen to have exponential form) relating the actual area

of random logic functions optimized by the SIS program
(in terms of the number of gates) to the area complexity
measure for different output probabilities of function

. These regression equations are subsequently used for total
capacitance estimation and hence high-level power estimation.
The work is extended in [16] to area estimation of multiple-
output Boolean functions.

A similar technique would rely on predicting the quality
of results produced by EDA flows and tools. The predictor
function is obtained by performing regression analysis on
a large number of circuits synthesized by the tools and
relating circuit-specific parameters and/or design constraints
to postsynthesis power-dissipation results. For example, one
may be able to produce the power estimate for an unoptimized
Boolean network by extracting certain structural properties of
the underlying directed acyclic graph, average complexity of
each node, and user-specified constraints and plugging these
values in the predictor function.

Complexity-based power-prediction models for controller
circuitry have been proposed by Landman and Rabaey in
[17]. These techniques provide quick estimation of the power
dissipation in a control circuit based on the knowledge of its
target implementation style (that is, precharged pseudo-NMOS
or dynamic programmable logic array), the number of inputs,
outputs, states, and so on. The estimates will have a higher
degree of accuracy by introducing empirical parameters that
are determined by curve fitting and least squared fit error
analysis on real data. For example, the power model for an
FSM implemented in standard cells is given by

Power

where and denote the number of external input plus
state lines and external output plus state lines for the FSM,
and are regression coefficients that are empirically derived
from low-level simulation of previously designed standard cell
controllers, and denote the switching activities on the
external input plus state lines and external output plus state
lines, and denotes the number of minterms in an optimized
cover of the FSM. Dependence on indicates that this
model requires a partial (perhaps symbolic) implementation
of the FSM.

3) Synthesis-Based Models:One approach for behavioral-
level power prediction is to assume some RT-level template
and produce estimates based on that assumption. This approach
requires the development of aquick synthesiscapability, which

makes some behavioral choices (mimicking a full synthe-
sis program). Important behavioral choices include type of
I/O, memory organization, pipelining issues, synchronization
scheme, bus architecture, and controller design. This is a
difficult problem, especially in the presence of tight timing
constraints. Fortunately, designers or the environment often
provide hints on what choices should be made. After the RT-
level structure is obtained, the power is estimated by using any
of the RT-level techniques that will be described in Section II-
C.

Relevant data statistics such as the number of operations of
a given type, bus and memory accesses, and I/O operations are
captured bystatic profilingbased on stochastic analysis of the
behavioral description and data streams [18], [19] ordynamic
profiling based on direct simulation of the behavior under a
typical input stream [20], [21]. Instruction-level or behavioral
simulators are easily adapted to produce this information.

C. RT-Level Power Estimation

Most RT-level power-estimation techniques use regression-
based, switched-capacitance models for circuit modules. Such
techniques, which are commonly known aspower macro-
modeling,are reviewed next.

1) Regression-Based Models:A typical RT-level power-
estimation flow consists of the following steps.

1) Characterize every component in the high-level design
library by simulating it under pseudorandom data and
fitting a multivariable regression curve (i.e., the power
macro-model equation) to the power-dissipation results
using a least mean square error fit [22].

2) Extract the variable values for the macro-model equation
either from static analysis of the circuit structure and
functionality or by performing a behavioral simulation of
the circuit. In the latter case, a power cosimulator linked
with a standard RT-level simulator can be used to collect
input data statistics for various RT-level modules in the
design.

3) Evaluate the power macro-model equations for high-
level design components, which are found in the library
by plugging the parameter values in the corresponding
macro-model equations.

4) Estimate the power dissipation for random logic or
interface circuitry by simulating the gate-level descrip-
tion of these components [25], [26] or by performing
probabilistic power estimation [27]–[31]. The low-level
simulation can be significantly sped up by the appli-
cation of statistical sampling techniques [32]–[35] or
automata-based compaction techniques [36]–[38].

The macro-model for the components may be parameter-
ized in terms of the input bit width, the internal organiza-
tion/architecture of the component, and the supply voltage
level. Notice that there are cases where the construction of
the macro-model of step 1) can be done analytically using the
information about the structure of the gate-level description
of the modules, without resorting to simulation as proposed
by Benini et al. in [23]. On the other hand, if the low-level

1066 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

netlist of the library components is not known (which may
be the case for soft macros), step 1) can be replaced by data
collection from past designs of the component followed by
appropriate process technology scaling [24]. In addition, the
macro-model equation in step 2) may be replaced by a table
lookup with necessary interpolation equations.

In the following paragraphs, we review various power
macro-model equations, which exhibit different levels of ac-
curacy versus computation/information usage tradeoff.

The simplest power macro-model, known as thepower
factor approximationtechnique [39], is aconstant type model
which uses an experimentally determined weighting factor
to model the average power consumed by a given module
per input change. For example, the power dissipation of an

-bit integer multiplier can be written as

Power

where is the supply voltage level, is the capacitive
regression coefficient, and is the activation frequency
of the module (this should not be confused with the average,
bit-level switching activity of multiplier inputs).

The weakness of this technique is that it does not account
for the data dependency of the power dissipation. For example,
if one of the inputs to the multiplier is always one, we would
expect the power dissipation to be less than the case when
both inputs are changing randomly. In contrast, thestochastic
power analysistechnique proposed by Landman and Rabaey in
[40] is based on an activity-sensitive macro-model, called the
dual bit type model,which maintains that switching activities
of high-order bits depend on the temporal correlation of data,
whereas lower order bits behave randomly. The module is thus
completely characterized by its capacitance models in the sign
and white noise bit regions. The macro-model equation form
is then given by

Power

where and represent the capacitance coefficient and
the mean activity of the unsigned bits of the input sequence,
while and denote the capacitance coefficient and
the transition probability for the sign change in the input
stream. and represent the number of unsigned and sign
bits in the input patterns, respectively. Note that, , and
the boundary between sign and noise bits are determined based
on the applied signal statistics collected from simulation runs.
Expanding this direction, one can use abitwise data modelas
follows:

Power

where is the number of inputs for the module in question,
is the (regression) capacitance for input pin, and

is the switching activity for theth pin of the module. This
equation can produce more accurate results by including, for
example, spatio-temporal correlation coefficients among the
circuit inputs. This will, however, significantly increase the

number of variables in the macro-model equation, and thus
the equation evaluation overhead.

Accuracy may be improved (especially for components with
deep logic nesting, such as multipliers) by power macro-
modeling with respect to both the average input and output
activities (theinput–output data model,that is

Power

where and represent the capacitance coefficients for the
mean activities of the input and output bits, respectively. The
dual bit type model or the bitwise data model may be combined
with the input–output data model to create a more accurate,
but more expensive, macro-model form. Recently, in [41],
the authors presented a three-dimensional-table, power macro-
modeling technique that captures the dependence of power
dissipation in a combinational logic circuit on the average
input signal probability, the average switching activity of the
input lines, and the average (zero-delay) switching activity of
the output lines. The latter parameter is obtained from a fast
functional simulation of the circuit. The paper also presents
an automatic macro-model construction procedure based on
random sampling principles. Note that the equation form and
variables used for every module are the same (although the
regression coefficients are different).

A parametric power model is described by Liu and Svensson
in [42], where the power dissipation of the various components
of a typical processor architecture, including on-chip memory,
busses, local and global interconnect lines, H-tree clock net,
off-chip drivers, random logic, and data path, are expressed as
a function of a set of parameters related to the implementation
style and internal architecture of these components. For ex-
ample, consider a typical on-chip memory (a storage array of
six-transistor memory cells), which consists of four parts: the
memory cells, the row decoder, the column selection, and the
read/write circuits. The power model for a cell array of
rows and columns in turn consists of expressions for:

1) the power consumed by memory cells on a row during
one precharge or one evaluation;

2) the power consumed by the row decoder;

3) the power needed for driving the selected row;

4) the power consumed by the column select part;

5) the power dissipated in the sense amplifier and the
readout inverter.

For instance, the memory cell power [1) above] is given by

Power

where is the voltage swing on the bit/ line (which
may be different for read versus write), gives the wiring-
related row capacitance per memory cell, and gives
the total drain capacitances on the bit/ line. Notice that
during the read time, every memory cell on the selected row
drives exactly bit or .

A salient feature of the above macro-model techniques
is that they only provide information about average power
consumption over a relatively large number of clock cycles.
The above techniques, which are suitable for estimating the

MACII et al.: POWER MODELING, ESTIMATION, AND OPTIMIZATION 1067

average-power dissipation, are referred to ascumulativepower
macro-models. In some applications, however, estimation of
average power only is not sufficient. Examples are circuit reli-
ability analysis (maximum current limits, heat dissipation and
temperature gradient calculation, latchup conditions), noise
analysis (resistive voltage drop and inductive bounce on power
and ground lines), and design optimization (power/ground
net topology design, number and placement of decoupling
capacitors, buffer insertion, etc.). In these cases,cycle-accurate
(pattern-accurate) power estimates are required.

Mehta et al. propose a clustering approach for pattern-
accurate power estimation in [43]. This approach relies on
the assumption that closely related input transitions have
similar power dissipation. Hence, each input pattern is first
mapped into a cluster, and then a table lookup is performed to
obtain the corresponding power estimates from precalculated
and stored power characterization data for the cluster. The
weakness of this approach is that, for efficiency reasons, the
number of clusters has to be relatively small, which would
introduce errors into the estimation result. In addition, the
assumption that closely related patterns (e.g., patterns with
short Hamming distance) result in similar power distribution
may be quite inaccurate, especially when themode-changing
bits are involved, i.e., when a bit change may cause a dramatic
change in the module behavior.

Addressing these problems, Wuet al. describe in [44] an
automatic procedure for cycle-accurate macro-model genera-
tion based on statistical sampling for thetraining setdesign
and regression analysis combined with appropriate statistical
tests (i.e., the test) for macro-model variable selection
and coefficient calculation. The test identifies the most (least)
power-critical variable to add to (delete from) the set of
selected variables. The statistical framework enables prediction
of the power value and the confidence level for the predicted
power value. This work is extended by Qiuet al. in [45]
to capture “important” first-order temporal correlations and
spatial correlations of up to order three at the circuit inputs.
Note that here the equation form and variables used for each
module are unique to that module type. Experimental results
show that power macro-models with a relatively small number
of input variables (i.e., eight) predict the module power with
a typical error of 5–10% for the average power and 10–20%
for the cycle power.

2) Sampling-Based Models:RT-level power evaluation
can be implemented in the form of apower cosimulatorfor
standard RT-level simulators. The cosimulator is responsible
for collecting input statistics from the output of the behavioral
simulator and producing the power value at the end. If
the cosimulator is invoked by the RT-level simulator every
simulation cycle to collect activity information in the circuit,
it is called census macro-modeling.

Evaluating the macro-model equation at each cycle during
the simulation is actually a census survey. The overhead of
data collection and macro-model evaluation can be high. To
reduce the run-time overhead, Hsiehet al. usesimple random
sampling to select a sample and calculate the macro-model
equation for the vector pairs in the sample only [46]. The
sample size is determined before simulation. Thesampler

macro-modelingrandomly selects cycles and marks those
cycles. When the behavioral simulator reaches the marked
cycle, the macro-modeling invokes the behavioral simulator
for the current input vectors and previous input vectors for
each module. The input statistics are only collected in these
marked cycles. Instead of selecting only one sample of large
size, we can select several samples of at least 30 units (to
insure normality of sample distribution) before the simulation.
Then the average value of sample means is the estimate of pop-
ulation mean. In this manner, the overhead of collecting input
statistics at every cycle, which is required by census macro-
modeling, is substantially reduced. Experimental results show
that sampler macro-modeling results in an average efficiency
improvement of 50 over the census macro-modeling, with
an average error of 1%.

The macro-model equation is developed by using a train-
ing set of input vectors. The training set satisfies certain
assumptions such as being pseudorandom data, speech data,
etc. Hence, the macro-model may become biased, meaning
that it produces very good results for the class of data that
behave similarly to the training set; otherwise, it produces
poor results. One way to reduce the gap between the power
macro-model equation and the gate-level power estimation is
to use aregression estimatoras follows [46]. It can be shown
that the plot of the gate-level power value versus a well-
designed macro-model equation estimate for many functional
units reveals an approximately linear relationship. Hence, the
macro-model equation can be used as a predictor for the gate-
level power value. In other words, the sample variance of the
ratio of gate-level power to macro-model equation power tends
to be much smaller than that of the gate-level power by itself.
It is thus more efficient to estimate the mean value of this ratio
and then use a linear regression equation to calculate the mean
value of the circuit-level power. Theadaptive macro-modeling
thus invokes a gate-level simulator on a small number of cycles
to improve the macro-model equation estimation accuracy. In
this manner, the “bias” of the static macro-models is reduced
or even eliminated. Experimental results show that the census
macro-modeling incurs large error (an average of 30% for the
benchmark circuits) compared to gate-level simulation. The
adaptive macro-modeling, however, exhibits an average error
of only 5%, which demonstrates the superiority of the adaptive
macro-modeling technique.

III. SYNTHESIS AND OPTIMIZATION

Power constraints must be taken into account during various
phases of the design flow. In this section, we first focus on
software optimization techniques (Section III-A), followed by
system-level power-management strategies (Section III-B). In
Section III-C, we illustrate transformations that are applicable
to behavioral descriptions and that improve the potential
savings achievable during the subsequent high-level synthe-
sis phase. Algorithms for low-power operation scheduling
and resource allocation (which are at the core of high-level
synthesis tools) are discussed in Sections III-D and III-E,
respectively, while a procedure for multiple supply-voltage
scheduling is presented in Section III-F. The output of the

1068 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

high-level synthesis phase is an RT-level description consisting
of a (possibly partitioned) control unit and some computing
(i.e., data-path) units, on which the bus encoding schemes
summarized in Section III-G can be applied to reduce the
overall power budget. A methodology to be used for translating
the specification of the system’s controller (as generated by the
high-level synthesis phase) into a gate-level netlist is briefly
outlined in Section III-H. Last, we go over a few RT and
gate-level logic shutdown techniques (Section III-I), as well as
retiming transformations (Section III-J) that can be exploited
to further reduce the total power requirements. We would like
to point out that not all the various design, synthesis, and opti-
mization steps indicated in the flow of Fig. 1 will be discussed
in detail in the sequel, but only those for which innovative, as
well as sufficiently reliable solutions have been proposed in
recent years. For example, we do not deal with techniques
for low-power hardware-software partitioning, since only a
few, preliminary contributions have appeared in the literature
[47]–[49]. Also, as stated in the introduction, we do not
consider traditional logic and transistor-level techniques.

A. Software Optimization

The software domain offers a large variety of opportunities
for optimizing the power dissipation of a processor-based
digital system. Software design for low power has thus become
an active area of research in the last few years. In this section
we summarize a few promising approaches. Specifically, we
discuss techniques targeting power minimization through a) in-
struction scheduling and code generation and b) minimization
of memory access costs.

The methods developed to properly select and order the
instructions of a program to reduce the instruction bus activity
are based on the simple observation that a given high-level
operation (e.g., a C statement) can be compiled into different
machine instruction sequences. Since the same observation
is at the basis of code optimization for speed and size, the
most straightforward way to proceed is to modify the objective
function used by existing code optimizers to obtain low-power
versions of a given software program. More specifically, the
basic power cost of each instruction (determineda priori
through a characterization process) must be considered during
code optimization.

Though this approach has proved to be effective, more
substantial power savings can be obtained by resorting to
optimizations specifically addressing power minimization [7].
Cold schedulingis an instruction scheduling procedure pro-
posed by Suet al. in [6] that attempts to reduce the number
of instruction bus transitions occurring when the processor
experiences a state change due to the execution of instructions
of different types. In essence, the algorithm acts as a list
scheduler that determines the priority of execution of the
instructions according to their power cost. The method, though
innovative, has been shown to work well only on processors
with specific reduced instruction set computer architectures. A
more articulated methodology for code generation and opti-
mization, whose practical applicability has been demonstrated
in the case of a digital signal processor (DSP), has been

Fig. 2. Code optimization to reduce the number of memory accesses.

proposed by Leeet al. in [50]. In this solution, techniques such
as instruction packing, minimization of circuit state effects,
and operand swapping are exploited [51].

Regarding the reduction of the costs of memory accesses,
the most effective and straightforward way of obtaining it
is through the minimization of the number of read/write
operations required by an algorithm. Consider, as an example,
the fragment of source code taken from [52] and shown on
the left-hand side of Fig. 2. If we assume the size of array
b to be too large to fit in the registers of the CPU, a total
of 2n read/write accesses to the memory are needed for the
intermediate arrayb during the execution of the program. By
transforming the code as indicated on the right-hand side of
Fig. 2, the required element of arrayb can be kept into a
register of the processor; therefore, only register accesses are
necessary to store and load the intermediate data.

Since minimization of the number of memory accesses is
one of the main objectives pursued by compilers that optimize
programs for speed, existing techniques developed in the
context of high-performance code generation can be easily
adapted to reduce the power requirements of the software
component of processor-based digital systems. However, fur-
ther improvements in the power budget can be achieved by
applying techniques (discussed next) that explicitly target the
minimization of the switching activity on the address bus and
that best exploit the hierarchy in the memory system.

The work by Panda and Dutt [53], [54] focuses on the
reduction of the power dissipated by off-chip drivers and
memory decoding logic by reducing the number of address bus
transitions. The goal is reached through a memory mapping
scheme that allows one to properly place in the main memory
large arrays of data for which the access patterns can be
extracted from the program source code at compilation time.

Additional contributions to the problem of finding data
allocations that minimize the power in the memory-processor
interface are available in the literature [52], [55]. These
techniques have the same objective as some of the bus
encoding strategies discussed in Section III-G. Therefore, in
order to be effective, power minimization strategies should
leverage their combination.

The basic assumption behind the exploitation of the memory
hierarchy to reduce power is that, usually, the higher levels of
the hierarchy can be accessed at a low power cost, but they
have limited storage capacity (for example, cache versus RAM
access). Power can then be reduced by organizing the data in
such a way that the higher levels of the hierarchy are optimally
utilized. Relevant work on this subject has been published in
recent years by Catthooret al. [52], [56], [57]. Their emphasis
is on systems for DSP and video applications, where the power
dissipated at the memory interface usually dominates, and the
type of data to be manipulated is usually much simpler to

MACII et al.: POWER MODELING, ESTIMATION, AND OPTIMIZATION 1069

Fig. 3. Static shutdown strategy.

predict. They present a formalized methodology for the choice
of the proper memory hierarchy to be adopted in the design
of data-intensive systems.

B. System-Level Power Management

The activity of several components in a computing system is
event driven;for example, the activity of display servers, com-
munication interfaces, and user interface functions is triggered
by external events and it is often interleaved with long periods
of quiescence. An intuitive way of reducing the average power
dissipated by the whole system consists of shutting down the
resources during their periods of inactivity. In other words,
one can adopt a system-level power-management policy that
dictates how and when the various components should be shut
down.

In [58], Srivastava et al. review conventional power-
management approaches, such as those already in use in
current portable computers, and propose some innovative
schemes.

An event-driven computing device can be thought of as a
finite-state system that can be in two states:Active and Idle.
When the device is idle, it is desirable to shut it down by
lowering its power supply or by turning off its clock; in this
way, its power dissipation can be drastically reduced. If we call

and the average time spent by the device in theActive
and in theIdle states, respectively, we have that the maximum
power improvement achievable through shutdown is given by

. Improvement figures closer to the upper bound
are, however, rarely obtained by existing shutdown strategies
(calledstatic). In fact, normally a device is put in its power-
down mode only time units after it has entered theIdle state
(see Fig. 3). This is because it is assumed that there is a high
chance for the system to be idle for a much longer time if it
has been in theIdle state for at least time units.

Obviously, this simple policy is not efficient for three
reasons. First, the assumption that if the system is idle for
more than time units, it will be so for much longer may not
be true in many cases. Second, even if the above assumption
is valid in the majority of the cases, whenever the system
enters theIdle state, it stays powered for at leasttime units,
wasting a considerable amount of power in that period. Third,
speed and power degradations due to shutdowns performed
at inappropriate times are not taken into account. In fact, it
should be kept in mind that the transition from power-down
to fully functional mode has an overhead: it takes some time

to bring the system up to speed, and it may also take more
power than the average, steady-state power.

To overcome the limitations of the static shutdown policy
discussed above, Srivastavaet al. have proposed apredictive

power-management strategy, whose main feature exploits the
past history of the active and idle intervals to predict the length
of an idle interval as soon as the system enters theIdle state.
In practice, two approaches are suggested: one is based on
obtaining a regression equation that predicts the value of
based on a quadratic function of the previous values of both
and . The other is based on the simple observation that if the

immediately preceding a is shorter than the minimum
value of ever experienced, it is highly probable that the
next will be longer than the minimum time for which it is
convenient to shut down the system.

Obviously, the power-management mechanism is con-
strained by two factors: 1) the time overhead needed to restart
the system and 2) the power overhead paid in restarting the
system. The higher these two factors, the more conservative
the shutdown strategy must be.

An experimental investigation performed on a SunSPARC
station running an X server has shown power improvements
achievable through the predictive shutdown policies to be as
high as 38 , with a very limited decrease in performance
(around 3%).

In [59], Hwang and Wu have introduced a more complex
predictive shutdown strategy that performs better than the
methods of Srivastavaet al. The use of a technique for
correcting possible idle period mispredictions, along with a
prewakeup mechanism, account for the higher efficiency and
the decreased delay penalty provided by the new approach.

It is important to point out that the applicability of power-
optimization techniques based on resource shutdown is not
limited to system-level descriptions. We will show later
in the paper how the concept of power management can
be successfully exploited during high-level synthesis and
RTL optimization.

C. Behavioral Transformations

Given a control-data-flow graph(CDFG) describing the
behavior of the hardware part of the system being designed,
some transformations can be applied to it in order to improve
the potential power savings achievable in the subsequent
phases of high-level synthesis and RTL optimization. To be
applicable in practice, such transformations must only modify
the computational structure of the selected algorithm, while
they must preserve its original input/output behavior and, to
some extent, its latency.

According to Chandrakasanet al. [18], there are two distinct
ways of optimizing power using behavioral transformations.
The first one consists of enabling the reduction of the supply
voltage through application of speedup transformations, such
as retiming, pipelining, algebraic manipulations, and loop re-
structuring. Since these transformations have been extensively
used in the context of performance optimization, we do not
discuss them here. Instead, we focus on the second behavioral-
level optimization approach. Here, the target is the minimiza-
tion of the effective capacitance through transformations that
increase the utilization of the system resources; this is because
fewer and smaller computing elements usually provide better
power performance of the design being developed. As an

1070 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

Fig. 4. Evaluation of a second-order polynomial.

Fig. 5. Evaluation of a third-order polynomial.

example, we illustrate how a reduction of the total number of
operations in the CDFG or the substitution of some operations
with more convenient ones can yield more power-efficient
descriptions.

The easiest way to reduce the total switched capacitance
consists of reducing the number of operations in the CDFG.
Unfortunately, reducing the number of operations may
adversely affect system performance. In the following, we
present two examples, taken from [18], which illustrate the
contradictory effects that this transformation may have on the
design under optimization.

Fig. 4 shows two possible implementations of a system that
evaluates a second-order polynomial. The one on the left is
the most straightforward: it requires a total of two adders
and two multipliers, and it has a critical path of length three.
The realization on the right, on the other hand, is obtained
through simple algebraic transformations. It only consists of
two adders and one multiplier, and it still has a critical path of
length three. Obviously, in this case, the transformed structure
is advantageous.

Consider now two different implementations, depicted in
Fig. 5 and taken from [18], of a system that evaluates a third-
order polynomial. The straightforward implementation on the
left requires a total of three adders and four multipliers, and
it has a critical path of length four. Algebraic transformations
yield the implementation on the right, which contains only
three adders and two multipliers, but which has a critical
path of length five. In this case, a decrease in the number
of operations corresponds to a decrease in speed, which, in
turn, causes a reduction in the potential power optimization
achievable through supply voltage downscaling.

It is well known that there exist operations whose corre-
sponding hardware implementations require less energy per
computation than others. For example, multiplications usu-
ally require more energy than additions. Therefore,strength
reduction transformations are used to substitute multipliers
with adders/subtractors, whenever possible. Unfortunately, this
technique has a serious drawback: it usually produces an
increase in the original critical path length. The conversion of
multiplications with constants into the combination of shift and
add operations is another powerful transformation belonging to

TABLE I
CAPACITANCE STATISTICS FOR A TAP FIR FILTER

this category. Its applicability is mainly found in DSP circuits,
where constant multiplications are quite common.

As an example of the usefulness of this transformation, in
Table I we report the capacitance statistics, taken from [18],
for a Tap finite-duration impulse response (FIR) filter before
and after application of the conversion of multiplications with
constants into shift-add operations.

The capacitance switched by the control units is reduced by
approximately a factor of eight; reductions are also achieved
for the registers, the clock distribution network, and the
interconnect network, mainly due to the reduced area of the
final implementation. On the contrary, a small capacitance
penalty is paid for the control logic.

The impact of various transformations on the characteristics
of the design, depending on the specific situations in which
they are applied, is such that a fully automatic procedure that
drives the optimization process does not seem to be of practical
interest. On the contrary, tools that help the designer in
selecting the most useful transformations by quickly proposing
the possible alternatives are highly desirable.

D. Operation Scheduling

The goal of a scheduling algorithm is to associate each
primitive operation appearing in the CDFG with the time
interval (also called control step) in which the operation is
to be executed so as to satisfy some design constraints.

Several attempts have been made to modify traditional
scheduling algorithms to take into account power consumption.
For example, in [60], Musoll and Cortadella have proposed
to include in the cost function that drives the scheduling
procedure a measure of the switching activity occurring at the
inputs of the functional units. By selecting from the CDFG
the nodes for which no change of values in the input operands
occurs between consecutive operations of the same functional
unit, and by placing such nodes as close as possible in the
scheduling, a substantial minimization of the total switched
capacitance can be achieved. In [61], the same authors have
also proposed a set of CDFG transformations that may help
in minimizing the activity at the inputs of a functional unit.
In particular, the use ofloop interchange, operand reordering,
and operand sharinghas been suggested.

Clearly, the CDFG transformations mentioned above per-
form best in the cases where common input operands can
be identified. Unfortunately, these situations are not encoun-
tered very frequently in real designs. However, it is still
possible to target a switching activity reduction at the inputs
of the functional units by resorting to thepower-conscious

MACII et al.: POWER MODELING, ESTIMATION, AND OPTIMIZATION 1071

loop folding technique presented by Kim and Choi in [62].
Such technique, derived from a well-known transformation
traditionally applied for throughput optimization and resource
minimization, enables the detection of common input operands
that are hidden inside the loops of the CDFG. The method has
proven to have significant power-reducing effects on several
applications taken from the DSP domain (e.g., filters).

A substantially different approach to the problem of de-
termining a low-power scheduling of the CDFG has been
introduced by Monteiroet al. in [63]. This work is based
on the idea of enabling, at a lower level of abstraction,
a power-management strategy similar to those discussed in
Section III-B for system-level design descriptions.

The proposed scheduling algorithm attempts to assign the
operations involved in determining and controlling the flow
of the data within the system to the earliest possible time
intervals. This allows one to establish which computational
units are strictly required for a specific computation. The
unused resources can be disabled during the system execution.
They are identified by detecting mutually exclusive operations
in the CDFG and by scheduling them for execution in time
frames occurring after the decision on which unit must be
activated has been made. In this way, all mutually exclusive
units but one are guaranteed to be shut down during the current
computation. In addition, if mutually exclusive operations are
scheduled in the same time interval, it may be possible to share
the corresponding resource, thus possibly achieving further
power savings.

A scheduling that enables dynamic power management can
be computed as follows. The multiplexors in the CDFG are
considered individually, one at a time, starting with the ones
that are closer to the bottom of the graph. Clearly, this is
an arbitrary choice, and it is made in view of the fact that
applying power management to such multiplexors may enable
the shutdown of a larger number of units. The set of nodes,

, and of the CDFG, which belong to the transitive fanin
of the zero, one, and control inputs of the currently selected
multiplexor, are identified. Nodes that are simultaneously in

and are obviously not suitable for power management,
since the corresponding operation is needed no matter what
the value of the multiplexor control input will be; therefore,
they can be removed from the sets they belong to. The as-
soon-as-possible (ASAP) scheduling algorithm is then run on
the remaining nodes of and , assuming that such nodes
are assigned to time intervals that follow the one assigned to
the last node in . Similarly, the nodes in are scheduled
using the as-late-as-possible (ALAP) strategy, assuming that
they are all associated with control steps preceding the one of
the first nodes in either or . If there exists at least one
node in , , and for which the time interval assigned
by the ASAP algorithm is greater than the one assigned by
the ALAP procedure, such a node cannot be scheduled under
the required assumptions. Therefore, the multiplexor under
consideration is not power manageable. On the other hand,
if no conflict happens on the values of the time intervals
assigned by the ASAP/ALAP scheduling procedures, all the
nodes in the three sets are assigned the newly computed
ASAP and ALAP control steps. The process just outlined is

iterated over all the multiplexors. Upon completion (i.e., after
having selected the multiplexor nodes for which the power
management is possible), new precedence edges are created
in the CDFG between the last node belonging to set
and the top nodes belonging to sets and for each
of the selected multiplexors. (A precedence edge entering a
node controls the activation of such a node.) The control
step assignment phase is finally completed using an existing
scheduling algorithm.

E. Resource Allocation

Once the scheduling is complete, a resource-allocation pro-
cedure must be run to assign registers and functional units to
variables and operations in the scheduled CDFG, respectively,
and to specify the interconnection of the various resources in
terms of buses and multiplexors.

There are three classes of resources to be considered,
namely, registers, functional units, and interconnections. Tra-
ditionally, the allocation has been carried out separately,
one class of resources at a time (serial allocation). Usu-
ally, the power consumed by a resource mainly depends
on the input switching activity induced by the data being
stored or processed. Since, in reality, the patterns flowing
through a circuit may have specific probability distributions,
the way registers and functional units are allocated in the
CDFG may heavily impact the switching activities at the
interfaces of the resources. Graph-based algorithms for reg-
ister allocation for nonpipelined designs [64] and module
allocation for functionally pipelined designs [19] proposed
by Chang and Pedram rely on an accurate computation of
the probability density functions at the inputs of the various
resources, given the probability distributions for the system
primary inputs.

Unfortunately, in some cases, serial allocation may result in
suboptimal solutions, i.e., designs using more interconnections
than required. It may then be convenient to perform the
three operations concurrently (simultaneousallocation). The
technique of [65], proposed by Raghunathan and Jha and
described next, considers data-dominated designs and targets
a combined minimization of the total circuit capacitance and
the switching activities at the inputs of the registers and the
functional modules.

The first objective is reached by limiting the total number of
resources in the final design implementation and by keeping
under control the required amount of steering logic and inter-
connect. The minimization of the input switching activities,
on the other hand, is obtained through exploitation of the
correlations that may exist between the data words traveling
and being stored within the circuit.

The allocation procedure is based on the concept of com-
patibility graph (CG) [66]. The CG is an undirected weighted
graph that has as many nodes as there are variables and
operations in the CDFG. Edges in the CG connect pairs of
compatible nodes, that is, nodes that can be mapped onto
the same resources (registers, in the case of variables, and
functional modules, in the case of operations). Edge weights
reflect the potential savings that could be achieved in the archi-

1072 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

tectural implementation of the system if the pairs of variables
or operations connected by the edges were assigned to the
same hardware resources. Let us indicate such edge weights
as (capacitance weights). When power consumption is the
target of the optimization, the switching activities at the inputs
of the various resources must be taken into account while
building the CG. To do that, another set of edge weights,
the ’s (switching activity weights), is determined through
high-level simulation of the CDFG. The ’s represent the
average number of bits that switch between pairs of compatible
variables or operations, and they are used in conjunction
with the ’s to form the global edge weights, ’s, of the
compatibility graph

Notice that is used instead of , since the target
is the minimization of the switching activity.

After the construction of the compatibility graph is ter-
minated, the allocation algorithm iteratively merges pairs of
compatible nodes, starting with the ones having higher global
weights. Obviously, this merging operation corresponds to the
mapping of the two variables or operations connected by the
edges to the same resources.

The allocation and binding algorithm summarized above
does not guarantee the minimum number of registers and
functional modules in the final architecture; however, the
result is usually very close to the optimum, as shown by a
number of experiments, and power savings are between 5
and 33%.

To further reduce the overall power budget, power man-
agement of the available hardware resources can be enabled
through a careful design of the control circuitry. In fact, not
all the resources of a system are simultaneously active at all
times. In particular, a component is idle when none of the
variables or operations mapped to it is active. The inputs to
idle registers and modules do not affect the behavior of the
overall system. Therefore, it may be possible to specify some
don’t care conditions in the controller; this information may
then be exploited to decrease the overall switching activity
within the design.

Other low-power allocation strategies have been proposed
in the recent literature. Some can be found in [60], [61], and
[67]–[69].

As a concluding remark, we would like to point out that
in the design flow of Fig. 1, operation scheduling is assumed
to precede resource allocation. This may not always be the
case in existing high-level synthesis tools, where the order of
execution of the two phases may be reversed [70], [71]; also,
it may happen that scheduling and allocation are performed
simultaneously. If the latter is the case, the optimization
problem must be formulated in a more global way, and the
various aspects related to low-power design that we have
separately discussed for scheduling and allocation must be
combined. An algorithm that simultaneously performs low-
power operation scheduling, clock selection, and resource
allocation is described in [72].

F. Multiple Supply-Voltage Scheduling

Supplying different voltages to different parts of a chip
may reduce the global energy requirements of a design at a
very limited cost in terms of algorithmic and/or architectural
modifications. This is because the modules of the chip that are
part of the critical paths are powered at the maximum allowed
voltage, thus avoiding any delay increase; the power consumed
by the modules that are not on the critical paths, on the other
hand, is minimized through proper voltage scaling.

The presence on the same chip of circuitry powered at
different voltages imposes the use of level shifters at the
boundaries of the various modules. Obviously, the area and
power costs due to such shifters must be considered while
evaluating the quality of the optimized circuit.

An important phase in the design flow of multipowered
systems is that of assigning the most convenient supply
voltage, selected from a fixed number of values, to each
operation in the CDFG. The problem to be solved is then
that of scheduling the supply voltages so as to minimize the
power dissipation under throughput/resource constraints.

An effective solution has been proposed by Chang and
Pedram in [73]. The technique is based on dynamic pro-
gramming, and it requires the availability of accurate timing
and power models for the macro-modules in the RTL library.
A preliminary characterization procedure must then be run
to determine an energy-delay curve for each module in the
library and for all possible supply-voltage assignments. The
points on the curve represent various voltage assignment
solutions with different tradeoffs between the performance
and the energy consumption of the cell. Each set of curves
is stored in the RTL library, ready to be used by the cost
function that controls the multiple supply-voltage scheduling
algorithm, outlined next for the simple case of CDFG’s with
tree structure. It consists of two phases: first, a set of possible
power-delay tradeoffs at the root of the tree is calculated;
then, a specific macro-module is selected for each node in
such a way that the scheduled CDFG meets the required
timing constraints.

To compute the set of possible solutions, a power-delay
curve at each node of the tree (proceeding from the inputs to
the output of the CDFG) is computed; such a curve represents
the power-delay tradeoffs that can be obtained by selecting
different instances of the macro-modules, and the necessary
level shifters, within the subtree rooted at each specific node.
The computation of the power-delay curves is carried out
recursively, until the root of the CDFG is reached.

Given the power-delay curve at the root node, that is, the
set of tradeoffs the user can choose from, a recursive preorder
traversal of the tree is performed, starting from the root node,
with the purpose of selecting which module alternative should
be used at each node of the CDFG.

Upon completion, all the operations are fully scheduled;
therefore, the CDFG is ready for the resource-allocation step
for which the techniques presented in Section III-E can be
used. Multipowered scheduling for high-throughput, function-
ally pipelined designs is also addressed in [73].

MACII et al.: POWER MODELING, ESTIMATION, AND OPTIMIZATION 1073

Alternatives to the multiple supply-voltage scheduling ap-
proach discussed above do exist in the literature. The interested
reader may find them in [74]–[76].

G. Bus Encoding

It is known that bus capacitances are usually several orders
of magnitude higher than those of the internal nodes of a
circuit. Consequently, a considerable amount of power can
be saved by reducing the number of transitions at the circuit
input/output interfaces. This task can be accomplished by
encoding the information transmitted over the buses.

The Bus-Invert codeof [77] is a simple, yet effective, low-
power encoding scheme. It works as follows: the Hamming
distance between two successive patterns is computed; if it
is larger than , where is the bus width, the current
address is transmitted with inverted polarity; otherwise, it is
transmitted as is. Obviously, a redundant bus lineINV is
needed to signal to the receiving end of the bus which polarity
is used for the transmission of the incoming pattern. The
method guarantees a maximum of transitions per clock
cycle, and it performs well when the patterns to be transmitted
are randomly distributed in time and no information about their
correlation is available. For this reason, it is appropriate for
data-bus encoding.

Concerning address buses, other techniques have also been
explored. Since the addresses generated by processors in
ordinary computing systems are often consecutive, Suet al.
have suggested the adoption of theGray code[78] as encoding
strategy. This code achieves its asymptotic best performance of
a single transition per emitted address when infinite streams of
consecutive addresses are considered [79], and it is optimum
only in the class of irredundant codes. If some redundancy is
allowed, as for the Bus-Invert approach, better performance
can be achieved by resorting to the T0code [80], which
requires an extra lineINC to signal when a pair of consecutive
addresses is written to the bus. WhenINC is high, the current
bus value is frozen to avoid unnecessary switchings, and the
new address is computed directly by the receiver. On the other
hand, when two addresses are not consecutive, theINC line
is low, and the bus operates normally. Several variants of the
T0 code are possible, some of which may incorporate the Bus-
Invert principle to exploit distinctive spectral characteristics of
the streams being transmitted [81].

The high frequency of consecutive patterns in the address
streams is at the basis of the effectiveness of encoding mech-
anisms such as Gray and T0. Clearly, if the percentage of
in-sequence addresses decreases, their effectiveness diminishes
as well. Two recently proposed solutions tackle some of the
limitations of Gray and T0.

The working zonecode [82] is based on the observation
that many programs access multiple data arrays. The accesses
to each array are mainly in sequence, but unfortunately they
are often interleaved; then, the sequentiality on the bus is
destroyed. The working-zone scheme restores sequentiality
by storing the reference addresses of each working zone on
the receiver side and by sending only the highly sequential
offsets. Whenever the data access moves to a new working

zone, this information is communicated to the receiver with a
special code word. The receiver changes the default reference
address, and offset transmission can resume. Although this
scheme is more flexible than Gray and T0, it still relies on
strong assumptions on the patterns in the stream. If the data-
access policy is not array based, or if the number of working
zones is too large, this encoding scheme loses effectiveness.
Moreover, similar to the case of the T0 code, it requires one
extra bus wire for communicating a working-zone change.
This requirement might not be acceptable because it changes
standard bus widths and chip pinouts.

The Beach code[83] relies on the fact that other types
of temporal correlations than arithmetic sequentiality exist
between the patterns that are being transmitted over the address
bus. Since it has been experimentally noted that time-adjacent
addresses normally show remarkably high block correlations,
the idea is that of determining an encoding strategy that
depends on the particular stream being transmitted. Given a
typical execution trace of the address bus to be encoded, some
statistical information identifying possible block correlations
is collected. The bus lines are then grouped into clusters
according to their correlations, that is, lines belonging to
the same cluster are highly correlated. An encoding function
is automatically generated for each cluster, and each con-
figuration of bits in the original cluster is translated into a
new bit configuration. The algorithm that finds the various
encoding functions targets the minimization of the switching
activity; thus, the technology developed for low-power finite
state machine encoding (see Section III-H) can be successfully
exploited. The output of the transformation is an encoded
stream for which the average number of bus line transitions
between two successive patterns is minimized. Clearly, since
the computation of the encoding functions is strictly dependent
on the selected execution trace, the Beach code performs
best on special-purpose systems, where a dedicated processor
(e.g., core, DSP, microcontroller) repeatedly executes the same
portion of embedded code.

The motivation for adopting a bus-encoding scheme is
a reduction of the global power budget; then, the savings
achieved through a bus switching activity reduction must not
be offset by the power dissipated by the encoding and decoding
circuitry at the bus terminals. In addition, bus latency is
usually a critical design constraint. Simultaneous optimization
of power and timing must then be targeted while synthesizing
the logic for bus encoding/decoding [81].

H. Control Logic Synthesis and Optimization

High-level synthesis produces a combined description of
data-path and control logic. The latter is normally in the form
of a transition structure, whose most familiar representation
is an FSM or a collection of FSM’s. The translation of such
FSM’s into a structural description presents opportunities for
reducing power consumption and poses corresponding chal-
lenges, especially when the control is complex and contains a
large number of latches. In this section, we outline how a gate-
level netlist, suitable as input to logic-level optimization tech-
niques, can be synthesized from a state transition graph (STG).

1074 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

The synthesis process starts with the extraction of the
STG from the RTL description of the FSM. For controllers
with more than a handful of latches, the explicit represen-
tation of the STG is infeasible. Though decomposition of
the controller before synthesis may alleviate the problem,
optimization opportunities may be lost in the process. For
this reason, symbolic techniques based onbinary decision
diagrams(BDD’s) [84] are often applied to the manipulation
of large graphs. These techniques represent sets by their char-
acteristic functions and use BDD’s to represent characteristic
functions. To be effective, symbolic algorithms must avoid
explicit enumeration of the elements of the sets (e.g., the edges
of a graph).

Since BDD’s are used to represent the transition relation
of the graph, a preliminaryencodingof the states is required.
This is often derived heuristically from the behavioral descrip-
tion. The graph is then subjected to various transformations
intended to improve energy efficiency as well as other metrics.
Last, a detailed structural description must be produced from
the graph.

Given the STG of the circuit controller, the optimization
task consists of modifying and encoding the graph in prepa-
ration for logic synthesis. We review these techniques with
particular emphasis on those algorithms that can be applied to
large circuits. (Those that dissipate nonnegligible amounts of
energy.) Among the modifications aredecompositionand re-
structuring. Decomposition techniques produce interconnected
FSM’s from one large FSM, and they fall broadly into two
categories: those based on the algebraic theory of [85] and
those based on the identification in the STG of subroutines
or coroutines [86]. A subroutine/coroutine corresponds to a
fragment of the STG augmented with a wait state. Shutdown
techniques can be applied to the individual machines because
only one is active at any point in time [87]. Both approaches
to decomposition try to minimize the activity along the lines
connecting the submachines, which tend to drive heavier loads.
Decomposition naturally helps tackling the complexity issue;
however, no decomposition algorithms are currently available
that are applicable to STG’s with millions of states.

Restructuring of the STG is a generic term that encom-
passes those graph transformations that preserve equivalence
of behavior (or compatibility in the presence of don’t care
conditions). The best known of such transformations is state
minimization. Algorithms are available for the minimization of
very large, completely specified FSM’s [88]. However, state
minimization by itself may have a deleterious effect on both
area and energy efficiency, especially for large circuits. It is
more advantageous to use the knowledge of the equivalence
classes to identify don’t care conditions and then use such
conditions in conjunction with a cost function that accounts
for the desired cost metrics [89].

The problem of encoding a state transition graph for
low power consumption has received considerable attention.
Among the earliest works is [90]. The idea common to this
and other encoding methods (see, for example, [91]–[94]) is
to use the transition probability of a given arc as a (partial)
measure of its cost. The problem is thus translated into the
embedding of the state transition graph into a hypercube of

suitable dimension so that arcs of high cost connect states at
low Hamming distance. Standard search techniques can be
applied to this combinatorial optimization problem.

When the STG is large, it is normally given in an already
encoded form. The problem is then the one of reencoding.
The initial encoding may come from a manual design, and
therefore it may provide a useful starting point. In general,
however, it is not optimal from the power viewpoint. The
main difference between algorithms for reencoding [95] and
those for encoding is in the size of the problems they try to
solve (millions of states versus thousands). To cope with very
large graphs, BDD-based techniques are used to manipulate
the graphs and sets of states; and the usual algorithms must be
reformulated so as to avoid any explicit iteration over states or
edges. The computation of the state probabilities can be carried
out exactly [96] or by resorting to approximate techniques [31].

A direct translation of the optimized STG into gates should
produce a structure that is relatively close to a good final
solution. Otherwise, the successive synthesis algorithms are
likely to produce suboptimal results. The problem when the
transition relation is represented by a BDD is that the obvious
mapping of each BDD node to a multiplexor results in
networks that are large, deep, and slow. Among the approaches
that overcome this problem, one builds a circuit in which
transitions for a given input vector propagate along a single
path, which corresponds to the selected path in the BDD;
several optimizations are then applied to control the cost of
the circuit [97].

Another approach is based on the work of Minato [98].
Zero-suppressed BDD’s can represent very large function
covers efficiently. Powerful factorization algorithms exist that
work on these symbolic covers. It is therefore possible to first
flatten the multilevel representation provided by the transition
relation BDD and extract from the two-level cover a multilevel
network. Factoring can be guided by low-power concerns, but
the objective of the symbolic techniques is to provide a link to
existing logic-level optimization tools, not to supplant them.

I. RT and Gate-Level Power Management

Dynamic power-management strategies such as those dis-
cussed in Sections III-B and III-E can be extended, with a
finer degree of granularity, to the case of RT and gate-level
descriptions. In fact, digital circuits usually contain portions
that are not performing useful computations at each clock
cycle. Power reductions can then be achieved by shutting down
the circuitry when it is idle. In this section, we briefly outline
three techniques for automatically inserting dynamic power-
management mechanisms into RT and gate-level designs.

Precomputation[99], [100] relies on the idea of duplicating
part of the logic with the purpose of precomputing the circuit
output values one clock cycle before they are required, and
then uses these values to reduce the total amount of switching
in the circuit during the next clock cycle. In fact, knowing
the output values one clock cycle in advance allows the
original logic to be turned off during the next time frame,
thus eliminating any charging and discharging of the internal
capacitances. Obviously, the size of the logic that precalcu-

MACII et al.: POWER MODELING, ESTIMATION, AND OPTIMIZATION 1075

Fig. 6. Example of precomputation architecture.

lates the output values must be kept under control, since its
contribution to the total power balance may offset the savings
achieved by blocking the switching inside the original circuit.
Several variants to the basic architecture can then be adopted
to take care of this problem; in particular, sometimes it may be
convenient to resort to partial, rather than global, shutdown,
i.e., to select for power management only a (possibly small)
subset of the circuit inputs.

As an example, consider the left part of Fig. 6; the combina-
tional block implements an -input, single-output Boolean
function , and it has the I/O pins connected to registers
and . A possible precomputation architecture is depicted at
the bottom of Fig. 6.

The key elements of the architecture are the two-input,
single-output predictor functions and , whose behavior is
required to satisfy the following constraints:

The consequence is that, if at the present clock cycle either
or evaluates to one, the load enable signalLE goes to zero,
and the inputs to block at the next clock cycle are forced
to retain the current values. Hence, no gate output transitions
inside block occur, while the correct output value for the
next time frame is provided by the two registers located on
the outputs of and .

As mentioned earlier, the choice of the predictor functions
is a difficult task. Perfect prediction requires and

. However, this solution would not give any advantage
in terms of power consumption over the original circuit, since
it would entail the duplication of block , and thus it would
cause the same number of switchings as before but with an
area twice as large as the original network. Consequently, the
objective to be reached is the realization of two functions for
which the probability of their logical sum (i.e.,) to
be one is as high as possible, but for which the area penalty
due to their implementations is very limited. Also, the delay
of the implementation of and should be given some
attention, since the prediction circuitry may be on the critical
path and, therefore, it may impact the performance of the
optimized design.

Fig. 7. Example of gated clock architecture.

Another approach to RT and gate-level dynamic power
management, known asgated clocks[101]–[103], provides a
way to selectively stop the clock, and thus force the original
circuit to make no transition, whenever the computation to be
carried out at the next clock cycle is useless. In other words,
the clock signal is disabled in accordance to the idle conditions
of the logic network. For reactive circuits, the number of clock
cycles in which the design is idle in some wait states is usually
large. Therefore, avoiding the power waste corresponding to
such states may be significant.

As an example of use of the clock-gating strategy, consider
the traditional block diagram of a sequential circuit, shown
on the upper part of Fig. 7. It consists of a combinational
logic block and an array of state registers that are fed by the
next-state logic and that provide some feedback information to
the combinational block itself through the present-state input
signals. The corresponding gated-clock architecture is shown
in the lower part of the picture.

The circuit is assumed to have a single clock, and the
registers are assumed to be edge-triggered flip-flops. The
combinational block is controlled by the primary inputs,
the present-state inputs, and the primary outputs of the circuit,
and it implements the activation function of the clock-gating
mechanism. Its purpose is to selectively stop the local clock
of the circuit anytime no state or output transition takes place.
The block named is a latch, transparent when the global
clock signal CLK is inactive. Its presence is essential for a
correct operation of the system, since it takes care of filtering
glitches that may occur at the output of block. It should be
noted that the logic for the activation function is on the critical
path of the circuit; therefore, timing violations may occur if
the synthesis of is not carried out properly.

The logic for the clock management is automatically syn-
thesized from the Boolean function that represents the idle
conditions of the circuit. It may well be the case that consid-
ering all such conditions results in additional circuitry that is
too large and power consuming. It may then be necessary to
synthesize a simplified function, which dissipates the minimum
possible power and stops the clock with maximum efficiency.

1076 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

(a) (b)

Fig. 8. Example of guard logic insertion.

The use of gated clocks has the drawback that the logic
implementing the clock-gating mechanism is functionally re-
dundant, and this may create major difficulties in testing and
verification. The design of highly testable gated clock circuits
is discussed in [104].

Guarded evaluation[105] is the third RT and gate-level
shutdown technique we review in this section. The distinctive
feature of this solution is that, unlike precomputation and
gated clocks, it does not require one to synthesize additional
logic to implement the shutdown mechanism; rather, it exploits
existing signals in the original circuit. The approach is based
on placing someguard logic,consisting of transparent latches
with an enable signal, at the inputs of each block of the circuit
that needs to be power managed. When the block must execute
some useful computation in a clock cycle, the enable signal
makes the latches transparent. Otherwise, the latches retain
their previous states, thus blocking any transition within the
logic block.

The use of transparent latches as devices to eliminate useless
node transitions is not new, since it has been proposed by
Lemonds and Shetti in [106] for the handcrafted optimization
of multipliers and other arithmetic circuits. However, the work
by Tiwari et al. on guarded evaluation provides a systematic
approach, described next, to identify where transparent latches
must be placed within the circuit and by which signals they
must be controlled.

Let be a combinational logic block [shown in Fig. 8(a)],
be the set of primary inputs to , and be a signal in .

Also, let be the portion of logic that drives and be the
set of inputs to . Last, let be the observability don’t
care set for (that is, the set of primary input assignments
for which the value of does not influence the outputs of).
Consider a signal in that logically implies , that is,

. Then, if , the value of is not required
to compute the outputs of . If we call the earliest time
at which any input to can switch when , and
the latest time at which settles to one, we have that signal

can be used as the guard signal for[shown in Fig. 8(b)]
if . This is because is not required to compute
the outputs of when , and thus block can be shut
down. Notice that the condition guarantees that
the transparent latches in the guard logic are shut down before
any of the inputs to makes a transition.

The technique described above, referred to aspure guarded
evaluation in [105], has the desirable property that, when
applied, no changes in the original combinational circuitry
are needed. On the other hand, if some resynthesis and
restructuring of the original logic is allowed, a larger number
of logic shutdown opportunities may become available.

(a) (b)

Fig. 9. Reducing the switching activity by inserting registers.

Other RTL power-management approaches exist in the
literature. For example, in [107] and [108], Raghunathanet
al. propose a technique that reduces switching activity through
respecification of some of the control signals in such a way
that both the multiplexor networks and the functional units
get conveniently reconfigured. The strength of the proposed
methodology, thought specifically for control-flow-intensive
designs, can be augmented by applying RT-level transfor-
mations for glitch minimization [109]; in fact, in such kind
of systems, the power dissipated by the control and steering
circuitry is usually predominant with respect to the power
required by the functional units.

J. RT and Gate-Level Retiming

The position of the registers within a design may greatly
affect the area and performance of the circuit implementation.
The transformation that repositions the registers of a design
without modifying its external behavior is called retiming.
The technique, initially proposed by Leiserson and Saxe
[110], has found wide applications in the context of area and
timing optimization. In [111], Monteiroet al. have pointed
out that register positions can also affect power dissipation.
Consider the simple example of a logic gatebelonging to a
synchronous circuit [see Fig. 9(a)], and call the capacitive
load driven by the output node of. In the case of CMOS
technology, the power dissipated by gateis proportional to
the product of the switching activity of the output node of the
gate and the output load . Now consider the case in
which a register is connected to the output of. Let
be the input capacitance of the register, and let be the
switching activity of the register output [see Fig. 9(b)].

The total power dissipated by the new circuit is proportional
to . Since the output of the register can make,
at most, one transition per clock cycle, we have that .
In fact, at the output of gate some spurious transitions (i.e.,
glitches) may occur, but they are filtered by the register; hence,
they do not propagate to the output of. Consequently, it
may happen that if both and
are sufficiently high. If this is the case, the presence of the
register at the output of the gate has beneficial effects to the
power behavior of the circuit.

Though sometimes it may be advantageous (for instance, in
the case of pipelining, when registers are added to speed up a
design), inserting registers into a design is not always feasible.
On the other hand, when registers are already present in the
circuit, it may be possible to move them across RTL blocks or
logic gates so as to modify the circuit’s timing—and, in view

MACII et al.: POWER MODELING, ESTIMATION, AND OPTIMIZATION 1077

of the discussion above, also its power dissipation—without
affecting the behavioral characteristics.

The heuristic retiming technique of [111] applies to a
synchronous network with pipeline structure. The basic idea
is to select a set ofcandidategates in the circuit such that if
registers are placed at their outputs, the total switching activity
of the network gets minimized. The selection of the gates is
driven by two factors: the amount of glitching that occurs at
the output of each gate and the probability that such glitching
propagates to the gates located in the transitive fanout.

Registers are initially placed at the primary inputs of the
circuit, and backward retiming (which consists of moving one
register from all gate inputs to the output) is applied until all
the candidate gates have received a register on their outputs.
Then, registers that belong to paths not containing any of
the candidate gates are repositioned, with the objective of
minimizing both the delay and the total number of registers in
the circuit. This last retiming phase does not affect the registers
that have been already placed at the outputs of the previously
selected gates.

IV. CONCLUSIONS

The increased degree of automation of industrial design
frameworks has produced a substantial change in the way
digital IC’s are developed. The design of modern systems
usually starts from specifications given at a very high level
of abstraction. This is because existing EDA tools are able
to automatically produce low-level design implementations
directly from descriptions of this type.

It is widely recognized that power consumption has become
a critical issue in the development of digital systems; then,
electronic designers need tools that allow them to explicitly
control the power budget during the various phases of the
design process. This is because the power savings obtainable
through automatic optimization are usually more significant
than those achievable by means of technological choices (e.g.,
process and supply-voltage scaling).

In this paper, we have provided a nonexhaustive review
of existing methodologies and tools for high-level power
modeling and estimation, as well as for power-constrained
synthesis and optimization. Such methodologies and tools are
younger and, therefore, less developed than those available at
the gate and circuit level. A wealth of research results and a
few pioneering commercial tools have appeared nonetheless in
the last couple of years. We expect this field to remain quite
active in the foreseeable future. New trends and techniques
will emerge, and some approaches described in this review
will consolidate, while others will become obsolete; this is in
view of technological and strategic changes in the world of
microelectronics.

REFERENCES

[1] F. N. Najm, “A survey of power estimation techniques in VLSI circuits,”
IEEE Trans. VLSI Syst.,vol. 2, no. 4, pp. 446–455, 1994.

[2] M. Pedram, “Power minimization in IC design: Principles and applica-
tions,” ACM Trans. Design Automat. Electron. Syst.,vol. 1, no. 1, pp.
3–56, 1996.

[3] J. M. Rabaey and M. Pedram, Eds.,Low Power Design Methodologies.
Norwell, MA: Kluwer Academic, 1996.

[4] J. Mermet and W. Nebel, Eds.,Low Power Design in Deep Submicron
Electronics. Norwell, MA: Kluwer Academic, 1997.

[5] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago, “Evaluation of
architectural-level power estimation for CMOS RISC processors,” in
Proc. ISLPE-95: IEEE Int. Symp. Low Power Electronics,San Jose,
CA, Oct. 1995, pp. 44–45.

[6] C.-L. Su, C.-Y. Tsui, and A. M. Despain, “Low power architecture
design and compilation techniques for high-performance processors,” in
Proc. IEEE CompCon’94,Feb. 1994, pp. 489–498.

[7] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: A first step toward software power minimization,”IEEE Trans.
VLSI Syst.,vol. 2, no. 4, pp. 437–445, 1994.

[8] C.-T. Hsieh, M. Pedram, H. Mehta, and F. Rastgar, “Profile-driven
program synthesis for evaluation of system power dissipation,” inProc.
DAC-34: ACM/IEEE Design Automation Conf.,Anaheim, CA, June
1997, pp. 576–581.

[9] D. Marculescu, R. Marculescu, and M. Pedram, “Information theoretic
measures for power analysis,”IEEE Trans. Computer-Aided Design,vol.
15, no. 6, pp. 599–610, 1996.

[10] M. Nemani and F. Najm, “Toward a high-level power estimation
capability,” IEEE Trans. Computer-Aided Design,vol. 15, no. 6, pp.
588–598, 1996.

[11] K. T. Cheng and V. D. Agrawal, “An entropy measure for the complex-
ity of multi-output Boolean functions,” inProc. DAC-27: ACM/IEEE
Design Automation Conf.,Orlando, FL, June 1990, pp. 302–305.

[12] F. Ferrandi, F. Fummi. E. Macii, M. Poncino, and D. Sciuto, “Power
estimation of behavioral descriptions,” inProc. DATE-98: IEEE Design
Automation and Test in Europe,Paris, France, Feb. 1998, pp. 762–766.

[13] A. Tyagi, “Entropic bounds on FSM switching,”IEEE Trans. VLSI Syst.,
vol. 5, no. 4, pp. 456–464, 1997.

[14] K. Muller-Glaser, K. Kirsch, and K. Neusinger, “Estimating essential
design characteristics to support project planning for ASIC design
management,” inProc. ICCAD-91: IEEE/ACM Int. Conf. Computer
Aided Design,Santa Clara, CA, Nov. 1991, pp. 148–151.

[15] M. Nemani and F. Najm, “High-level area prediction for power estima-
tion,” in Proc. CICC-97: Custom Integrated Circuits Conf.,Santa Clara,
CA, May 1997, pp. 483-486.

[16] , “High-level area and power estimation for VLSI circuits,” in
Proc. ICCAD-97: IEEE/ACM Int. Conf. Computer Aided Design,San
Jose, CA, Nov. 1997, pp. 114–119.

[17] P. Landman and J. Rabaey, “Activity-sensitive architectural power
analysis for the control path,” inProc. ISLPD-95: ACM/IEEE Int. Symp.
Low Power Design,Dana Point, CA, Apr. 1995, pp. 93–98.

[18] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. W.
Brodersen, “Optimizing power using transformations,”IEEE Trans.
Computer-Aided Design,vol. 14, no. 1, pp. 12–31, 1995.

[19] J. M. Chang and M. Pedram, “Module assignment for low power,”
in Proc. EuroDAC-96: IEEE Eur. Design Automation Conf.,Geneva,
Switzerland, Sept. 1996, pp. 376–381.

[20] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-driven
behavioral synthesis for low power VLSI systems,”IEEE Design Test
Comput. Mag.,vol. 12, no. 3, pp. 70–84, 1995.

[21] R. San Martin and J. Knight, “Optimizing power in ASIC behavioral
synthesis,”IEEE Design Test Comput. Mag.,vol. 13, no. 2, pp. 58–70,
1996.

[22] L. Benini, A. Bogliolo, M. Favalli, and G. De Micheli, “Regression
models for behavioral power estimation,” inProc. PATMOS-96: Int.
Workshop on Power and Timing Modeling, Optimization and Simulation,
Bologna, Italy, Sept. 1996, pp. 179–186.

[23] L. Benini, A. Bogliolo, and G. De Micheli, “Characterization-free be-
havioral power modeling,” inProc. DATE-98: IEEE Design Automation
and Test in Europe,Paris, France, Feb. 1998, pp. 767–773.

[24] , “Adaptive least mean square behavioral power modeling,” in
Proc. EDTC-97: IEEE Eur. Design and Test Conf.,Paris, France, Mar.
1997, pp. 404–410.

[25] C. M. Huizer, “Power dissipation analysis of CMOS VLSI circuits
by means of switch-level simulation,” inProc. IEEE Eur. Solid State
Circuits Conf.,1990, pp. 61–64.

[26] C. X. Huang, B. Zhang, A.-C. Deng, and B. Swirski, “The design
and implementation of powermill,” inProc. ISLPD-95: ACM/IEEE Int.
Symp. Low Power Design,Dana Point, CA, Apr. 1995, pp. 105–110.

[27] F. Najm, R. Burch, P. Yang, and I. Hajj, “Probabilistic simulation for
reliability analysis of CMOS VLSI circuits,”IEEE Trans. Computer-
Aided Design,vol. 9, no. 4, pp. 439–450, 1990.

[28] C.-Y. Tsui, M. Pedram, and A. M. Despain, “Efficient estimation of
dynamic power dissipation under a real delay model,” inProc. ICCAD-
93: IEEE/ACM Int. Conf. Computer Aided Design,Santa Clara, CA,
Nov. 1993, pp. 224–228.

1078 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 11, NOVEMBER 1998

[29] F. Najm, “Transition density: A new measure of activity in digital
circuits,” IEEE Trans. Computer-Aided Design,vol. 12, no. 4, pp.
310–323, 1993.

[30] R. Marculescu, D. Marculescu, and M. Pedram, “Efficient power estima-
tion for highly correlated input streams,” inProc. DAC-32: ACM/IEEE
Design Automation Conf.,San Francisco, CA, June 1995, pp. 628–634.

[31] C.-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. M. Despain, and B.
Lin, “Power estimation in sequential logic circuits,”IEEE Trans. VLSI
Syst.,vol. 3, no. 3, pp. 404–416, 1995.

[32] R. Burch, F. Najm, P. Yang, and T. Trick, “A Monte Carlo approach
for power estimation,”IEEE Trans. VLSI Syst.,vol. 1, no. 1, pp. 63–71,
1993.

[33] C.-S. Ding, C.-T. Hsieh, Q. Wu, and M. Pedram, “Stratified random
sampling for power estimation,” inProc. ICCAD-96: IEEE/ACM Int.
Conf. Computer Aided Design,San Jose, CA, Nov. 1996, pp. 577–582.

[34] L.-P. Yuan, C.-C. Teng, and S.-M. Kang, “Statistical estimation of
average power dissipation in CMOS VLSI circuits using nonparametric
technique,” in Proc. ISLPED-96: ACM/IEEE Int. Symp. Low Power
Electronics and Design,Monterey, CA, Aug. 1996, pp. 73–78.

[35] T.-L. Chou and K. Roy, “Statistical estimation of sequential circuit
activity,” in Proc. ICCAD-95: IEEE/ACM Int. Conf. Computer Aided
Design,San Jose, CA, Nov. 1995, pp. 34–37.

[36] D. Marculescu, R. Marculescu, and M. Pedram, “Stochastic sequential
machine synthesis targeting constrained sequence generation,” inProc.
DAC-33: ACM/IEEE Design Automation Conf.,Las Vegas, NV, June
1996, pp. 696–701.

[37] R. Marculescu, D. Marculescu, and M. Pedram, “Adaptive models for
input data compaction for power simulators,” inProc. ASPDAC-2:
ACM/IEEE Asia South Pacific Design Automation Conf.,Chiba, Japan,
Jan. 1997, pp. 391–396.

[38] D. Marculescu, R. Marculescu, and M. Pedram, “Sequence compaction
for probabilistic analysis of finite state machines,” inProc. DAC-34:
ACM/IEEE Design Automation Conf.,Anaheim, CA, June 1997, pp.
12–15.

[39] S. Powell and P. Chau, “Estimating power dissipation of VLSI signal
processing chips: The FA Techniques,” inProc. IEEE Workshop on VLSI
Signal Processing,1990, vol. IV, pp. 250–259.

[40] P. Landman and J. Rabaey, “Power estimation for high-level synthesis,”
in Proc. EDAC-93: IEEE Eur. Conf. Design Automation,Paris, France,
Feb. 1993, pp. 361–366.

[41] S. Gupta and F. N. Najm, “Power macromodeling for high-level power
estimation,” in Proc. DAC-34: ACM/IEEE Design Automation Conf.,
Anaheim, CA, June 1997, pp. 365–370.

[42] D. Liu and C. Svensson, “Power consumption estimation in CMOS
VLSI chips,” IEEE J. Solid State Circuits,vol. 29, no. 6, pp. 663–670,
1994.

[43] H. Mehta, R. Owens, and M. J. Irwin, “Energy characterization based
on clustering,” inProc. DAC-33: ACM/IEEE Design Automation Conf.,
Las Vegas, NV, June 1996, pp. 702-707.

[44] Q. Wu, C.-S. Ding, C.-T. Hsieh, and M. Pedram, “Statistical design
of macro-models for RT-level power evaluation,” inProc. ASPDAC-2:
ACM/IEEE Asia South Pacific Design Automation Conf.,Chiba, Japan,
Jan. 1997, pp. 523–528.

[45] Q. Qiu, Q. Wu, M. Pedram, and C.-S. Ding, “Cycle-accurate macro-
models for RT-level power analysis,” inProc. ISLPED-97: ACM/IEEE
Int. Symp. Low Power Electronics and Design,Monterey, CA, Aug.
1997, pp. 125–130.

[46] C.-T. Hsieh, C.-S. Ding, Q. Wu, and M. Pedram, “Statistical sampling
and regression estimation in power macro-modeling,” inProc. ICCAD-
96: IEEE/ACM Int. Conf. Computer Aided Design,San Jose, CA, Nov.
1996, pp. 583–588.

[47] D. Kirovski and M. Potkonjak, “System-level synthesis of low-power
hard real-time systems,” inProc. DAC-34: ACM/IEEE Design Automa-
tion Conf.,Anaheim, CA, June 1997, pp. 697–702.

[48] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-
software cosynthesis of embedded systems,” inProc. DAC-34:
ACM/IEEE Design Automation Conf.,Anaheim, CA, June 1997, pp.
703–708.

[49] R. P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm
for the cosynthesis of hardware-software embedded systems,” inProc.
ICCAD-97: IEEE/ACM Int. Conf. Computer Aided Design,San Jose,
CA, Nov. 1997, pp. 522–529.

[50] M. T.-C. Lee, V. Tiwari, S. Malik, and M. Fujita, “Power analysis
and minimization techniques for embedded DSP software,”IEEE Trans.
VLSI Syst.,vol. 5, no. 1, pp. 123–135, 1997.

[51] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee, “Instruction level
power analysis and optimization of software,”J. VLSI Signal Process.,
pp. 1–18, 1996.

[52] S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man, “Global
communication and memory optimizing transformations for low power
design,” inProc. IWLPD-94: ACM/IEEE Int. Workshop on Low Power
Design,Napa Valley, CA, Apr. 1994, pp. 203–208.

[53] P. R. Panda and N. D. Dutt, “Reducing address bus transitions for low
power memory mapping,” inProc. EDTC-96: IEEE Eur. Design and
Test Conf.,Paris, France, Mar. 1996, pp. 63–67.

[54] , “Low power mapping of behavioral array to multiple memories,”
in Proc. ISLPED-96: ACM/IEEE Int. Symp. Low Power Electronics and
Design,Monterey, CA, Aug. 1996, pp. 289–292.

[55] M. T.-C. Lee and V. Tiwari, “A memory allocation technique for low-
energy embedded DSP software,” inProc. ISLPE-95: IEEE Int. Symp.
Low Power Electronics,San Diego, CA, Oct. 1995, pp. 44–45.

[56] S. Wuytack, F. Catthoor, L. Nachtergaele, and H. De Man, “Power
exploration for data dominated video applications,” inProc. ISLPED-
96: ACM/IEEE Int. Symp. Low Power Electronics and Design,Monterey,
CA, Aug. 1996, pp. 359–364.

[57] J. P. Diguet, S. Wuytack, F. Catthoor, and H. De Man, “Formal-
ized methodology for data reuse exploration in hierarchical memory
mappings,” in Proc. ISLPED-97: ACM/IEEE Int. Symp. Low Power
Electronics and Design,Monterey, CA, Aug. 1997, pp. 30–35.

[58] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive
system shutdown and other architectural techniques for energy efficient
programmable computation,”IEEE Trans. VLSI Syst.,vol. 4, no. 1, pp.
42–55, Mar. 1996.

[59] C.-H. Hwang and A. C.-H. Wu, “A predictive system shutdown method
for energy saving of event-driven computation,” inProc. ICCAD-97:
IEEE/ACM Int. Conf. Computer Aided Design,San Jose, CA, Nov. 1997,
pp. 28-32.

[60] E. Musoll and J. Cortadella, “Scheduling and resource binding for low
power,” in Proc. ISSS-95: IEEE Int. Symp. System Synthesis,Cannes,
France, Apr. 1995, pp. 104–109.

[61] , “High-level synthesis techniques for reducing the activity of
functional units,” inProc. ISLPD-95: ACM/IEEE Int. Symp. Low Power
Design,Dana Point, CA, Apr. 1995, pp. 99–104.

[62] D. Kim and K. Choi, “Power-conscious high-level synthesis using
loop folding,” in Proc. DAC-34: ACM/IEEE Design Automation Conf.,
Anaheim, CA, June 1997, pp. 441–445.

[63] J. Monteiro, S. Devadas, P. Ashar, and A. Mauskar, “Scheduling
techniques to enable power management,” inProc. DAC-33: ACM/IEEE
Design Automation Conf.,Las Vegas, NV, June 1996, pp. 349–352.

[64] J. M. Chang and M. Pedram, “Low power register allocation and
binding,” in Proc. DAC-32: ACM/IEEE Design Automation Conf.,San
Francisco, CA, June 1995, pp. 29–35.

[65] A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,”
in Proc. ICCD-94: IEEE Int. Conf. Computer Design,Cambridge, MA,
Oct. 1994, pp. 318–322.

[66] S. Bhatia and N. K. Jha, “Genesis: A behavioral synthesis system for
hierarchical testability,” inProc. EDTC-94: IEEE Eur. Design and Test
Conf., Paris, France, Feb. 1994, pp. 272–276.

[67] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitectural synthesis
of performance-constrained, low-power VLSI designs,” inProc. ICCD-
94: IEEE Int. Conf. Computer Design,Cambridge, MA, Oct. 1994, pp.
323–326.

[68] R. Mehra and J. Rabaey, “Exploiting regularity for low-power design,”
in Proc. ICCAD-96: IEEE/ACM Int. Conf. Computer Aided Design,San
Jose, CA, Nov. 1996, pp. 166–172.

[69] C. Gebotys, “Low energy memory and register allocation using net-
work flow,” in Proc. DAC-34: ACM/IEEE Design Automation Conf.,
Anaheim, CA, June 1997, pp. 435–440.

[70] D. D. Gajski and L. Ramachandran, “Introduction to high-level synthe-
sis,” IEEE Design Test Comput. Mag.,vol. 11, no. 4, pp. 44–54, Dec.
1994.

[71] G. De Micheli, Synthesis and Optimization of Digital Circuits.New
York: McGraw-Hill, 1994.

[72] A. Raghunathan and N. K. Jha, “An iterative improvement algorithm
for low power data-path synthesis,” inProc. ICCAD-95: IEEE Int. Conf.
Computer Aided Design,San Jose, CA, Nov. 1995, pp. 597–602.

[73] J. M. Chang and M. Pedram, “Energy minimization using multiple
supply voltages,”IEEE Trans. VLSI Syst.,vol. 5, no. 4, pp. 436–443,
1997.

[74] S. Raje and M. Sarrafzadeh, “Variable voltage scheduling,” inProc.
ISLPD-95: ACM/IEEE Int. Symp. Low Power Design,Dana Point, CA,
Apr. 1995, pp. 9–14.

[75] M. Johnson and K. Roy, “Optimal selection of supply voltages and level
conversions during data-path scheduling under resource constraints,” in
Proc. ICCD-96: IEEE Int. Conf. Computer Design,Austin, TX, Oct.
1996, pp. 72–77.

MACII et al.: POWER MODELING, ESTIMATION, AND OPTIMIZATION 1079

[76] M. Igarashiet al., “A low-power design method using multiple supply
voltages,” in Proc. ISLPED-97: ACM/IEEE Int. Symp. Low Power
Electronics and Design,Monterey, CA, Aug. 1997, pp. 36–41.

[77] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,”
IEEE Trans. VLSI Syst.,vol. 3, no. 1, pp. 49–58, 1995.

[78] C.-L. Su, C.-Y. Tsui, and A. M. Despain, “Saving power in the control
path of embedded processors,”IEEE Design Test Comput. Mag.,vol.
11, no. 4, pp. 24–30, 1994.

[79] H. Mehta, R. M. Owens, and M. J. Irwin, “Some issues in gray
code addressing,” inProc. GLS-VLSI-96: IEEE/ACM Great Lakes Symp.
VLSI, Ames, IA, Mar. 1996, pp. 178–180.

[80] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano,
“Asymptotic zero-transition activity encoding for address busses in
low-power microprocessor-based systems,” inProc. GLS-VLSI-97:
IEEE/ACM Great Lakes Symp. VLSI,Urbana, IL, Mar. 1997, pp. 77–82.

[81] , “Address bus encoding techniques for system-level power
optimization,” in Proc. DATE-98: IEEE Design Automation and Test
in Europe,Paris, France, Feb. 1998, pp. 861–866.

[82] E. Musoll, T. Lang, and J. Cortadella, “Exploiting the locality of memory
references to reduce the address bus energy,” inProc. ISLPED-97:
ACM/IEEE Int. Symp. Low Power Electronics and Design,Monterey,
CA, Aug. 1997, pp. 202–207.

[83] L. Benini, G. De Micheli, E. Macii, M. Poncino, and S. Quer, “System-
level power optimization of special purpose applications: The beach
solution,” in Proc. ISLPED-97: ACM/IEEE Int. Symp. Low Power
Electronics and Design,Monterey, CA, Aug. 1997, pp. 24–29.

[84] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput.,vol. C-35, no. 8, pp. 677–691, 1986.

[85] J. Hartmanis and R. E. Stearns,Algebraic Structure Theory of Sequential
Machines. Englewood Cliffs, NJ: Prentice-Hall, 1966.

[86] S. Devadas and A. R. Newton, “Decomposition and factorization of
sequential finite state machines,”IEEE Trans. Computer-Aided Design,
vol. 8, no. 11, pp. 1206–1217, 1989.

[87] L. Benini, P. Vuillod, C. Coelho, and G. De Micheli, “Synthesis of
low-power selectively-clocked systems from high-level specification,”
in Proc. ISSS-96: IEEE Int. Symp. System Synthesis,La Jolla, CA, Oct.
1996, pp. 57–62.

[88] B. Lin and A. R. Newton, “Implicit manipulation of equivalence classes
using binary decision diagrams,” inProc. ICCD-91: IEEE Int. Conf.
Computer Design,Cambridge, MA, Oct. 1991, pp. 81–85.

[89] B. Kumthekar, I. H. Moon, and F. Somenzi, “A symbolic algorithm for
low-power sequential synthesis,” inProc. ISLPED-97: ACM/IEEE Int.
Symp. Low Power Electronics and Design,Monterey, CA, Aug. 1997,
pp. 56–61.

[90] K. Roy and S. C. Prasad, “Circuit activity based synthesis for low power
reliable operations,”IEEE Trans. VLSI Syst.,vol. 1, no. 4, pp. 503–513,
1993.

[91] E. Olson and S. M. Kang, “Low-power state assignment for finite state
machines,” inProc. IWLPD-94: Int. Workshop on Low Power Design,
Napa Valley, CA, Apr. 1994, pp. 63–68.

[92] C.-Y. Tsui, M. Pedram, and A. M. Despain, “Low power state assign-
ment targeting two- and multilevel logic implementations,” inProc.
ICCAD-94: IEEE/ACM Int. Conf. Computer Aided Design,San Jose,
CA, Nov. 1994, pp. 82–87.

[93] L. Benini and G. De Micheli, “State assignment for low power dis-
sipation,” IEEE J. Solid-State Circuits,vol. 30, no. 3, pp. 258–268,
1995.

[94] P. Surti, L. F. Chao, and A. Tyagi, “Low power FSM design using
Huffman-style encoding,” inProc. EDTC-97: IEEE Eur. Design and
Test Conf.,Paris, France, Mar. 1997, pp. 521–525.

[95] G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, and F. Somenzi,
“Reencoding sequential circuits to reduce power dissipation,” inProc.
ICCAD-94: IEEE/ACM Int. Conf. Computer Aided Design,San Jose,
CA, Nov. 1994, pp. 70–73.

[96] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi, “Markovian analysis
of large finite state machines,”IEEE Trans. Computer-Aided Design,vol.
15, no. 12, pp. 1479–1493, 1996.

[97] L. Lavagno, P. C. McGeer, A. Saldanha, and A. L. Sangiovanni-
Vincentelli, “Timed Shannon circuits: A power-efficient design style
and synthesis tool,” inProc. DAC-32: ACM/IEEE Design Automation
Conf., San Francisco, CA, June 1995, pp. 254–260.

[98] S.-I. Minato, “Zero-suppressed BDD’s for set manipulation in combi-
natorial problems,” inProc. DAC-30: ACM/IEEE Design Automation
Conf., Dallas, TX, June 1993, pp. 272–277.

[99] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,”
IEEE Trans. VLSI Syst.,vol. 2, no. 4, pp. 426–436, 1994.

[100] J. Monteiro, J. Rinderknecht, S. Devadas, and A. Ghosh, “Optimization
of combinational and sequential circuits for low power using precom-
putation,” inProc. 1995 Chapel Hill Conf. Advanced Research in VLSI,
Chapel Hill, NC, Mar. 1995, pp. 430–444.

[101] L. Benini, P. Siegel, and G. De Micheli, “Automatic synthesis of gated
clocks for power reduction in sequential circuits,”IEEE Design Test
Comput. Mag.,vol. 11, no. 4, pp. 32–40, 1994.

[102] L. Benini and G. De Micheli, “Transformation and synthesis of FSM’s
for low power gated clock implementation,”IEEE Trans. Computer-
Aided Design,vol. 15, no. 6, pp. 630–643, 1996.

[103] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi,
“Symbolic synthesis of clock-gating logic for power optimization of
control-oriented synchronous networks,” inProc. EDTC-97: IEEE Eur.
Design and Test Conf.,Paris, France, Mar. 1997, pp. 514–520.

[104] L. Benini, M. Favalli, and G. De Micheli, “Design for testability of
gated-clock FSM’s,” inProc. EDTC-96: IEEE Eur. Design and Test
Conf., Paris, France, Mar. 1996, pp. 589–596.

[105] V. Tiwari, S. Malik, and P. Ashar, “Guarded evaluation: Pushing power
management to logic synthesis/design,” inProc. ISLPD-95: ACM/IEEE
Int. Symp. Low Power Design,Dana Point, CA, Apr. 1995, pp. 221–226.

[106] C. Lemonds and S. S. Shetti, “A low power 16 by 16 multiplier
using transition reduction circuitry,” inProc. IWLPD-94: ACM/IEEE
Int. Workshop on Low Power Design,Napa Valley, CA, Apr. 1994, pp.
139–142.

[107] A. Raghunathan, S. Dey, N. K. Jha, and K. Wakabayashi, “Controller
respecification to minimize switching activity in controller/data path
circuits,” in Proc. ISLPED-96: ACM/IEEE Int. Symp. Low Power Elec-
tronics and Design,Monterey, CA, Aug. 1996, pp. 301–304.

[108] , “Power management techniques for control-flow intensive de-
signs,” in Proc. DAC-34: ACM/IEEE Design Automation Conf.,Ana-
heim, CA, June 1997, pp. 429–434.

[109] A. Raghunathan, S. Dey, and N. K. Jha, “Glitch analysis and reduc-
tion in register transfer level power optimization,” inProc. DAC-33:
ACM/IEEE Design Automation Conf.,Las Vegas, NV, June 1996, pp.
331–336.

[110] C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,”J.
VLSI Comput. Syst.,vol. 1, no. 1, pp. 41–67, 1983.

[111] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits
for low power,” in Proc. ICCAD-93: IEEE/ACM Int. Conf. Computer
Aided Design,Santa Clara, CA, Nov. 1993, pp. 398–402.

Enrico Macii (M’92), for a photograph and biography, see p. 232 of the
March 1998 issue of this TRANSACTIONS.

Massoud Pedram(S’88–M’90), for a photograph and biography, see p. 83
of the February 1998 issue of this TRANSACTIONS.

Fabio Somenzigraduated from the Politecnico di Torino in 1980.
He was with SGS-Thomson until 1989, when he joined the electrical and

computer engineering Faculty of the University of Colorado at Boulder. In
1987, he was a Visiting Industrial Fellow at the University of California,
Berkeley. Since the fall of 1997, he has been on a sabbatical at Cadence
Berkeley Laboratories, Berkeley. His research interests include synthesis and
verification of digital systems.

