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This thesis advocates the usefulness and practicality of a logic-based approach to AI and in

particular to high-level control of mobile robots. The contribution of the research work reported

here is twofold: 1) the development of theoretical frameworks that account for uncertainty and

unmodeled dynamics in an environment where an acting agent has to achieve certain goals and

2) the implementation of the developed ideas on a mobile robot.

We have elaborated the approach to designing efficient and reliable controllers in Golog

following two different perspectives on the environment where the control program is supposed

to operate.

According to one perspective, investigated in Chapter 4, the agent has a logical model of

the world, but there is no probabilistic information about the environment where the agent

is planning to act, and the agent is not capable or has no time for acquiring probabilities of

different effects of its actions. In this case, the uncertainty and dynamics of the environment

can be accounted only by observing the real outcomes of actions executed by the agent, by

determining possible discrepancies between the observed outcomes and the effects expected

according to the logical model of the world and then by recovering, if necessary, from the

relevant discrepancies. To recover the agent computes on-line an appropriate correction of

the program that is being executed. A general framework for execution monitoring of Golog

programs provides the aforementioned functionalities and generalizes those previously known

approaches to execution monitoring that have been formulated only for cases when the agent
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is given a linearly or partially ordered sequence of actions, but not an arbitrary program.

According to the second perspective, investigated in Chapter 5, we can model actions of

the agent as stochastic actions and characterize them by a finite set of probabilities: when-

ever the agent does a stochastic action, it may lead to a finite number of possible outcomes.

Two major innovations in this research direction are the development of a decision-theoretic

Golog (DT-Golog) interpreter, that deals with programs that include stochastic actions, and

the development of the situation calculus representation of MDPs. In addition to this off-line

DT-Golog interpreter, in Chapter 6 we develop an on-line DT-Golog interpreter that combines

planning with the execution of policies. This new on-line architecture allows one to compute

an optimal policy (optimal with respect to a given Golog program and a current model of the

world) from an initial segment of a Golog program, execute the computed policy on-line and

then proceed to computing and executing policies for the remaining segments of the program.

The specification and implementation of the on-line interpreter requires a new approach to the

representation of sensing actions in the situation calculus. A formal study of this approach is

undertaken in Chapter 3. We also describe implementations of our frameworks; these were

successfully tested in a real office environment on a mobile robot B21.
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Chapter 1

Introduction

1.1 Motivation

This thesis advocates the usefulness and practicality of a logic-based approach to AI and in

particular to high-level control of mobile robots. The contribution of the research work reported

here is twofold: 1) the development of theoretical frameworks that account for uncertainty and

unmodeled dynamics in an environment where an acting agent has to achieve certain goals and

2) the implementation of the developed ideas on a mobile robot.

There are several advantages of a logic-based approach to AI [McCarthy, 1990, Reiter, 2001a].

First, knowledge about the world can be represented in a logical theory independent of how

this knowledge will be used to solve practical tasks (declarativeness). Second, it is possi-

ble to incorporate high-level cognitive skills such as planning, reasoning about other agents,

and commonsense reasoning into a logic-based agent (cognitive adequacy). Third, an accessi-

ble logic-based model of the world can be used to compute appropriate responses required to

achieve reliability during the execution of plans in a dynamic and uncertain world (robustness).

Fourth, because essential specifications are expressed in logic, in cases when our implementa-

tion is sound with respect to the logical specification, we can verify formally whether our agent

is capable of achieving its goals safely (verification). Fifth, if knowledge about the world and

goals of an agent are expressed in a logical language, then they can be relatively easy to modify

(elaboration tolerance).

1



CHAPTER 1. INTRODUCTION 2

1.2 Methodology

Intelligent agents operating in realistic environments are confronted with an uncertain, dy-

namic world and given only partial information about its initial state. To operate successfully

and achieve their goals, those agents must be provided with models that account for the com-

plexity of real environments. For this reason, the task of adequate modeling of the world is

the necessary preliminary step towards designing complex controllers for intelligent agents.

In the past few years, it has been demonstrated that predicate logic-based frameworks pro-

vide all the required expressive power and flexibility for constructing adequate models. More

specifically, it has been demonstrated that many sophisticated models can be expressed in the

situation calculus (a popular knowledge representation framework that is entirely formulated

in the classical predicate logic). Recently, the situation calculus has been extensively studied

and modified, and the version formulated in [Levesque et al., 1998, Reiter, 2001a] is a well-

developed approach to axiomatizing effects of primitive actions on the world. In addition, the

Cognitive Robotics group at the University of Toronto has developed the high-level logic-based

programming language Golog [Levesque et al., 1997, Levesque and Reiter, 1998]. Golog has

all standard programming constructs and several non-deterministic operators; it can be used to

compose complex controllers from primitive actions specified in the situation calculus. In par-

ticular, the planning task can be done using search constrained by the given nondeterministic

program.

These recent developments not only introduced a very general, semantically clear approach

to modeling dynamic systems in classical predicate logic, but also brought about techniques

for designing computationally efficient high-level controllers: by varying the degree of non-

determinism in a Golog program and by using operators that bound the scope of search, the

programmer can influence the efficiency of search for an executable control sequence. From the

perspective of my research, Golog is an ideal language because at each step of a computation,

the logical statements about the current logical model can be easily evaluated; in other words,

the logical model of the world is easily accessible.

1.3 Outline of the Thesis

The main objective of my PhD research is accounting for uncertainty and unmodeled dynamics

in an environment. To achieve this I have developed several innovative proposals. I have elab-

orated some approaches to designing efficient and reliable controllers in Golog following two
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different perspectives on the environment where the control program is supposed to operate.

1.3.1 A Deterministic Perspective.

According to one perspective, there is no probabilistic information about the environment

where the agent is planning to act, and the agent is not capable or has no time for acquir-

ing probabilities of different effects of its actions (this includes the case when estimation of

those probabilities is impractical due to the nature of application domain). This setting is com-

mon in cases when the robot has to explore a previously unfamiliar environment only once

or a few times: due to scarcity of interaction experiences, the probabilistic model cannot be

estimated in advance. In this case, the uncertainty and dynamics of the environment can be

dealt with only by observing the real outcomes of actions executed by the agent, by determin-

ing possible discrepancies between the observed outcomes and the effects expected according

to the logical model of the world and then by recovering, if necessary, from the relevant dis-

crepancies: to recover the agent computes on-line an appropriate correction of the program

that is being executed. A general framework for execution monitoring of Golog programs pro-

vides the aforementioned functionalities and generalizes those previously known approaches

to execution monitoring that have been formulated only for cases when the agent is given a

linearly or partially ordered sequence of actions, but not an arbitrary program. Chapter 4 con-

siders two general recovery mechanisms that can be employed by the execution monitor: a

planning procedure and backtracking, respectively. The planning procedure computes on-line

a short corrective sequence of actions such that after doing those actions, the agent can resume

executing the remaining part of the program. Backtracking to previous choice points in the

non-deterministic Golog program gives an agent a chance to choose an alternative execution

branch in cases when the further execution of actions remaining in the current branch is no

longer possible (a post-condition of the program will not be satisfied) or desirable (there are

other execution branches with higher utility). For example, this happens if the last action was

executed overly late and no matter how fast the agent will execute actions remaining in the

branch, it will miss a deadline at the end. In the general case, when the agent has executed ac-

tions after choosing a particular branch of a non-deterministic Golog program, the generalized

recovery mechanism may use both planning and backtracking procedures if it is not possible or

desirable to continue the execution of the current branch: the planning procedure is responsible

in this case for computing a plan that leads back to a program state where an alternative branch

can be chosen.
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Both recovery mechanisms have been successfully implemented. In particular, the exe-

cution monitoring with backtracking has been implemented on the mobile robot Golem (B21

manufactured by Real World Interface, Inc). This implementation has demonstrated that given

a non-deterministic Golog program with actions that have an explicit temporal argument, the

monitor computes on-line an alternative schedule of deliveries in a real office environment,

when the robot encounters unmodeled obstacles that unexpectedly delay its travel between of-

fices. The low-level software was initially developed at the University of Bonn and Carnegie-

Mellon University to control Rhino, another B21 robot, which is famous for its use in museum

guide applications; see [Burgard et al., 1998, Burgard et al., 1999, Thrun et al., 1999] for de-

tails.

I expect that thanks to its generality, the execution monitoring framework can find applica-

bility in domains outside robotics (e.g., Semantic Web, software engineering). The reliability

provided by this framework to high-level logic-based programs in dynamic and uncertain envi-

ronments can be achieved without extra effort for a Golog programmer. The logical model of

the domain, once it is constructed, is the only component required by the monitor to function

properly and make sure that the program runs robustly.

1.3.2 A Probabilistic Decision-Theoretic Perspective.

According to the second perspective, we can model actions of the agent as stochastic actions

and characterize them by a finite set of probabilities: whenever the agent does a stochastic

action, it may lead to a finite number of possible outcomes (states). Each outcome (state) is

associated with a certain reward value, and each sequence of actions is characterized by the

expected utility representing rewards accumulated over all possible sequences of outcomes. In

this case, the interaction of the agent with the environment can be described by a Markov Deci-

sion Process (MDP), and the agent has to solve the corresponding decision-theoretic planning

(DTP) problem: compute an optimal policy. Here, a policy is a conditional Golog program

with test conditions serving to identify a real outcome of stochastic actions; an optimal policy

is one that yields the maximum expected utility.

In realistic domains, MDPs have certain structure and it is natural to exploit this struc-

ture to solve efficiently the corresponding DTP problems even if the state space of an MDP is

very large. More specifically, a Golog programmer can design a Golog program that provides

natural constraints on the search for an optimal policy. Two major innovative steps in this re-

search endeavor were the development of a decision-theoretic Golog (DT-Golog) interpreter,
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that deals with programs that include stochastic actions, and the development of a situation cal-

culus representation of MDPs. By using the domain specific procedural knowledge expressed

in the Golog program, an off-line DT-Golog interpreter computes a policy optimal with respect

to constraints in the program given a reward function and the situation calculus-based repre-

sentation of an MDP. This gives to the programmer unique flexibility in designing complex

controllers: both the opportunity to design efficient controllers and the simplicity of leaving

the solution of the problem of what constitutes an optimal policy to the off-line interpreter. In

Chapter 5, we provide arguments that the proposed approach allows for the seamless integra-

tion of programming and planning. In particular, the chapter outlines a robotics implementation

and examples that demonstrate the importance of having a logical model of the world: using a

situation calculus based representation of an MDP and a Golog program that provides natural

constraints, the DT-Golog interpreter is able to compute an optimal policy even in the case

when the state space of the associated MDP has several billion states.

The interpreter specified in Chapter 5 is an off-line interpreter: it computes an optimal

policy and only after that the policy is executed on-line. In Chapter 6, we discuss an on-

line DT-Golog interpreter that combines planning with the execution of policies. This on-

line architecture allows one to compute an optimal policy (optimal with respect to a given

Golog program and a current model of the world) from an initial segment of a Golog program,

execute the computed policy on-line and then proceed to computing and executing policies for

the remaining segments of the program. The specification and implementation of the on-line

interpreter requires a new approach to the representation of sensing actions in the situation

calculus. A formal study of this approach is undertaken in Chapter 3. The on-line DT-Golog

interpreter was also successfully tested in the real office environment on the same robot. The

implementation proved the efficiency of this new on-line architecture.



Chapter 2

Background

This chapter provides background material that we use in all subsequent chapters of this thesis.

2.1 The Situation Calculus with Time and Knowledge

In this section, we collect definitions and concepts related to representation and reasoning about

actions. We choose the situation calculus as a logical representation language. Specifically,

we introduce three dialects of the situation calculus: the basic version, the temporal situation

calculus and the situation calculus with an explicit epistemic fluent.

2.1.1 The Basic Situation Calculus

The situation calculus [McCarthy, 1963] is a first-order language for axiomatizing dynamic

worlds. In 1990s, it has been considerably extended beyond the initial proposal to include con-

currency, continuous time, nondeterminism, etc, but in all cases, its basic ingredients consist

of actions, situations and fluents.

Let � be a sorted first-order language with three disjoint sorts for actions, situations and

objects. 1 The vocabulary of � consists of symbols described below. We will use Greek

letters ✁ , ✂ and ✄ to denote well-formed formulas. Variables of sort action will be denoted
☎✝✆✟✞✠✆✡☎☞☛✌✆✟☎✎✍✏✆✟✞✒✑✒✓✔✓✔✓ ; variables of sort situation will be denoted ✕ ✆ ✕ ☛✖✆ ✕ ✍✏✆ ✕ ✑✔✆✘✗✙✆✡✗✙✍✚✆✡✗✝✑✛✆✜✓✔✓✔✓ ; object

variables will be denoted by ✢ , ✣ and other letters and English words.

1To simplify definitions the sort object includes agents, physical entities, and locations.

6
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Actions

There are finitely many different function symbols of sort action; arguments of such symbols

may be only of sort object. We will name these function symbols primitive actions. Infor-

mally, we understand primitive actions in this subsection as deterministic physical ones: e.g.,

as manipulations with physical objects: put, take, grasp (stochastic actions will be considered

in Chapter 5).

Terms of sort action also will be denoted by lower-case letters ☎ and ✞ with primes and

subscripts, and arguments will be shown explicitly whenever we want to stress the difference

between variables and terms of sort action.

Situations

Function symbols of sort situation: there are just two of these — the constant �✂✁ , and the binary

function symbol ✄✆☎ which takes arguments of sort action and situation. Upper-case letters �
with primes and subscripts denote ground situation terms. The constant �✂✁ denotes an initial

situation, ✄✝☎✟✞ ☎✝✆ ✕✡✠ denotes a situation resulting from the execution of action ☎ in situation ✕ . We

understand situation is a first-order term denoting a sequence of actions: do ✞ ✞ ✆ ✕✡✠ denotes the

sequence resulting from adding the action ✞ to the sequence ✕ . The special constant �☛✁ denotes

the empty action sequence; so �☞✁ is like LISP’s ✞✌✠ or Prolog’s ✍✏✎ . Therefore, the situation term

do ✞✒✑✔✓✔✕✗✖✙✘✚✞✜✛✢☎✏☎✏✣ ✆✥✤✧✦ ✕★✣✩✠ ✆ do ✞✫✪✝✬ ☎ ✕✭✑✂✞✜✛✢☎✏☎✏✣✮✠ ✆
do ✞✯✪✟☎✱✰✙✬✏☎✡✲✴✳✵☎✩✞✜✶ ☎✆✷✫✷ ✆✹✸ ☎✏☎✡✲✺✠ ✆ �✻✁✼✠✽✠✭✠

denotes the sequence of actions: ✪✟☎✯✰✙✬✏☎✡✲✴✳✵☎✝✞ ✷ ☎✏✾ ✆✥✷ ☎★✾ ☛ ✠ , ✪✝✬ ☎ ✕✭✑✂✞✜✛✢☎★☎✿✣✮✠ , ✑✔✓✔✕✗✖✙✘✚✞✜✛✢☎★☎✿✣ ✆✹✤❀✦ ✕✡✣✮✠
Notice that the action sequence is obtained from a situation term by reading the term from right

to left. For this reason, it is convenient to use the following suggestive notation: ✄✆☎✩✞✽✍ ☎ ✍✏✆✔✓✔✓✔✓ ✆✟☎❂❁ ✎ ✆ ✕✡✠ ,
where ☎ ✍✚✆✔✓✜✓✔✓✜✆✟☎❂❁ are terms of sort action:

✄✆☎✩✞✽✍✏✎ ✆ ✕★✠❄❃ ✕ ✆

✄✆☎✩✞✽✍ ☎✎✍✏✆✔✓✜✓✔✓✜✆✟☎❂❁ ✎ ✆ ✕★✠❄❃❅✄✝☎✟✞ ☎❂❁ ✆ ✄✆☎✩✞✽✍ ☎✎✍✏✆✜✓✔✓✔✓✚✆✟☎❂❁✏❆✝✍ ✎ ✆ ✕✡✠✭✠❇✘❈❃❊❉ ✆✼❋ ✆✔✓✔✓✔✓

Thus, ✄✝☎✟✞✭✍ ☎ ✍✚✆✜✓✔✓✔✓✚✆✟☎❂❁ ✎ ✆ ✕✡✠ is a compact notation for the situation term ✄✝☎✟✞ ☎✆❁ ✆ ✄✆☎✩✞ ☎❂❁✏❆✝✍✏✆✔✓✜✓✔✓ ✄✆☎✟✞ ☎✎✍✏✆ ✕✡✠ ✓✔✓✔✓ ✠✽✠
which denotes that situation resulting from performing the action ☎ ✍ , followed by ☎ ✑✜✆✔✓✔✓✔✓ ✆ fol-

lowed by ☎●❁ , beginning in situation ✕ .
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Fluents

Relations or functions whose values may vary from situation to situation are called fluents.

They are denoted by predicate or function symbols; each symbol takes, among its arguments,

exactly one of sort situation. For notational convenience, we assume that the situation argu-

ment is the last argument of fluents. There are finitely many fluents; these are domain specific

predicate or function symbols. For example, ✾ ✷ ☎ ✕ ✦ ✳✵☎✟✞ ✢ ✆ ✣ ✆ ✕✡✠ might be a relational fluent,

meaning that ✢ will be close to ✣ in the result of performing the action sequence ✕ ; ✑ ☎ ✕✝✞ ✢ ✆ ✕✡✠
might be a functional fluent, denoting ✢ ’s position in the result of performing the action se-

quence ✕ .
Following [Reiter, 2001a], the language of the situation calculus includes a distinguished

equality symbol ❃ and two other predicate constants:

1. A distinguished binary predicate symbol
✁ ☎ ✕ ✕ taking arguments of sort action and situ-

ation, respectively;
✁ ☎ ✕ ✕✆✞ ☎ ✆ ✕★✠ means action ☎ is possible in situation ✕ .

2. A distinguished binary predicate symbol ✂ taking arguments of sort situation. We will

use ✕☎✄ ✕ ☛ as shorthand for ✕✆✂ ✕ ☛✞✝ ✕ ❃ ✕ ☛ .
There are also finitely many other domain specific function symbols of sort object for each

arity none of which take an argument of sort situation or an argument of sort action. The

language may also include finitely many domain specific predicate symbols which may have

an argument of sort action, but have no arguments of sort situation. We use ordinary logical

connectives and punctuation.

Basic Action Theories

Let ✟ be the set of the foundational axioms:

✄✆☎✩✞ ☎ ✍✟✆ ✕ ✍ ✠ ❃ ✄✆☎✩✞ ☎ ✑✜✆ ✕ ✑ ✠✡✠ ☎ ✍ ❃ ☎☞✑☞☛ ✕ ✍ ❃ ✕ ✑✛✆ (2.1)

✞✍✌ ✁ ✠ ✓ ✁ ✞ �✻✁✥✠ ☛ ✞✍✌ ☎✝✆ ✕✡✠ ✍ ✁ ✞ ✕✡✠✡✠ ✁ ✞✜✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ ✎✎✠ ✞✏✌ ✕★✠ ✁ ✞ ✕✡✠ ✆ (2.2)

✑ ✕☎✂ �✻✁ ✆ (2.3)

✕✆✂ ✄✆☎✟✞ ☎✝✆ ✕ ☛ ✠✓✒ ✕☎✄ ✕ ☛ ✓ (2.4)

The axiom (2.2) is a second order induction axiom saying that the sort situation is the

smallest set containing �☞✁ that is closed under the application of do to an action and situation.

The axiom (2.1) is a unique names axiom for situations that together with (2.2) imply that if
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two situations are the same, then each of them is the result of the same sequence of actions

applied in �✻✁ (informally, different sequences of actions forking from �✌✁ cannot join in the

same situation). The axiom (2.3) means that �✌✁ has no predecessors, and (2.4) asserts that a

situation ✕ is a predecessor of (or equal to) other situation that results from doing an action ☎ in

a situation ✕ ☛ if and only if ✕ is a predecessor of ✕ ☛ or ✕ is equal to ✕ ☛ . These axioms are domain

independent and must be included in any domain specific axiomatization of an application.

In addition to foundational axioms, it is convenient to characterize only those situations

✄✆☎✩✞✽✍ ☎✎✍✏✆✜✓✔✓✔✓✜✆✡☎●❁ ✎ ✆ ✕✡✠ in which all actions are actually possible to execute one after the other.

These situations are called reachable and they are defined by an abbreviation:

✬ ✦✛☎ ✾✁� ☎✄✂✼✷✜✦ ✞ ✕✡✠ ☎✝✆✟✞❃ ✞✍✌ ☎✝✆ ✕ ☛ ✠ ✓ ✄✆☎✟✞ ☎✝✆ ✕ ☛ ✠✡✄ ✕☎✠ ✁ ☎ ✕ ✕✆✞ ☎ ✆ ✕ ☛ ✠ ✓ (2.5)

A domain theory is axiomatized in the situation calculus with the following four classes of

axioms ([Pirri and Reiter, 1999, Reiter, 2001a]):

Unique names axioms for actions �✡✠ ❁☞☛ . These axioms state that the actions of the domain

are pairwise unequal.

Initial theory of the world �✍✌✏✎ . This is a set of first-order sentences whose only situation term

is �✻✁ . This set of axioms specifies what must hold before any actions have been “executed”.

Thus, no fluent of a formula of �✑✌✏✎ mentions a variable of sort situation or the function symbol

✄✆☎ ; �✡✌✒✎ characterize only the initial situation.

Action precondition axioms � ☛✔✓ . There is one axiom for each primitive action ✕✢✞☞✖✢ ✠ :
Poss ✞✗✕ ✞☞✖✢✻✠ ✆ ✕✡✠ ✒ ✘✚✙✚✞☞✖✢ ✆ ✕✡✠ ✆

where ✘✚✙❄✞☞✖✢ ✆ ✕✡✠ is a formula with free variables among ✖✢ ✆ ✕ ✓ Each axiom characterizes the

preconditions of action ✕ ✞☞✖✢✻✠ : the action can be executed in situation ✕ only if the formula

✘✚✙ ✞☞✖✢ ✆ ✕✡✠ holds in ✕ . Each precondition axiom has only one occurrence of the predicate constant

Poss; the formula ✘✛✙✚✞☞✖✢ ✆ ✕✡✠ has neither occurrences of predicate constants
✁ ☎ ✕ ✕ and ✂ nor

occurrences of the term do, it mentions only one situation variable ✕ and it does not include

quantifiers over this situation variable. Any formula that satisfy all these syntactic requirements

is called uniform in ✕ . Uniform formulas are typical in domain axiomatizations. Note that

because the right hand side of the precondition axiom is an uniform formula, an action ✕ ✞☞✖✢✻✠ is

possible to execute ✕ only if some conditions apply exactly in ✕ (not in situations that precede

✕ or in situations for which ✕ is a predecessor). Thus, if the language of a domain theory has ✘
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different actions terms, then � ☛ ✓ consists of the following ✘ axioms:

✞✏✌ ✖✢ ✆ ✕✡✠ ✓ ✁ ☎ ✕ ✕✝✞✗✕ ✍ ✞ ✖✢✻✠ ✆ ✕✡✠✓✒ ✘ ✙ ✁ ✞☞✖✢ ✆ ✕✡✠ ✆
...

✞✍✌ ✖✂ ✆ ✕✡✠ ✓ ✁ ☎ ✕ ✕✆✞✔✕ ❁ ✞ ✖✂ ✠ ✆ ✕★✠✓✒ ✘ ✙☎✄✩✞☞✖✢ ✆ ✕✡✠ ✆
where all formulas ✘✛✙☎✆ ✞☞✖✢ ✆ ✕✡✠ are uniform in ✕ .
Successor state axioms �✞✝✟✝ . For each relational fluent ✰ ✞ ✖✢ ✆ ✕✡✠ there is one axiom

✰ ✞ ✖✢ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒ ✠☛✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠ ✆
where

✠☞✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠ is an uniform formula with free variables among ☎ ✆ ✕ ✆ ✖✢ ✓ The successor state

axioms characterize the truth values of the fluent ✰ in the next situation ✄✆☎✩✞ ☎ ✆ ✕★✠ in terms of

the logical conditions on current situation ✕ . These axioms embody a solution to the frame

problem for deterministic actions [Reiter, 1991]. In particular, the right hand side of each

axiom mentions only actions that can cause the fluent ✰ to become true and actions that can

cause the fluent ✰ to become false, all remaining actions have no effect on ✰ :

✰ ✞☞✖✢ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠✓✒✍✌✏✎✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠ ✝ ✰ ✞☞✖✢ ✆ ✕✡✠ ☛ ✑ ✌
❆✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ ✆ (2.6)

where ✌ ✎✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ is a uniform situation calculus formula characterizing all conditions when an

action ☎ can make the fluent ✰ ✞☞✖✢ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ true in the situation ✄✆☎✟✞ ☎✝✆ ✕✡✠ , and ✌
❆✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠ has the

opposite meaning: it is a uniform situation calculus formula characterizing all conditions when

an action ☎ can make the fluent ✰✧✞☞✖✢ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ false in the situation ✄✆☎✟✞ ☎✝✆ ✕✡✠ . The solution to the

frame problem suggested in [Reiter, 1991] is obtained under certain assumptions about the set

of effect axioms which are provided by an axiomatizer. More specifically, it is supposed that

for each fluent ✰ , the axiomatizer provides only two types of axioms for ✰ : positive normal

form effect axiom

✌ ✎✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠✡✠ ✰✧✞☞✖✢ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠
and negative normal form effect axiom for fluent ✰ :

✌
❆✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠✡✠ ✑ ✰✧✞☞✖✢ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✓

Note that the axiomatization cannot include ramification constraints that constrain the indirect

effects of actions and have the syntactic form

✑ ✎✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠✡✠ ✰ ✞☞✖✢ ✆ ✕✡✠
✑ ❆✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠✡✠ ✑ ✰ ✞ ✖✢ ✆ ✕✡✠ (2.7)

(e.g., either an application domain has no ramification constraints, or the axiomatizer has al-

ready managed ‘to compile’ all constraints into suitable effect axioms). In addition, it is sup-

posed that the domain theory is consistent, in other words, the formula ✑ ✞✟✒ ✖✢ ✆✟☎✝✆ ✕✡✠ ✓ ✌✓✎✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠ ☛
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✌
❆✡ ✞☞✖✢ ✆✡☎ ✆ ✕★✠ is entailed by the axiomatization (i.e., one cannot derive both ✰ ✞ ✖� ✆ ✄✆☎✩✞✗✕ ✆ � ✠✽✠ and

✑ ✰✧✞ ✖� ✆ ✄✆☎✟✞✔✕ ✆ � ✠✽✠ ). Finally, it is supposed that the set of these effect axioms complies with the

following

Causal Completeness Assumption:

The positive and negative effect axioms characterize all the conditions under which action ☎
causes fluent ✰ to become true (respectively, false) in the successor situation.

According to [Reiter, 1991, Reiter, 2001a], one can prove from these assumptions, that the set

of effect axioms is logically equivalent to the set of successor state axioms (2.6), one axiom for

each fluent ✰ . In the case when the first assumption is violated and the given axiomatization

includes not only effect axioms, but also ramification constraints, there is a syntactic manip-

ulation procedure that transforms the given set of effect axioms and ramification constraints

(2.7) into a set of successor state axioms. This procedure and the proof of its correctness are

formulated in [McIlraith, 2000] under the assumption that fluents can be separated into a par-

tition and axioms can be stratified into ordered sequence excluding dependencies of fluents

in the bottom layers from fluents that occur in the upper layers (this syntactic restriction on

the set of effect and ramifications axioms often holds in interesting practical applications). In

the example (2.1.1) below we will see the set of successor state axioms that includes certain

ramification constraints in a ‘compiled’ form.

One can prove several interesting entailments from successor state axioms and foundational

axioms ✟ (these consequences are formulated in [Reiter, 2001a]). First,

✰ ✞☞✖✢ ✆ ✕✡✠✓✒
✰✧✞☞✖✢ ✆ �✻✁ ✠ ☛ ✑ ✞✟✒ ☎✝✆ ✕ ☛ ✠ ✍ ✄✆☎✟✞ ☎✝✆ ✕ ☛ ✠✡✄ ✕ ☛ ✌

❆✡ ✞☞✖✢ ✆✟☎✝✆ ✕ ☛ ✠ ✎ ✝
✞✟✒ ☎ ☛ ✆ ✕ ☛ ✠ ✍ ✄✆☎✟✞ ☎ ☛✖✆ ✕ ☛ ✠ ✄ ✕ ☛ ✌ ✎✡ ✞☞✖✢ ✆✟☎ ☛✖✆ ✕ ☛ ✠ ☛

✑ ✞ ✒ ☎ ☛ ☛ ✆ ✕ ☛ ☛ ✠ ✍ ✄✝☎✟✞ ☎ ☛✌✆ ✕ ☛ ✠ ✂ ✄✆☎✩✞ ☎☞☛ ☛✖✆ ✕ ☛ ☛ ✠ ✄ ✕ ☛ ✌
❆✡ ✞☞✖✢ ✆✡☎☞☛ ☛✖✆ ✕ ☛ ☛ ✠ ✎ ✎✂✁

informally this means that the fluent ✰ holds in situation ✕ if and only if one of the following

two conditions applies: either the fluent ✰ holds in the initial situation �✂✁ and there was no

action executed before ✕ that caused ✰ to become false, or there was a previous action ☎✎☛ that

caused ✰ to become true in a past situation ✕ ☛ and no subsequent action reversed this effect in

any situation before ✕ . Second, “closed form” solution for ✰ :

✰ ✞ ✖✢ ✆ ✕✡✠ ✒ ✕ ❃ �✻✁ ☛ ✰ ✞☞✖✢ ✆ �✻✁✼✠ ✝
✞✟✒ ☎✝✆ ✕ ☛ ✠ ✍ ✌ ✎✡ ✞☞✖✢ ✆✟☎✝✆ ✕ ☛ ✠ ☛ ✕✵❃ ✄✆☎✩✞ ☎✝✆ ✕ ☛ ✠ ✎ ✝
✞✟✒✝✕ ☛ ✠ ✍ ✕ ☛ ✄ ✕ ☛ ✰✧✞☞✖✢ ✆ ✕ ☛ ✠ ☛ ✑ ✞ ✒ ☎ ✆ ✕ ☛ ☛ ✠☎✄ ✌ ❆✡ ✞☞✖✢ ✆✟☎✝✆ ✕ ☛ ☛ ✠ ☛ ✕ ☛ ✂ ✄✆☎✩✞ ☎✝✆ ✕ ☛ ☛ ✠ ✄ ✕✝✆ ✎✂✁

intuitively, this means that the fluent ✰ holds in situation ✕ if and only if one of the following
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three conditions applies: ✕ is �☞✁ and the fluent ✰ holds initially, or the fluent ✰ was caused

to hold by the very last action, or there was a situation ✕ ☛ prior to ✕ when ✰ was true and no

subsequent action executed before ✕ caused ✰ to become false.

As for functional fluents, their evolution from the current situation to the next situation is

governed by similar axioms. For each functional fluent �✚✞☞✖✢ ✆ ✕★✠ there is one axiom that has

syntactic form �✚✞☞✖✢ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠ ❃ ✣ ✒ ✁ ✞ ✞☞✖✢ ✆ ✣ ✆✟☎✝✆ ✕✡✠ ✆ where ✁ ✞ ✞ ✖✢ ✆ ✣ ✆✟☎✝✆ ✕✡✠ is a formula uniform

in ✕ that may have only ☎✝✆ ✕ ✆ ✖✢ as free variables and such that the term � has a unique value:

� ✠ ❁☞☛✂✁ �✡✌✒✎☎✄ ❃ ✞✍✌ ✖✢ ✠ ✓ ✞ ✒✎✣✮✠ ✁ ✞ ✞☞✖✢ ✆ ✣ ✆✟☎✝✆ ✕✡✠ ☛
✍ ✞✏✌ ✣ ✆ ✣ ☛ ✠ ✓ ✁ ✞ ✞☞✖✢ ✆ ✣ ✆✡☎ ✆ ✕★✠ ❃ ✁ ✞ ✞☞✖✢ ✆ ✣ ✆✡☎ ✆ ✕★✠ ✠ ✣ ❃ ✣ ☛ ✎ ✓

The just mentioned functional fluent consistency property states that ✁ ✞ actually defines a value

for � and that this condition is unique. Thus, if the language of a domain axiomatization in-

cludes ✲ predicate fluents and ✣ functional fluents, then � ✝✟✝ is the set of the following axioms:

✰ ✍ ✞ ✖✢ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒ ✠☛✡ ✁ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ ✆
...

✰✝✆ ✞☞✖✢ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ✠☛✡✟✞ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ ✆
� ✍ ✞☞✖✢ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠❄❃ ✣ ✒ ✁ ✞ ✁ ✞ ✖✢ ✆ ✣ ✆✟☎✝✆ ✕✡✠ ✆

...

�✡✠✿✞ ✖✢ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠✚❃ ✣ ✒ ✁ ✞☞☛ ✞☞✖✢ ✆ ✣ ✆✟☎✝✆ ✕✡✠ ✆
Because right hand sides of all these formulas are uniform in ✕ , values of fluents in the suc-

cessor situation depend on logical conditions applied only in ✕ , not in a predecessor of ✕ or in

a situation for which ✕ is a predecessor. Because dynamical systems where the next state of

a system depends only on the current state (and does not depend on past or future states) are

called Markovian, the successor state axioms introduced in this section can be understood as

defining a Markovian dynamical system.

A basic action theory is the following set of axioms:

� ❃ ✟ ✁ � ✝✟✝ ✁ � ☛✔✓✌✁ � ✠ ❁✁☛✍✁ �✡✌✒✎ ✆ where

✎ ✟ are the foundational axioms for situations.

✎ � ✝✟✝ is a set of successor state axioms.

✎ � ☛ ✓ is a set of action precondition axioms.
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✎ � ✠ ❁☞☛ is the set of unique names axioms for actions.

✎ �✡✌✒✎ is a set of first order sentences about the initial situation �✌✁ .

Example 2.1.1: A Blocks World

The blocks world consists of a finite set of blocks located either somewhere on a table

or on top of each other: any number of blocks can be on the table, but only one block can

be on top of another block. In addition, there is a manipulator that can move a block from

one location to another. In particular, it can move a block from the table on top of another

block, or it can move a block from its current location to the table provided this block is not

on the table already and there is nothing on the top of this block. In this example, we also

make two common assumptions. First, all moving actions are deterministic, i.e., whenever the

manipulator moves a block, it always succeeds: in the result of the action, the block will be

at its destination, but not somewhere else. Second, there are no other agents (people, robots,

manipulators, etc), who can move blocks.

The blocks world is axiomatized with successor state and action precondition axioms. We

use the following function and predicate constants.

Actions

✎ ✲ ☎✁� ✦ ✞ ✢ ✆ ✣✩✠ : Move block ✢ onto block ✣ , provided both are clear.

✎ ✲ ☎✁� ✦ ✳ ☎ ✳ ☎✄✂ ✷✫✦ ✞ ✢ ✠ : Move block ✢ onto the table, provided ✢ is clear and is not on the

table.

Fluents

✎ ✖✙✘❄✞ ✢ ✆ ✣ ✆ ✕✡✠ : Block ✢ is on block ✣ , in situation ✕ .
✎✄✂✙✷✫✦✛☎ ✬✩✞ ✢ ✆ ✕★✠ : Block ✢ has no other blocks on top of it, in situation ✕ .
✎ ✖✙✘ ✕ ☎✄✂✼✷✜✦ ✞ ✢ ✆ ✕✡✠ : Block ✢ is on the table in ✕ .

Successor state axioms

✖ ✘❄✞ ✢ ✆ ✣ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠☞✒ ☎ ❃ ✲ ☎☎� ✦ ✞ ✢ ✆ ✣✮✠ ✝
✖✙✘❄✞ ✢ ✆ ✣ ✆ ✕✡✠ ☛ ☎✝✆❃❅✲ ☎✁� ✦ ✳ ☎ ✳ ☎✄✂ ✷✫✦ ✞ ✢ ✠ ☛ ✑ ✞✟✒ ✂ ✠ ☎ ❃ ✲ ☎☎� ✦ ✞ ✢ ✆ ✂ ✠ ✓

✖ ✘ ✕ ☎✄✂✼✷✫✦ ✞ ✢ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒ ☎ ❃ ✲ ☎☎� ✦ ✳✵☎ ✳ ☎✄✂✼✷✫✦ ✞ ✢ ✠ ✝ ✖✙✘ ✕ ☎✄✂✼✷✜✦ ✞ ✢ ✆ ✕✡✠ ☛ ✑ ✞✟✒✎✣✩✠ ☎ ❃ ✲ ☎☎� ✦ ✞ ✢ ✆ ✣✮✠ ✓
✂ ✷✫✦✛☎ ✬✮✞ ✢ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠✓✒ ✞✟✒✎✣ ✆ ✂ ✠ ✓ ✍ ☎ ❃ ✲ ☎✁� ✦ ✞ ✣ ✆ ✂ ✠ ✝ ☎ ❃ ✲ ☎☎� ✦ ✳✵☎ ✳ ☎✄✂✼✷✫✦ ✞ ✣✩✠✭✠✟✎ ☛ ✖ ✘✚✞ ✣ ✆ ✢ ✆ ✕✡✠ ✝

✂✙✷✫✦✛☎ ✬✩✞ ✢ ✆ ✕★✠ ☛ ✑ ✞ ✒✟✞ ✠ ☎ ❃❅✲ ☎✁� ✦ ✞✠✞ ✆ ✢ ✠ ✓
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Action precondition axioms

✁ ☎ ✕ ✕✆✞✜✲ ☎✁� ✦ ✞ ✢ ✆ ✣✩✠ ✆ ✕✡✠ ✒ ✂✙✷✫✦✛☎ ✬✩✞ ✢ ✆ ✕★✠ ☛ ✂ ✷✫✦✛☎ ✬✮✞ ✣ ✆ ✕★✠ ☛ ✢ ✆❃ ✣ ✓
✁ ☎ ✕ ✕✆✞✜✲ ☎✁� ✦ ✳✵☎ ✳ ☎ ✂✼✷✫✦ ✞ ✢ ✠ ✆ ✕✡✠ ✒ ✂ ✷✫✦✛☎ ✬✮✞ ✢ ✆ ✕✡✠ ☛ ✑ ✖ ✘ ✕ ☎✄✂ ✷✫✦ ✞ ✢ ✆ ✕✡✠ ✓

Unique names axioms for actions

✲ ☎☎� ✦ ✞ ✢ ✆ ✣✮✠ ✆❃ ✲ ☎☎� ✦ ✳✵☎✡✳ ☎✄✂✼✷✫✦ ✞ ✢ ✠
✲ ☎☎� ✦ ✞ ✢ ✆ ✣✮✠❄❃ ✲ ☎☎� ✦ ✞ ✢ ☛✖✆ ✣ ☛ ✠ ✠ ✢ ❃ ✢ ☛✞☛ ✣ ❃ ✣ ☛

✲ ☎☎� ✦ ✳✵☎✡✳ ☎✄✂✼✷✫✦ ✞ ✢ ✠ ❃❅✲ ☎✁� ✦ ✳✵☎ ✳ ☎ ✂✼✷✫✦ ✞ ✢ ☛ ✠ ✠ ✢ ❃ ✢ ☛

Assume that the following five ramification constraints ✂ ✞ ✕★✠ hold in initial situation �✂✁ :
✞✏✌ ✢ ✆ ✣✩✠ ✓ ✖ ✘❄✞ ✢ ✆ ✣ ✆ ✕✡✠ ✠ ✑ ✖ ✘❄✞ ✣ ✆ ✢ ✆ ✕✡✠
✞✏✌ ✢ ✆ ✣ ✆ ✂ ✠ ✓ ✖ ✘✚✞ ✣ ✆ ✢ ✆ ✕✡✠ ☛ ✖ ✘❄✞ ✂✎✆ ✢ ✆ ✕✡✠ ✠ ✣ ❃ ✂
✞✏✌ ✢ ✆ ✣ ✆ ✂ ✠ ✓ ✖ ✘✚✞ ✢ ✆ ✣ ✆ ✕✡✠ ☛ ✖ ✘❄✞ ✢ ✆ ✂✎✆ ✕✡✠ ✠ ✣ ❃ ✂
✞✏✌ ✢ ✠ ✓ ✖ ✘ ✕ ☎✄✂✼✷✫✦ ✞ ✢ ✠ ✒ ✑ ✞✟✒✎✣✩✠✮✖ ✘❄✞ ✢ ✆ ✣ ✆ ✕✡✠
✞✏✌ ✢ ✠ ✓ ✂ ✷✫✦✛☎ ✬✮✞ ✢ ✆ ✕✡✠ ✒ ✑ ✞ ✒✎✣✮✠✮✖✙✘❄✞ ✣ ✆ ✢ ✆ ✕★✠

As mentioned in [Reiter, 2001a], one can prove that in this case the domain axiomatization �
entails

✞✍✌ ✕✡✠ ✓ ✬ ✦✛☎ ✾✒� ☎ ✂✼✷✫✦ ✞ ✕✡✠ ✠ ✂ ✞ ✕★✠ ,
where ✬ ✦✛☎ ✾✒� ☎✄✂✼✷✫✦ ✞ ✕✡✠ is defined in (2.5). This means, that if �✑✌✒✎ includes (or entails) five given

constraints ✂ ✞ �✻✁✼✠ , then the axiomatization of the blocks world does not need to include afore-

mentioned ramification constraints if we are interested only in entailments about reachable

situations (in other words, indirect effects of actions are already predicted by the axiomatiza-

tion).

2.1.2 The Sequential, Temporal Situation Calculus

In this subsection we consider adding an explicit representation for time into the basic situation

calculus of previous Section 2.1.1. This representation will allow us to map a sequence of

actions (leading to a certain situation) to a sequence of the exact times, or a range of times, at

which actions are executed.

Actions

Actions are first-order terms consisting of an action function symbol and its arguments. In the

sequential temporal situation calculus, the last argument of an action function symbol is the
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time of the action’s occurrence that denotes the actual time at which that action occurs. Hence,

according to this representation, all actions are instantaneous. For example, startGo ✞ ✷ ✆✥✷ ☛ ✆ � ✓ ❋ ✠
might denote the action of a robot starting to move from location ✷ to ✷ ☛ at time 7.2 and term
✦ ✘☞✄✂✁✙☎✩✞ ✷ ✆✥✷✖☛✖✆☎✄✝✆ ✓ � ✠ might denote the action of a robot ending to move at location ✷ ☛ at time 49.7.

A new function symbol is introduced in the language: ✕✟✞ ✲ ✦ ✞ ☎ ✠ , denoting the occurrence time

of action ☎ . For each action term ☎ , the set of axioms characterizing ✕✟✞ ✲ ✦ ✞ ☎ ✠ as temporal

argument of ☎ is added to any basic action theory; for example:

✞✍✌ ✷ ✆✥✷ ☛ ✆ ✕✽✠ ✓ ✕✟✞ ✲ ✦ ✞ startGo ✞ ✷ ✆✥✷ ☛ ✆ ✕✽✠✭✠ ❃ ✕

Temporal variables range over the reals, although nothing prevents them from ranging over

the rationals, or anything else on which a dense linear order relation ✠ can be defined. For

this reason, axioms for the reals are not included in the axiomatization; it is assumed that

temporal variables have the standard interpretation of the reals and we can rely on standard

interpretations of operations (addition, multiplication, etc) and relations ( ✠ , ✡ , etc).

Besides instantaneous actions, processes that have durations can be captured, as shown

below.

Situations

A new function symbol is introduced in the language: ✕ ✕ ☎ ✬★✕ ✞ ✕★✠ , denoting the start time of

situation ✕ . This new symbol is characterized by:

✕ ✕ ☎ ✬★✕ ✞ do ✞ ☎✝✆ ✕✡✠✽✠ ❃ ✕✟✞ ✲ ✦ ✞ ☎ ✠ ✆ (2.8)

i.e. the start time of a situation is the occurrence time of the last action that led to this situation.

The start time of �☞✁ can be defined arbitrarily, and may (or may not) be specified to be any

number, depending on the application.

Foundational axioms (2.1)–(2.4) for situations without time are given in the previous sub-

section. Foundational axioms for situations with time are (2.1)–(2.4) and (2.8).

Because ✕ ✍ ✄ ✕ ✑ means that one can get to ✕ ☛ from ✕ by a sequence of actions, the definition

of reachability (2.5) has to be changed to make sure that ✕ is reachable if and only if all actions

leading to ✕ are possible, and moreover, the times of action occurrences are not decreasing:

✬ ✦✛☎ ✾✁� ☎✄✂✼✷✜✦ ✞ ✕✡✠ ☎✝✆✟✞❃ ✞✍✌ ☎✝✆ ✕ ☛ ✠ ✓ ✄✆☎✟✞ ☎✝✆ ✕ ☛ ✠✡✄ ✕☎✠ ✁ ☎ ✕ ✕✆✞ ☎ ✆ ✕ ☛ ✠ ☛ ✕ ✕ ☎ ✬★✕ ✞ ✕ ☛ ✠☛✡ ✕✟✞ ✲ ✦ ✞ ☎ ✠ ✓ (2.9)
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Fluents

In the language of the temporal situation calculus, fluents represent properties of an applica-

tion domain similarly to how we understand them in the basic situation calculus. In addi-

tion to this previously introduced understanding, we can understand fluents as representing

properties of processes extended over time; those processes are delimited by two instanta-

neous actions: one of them initiate a process, another one terminates the process. For exam-

ple, one may represent the process of going between two locations ✷ ☎✏✾ and ✷ ☎✏✾ ☛ by the rela-

tional fluent ✪✟☎ ✞ ✘ ✪✻✞ ✷ ☎★✾ ✆✥✷ ☎★✾ ☛ ✆ ✕★✠ . This process can be started by executing the initiating action

startGo ✞ ✷ ✆✥✷ ☛ ✆ ✕ ✍ ✠ in a situation preceding ✕ and (if the process was started) it can be finished by

executing the terminating action ✦ ✘☞✄✂✁✙☎✩✞ ✷ ✆✥✷ ☛ ✆ ✕ ✑ ✠ in a situation for which ✕ is a predecessor. As

another example, one may represent a process fluent ✲ ☎☎�✂✞ ✘ ✪✻✞ ✢ ✆ ✣ ✆ ✕ ✆ ✕ ☛ ✆ ✕✡✠ , meaning that block

✢ is in the process of moving to ✣ , and ✕ is initiation time of this process, ✕ ☛ is termination time.

In this second case, one may introduce in the language instantaneous initiating and terminating

actions, ✕ ✕ ☎ ✬★✕ ✁ ☎☎� ✦ ✞ ✢ ✆ ✣ ✆ ✕✽✠ and ✦ ✘✻✄ ✁ ☎☎� ✦ ✞ ✢ ✆ ✣ ✆ ✕✽✠ , with the obvious meanings.

Thus, if we compare fluents in the language of the temporal sequential situation calculus

with fluents considered in the language of the basic situation calculus, then we may consider

two alternatives: either there are no differences between representations of fluents (but there are

some differences in how we understand fluents informally), or fluents can include additional

temporal arguments corresponding to initiation (termination) times of a processes represented

by them.

Basic Action Theories

Similarly to the basic situation calculus, a domain theory is axiomatized in the temporal situa-

tion calculus with the same set of axioms

� ❃ ✟ ✁ � ✝✟✝ ✁ � ☛✔✓ ✁ � ✠ ❁✁☛ ✁ �✡✌✒✎

supplemented with axioms about the functional symbol ✕✟✞ ✲ ✦ ✞ ☎ ✠ . We provide two examples.

Example 2.1.2: A Coffee Delivery Robot. We include from [Reiter, 1998, Reiter, 2001a] an

axiomatization of the coffee delivery example in the temporal situation calculus (this example

will be used also in subsequent sections and chapters). Imagine a robot whose task is to deliver

coffee in an office environment. The robot is given a schedule of the preferred coffee periods

of every employee, as well as information about the times it takes to travel between various
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locations in the office. The robot can carry just one cup of coffee at a time, and there is a

central coffee machine from which it gets the coffee. Its task is to schedule coffee deliveries

such that, if possible, everyone gets coffee during his/her preferred time periods. To simplify

the axiomatization, we assume that the actions of picking up a cup of coffee and giving it to

someone are instantaneous. The action of going from one location to another, which intuitively

does have a duration, is represented by a pair of instantaneous ✕ ✕ ☎ ✬★✕ ✁✙☎ and ✦ ✘☞✄✂✁✙☎ actions. In

Golog procedures, ✂ ✁
(constant that denotes the coffee machine’s location), and �✚✓ ✦ ,

✁ ☎ ✬ ✣ ,

✛ ✞ ✷✜✷ , �☞☎ ✦ (constants that denote people) always appear in upper case.

Primitive actions:

✎ ✑ ✞ ✾ ✣✝✓✆✑ ✂ ☎ � � ✦ ✦ ✞✯✕✽✠ . The robot picks up a cup of coffee from the coffee machine at time ✕ .
✎ ✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✽✠ . The robot gives a cup of coffee to ✑ ✦ ✬ ✕ ☎★✘ at time ✕ .
✎ ✕ ✕ ☎ ✬★✕ ✁✙☎✟✞ ✷ ☎✏✾ ✍✏✆✥✷ ☎★✾ ✑✛✆ ✕✽✠ . The robot starts to go from location ✷ ☎★✾ ✍ to ✷ ☎★✾ ✑ at time ✕ .
✎ ✦ ✘✻✄ ✁✙☎✟✞ ✷ ☎✏✾ ✍✏✆✥✷ ☎★✾ ✑✛✆ ✕✽✠ . The robot ends its process of going from ✷ ☎★✾ ✍ to ✷ ☎✏✾ ✑ at time ✕ .

Fluents:

✎ ✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾ ☎ ✕✟✞ ☎✡✘❄✞ ✕✡✠ . A functional fluent denoting the robot’s location in situation ✕ .
✎ ✪✟☎ ✞ ✘ ✪✻✞ ✷ ☎★✾ ✍✟✆✥✷ ☎★✾ ✑✛✆ ✕✡✠ . This relational fluent means that in situation ✕ , the robot is going

from ✷ ☎✏✾ ✍ to ✷ ☎★✾ ✑ .
✎ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞✒✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✡✠ . ✑ ✦ ✬ ✕✡☎✡✘ has coffee in ✕ .

✎ �✔☎ ✷ ✄✝✞ ✘ ✪ ✂ ☎ � � ✦ ✦ ✞ ✕✡✠ . This relational fluent means that in situation ✕ , the robot is holding a

cup of coffee.

Situation Independent Predicates and Functions

✎ ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞✒✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕ ✍✟✆ ✕ ✑ ✠ . ✑ ✦ ✬ ✕✡☎✡✘ wants to receive coffee at some point in the time

period ✍✗✕ ✍✚✆ ✕ ✑ ✎ .
✎ ☎ � � ✞ ✾ ✦ ✞ ✑ ✦ ✬ ✕ ☎✡✘ ✠ . Denotes the office of ✑ ✦ ✬ ✕ ☎✡✘ .

✎ ✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✷ ☎✏✾ ✍✚✆✥✷ ☎✏✾ ✑ ✠ . Denotes the amount of time that the robot takes to travel be-

tween ✷ ☎✏✾ ✍ and ✷ ☎★✾ ✑ .
✎ �✚✓ ✦ ,

✁ ☎ ✬ ✣ , ✛ ✞ ✷✜✷ , � ☎ ✦ are constants denoting people; ✂ ✁
is the constant denoting

coffee machine’s location.
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Action precondition axioms:

✁ ☎ ✕ ✕✆✞ ✕ ✕ ☎ ✬★✕ ✁✙☎✟✞ ✷ ☎✏✾ ✍✏✆✥✷ ☎★✾ ✑✜✆ ✕✽✠ ✆ ✕✡✠✓✒ ✑ ✞✟✒ ✷ ✆✥✷ ☛ ✠ ✪✟☎ ✞ ✘ ✪✻✞ ✷ ✆✥✷ ☛ ✆ ✕★✠ ☛
✷ ☎✏✾ ✍ ✆❃ ✷ ☎★✾ ✑ ☛ ✬✿☎ ✂ ☎✡✕✂✁ ☎★✾ ☎ ✕✟✞ ☎✡✘❄✞ ✕✡✠✴❃ ✷ ☎★✾ ✍✚✆

✁ ☎ ✕ ✕✆✞ ✦ ✘☞✄✂✁ ☎✟✞ ✷ ☎★✾ ✍✟✆✥✷ ☎✏✾ ✑✔✆ ✕✽✠ ✆ ✕✡✠✓✒❅✪✩☎ ✞ ✘ ✪✻✞ ✷ ☎✏✾ ✍✏✆✥✷ ☎★✾ ✑✜✆ ✕✡✠ ✓
✁ ☎ ✕ ✕✝✞✒✑ ✞ ✾ ✣✟✓●✑ ✂ ☎ � � ✦ ✦ ✞✫✕✽✠ ✆ ✕✡✠✓✒ ✑ � ☎ ✷ ✄✝✞ ✘ ✪ ✂ ☎ � � ✦ ✦ ✞ ✕✡✠ ☛ ✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾ ☎ ✕✟✞ ☎✡✘❄✞ ✕✡✠ ❃ ✂ ✁ ✆

✁ ☎ ✕ ✕✝✞✯✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕✽✠ ✆ ✕★✠✓✒ �✔☎ ✷ ✄✂✞ ✘ ✪ ✂ ☎ � � ✦ ✦ ✞ ✕✡✠ ☛ ✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾ ☎ ✕✟✞ ☎✡✘❄✞ ✕✡✠ ❃ ☎ � � ✞ ✾ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘☞✠ ✓
The last axiom is saying that the robot can give coffee to a person at the moment of time ✕ in ✕
iff the robot is holding a cup coffee (e.g., on a tray) and the robot is located in the office of the

person.

Successor state axioms:

✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾ ☎ ✕✟✞ ☎✡✘❄✞✜✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠❂❃ ✷ ☎★✾ ✒
✞✟✒✟✕ ✆✥✷ ☎★✾ ☛ ✠ ☎ ❃ ✦ ✘☞✄✂✁✙☎✩✞ ✷ ☎★✾ ☛✖✆✥✷ ☎★✾ ✆ ✕✽✠ ✝

✬✿☎ ✂ ☎✡✕✂✁ ☎★✾ ☎ ✕✟✞ ☎★✘✚✞ ✕✡✠ ❃ ✷ ☎✏✾ ☛ ✑ ✞✟✒✟✕ ✆✥✷ ☎★✾ ☛ ✆✹✷ ☎★✾ ☛ ☛ ✠ ☎ ❃ ✦ ✘✻✄✂✁ ☎✟✞ ✷ ☎★✾ ☛ ✆✹✷ ☎★✾ ☛ ☛ ✆ ✕✽✠ ✆

Informally speaking, according to this axiom the robot will stay at a location until another

action ✦ ✘✻✄✂✁ ☎✟✞ ✷ ☎★✾ ☛ ✆✥✷ ☎★✾ ✆ ✕✽✠ will be executed, i.e., ✕ ✕ ☎ ✬✡✕ ✁✙☎✩✞ ✷ ☎★✾ ☛✌✆✥✷ ☎✏✾ ✆ ✕✽✠ actions are irrelevant and

they do not change the location.

✪✟☎ ✞ ✘ ✪☞✞ ✷ ✆✥✷✖☛✖✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒ ✞ ✒✟✕✽✠ ☎ ❃ ✕ ✕ ☎ ✬✡✕ ✁ ☎✟✞ ✷ ✆✥✷✖☛ ✆ ✕✽✠ ✝ ✪✟☎ ✞ ✘ ✪☞✞ ✷ ✆✥✷✖☛✖✆ ✕✡✠ ☛ ✑ ✞ ✒✟✕✽✠ ☎ ❃ ✦ ✘✻✄✂✁ ☎✟✞ ✷ ✆✥✷✖☛ ✆ ✕✽✠ ✆

In English, the robot is going from one location to another if there exist a moment of time when

the robot started to go between these two locations or the the robot was in the process of going

in the previous situation and the most recent action did not terminated this process at time ✕ .

� ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒ ✞ ✒✟✕✽✠ ☎ ❃ ✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞✒✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✽✠ ✝ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕✡✠ ✆

�✔☎ ✷ ✄✂✞ ✘ ✪ ✂ ☎ � � ✦ ✦ ✞ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠✓✒ ✞✟✒✟✕✽✠ ☎ ❃✢✑ ✞ ✾ ✣✟✓●✑ ✂ ☎ � � ✦ ✦ ✞✫✕✽✠ ✝
�✔☎ ✷ ✄✂✞ ✘ ✪ ✂ ☎ � � ✦ ✦ ✞ ✕✡✠ ☛ ✑ ✞✟✒✏✑ ✆ ✕✽✠ ☎ ❃❀✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕✽✠ ✓

Initial Situation

✬✿☎ ✂ ☎✡✕✂✁ ☎★✾ ☎ ✕✟✞ ☎✡✘❄✞ �✻✁ ✠❂❃ ✂ ✁ ✆ ✑ ✞ ✒ ✷ ✆✥✷✖☛ ✠ ✪✟☎ ✞ ✘ ✪✻✞ ✷ ✆✹✷ ☛✌✆ �✻✁✼✠ ✆ ✕ ✕ ☎ ✬★✕ ✞ �✻✁ ✠❂❃✁� ✆
✑ � ☎ ✷ ✄✝✞ ✘ ✪ ✂ ☎ � � ✦ ✦ ✞ �✻✁✼✠ ✆ ✑ ✒✏✑✛� ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ �✻✁✥✠ ✓

We have also a set of unique names axioms stating that the following terms are pairwise un-

equal: �❄✓ ✦ ✆ ✁ ☎ ✬ ✣ ✆ ✛ ✞ ✷✫✷ ✆ �☞☎ ✦ ✆ ✂ ✁
, ☎ � � ✞ ✾ ✦ ✞ �✚✓ ✦ ✠ , ☎ � � ✞ ✾ ✦ ✞ ✁ ☎ ✬ ✣✩✠ , ☎ � � ✞ ✾ ✦ ✞✜✛ ✞ ✷✫✷ ✠ , ☎ � � ✞ ✾ ✦ ✞ �☞☎ ✦ ✠ .
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Coffee delivery preferences. The following expresses that ✞ �✚✓ ✦ ✆ ❉ ✄ � ✆ ❉✁� �●✠ ✆✔✓✔✓✔✓✏✆ ✞ � ☎ ✦ ✆ ✆ � ✆ ❉ � �●✠
are all, and only, the tuples in the ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ relation.

✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ✍✏✆ ✕ ✑ ✠✓✒ ✑✴❃✺�✚✓ ✦ ☛ ✕ ✍ ❃ ❉ ✄ � ☛ ✕ ✑ ❃ ❉✁� � ✝

✑✴❃ ✁ ☎ ✬ ✣ ☛ ✕ ✍ ❃ ❉✁✂ � ☛ ✕ ✑ ❃ ❉ � � ✝

✑✴❃✺✛ ✞ ✷✫✷ ☛ ✕ ✍ ❃ ❉ � � ☛ ✕ ✑ ❃ ❉❂❉ � ✝ ✑✴❃ �☞☎ ✦ ☛ ✕ ✍ ❃ ✆ � ☛ ✕ ✑ ❃ ❉ � � ✓
The following set of axioms specifies how much time it takes for the robot to travel between

two different locations2:

✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ �✚✓ ✦ ✠✭✠❂❃ ❉☎✄ ✆
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✁ ☎ ✬ ✣✮✠✽✠❂❃ ❉ � ✆
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✛ ✞ ✷✜✷ ✠✽✠❂❃✝✆ ✆
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ � ☎ ✦ ✠✭✠✿❃ ❉ � ✓
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✷ ✆✥✷✖☛ ✠ ❃ ✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✷✖☛ ✆✥✷ ✠ ✆
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✷ ✆✥✷ ✠ ❃ � ✓

As we will see later in Example 2.3.2 and in Section 4.4.2, these values will constrain the time

of ✦ ✘☞✄✂✁ ☎ actions.

Action Occurrence Times:

✕✟✞ ✲ ✦ ✞ ✑ ✞ ✾ ✣✟✓●✑ ✂ ☎ � � ✦ ✦ ✞✯✕✽✠✭✠❂❃❀✕ ✆ ✕✟✞ ✲ ✦ ✞✯✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞✒✑ ✆ ✕✽✠✽✠❂❃ ✕
✕✟✞ ✲ ✦ ✞ ✕ ✕ ☎ ✬✡✕ ✁ ☎✟✞ ✷ ✍ ✆✥✷ ✑✔✆ ✕✽✠✭✠✿❃ ✕ ✆ ✕✟✞ ✲ ✦ ✞ ✦ ✘✻✄✂✁ ☎✟✞ ✷ ✍ ✆✥✷ ✑✔✆ ✕✽✠✭✠✿❃ ✕ ✓

We will consider variations of this example in subsequent chapters.

2.1.3 The Situation Calculus with Knowledge

This variation of the situation calculus makes a distinction between non-informative (physical)

actions that do not provide an agent with new information and informative actions that can con-

tribute only to knowledge of an agent who executes them. Moore defines an action informative

”if an agent would know more about the situation resulting from his performing the action after

performing it than before performing it” (see [Moore, 1985], p. 350).

Fluents

The language of the situation calculus with knowledge may include a finite number of relational

(functional) fluents, similarly to the language of the basic situation calculus. In addition, the

2For simplicity, we assume here that all these times are fixed numbers, but in the reality the travel times will

vary. We address this issue in Chapter 4 when we consider replanning and rescheduling in Section 4.4.3.
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former language has a special fluent that accounts for changes in an agent’s beliefs caused by

informative actions that the agent can execute. Following [Moore, 1985, Scherl and Levesque, 1993],

the fact that situation ✕ is one of the situations that the agent in situation ✗ considers possible

is represented by � ✞ ✕ ✆✡✗ ✠ , where � is a binary predicate symbol that corresponds to an ac-

cessibility relation in modal logics of knowledge. Let ✁ be a situation-suppressed expression

obtained from an uniform situation calculus formula ✁ ✞ ✕✡✠ by suppressing all situation argu-

ments in relational (functional) fluents mentioned in ✁ ✞ ✕✡✠ .3 Then the fact that the agent knows

✁ in situation ✗ is defined by an abbreviation

Knows ✞ ✁ ✆✡✗ ✠ ☎✝✆✟✞❃ ✞✍✌ ✕✡✠ ✓ � ✞ ✕ ✆✡✗ ✠ ✠ ✁ ✍ ✕ ✎
(where ✁☛✍ ✕ ✎ denotes that situation calculus formula obtained from ✁ by restoring the situation

argument to its rightful place, see the definition (2.2.8) for details). The fact that an agent

knows whether ✁ is true in situation ✗ is defined by an abbreviation

KWhether ✞ ✁ ✆✡✗ ✠ ☎✝✆✟✞❃ Knows ✞ ✁ ✆✘✗ ✠ ✝ Knows ✞ ✑ ✁ ✆✡✗ ✠ ✁

the fact that an agent knows the referent of the term ✕ is defined by an abbreviation

KRef ✞✯✕ ✆✡✗ ✠ ☎ ✆ ✞❃ ✞✟✒ ✢ ✠ Knows ✞ ✢ ❃ ✕ ✆✡✗ ✠ ✓

Note that the above definitions express an informal idea that the smaller is the set of situations

✕ epistemically alternative to an actual situation ✗ , the more facts an agent knows; in particular,

if ✗ is the only one situation alternative to ✗ , then the agent knows everything that is true in the

actual world.

Actions

The language of the situation calculus with knowledge may include a finite number of action

terms that are understood as physical actions. None of these actions may influence the � ✞ ✕ ✆✡✗ ✠
fluent:

� ✞ ✕ ☛ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠✓✒ ✞✟✒✝✕✂✁✥✠ ✓ ✕ ☛ ❃ ✄✆☎✟✞ ☎✝✆ ✕✂✁✥✠ ☛ � ✞ ✕✂✁ ✆ ✕✡✠ ✓ (2.10)

Informally, this axiom means that physical actions do not provide the agent who executes them

with new information: for any situation ✕ ✁ accessible from an actual situation ✕ , the situation

✄✆☎✩✞ ☎✝✆ ✕ ✁ ✠ is accessible from ✄✆☎✩✞ ☎ ✆ ✕★✠ , in other words, the number of alternative situations does

3See the definition (2.2.7) for a formal definition of the situation-suppressed formulas.
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not change (but because all epistemically alternative situations result from executing an action
☎ , the agent will know that the action ☎ has been performed).

In addition to non-informative actions, the language may include two disjoint set of infor-

mative actions as described below.

For each of finitely many relational fluents there is a sense action whose purpose is to deter-

mine the truth value of its fluent. For example, a sense action ✕ ✦ ✘ ✕ ✦✁� ☛ ✝✄✂✆☎ ✞ ✞ ✆ ✆ ✞ ✑ ✦ ✬ ✕✡✠ , determines

whether the fluent � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ✆ ✕✡✠ is true in ✕ . Let ✰✧✞☞✖✢ ✆ ✕✡✠ be a relational fluent, then

the sense action that determines a value of this fluent is denoted by ✕ ✦ ✘ ✕ ✦ ✡ ✞☞✖✢✻✠ , and there are

axioms (see below) such that after an agent performs a ✕ ✦ ✘ ✕ ✦ ✡
action, the agent will know

whether ✰ , i.e. that

✞✏✌ ✕ ✆ ✖✢☞✠ KWhether ✞ ✰ ✞ ✖✢ ✠ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✞☞✖✢ ✠ ✆ ✕✡✠✭✠ ✓
In the sequel, the language includes a fixed, finite repertoire of actions ✕ ✦ ✘ ✕ ✦ ✡ ✁ ✆✔✓✔✓✜✓ ✆ ✕ ✦ ✘ ✕ ✦ ✡✟✞ ✓

Similarly, for each of finitely many functional fluents there is a read action whose purpose

is to determine the referent of its fluent. For example, a read action ✬ ✦✛☎ ✄✞✝✟☎✡✠☛☎✄☞✍✌✁☎✡✎ ✞ ✢ ✠ determines

the value of the functional fluent ✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞ ✕★✠ in ✕ . Let �✚✞☞✖✢ ✆ ✕★✠ be a functional fluent, then the

read action that determines its referent is ✬ ✦✛☎ ✄ ✞ ✞☞✖✢ ✠ , and if this action is axiomatized appropri-

ately (see below), then by performing a ✬ ✦✛☎ ✄ ✞ action, an agent will come to know the referent

of � , i.e. that

✞✏✌ ✕ ✆ ✖✢☞✠ KRef ✞ � ✞ ✖✢ ✠ ✆ ✄✝☎✟✞✜✬ ✦✛☎ ✄ ✞ ✞☞✖✢ ✠ ✆ ✕✡✠✭✠ ✓
In the sequel, suppose that the agent has a fixed, finite repertoire of read actions ✬ ✦✛☎ ✄ ✞ ✁ ✆✜✓✔✓✔✓✜✆ ✬ ✦✛☎ ✄ ✞ ✄ ✓

It is convenient to introduce the no side-effects assumption for informative actions. Let

✕ ✦ ✘ ✕ ✦ ✡
be any sense action, ✁ be any relational fluent (different from � ✞ ✕ ✆✡✗ ✠ ), ✬ ✦✛☎ ✄ ✞ be

any read action, and ✪ be any functional fluent; then no side-effects assumption means that

successor state axioms (together with other axioms) entail the following formulas:

✞✏✌ ✖✢ ✆ ✖✣ ✆ ✕✡✠ ✁ ✞ ✖✢ ✆ ✕✡✠ ✒ ✁ ✞ ✖✢ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✞ ✖✣✩✠ ✆ ✕✡✠✭✠ ✆
✞✏✌ ✖✢ ✆ ✖✂✎✆ ✕✡✠ ✁ ✞☞✖✢ ✆ ✕★✠✓✒ ✁ ✞☞✖✢ ✆ ✄✆☎✟✞✜✬ ✦✛☎ ✄ ✞ ✞ ✖✂ ✠ ✆ ✕★✠✽✠ ✆
✞✏✌ ✖✢ ✆ ✖✣ ✆ ✕✡✠ ✪✻✞☞✖✢ ✆ ✕★✠❄❃ ✪☞✞☞✖✢ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✞ ✖✣✩✠ ✆ ✕✡✠✭✠ ✆
✞✏✌ ✖✢ ✆ ✖✂✎✆ ✕✡✠ ✪✻✞☞✖✢ ✆ ✕✡✠ ❃ ✪✻✞☞✖✢ ✆ ✄✆☎✟✞✜✬ ✦✛☎ ✄ ✞ ✞ ✖✂ ✠ ✆ ✕★✠✽✠ ✓

(2.11)

Note that in the case when sense (read) action in an application domain is understood as having

effect on a fluent, one can introduce two different actions that will account for the effect of that

sense (read) action: one of them will have effects only on regular fluents and another one will
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provide only sensory information. Then, the no-side effect assumption will be enforced.

Situations

There are additional initial situations that serve as epistemic alternatives to the actual initial sit-

uation �☞✁ [Lakemeyer and Levesque, 1998]. They are needed to account for formulas ✁ which

the robot does not know in �☞✁ ; if all these alternative initial situations are � -related to � ✁ and

to one another and in some of those situations ✁ is true, but in others it is false, then according

to the definition, ✑ � ✘☞☎✁✞ ✕✆✞ ✁ ✆ �☞✁✼✠ . Each initial situation has no predecessor, for this reason it is

convenient to define all of them by an abbreviation:
� ✘ ✞✜✕ ✞ ✕✡✠ ☎ ✆ ✞❃ ✑ ✞✟✒ ☎✝✆ ✕ ☛ ✠ ✕ ❃❅✄✆☎✟✞ ☎✝✆ ✕ ☛ ✠ ✓

Because the basic situation calculus has the only initial situation �✌✁ , but there may be sev-

eral different initial situations in the situation calculus with knowledge, [Lakemeyer and Levesque, 1998,

Levesque and Lakemeyer, 2000] propose to replace the old induction axiom (2.2) by

✞✍✌ ✁ ✠ ✓ ✞✍✌ ✕✡✠ ✍ � ✘ ✞ ✕ ✞ ✕✡✠ ✠ ✁ ✞ ✕✡✠ ✎ ☛ ✞✏✌ ☎ ✆ ✕★✠ ✍ ✁ ✞ ✕✡✠✡✠ ✁ ✞ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠ ✎
✠ ✞✏✌ ✕✡✠ ✁ ✞ ✕✡✠ ✓ (2.12)

Finally, there is an axiom saying that only initial situations can be � -related to an initial

situation:

� ✞ ✕ ✆ ✕ ☛ ✠✡✠ ✍ � ✘ ✞✜✕ ✞ ✕✡✠ ✒ � ✘ ✞ ✕ ✞ ✕ ☛ ✠ ✎ ✓ (2.13)

The new foundational axioms ✟ ✁ for the situation calculus with knowledge consist of (2.1),

(2.3), (2.4), (2.12) and (2.13).

Basic Action Theories

A domain theory is axiomatized in the situation calculus with knowledge by means of the four

classes of axioms mentioned in Section 2.1.1 supplemented with a new set of axioms ✁✄✂ ❁✆☎ ☞

about the knowledge fluent over initial situations.

The basic action theory with knowledge is

� ✁ ❃ � ✁✝✟✝ ✁ � ✁☛✔✓ ✁ � ✁✌✒✎ ✁ ✁✝✂ ❁✆☎ ☞ ✁ ✟ ✁ ✁ � ✁✠ ❁✁☛ ✆
where ✟ ✁ is introduced above.

Unique names axioms for actions � ✁✠ ❁☞☛ . These axioms state that all physical, sense and read

actions of the domain are pairwise unequal.
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Initial theory of the world � ✁✌✏✎ . In general case, it may include arbitrary formulas about

knowledge such as Knows ✞ ✁ ✆ � ✁✼✠ , KRef ✞ �✚✞☞✖✢ ✠ ✆ �✻✁✼✠ , KWhether ✞ ✂ ✆✘✗ ✠ , Knows ✞ Knows ✞ ✂ ✠ ✆ �☞✁✼✠ ,
as well as other uniform situation calculus formulas whose only situation term is �✂✁ .
Successor state axioms � ✁✝✟✝ . It includes a set of successor state axioms for relational (func-

tional) fluents with the syntactic form shown in Section 2.1.1, and includes an axiom (2.14):

� ✞ ✕ ☛✖✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠✓✒
✞ ✒✝✕ ✁ ✠ ✓ ✕ ☛ ❃❅✄✆☎✟✞ ☎✝✆ ✕ ✁ ✠ ☛ � ✞ ✕ ✁ ✆ ✕✡✠ ☛

✞✍✌ ✖✢ ✍ ✠ ✍ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✡ ✁ ✞ ✖✢ ✍ ✠✡✠ ✰ ✍ ✞☞✖✢ ✍✚✆ ✕ ✁ ✠ ✒ ✰ ✍ ✞☞✖✢ ✍✚✆ ✕✡✠ ✎ ☛✁�✂�✂� ☛
✞✍✌ ✖✢ ✆ ✠ ✍ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✡ ✞ ✞☞✖✢ ✆ ✠ ✠ ✰✝✆ ✞☞✖✢ ✆ ✆ ✕ ✁ ✠ ✒ ✰✝✆ ✞☞✖✢ ✆ ✆ ✕★✠ ✎ ☛
✞✍✌ ✖✣ ✍ ✠ ✍ ☎ ❃❅✬ ✦✛☎ ✄ ✞ ✁ ✞ ✖✣ ✍ ✠ ✠ � ✍ ✞ ✖✣ ✍✏✆ ✕ ✁ ✠❄❃ � ✍ ✞ ✖✣ ✍✏✆ ✕✡✠ ✎ ☛✄�✂�✂� ☛
✞✍✌ ✖✣ ❁ ✠ ✍ ☎ ❃❅✬ ✦✛☎ ✄ ✞ ✄✟✞ ✖✣ ❁ ✠ ✠ � ❁ ✞ ✖✣ ❁✎✆ ✕ ✁ ✠❄❃ � ❁ ✞ ✖✣ ❁ ✆ ✕★✠ ✎ ✎ ✓

(2.14)

Indeed, let ✕ ✁ be a situation � -accessible from an actual situation ✕ (i.e., � ✞ ✕ ✁ ✆ ✕✡✠ ) and suppose

that sense action ✕ ✦ ✘ ✕ ✦ ✡ ✆✭✞☞✖✢ ☎ ✠ determines that a relational fluent ✰ ☎ is true. Then, to guarantee

that ✰ ☎ is true in all situations alternative to ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖✢ ☎ ✠ ✆ ✕✡✠ , it is necessary to remove situa-

tions ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕ ✁ ✠ where ✰ ☎ ✞☞✖✢ ☎ ✠ is not true from being accessible to ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕★✠ .
Consequently, those and only those situations ✕ ☛ must be � -accessible from ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕✡✠
which are successors of one of ✕ ✁ situations alternative to ✕ ( ✕ ☛ ❃ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖✢ ☎ ✠ ✆ ✕ ✁ ✠ ☛

� ✞ ✕ ✁ ✆ ✕★✠ ) and where ✰ ☎ ✞ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕ ✁ ✠✽✠ is true. This yields the following condition on

relation � :

✰ ☎ ✞ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕✡✠✭✠✡✠ ✍ � ✞ ✕ ☛✌✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖✢ ☎ ✠ ✆ ✕✡✠✭✠✓✒
✞✟✒✝✕ ✁ ✠ ✓ ✕ ☛ ❃❅✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆✽✞ ✖✢ ☎ ✠ ✆ ✕ ✁ ✠ ☛ � ✞ ✕ ✁ ✆ ✕✡✠ ☛ ✰ ☎ ✞ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕ ✁ ✠✭✠ ✎ ✓

From the no-side effects assumption (2.11), we have that

✞✍✌ ✕✡✠✮✰ ☎ ✞ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕✡✠✽✠✓✒ ✰ ☎ ✞☞✖✢ ☎ ✆ ✕✡✠ ✆
so the above condition on � leads to:

✰ ☎ ✞☞✖✢ ☎ ✆ ✕✡✠ ✠ ✍ � ✞ ✕ ☛ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖✢ ☎ ✠ ✆ ✕✡✠✭✠✓✒
✞✟✒✝✕ ✁ ✠ ✓ ✕ ☛ ❃❅✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕ ✁ ✠ ☛ � ✞ ✕ ✁ ✆ ✕✡✠ ☛ ✰ ☎ ✞ ✖✢ ☎ ✆ ✕ ✁ ✠ ✎ ✓

Similarly, suppose that sense action ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ determines that a relational fluent ✰ ☎ is false

and repeat the previous argument:

✑ ✰ ☎ ✞ ✖✢ ☎ ✆ ✕✡✠✡✠ ✍ � ✞ ✕ ☛✖✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕★✠✽✠✓✒
✞✟✒✝✕ ✁ ✠ ✓ ✕ ☛ ❃❅✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕ ✁ ✠ ☛ � ✞ ✕ ✁ ✆ ✕✡✠ ☛ ✑ ✰ ☎ ✞☞✖✢ ☎ ✆ ✕ ✁ ✠ ✎ ✓

Informally, this says that action ✕ ✦ ✘ ✕ ✦ ✡ ✆✽✞☞✖✢ ☎ ✠ shrinks the relation � ✞ ✕ ✁ ✆ ✕✡✠ by leaving successors

of only those ✕ ✁ situations alternative to an actual situation ✕ , which satisfy ✑ ✰ ☎ ✞☞✖✢ ☎ ✆ ✕ ✁ ✠ . The
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conjunction of the last two formulas is logically equivalent to

☎ ❃ ✕ ✦ ✘ ✕ ✦ ✡ ✆✽✞☞✖✢ ☎ ✠✡✠
✍ � ✞ ✕ ☛ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠☞✒

✞✟✒✝✕ ✁ ✠ ✓ ✕ ☛ ❃ ✄✆☎✩✞ ☎ ✆ ✕ ✁ ✠ ☛ � ✞ ✕ ✁ ✆ ✕✡✠ ☛ ✰ ☎ ✞☞✖✢ ☎ ✆ ✕ ✁ ✠ ✒ ✰ ☎ ✞☞✖✢ ☎ ✆ ✕★✠ ✎ ✓
(2.15)

This formula conforms with the intuition that action ✕ ✦ ✘ ✕ ✦ ✡ ✆✽✞ ✖✢ ☎ ✠ provides information about ✰ ☎

by decreasing the set of situations alternative to ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆✽✞☞✖✢ ☎ ✠ ✆ ✕✡✠ : situations ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕ ✁ ✠
remain accessible from ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞☞✖✢ ☎ ✠ ✆ ✕✡✠ if and only if they are successors of situations ✕ ✁
which agree with ✕ regarding the truth value of fluent ✰ (i.e., ✰ ☎ ✞ ✖✢ ☎ ✆ ✕ ✁ ✠✓✒ ✰ ☎ ✞☞✖✢ ☎ ✆ ✕✡✠ ).

By following similar line of reasoning, one can establish that for each read action

☎ ❃❅✬ ✦✛☎ ✄ ✞ � ✞ ✖✢✂✁ ✠ ✠
✍ � ✞ ✕ ☛ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ ✒

✞✟✒✝✕ ✁ ✠ ✓ ✕ ☛ ❃❅✄✆☎✩✞ ☎✝✆ ✕ ✁ ✠ ☛ � ✞ ✕ ✁ ✆ ✕★✠ ☛ �✄✁✏✞☞✖✢✂✁ ✆ ✕ ✁ ✠ ❃ �☎✁✿✞☞✖✢✂✁ ✆ ✕✡✠ ✎ ✓
(2.16)

Because the combination of axioms (2.10), (2.15) and (2.16) is logically equivalent to the

successor state axiom (2.14) for � -fluent, it is the only axiom that one needs to reason about

dynamics of knowledge in �✂✁ .

It is possible to obtain also the following more general successor state axiom, where each

sense action ✕ ✦ ✘ ✕ ✦✝✆ ✆✽✞☞✖✢ ☎ ✠ ✆ ✞ ❃ ❉ ✆✜✓✔✓✔✓✜✆ ✲ ✆ is associated with a condition ✂ ☎ ✞☞✖✢ ☎ ✆ ✕✡✠ whose truth

value in situation ✕ the action is designed to determine:

� ✞ ✕ ✆ ✄✆☎✩✞ ☎ ✆✘✗ ✠✭✠✓✒ ✞ ✒✝✕ ✁ ✠ ✓ ✕ ❃❅✄✆☎✩✞ ☎✝✆ ✕ ✁ ✠ ☛ � ✞ ✕ ✁ ✆✘✗ ✠ ☛

✞✍✌ ✖✢ ✍ ✠ ✍ ☎ ❃ ✕ ✦ ✘ ✕ ✦✝✆ ✁ ✞☞✖✢ ✍ ✠✡✠ ✂ ✍ ✞☞✖✢ ✍✚✆ ✕ ✁ ✠ ✒ ✂ ✍ ✞☞✖✢ ✍✚✆✘✗ ✠ ✎
☛ �✂�✂� ☛ (2.17)

✞✍✌ ✖✢ ✆ ✠ ✍ ☎ ❃ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✞☞✖✢ ✆ ✠✡✠ ✂ ✆ ✞☞✖✢ ✆ ✆ ✕ ✁ ✠✓✒ ✂ ✆ ✞☞✖✢ ✆ ✆✡✗ ✠ ✎
The right-hand sides of all other successor state axioms in � ✁✝✟✝ can mention physical actions

only and have the syntactic form characterized in Section 2.1.1. Hence, these axioms conform

with the no side-effect assumption (2.11): if ✕ is a current situation and ☎ is a sense (read)

action, then all fluents have the same values in ✄✝☎✟✞ ☎✝✆ ✕✡✠ that they have in ✕ .
Precondition axioms �✂✁☛ ✓ . These axioms have the syntactic form

✁ ☎ ✕ ✕✝✞✗✕ ✞☞✖✢ ✠ ✆ ✕✡✠✓✒ ✘✚✙✚✞☞✖✢ ✆ ✕✡✠ ✆
where ✘✚✙❄✞☞✖✢ ✆ ✕✡✠ is a formula with free variables among ✖✢ ✆ ✕ , whose only situation term is ✕ and
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it can mention expressions of the form Knows ✞ ✁ ✆ ✕★✠ , KRef ✞ �✚✞ ✖✣✝✠ ✆ ✕✡✠ . This characterizes (via the

formula ✘✚✙ ✞ ✖✢ ✆ ✕✡✠ ) the conditions under which it is possible to execute physical or informative

action ✕ ✞☞✖✢☞✠ in situation ✕ .
Initial accessibility relation axioms ✁ ✂ ❁ ☎ ☞ .

The accessibility relation is reflexive in initial situations if

✞✏✌ ✕✡✠ ✓ � ✘ ✞ ✕ ✞ ✕★✠ ✠ � ✞ ✕ ✆ ✕✡✠ ,
and symmetric in initial situations if

✞✏✌ ✕ ✍✚✆ ✕ ✑ ✠ ✓ � ✘ ✞ ✕ ✞ ✕ ✍ ✠ ☛ � ✘ ✞✜✕ ✞ ✕ ✑ ✠ ✠ ✍ � ✞ ✕ ✍✚✆ ✕ ✑ ✠✡✠ � ✞ ✕ ✑✔✆ ✕ ✍ ✠ ✎ .
It is possible to prove that foundational axioms and the successor state axiom for (2.14) guar-

antee that provided the accessibility relation is reflexive (symmetric, respectively) in all initial

situations, then it will have the same property in all situations [Scherl and Levesque, 2003,

Reiter, 2001a]:

✞✍✌ ✕✡✠ ✓ ✍ � ✘ ✞✜✕ ✞ ✕✡✠ ✠ � ✞ ✕ ✆ ✕✡✠✟✎ ✠ ✞✍✌ ✗ ✠ ✓ � ✞ ✗✙✆✘✗ ✠ ✓ (reflexivity) (2.18)

✞✍✌ ✕ ✆ ✕ ☛ ✠ ✓ ✍ � ✘ ✞✜✕ ✞ ✕✡✠ ☛ � ✘ ✞ ✕ ✞ ✕ ☛ ✠ ✠ ✍ � ✞ ✕ ✆ ✕ ☛ ✠ ✠ � ✞ ✕ ☛ ✆ ✕✡✠ ✎ ✎
✠ ✞✏✌ ✗✙✆✡✗ ☛ ✠ ✓ � ✞ ✗✙✆✘✗ ☛ ✠✡✠ � ✞ ✗ ☛ ✆✡✗ ✠ ✓ (symmetry)

Other possible restrictions on the accessibility relation (transitive, euclidean) in initial situa-

tions can also be “propagated” to all situations. In the sequel, we assume that ✁ ✂ ❁ ☎ ☞ includes

the axiom about reflexivity of � ✞ ✕ ✆ ✕ ☛ ✠ in all initial situations.

2.2 Regression

Regression is a general (and often efficient) computational mechanism used to evaluate whether

a situation calculus formula is entailed by a basic theory of actions [Waldinger, 1977, Pednault, 1986,

Pirri and Reiter, 1999, Reiter, 2001a]. Before going into details on how to define the regres-

sion operator � formally, we recall the intuition expressed in the definition of the regression

operator. Suppose that ✰✧✞☞✖✢ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒✂✁ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ is a successor state axiom characterizing

the relational fluent atom ✰ , where ✁ ✞☞✖✢ ✆✡☎ ✆ ✕★✠ is a situation calculus formula. If ✁ ✞ ✄✆☎✟✞✔✕ ✆ � ✠✭✠
mentions ✰ , we can determine a logically equivalent formula ✁ ☛ by substituting ✁ ✞☞✖✢ ✆ ✕ ✆ � ✠
for ✰✧✞☞✖✢ ✆ ✄✆☎✩✞✗✕ ✆ � ✠✭✠ in ✁ . Because the formula ✁ ☛ has no occurrences of ✰ ✞☞✖✢ ✆ ✄✝☎✟✞✔✕ ✆ � ✠✭✠ in-

volving the complex situation term ✄✆☎✩✞✗✕ ✆ � ✠ , this formula is simpler than the original formula

✁ ✞✜✄✆☎✩✞✗✕ ✆ � ✠✭✠ . Because the same operation can be repeated with other fluents in ✁ ☛ until we have

no occurrences of the situation term ✄✆☎✟✞ ☎✝✆ ✕✡✠ , as the result we obtain a simpler logical formula
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that mentions only �☞✁ . Similarly, the regression operator eliminates
✁ ☎ ✕ ✕ atoms in favor of

their definitions as given by action precondition axioms.

The regression operator is defined not for arbitrary situation calculus formulas, but only

for a large interesting class of formulas called regressable: these formulas occur naturally in

planning and database query evaluation. An important simple example of regressable formulas

is a situation calculus formula ✁ ✞ � ✠ that has the ground situation term � as the only situational

argument, that is a first order formula built from relational fluents and equality atoms ✕ ✍ ❃❊✕ ✑
(where ✕ ✍ and ✕ ✑ are not situation terms) by applying boolean operators and quantifiers over

object variables.

Definition 2.2.1: The Regressable Formulas.

A situation calculus formula � is a regressable iff the following conditions hold

1. If a situation term occurs in � , then it has the syntactic form ✄✆☎✩✞✽✍ ✞ ✍✏✆✔✓✔✓✔✓✚✆✟✞ ❁ ✎ ✆ �✻✁✼✠ for

some ✘✂✁ � , and for terms ✞ ✍✏✆✔✓✔✓✔✓ ✆✟✞ ❁ of sort action.

2. If an atom of the form
✁ ☎ ✕ ✕✆✞ ✞✠✆✡✗ ✠ occurs in � , then ✞ is a ground action term ✕ ✞✯✕ ✍✏✆✜✓✔✓✔✓✜✆ ✕ ❁ ✠

for some ✘ -ary action function symbol ✕ .

3. There are no occurrences of the predicate symbol ✂ in � , nor does it mention any

equality atom ✕ ❃ ✕ ☛ for terms ✕ ✆ ✕ ☛ of sort situation.

This definition is less general than the definition given in [Pirri and Reiter, 1999], but it will

be sufficient for our purposes and will simplify the following definitions.

Now suppose that � is a regressable situation calculus formula. The regression operator

�☎✄ is designed to simplify � by replacing fluents and atoms that have occurrences of complex

situation term ✄✆☎✩✞✽✍ ✞ ✍✚✆✜✓✔✓✔✓✚✆✟✞✌❁ ✎ ✆ �✻✁✼✠ by formulas with a simpler situation terms. The regression

operator �✆✄ is determined relative to a basic theory of actions � that serves as a background

axiomatization.

Definition 2.2.2: The Regression Operator.

Let � be a regressable formula, � be a basic theory of actions that includes a set of successor

state axioms � ✝ ✝ and a set of action precondition axioms � ☛ ✓ . Let ✕ ✍✏✆✔✓✔✓✜✓✜✆ ✕ ❁ ✆ ✢ ✍✚✆✔✓✔✓✜✓ ✆ ✢ ❁✎✆ ✖✝ be

terms of sort object, ✕ ✆✟✞✠✆✟✞ ☛ be terms of sort action, ✗ ✆✡✗ ☛ be terms of sort situation. The regres-

sion operator �✆✄ ✍✟✞ ✎ when applied to a formula � is defined inductively over the structure of
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� (with the base case when � is an atom) as follows:4

1. When � is a non-fluent atom, including equality atoms (between terms of sort object or

action), � ✍ � ✎ ❃ � .

2. When � is a fluent atom whose situation argument is � ✁ , � ✍ � ✎ ❃ � .

3. When � is a relational fluent atom ✰ ✞✫✕ ✍✟✆✔✓✔✓✔✓ ✆ ✕ ❁✎✆ ✄✝☎✟✞ ✞ ✆✡✗ ✠✽✠ whose successor state axiom

in � ✝ ✝ is

✞✍✌ ☎✝✆ ✕ ✆ ✢ ✍✚✆✜✓✔✓✔✓✜✆ ✢ ❁ ✠ ✓ ✰ ✞ ✢ ✍✏✆✜✓✔✓✔✓✜✆ ✢ ❁✎✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠✓✒ ✠☛✡ ✞ ✢ ✍✚✆✔✓✔✓✜✓✜✆ ✢ ❁ ✆✟☎✝✆ ✕✡✠ (2.19)

then5

� ✍✭✰✧✞✯✕ ✍✚✆✔✓✔✓✔✓ ✆ ✕ ❁ ✆ ✄✆☎✩✞ ✞✠✆✡✗ ✠✽✠✟✎ ❃ � ✍ ✠☛✡ ✄ ✁ ✁✄✂✆☎✆☎✆☎ ✂ ✁ ✄ ✂ ☛ ✂ ✝☞ ✁✝✂✆☎✆☎✆☎ ✂ ☞ ✄ ✂ ✞✟✂ ✠ ✎ ✓
In other words, to regress the relational fluent, one has to replace it by a suitable instance

of the formula representing the right hand side of the fluent’s successor state axiom and

regress this formula. To avoid potential conflicts between free variables (if any) of ✰
with quantifiers (if any) of

✠☞✡
, we can assume, without loss of generality, that if the for-

mula
✠☞✡ ✞ ✢ ✍✚✆✔✓✔✓✜✓✜✆ ✢ ❁ ✆✟☎✝✆ ✕✡✠ has any quantifiers, then their quantified variables have been

renamed to be distinct from the free variables (if any) of ✰ ✞✫✕ ✍✏✆✔✓✜✓✔✓✜✆ ✕ ❁ ✆ ✄✆☎✟✞ ✞✠✆✘✗ ✠✭✠ . This

renaming prevents any of quantifiers of
✠ ✡ ✞ ✢ ✍✚✆✔✓✜✓✔✓✜✆ ✢ ❁ ✆✟☎✝✆ ✕✡✠ from capturing variables in

the instance ✰ ✞✫✕ ✍✏✆✔✓✔✓✔✓ ✆ ✕ ❁ ✆ ✄✆☎✩✞ ✞✠✆✡✗ ✠✽✠ .
4. When � has an occurrence of a term ✪✻✞✁✖✝ ✆ ✄✝☎✟✞ ✞ ☛ ✆✡✗ ☛ ✠✭✠ , where ✪ is a functional fluent,

then � mentions a term of the form � ✞✫✕ ✍✏✆✜✓✔✓✔✓✜✆ ✕ ❁✎✆ ✄✆☎✟✞ ✞ ✆✡✗ ✠✭✠ with the property that �☞✁ is

the only situation term (if any) mentioned by ✕ ✍✟✆✔✓✔✓✔✓ ✆ ✕ ❁✎✆✡✞ . Indeed, if � is a regressable

formula, then one can prove (by induction on the sum of the length of all terms of sort

situation that occur in ✪✻✞✁✖✝ ✆ ✄✆☎✟✞ ✞ ☛ ✆✡✗✙☛ ✠✭✠ ) that ✪☞✞✁✖✝ ✆ ✄✆☎✟✞ ✞ ☛ ✆✡✗✙☛ ✠✭✠ mentions a simple functional

fluent � ✞✫✕ ✍✏✆✔✓✔✓✔✓ ✆ T
❁ ✆ ✄✆☎✩✞✽✍ ✞ ✍✏✆✔✓✔✓✜✓✜✆✟✞ ❁ ✎ ✆ �✻✁✼✠✽✠ such that either ✕ ✍✚✆✔✓✜✓✔✓✜✆ ✕ ❁ ✆✟✞ ✍✏✆✔✓✔✓✜✓✜✆✟✞ ❁ have no

occurrences of situation terms or they mention � ✁ only.

Let � ’s successor state axiom in �✞✝ ✝ be

✞✍✌ ☎✝✆ ✕ ✆ ✢ ✍✚✆✔✓✜✓✔✓ ✆ ✢ ❁ ✆ ✣✩✠ ✓ �✚✞ ✢ ✍✡✆✔✓✔✓✔✓ ✆ ✢ ❁ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠❄❃ ✣ ✒ ✁ ✞ ✞ ✢ ✍✚✆✔✓✜✓✔✓✜✆ ✢ ❁ ✆ ✣ ✆✟☎✝✆ ✕✡✠ (2.20)

4We omit the subscript
✡

because it is clear from the context that we talk about the regression operator defined

with respect to the theory
✡

.
5In general, when ☛ is a formula, and ☞ and ☞✍✌ are terms, then ☛✏✎ ✑✓✒✑ denotes the result of replacing all occurrences

of ☞✔✌ (if any) in ☛ by ☞ .
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then

� ✍ � ✎ ❃ � ✍ ✞ ✒✎✣✮✠ ✓ ✁ ✞ ✞✫✕ ✍✚✆✔✓✔✓✜✓✜✆ ✕ ❁ ✆ ✣ ✆✟✞✠✆✘✗ ✠ ☛ � ✄ ✞✁� ☞ ✁✝✂✆☎✆☎✆☎ ✂ ☞ ✄ ✂ ☎ ☎ � ✞✟✂ ✠✄✂☎✂
✆ ✎ ✆

where ✣ is a variable that does not occur free in � ✆ ✕ ✍✏✆✔✓✔✓✜✓✜✆ ✕ ❁ ✆✟✞✠✆✘✗ . This says simply that

to regress � , we have to replace � by a logically equivalent formula (using the right

hand side of � ’s successor state axiom) and next regress this formula. Because

�✚✞✫✕ ✍✟✆✔✓✔✓✔✓ ✆ ✕ ❁✎✆ ✄✝☎✟✞ ✞ ✆✡✗ ✠✽✠
has an occurrence of a complex situation term ✄✆☎✟✞ ✞✠✆✘✗ ✠ , replacement yields a formula

✞ ✒✎✣✮✠ ✓ ✁ ✞ ✞✫✕ ✍✚✆✔✓✜✓✔✓✜✆ ✕ ❁ ✆ ✣ ✆✟✞✠✆✘✗ ✠ ☛ � ✄ ✞✝� ☞ ✁✝✂✆☎✆☎✆☎ ✂ ☞ ✄ ✂ ☎ ☎ � ✞✟✂ ✠✝✂☎✂✆ that has a shorter situation term. Simi-

larly to the case of relational fluents, we assume that beforehand all quantified variables

(if any) of ✁ ✞ ✞ ✢ ✍✚✆✔✓✔✓✜✓ ✆ ✢ ❁ ✆ ✣ ✆✟☎✝✆ ✕✡✠ have been renamed to be distinct from the free vari-

ables (if any) of �✚✞✫✕ ✍✟✆✔✓✔✓✔✓ ✆ ✕ ❁✎✆ ✄✝☎✟✞ ✞ ✆✡✗ ✠✽✠ . This renaming makes sure that quantifiers in

✁ ✞ ✞ ✢ ✍✚✆✔✓✔✓✜✓✜✆ ✢ ❁ ✆ ✣ ✆✟☎✝✆ ✕✡✠ will not capture any variables in the instance of � ✞✫✕ ✍✟✆✔✓✔✓✔✓ ✆ ✕ ❁✎✆ ✄✝☎✟✞ ✞ ✆✡✗ ✠✽✠ .
To complete the definition of the regression operator for functional fluents, note that if a

regressable formula � mentions a term ✪✻✞✁✖✝ ✆ ✄✆☎✩✞ ✞ ☛ ✆✡✗✙☛ ✠✭✠ , where ✪ is a functional fluent,

then � can have occurrences of several simple functional fluents of the form

�✚✞✫✕ ✍✏✆✜✓✔✓✔✓✜✆ ✕ ❁✎✆ ✄✆☎✟✞ ✞ ✆✡✗ ✠✭✠ ✓
For this reason, to define � in a unique way, we can assume a suitable lexicographic

ordering on functional fluent terms, and regress with respect to the least such term men-

tioned by � .

5. When � is a regressable atom
✁ ☎ ✕ ✕✝✞✗✕ ✞✯✕ ✍✏✆✔✓✔✓✜✓✜✆ ✕ ❁ ✠ ✆✡✗ ✠ whose action precondition axiom

in � ☛✔✓ is

✞✍✌ ✕ ✆ ✢ ✍✚✆✜✓✔✓✔✓✜✆ ✢ ❁ ✠ ✓ ✁ ☎ ✕ ✕✆✞✔✕✢✞ ✢ ✍✏✆✜✓✔✓✔✓✜✆ ✢ ❁ ✠ ✆ ✕✡✠✓✒ ✘✚✙ ✞ ✢ ✍✚✆✔✓✔✓✜✓✜✆ ✢ ❁ ✆ ✕✡✠ (2.21)

then

� ✍ ✁ ☎ ✕ ✕✆✞✔✕✢✞✫✕ ✍✏✆✜✓✔✓✔✓✜✆ ✕ ❁ ✠ ✆✡✗ ✠✟✎ ❃ � ✍ ✘✚✙✍✄ ✁ ✁ ✂✆☎✆☎✆☎ ✂ ✁ ✄ ✂ ✝
☞ ✁✝✂✆☎✆☎✆☎ ✂ ☞ ✄ ✂ ✠ ✎

In other words, to regress the atom
✁ ☎ ✕ ✕ that has an action function symbol ✕ as an

argument, one has to replace
✁ ☎ ✕ ✕✆✞✔✕✢✞✫✕ ✍✏✆✜✓✔✓✔✓✜✆ ✕ ❁ ✠ ✆✡✗ ✠ by a suitable instance of the for-

mula representing the right hand side of the action’s precondition axiom and regress

this formula. Similar to the previous case, one can rename (if necessary) all quan-

tified variables of ✘✛✙ ✞ ✢ ✍✚✆✜✓✔✓✔✓✜✆ ✢ ❁✎✆ ✕✡✠ to be distinct from the free variables (if any) of
✁ ☎ ✕ ✕✆✞✔✕✢✞✫✕ ✍✏✆✜✓✔✓✔✓✜✆ ✕ ❁ ✠ ✆✡✗ ✠ : renaming guarantees that quantifiers of ✘ ✙ ✞ ✢ ✍✚✆✜✓✔✓✔✓✜✆ ✢ ❁✎✆ ✕✡✠ do

not bound accidentally variables in the instance
✁ ☎ ✕ ✕✆✞✔✕✢✞✫✕ ✍✏✆✜✓✔✓✔✓✜✆ ✕ ❁ ✠ ✆✡✗ ✠ .
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6. Whenever � is a formula,

� ✍ ✑ � ✎ ❃ ✑ � ✍ � ✎ ✆
� ✍ ✞✍✌ �✟✠ � ✎ ❃❊✞✍✌ �✟✠ � ✍ � ✎ ✆
� ✍ ✞✟✒✟�✟✠ � ✎ ❃❊✞✟✒✟�✟✠ � ✍ � ✎ .

7. Whenever � ✍ and � ✑ are formulas,

� ✍ � ✍ ☛ � ✑ ✎ ❃ � ✍ � ✍ ✎ ☛ � ✍ � ✑ ✎ ✆
� ✍ � ✍ ✝ � ✑ ✎ ❃ � ✍ � ✍ ✎ ✝ � ✍ � ✑ ✎ ✆
� ✍ � ✍ ✠ � ✑ ✎ ❃ � ✍ � ✍ ✎ ✠ � ✍ � ✑ ✎ ✆
� ✍ � ✍ ✒ � ✑ ✎ ❃ � ✍ � ✍ ✎ ✒ � ✍ � ✑ ✎ ✓

Thus, � ✍ � ✎ is simply that formula obtained from � by substituting repeatedly either suit-

able instances of the right hand side of successor state axiom for each occurrence of a fluent

atom or suitable instances of the right hand side of action precondition axiom for each occur-

rence of a
✁ ☎ ✕ ✕ atom.

The idea behind the regression operator � is to reduce the depth of nesting of the function

symbol ✄✆☎ in the fluents of � by substituting suitable instances of
✠ ✡

from (2.19) (or suit-

able instances of ✁ ✞ from 2.20, respectively) for each occurrence of a fluent atom of the form

✰ ✞✫✕ ✍✏✆✔✓✜✓✔✓✜✆ ✕ ❁ ✆ ✄✆☎✟✞ ✞✠✆✘✗ ✠✭✠ (for each occurrence of a functional fluent, respectively). Since no flu-

ent of
✠☛✡

( ✁ ✞ , respectively) mentions the function symbol ✄✆☎ , the effect of this substitution is to

replace each such ✰ ✞✫✕ ✍✏✆✔✓✜✓✔✓✜✆ ✕ ❁ ✆ ✄✆☎✟✞ ✞✠✆✘✗ ✠✭✠ (each such �✚✞✫✕ ✍✟✆✔✓✔✓✔✓ ✆ ✕ ❁✎✆ ✄✝☎✟✞ ✞ ✆✡✗ ✠✽✠ , respectively) by a

formula whose fluents mention only the situation term ✗ , and this reduces the depth of nesting

by one. Therefore, the final result of regressing � is a formula whose only situation term is

�✻✁ , and because � substitutes logically equivalent expressions for atoms, the final formula is

logically equivalent to � . The regression operator corresponds closely to the notion of goal

regression in artificial intelligence planning procedures.

Example 2.2.3: Example of Regression. Let’s consider the regressable formula

✁ ❃ ✁ ✞ ✛ ✆ ✄✝☎✟✞✔✕ ✆ �✻✁✥✠✽✠ ☛ ✁ ☎ ✕ ✕✆✞✔✕ ✆ �✻✁✥✠ ✠ ✞✟✒ ✢ ✠ ✓ ✞ ✁ ✞ ✢ ✆ �✻✁ ✠ ☛ ✢ ✆❃ ✛ ✝✁� ✞ ✄✆☎✩✞✗✕ ✆ �✻✁✥✠✭✠✔✠ ✓
Here

✁
and � are fluents; equality atom ❃ is not a fluent. Suppose the successor state axioms

for
✁

and � are
✁ ✞ ✢ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒ ✠✄✂ ✞ ✢ ✆✟☎✝✆ ✕✡✠ ✆
� ✞ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠✓✒ ✠✆☎ ✞ ☎✝✆ ✕✡✠ ✓

and suppose that the action precondition axiom for ✕ is this:
✁ ☎ ✕ ✕✆✞✗✕ ✆ ✕✡✠ ✒ ✘ ✙ ✞ ✕✡✠ . Then

� ✍ ✁ ✎ ❃ ✠✄✂ ✞✜✛ ✆ ✕ ✆ �✻✁✼✠ ☛ ✘ ✙✚✞ �✻✁ ✠✡✠ ✞✟✒ ✢ ✠ ✓ ✞ ✁ ✞ ✢ ✆ �✻✁ ✠ ☛ ✢ ✆❃ ✛ ✝ ✠✆☎ ✞✗✕ ✆ �✻✁✼✠✔✠ ✓
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The following important theorem establishes that the regression operator � is well-defined

and also that the operator yields the formula logically equivalent to what it started with.

Theorem 2.2.4: [Pirri and Reiter, 1999] Suppose � is regressable situation calculus formula

and � is a basic theory of actions. Then � ✄ ✍ � ✎ is a formula uniform in �☞✁ . Moreover,

� ✄ ❃ ✞✏✌☞✠ ✞ � ✒ � ✄ ✍ � ✎✯✠ ✆

where ✞✍✌☞✠ ✁ denotes the universal closure of the formula ✁ with respect to its free variables,

and �✆✄ is the regression operator with respect to � .

This theorem has a very important consequence: the task of establishing whether a re-

gressable formula � is entailed by a basic theory of action � can be reduced to the task of

establishing whether �✆✄ ✍ � ✎ is entailed by a small subset of � ; in particular, we do not need

any axioms besides axioms about the initial situation and unique name axioms. Intuitively, this

is true because actions precondition and successor state axioms no longer required as soon as

we computed the final formula � ✍ � ✎ . Moreover, none of the foundational axioms of ✟ (in-

cluding the second order induction axiom) are required, and this means that the entailment task

can be reduced to a first order theorem proving task in �✍✠ ❁☞☛✌✁ �✡✌✒✎ . The next theorem states

this important result.

Theorem 2.2.5: (Soundness and Completeness of Regression) [Pirri and Reiter, 1999]

Suppose � is a regressable situation calculus sentence and � is a basic theory of actions.

Then,

1. �☎✄ ✍ � ✎ is a sentence uniform in �☞✁
2. � ✄ ❃ �☎✄ ✍ � ✎ iff � ✠ ❁☞☛✂✁ �✡✌✒✎☎✄ ❃ �☎✄ ✍ � ✎

An important example of application of regression is the task of proving that a given action

sequence is executable, i.e., that it leads to a reachable situation (see the formula 2.5). First,

one can prove that given foundational axioms ✟ , for each ✘ ✁ �

✟ ✄ ❃ ✞✍✌ ☎✎✍✚✆✔✓✜✓✔✓✜✆✟☎❂❁ ✠ ✓ ✬ ✦✛☎ ✾✒� ☎✄✂✼✷✫✦ ✞ ✄✆☎✟✞✭✍ ☎ ✍ ✆✔✓✜✓✔✓ ✆✡☎●❁ ✎ ✆ �✻✁ ✠✭✠✓✒
� ❁☎✂✁ ✍ ✁ ☎ ✕ ✕✝✞ ☎ ☎ ✆ ✄✆☎✟✞✭✍ ☎ ✍✟✆✔✓✔✓✔✓✚✆✟☎ ☎ ❆✝✍ ✎ ✆ �✻✁✼✠✭✠ ✓

Second, from this and regression theorem, one can prove (see [Reiter, 2001a])
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Corollary 2.2.6: Suppose that ✞ ✍✚✆✔✓✜✓✔✓✜✆✟✞ ❁ is a sequence of ground action terms. Then

� ✄ ❃❅✬ ✦✛☎ ✾✁� ☎✄✂✼✷✫✦ ✞ ✄✆☎✩✞✽✍ ✞ ✍✚✆✔✓✔✓✜✓✜✆✟✞ ❁ ✎ ✆ �✻✁✼✠✽✠
iff

� ✌ ✎ ✁ � ✠ ❁✁☛ ✄ ❃
❁
�

☎✂✁ ✍ �☎✄ ✍ ✁ ☎ ✕ ✕✆✞ ✞ ☎ ✆ ✄✆☎✟✞✭✍ ✞ ✍✏✆✜✓✔✓✔✓✚✆✟✞ ☎ ❆✝✍ ✎ ✆ �✻✁✥✠✭✠✟✎ ✓

This corollary provides a systematic, regression-based method for determining whether a given

ground situation ✄✆☎✟✞✭✍ ✞ ✍✏✆✜✓✔✓✔✓✚✆✟✞✌❁ ✎ ✆ �✻✁✼✠ is reachable, in other words, whether this ground situation

corresponds to a sequence of actions in which it is really possible to perform actions one after

the other. It is remarkable that this task can be reduced to a theorem-proving task in the initial

database �✂✁☎✄ , together with unique names axioms for actions.

The regression operator � transforms a formula � to a logically equivalent formula with

�✻✁ as the only situational term. It is convenient to define also a ‘one-step’ version of the

regression operator. Given a regressable formula ✁ ✍ ✄✝☎✟✞ ✞ ✆ ✕✡✠ ✎ , a ‘one-step’ regression operator

�
✍ ✞ ✁ ✆✟✞ ✠ computes a formula logically equivalent to ✁☛✍ ✄✆☎✟✞ ✞ ✆ ✕✡✠ ✎ that may have occurrences of

a simpler situation term ✕ only. However, before giving a formal definition of �
✍ ✞ ✁ ✆✟✞ ✠ , we

need to define a large interesting sub-class of regressable formulas: �
✍

will be applied in the

sequel only to formulas from this sub-class. All formulas of this sub-class can be constructed

from (objective) situation-suppressed expressions. These expressions have been mentioned

already (without a formal definition) in Section (2.1.3), they will be used also for the purposes

of specifying the syntax of the high-level programming language Golog in Section (2.3). The

next sequence of definitions follows [Pirri and Reiter, 1999, Reiter, 2001b] and introduces all

required notions.

Definition 2.2.7: Situation-Suppressed Terms and Expression.

The situation-suppressed terms are inductively defined by:

1. Any variable of sort action or abject is a situation-suppressed term.

2. If � is an ✘✝✆❀❉ -ary functional fluent, and ✕ ✍✏✆✔✓✔✓✜✓✜✆ ✕ ❁ are situation-suppressed terms of sorts

appropriate for the first ✘ arguments of � , then �✚✞✯✕ ✍✚✆✔✓✜✓✔✓✜✆ ✕ ❁ ✠ is a situation-suppressed

term.

3. If ✪ is an ✲ -ary non-functional fluent symbol other than �✌✁ or ✄✝☎ , and ✕ ✍✚✆✜✓✔✓✔✓✚✆ ✕ ✆ are

situation-suppressed terms of sorts appropriate for the arguments of ✪ , then ✪✻✞✯✕ ✍✟✆✔✓✔✓✔✓ ✆ ✕ ✆ ✠
is a situation-suppressed term.
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The situation-suppressed expressions are inductively defined by:

1. Whenever ✕ and ✕ ☛ are situation-suppressed terms of the same sort, then ✕ ❃ ✕ ☛ is a

situation-suppressed expression.6

2. When ✕ is a situation-suppressed term of sort action, then
✁ ☎ ✕ ✕✆✞✫✕✽✠ is a situation-suppressed

expression.

3. When ✰ is an ✞✜✘ ✆ ❉✡✠ -ary relational fluent symbol and ✕ ✍✚✆✔✓✔✓✔✓✚✆ ✕ ❁ are situation-suppressed

terms of sorts appropriate for the first ✘ arguments of ✰ , then ✰ ✞✫✕ ✍✚✆✔✓✔✓✜✓ ✆ ✕ ❁ ✠ is a situation-

suppressed expression.

4. When
✁

is an ✲ -ary non-fluent predicate symbol other than ✂ , and ✕ ✍✚✆✜✓✔✓✔✓✜✆ ✕ ✆ are situation-

suppressed terms of sorts appropriate for the arguments of
✁

, then
✁ ✞✫✕ ✍✏✆✔✓✔✓✔✓ ✆ ✕ ✆ ✠ is a

situation-suppressed expression.

5. When ✁ and ✂ are situation-suppressed expressions, so are ✑ ✁ and ✁ ☛ ✂ . When � is a

variable of sort action or object, then ✞ ✒✟�✩✠ ✁ is a situation-suppressed expression.

In brief, situation-suppressed expressions are first order, never quantify over situations,

never mention ✂ , nor do they ever mention terms of sort situation.

Definition 2.2.8: Restoring Suppressed Situation Arguments

Whenever ✕ is a situation-suppressed term and ✗ is a term of sort situation, ✕ ✍ ✗ ✎ denotes

that term of the language obtained by restoring the term ✗ as the situation argument to all of

the functional fluent terms mentioned by ✕ . In addition, whenever ✁ is a situation-suppressed

expression, ✁ ✍ ✗ ✎ denotes that formula of the language obtained by restoring the term ✗ as the

situation argument to all of the functional fluent terms and all of the relational fluent atoms in

✁ .

Note that if ✁ ✞ ✕✡✠ is a regressable situation calculus formula, ✁ is a situation-suppressed

expression and � is a ground situation term, then ✁ ✍ � ✎ is a regressable formula.

Next, we can define a ‘one-step’ version of the regression operator that can be applied to

✁ ✍ � ✎ , where ✁ is a situation-suppressed expression. To emphasize that a ‘one-step’ regression

operator is different from the already introduced operator � , we will denote this new operator

6Because situation-suppressed terms are never of sort situation, the situation-suppressed expressions never

mention an equality atom between situations.
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by a low-case letter � . (We omit the subscript � , but all regression operators are defined with

respect to the background theory � .)

Definition 2.2.9: The Single Step Regression Operator

Let ✁ be a situation-suppressed expression, ✞ be an action term, and ✁☛✍ ✄✆☎✟✞ ✞✠✆ ✕★✠ ✎ be a re-

gressable situation calculus formula that has no occurrences of predicate symbol
✁ ☎ ✕ ✕ . Then,

�
✍ ✞ ✁ ✆✟✞ ✠ is that situation-suppressed expression obtained by

✎ replacing all fluents in ✁ ✍ ✄✆☎✩✞ ✞✠✆ ✕✡✠ ✎ with situation argument ✄✆☎✩✞ ✞✠✆ ✕✡✠ by the corresponding

right-hand sides of their successor-state axioms (renaming quantified variables if neces-

sary),

✎ and next, suppressing the situation arguments in the resulting formula.

By induction on the structure of the formula ✁ , one can prove that

Lemma 2.2.10:

� ✄ ❃ �
✍ ✞ ✁ ✆✟✞ ✠ ✍ ✕ ✎ ✒ ✁ ✍ ✄✆☎✩✞ ✞✠✆ ✕✡✠ ✎ ,

in other words, �
✍ ✞ ✁ ✆✡✞ ✠ ✍ ✕ ✎ is logically equivalent to ✁☛✍ ✄✆☎✟✞ ✞✠✆ ✕★✠ ✎ relative to the successor

state axioms.

By analogy with the single step regression operator �
✍ ✞ ✁ ✆✟✞ ✠ , it is convenient to introduce

the ‘multi step’ regression operator defined on situation suppressed expressions.

Definition 2.2.11: The Multi Step Regression Operator

Let ✁ be a situation-suppressed expression, ✞ be an action term, and ✁☛✍ ✄✆☎✟✞ ✞✠✆ ✕★✠ ✎ be a re-

gressable situation calculus formula that has no occurrences of predicate symbol
✁ ☎ ✕ ✕ . Then,

� ✞ ✁ ✆✡✗ ✠ is the situation-suppressed expression inductively defined by

1. � ✞ ✁ ✆ �✻✁✼✠ ❃ ✁
2. � ✞ ✁ ✆ ✄✆☎✟✞ ✞ ✆✡✗ ✠✭✠ ❃ � ✞ �

✍ ✞ ✁ ✆✟✞ ✠ ✆✡✗ ✠ ✓
Note the difference between usages of � and � notations: the 1–argument regression op-

erator � ✍ � ✎ takes a regressable formula � and denotes a logically equivalent situation cal-

culus formula about � ✁ ; the 2–argument operator � ✞ ✁ ✆✘✗ ✠ represents regression of a situation-

suppressed expression ✁ through the actions of ✗ .

The following theorem establishes the interesting connection between two notations:

Lemma 2.2.12: � ✞ ✁ ✆✡✗ ✠ ✍ �☞✁✭✎ and � ✍✡✁ ✍ ✗ ✎ ✎ are logically equivalent, relative to the basic action

theory � :

� ✄ ❃ � ✞ ✁ ✆✡✗ ✠ ✍ �✻✁✭✎ ✒ � ✍✡✁ ✍ ✗ ✎ ✎ ✓
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2.2.1 The Projection Task

Regression is a key computational mechanism for solving the projection task, a common AI

task that is a prerequisite to answering various other questions.

Informally, the forward projection task is this: given a sequence of ground action terms
✞ ✍✏✆✔✓✔✓✔✓ ✆✟✞ ❁ , and a formula ✁☛✞ ✕✡✠ whose only free variable is the situation variable ✕ , determine

whether ✁ is true in the situation resulting from performing this action sequence, beginning

with the initial situation �☞✁ . This task can be formulated more precisely. Suppose that a

sequence of ground action terms ✞ ✍✏✆✔✓✜✓✔✓✜✆✟✞ ❁ mentions physical actions only. Let � be a basic

action theory of the domain and let ✁ ✞✜✄✆☎✩✞✽✍ ✞ ✍✏✆✔✓✔✓✜✓✜✆✟✞ ❁ ✎ ✆ �✻✁ ✠✽✠ be a regressable situation calculus

formula (where ✁☛✞ ✕✡✠ is a situation calculus formula uniform in ✕ ).

The forward projection task is to determine whether

� ✄ ❃ ✁ ✞ ✄✆☎✟✞✭✍ ✞ ✍✟✆✔✓✔✓✔✓ ✆✟✞✌❁ ✎ ✆ �✻✁✼✠✭✠ ✓
In the case when � is a domain theory without knowledge and sensing, from Theorem

(2.2.5) follows that regression is a sound (and under certain conditions computationally effi-

cient) way of solving the forward projection task for regressable formulas.

More precisely, suppose that ✞ ✍✚✆✔✓✔✓✔✓ ✆✟✞✌❁ is a sequence of ground action terms and that

formula ✁ ✞✜✄✝☎✟✞✭✍ ✞ ✍✏✆✜✓✔✓✔✓✜✆✡✞✌❁ ✎ ✆ �✻✁✼✠✭✠ is a regressable situation calculus formula. In particular, let

✁ ✞ ✕✡✠ be a situation calculus formula uniform in ✕ and have no other free variables except for ✕ .

Then one can use regression to solve the forward projection task:

� ✄ ❃ ✁ ✞✜✄✆☎✩✞✽✍ ✞ ✍✏✆✔✓✔✓✜✓ ✆✟✞ ❁ ✎ ✆ �✻✁✥✠✭✠
iff

� ✠ ❁☞☛ ✁ � ✌✏✎ ✄ ❃ �☎✄ ✍✡✁ ✞✜✄✝☎✟✞✭✍ ✞ ✍✏✆✔✓✔✓✔✓ ✆✟✞ ❁ ✎ ✆ �✻✁ ✠✽✠✟✎ ✆
where the subscript � indicates that the regression operator is defined relative to � . Because

in the projection task we are interested only in a special sub-class of regressable formulas, the

regression operator defined for a larger class also can be applied to determine entailments.

2.3 GOLOG

Golog [Levesque et al., 1997] is a situation calculus-based high level programming language

for defining complex actions in terms of a set of primitive actions. Planning is known to

be computationally intractable in general and is impractical for deriving complex behaviors

involving hundreds, and possibly thousands of actions in applications characterized by hun-

dreds of different fluents. For this reason, the Cognitive Robotics Group at the University of
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Toronto examines a computer science approach: reduce the reliance on planning for eliciting

interesting robot behaviors, and instead provide the robot with programs written in a suitable

high-level language, in our case, Golog. As presented in [Levesque et al., 1997] and extended

in [De Giacomo et al., 1997b], Golog is a logic-based programming language whose primitive

actions are those of a background domain theory � . All primitive actions are axiomatized in

the situation calculus as described above.

Golog has the standard control structures found in most Algol-like languages — and some

not so standard.

1. Sequence: ✞ ✍ ✁ ✞✒✑✔✓ Do action ✞ ✍ , followed by action ✞ ✑ .
2. Test actions: ✁✁� Test the truth value of expression ✁ in the current situation.7

3. Nondeterministic action choice: ✞ ✍ ✄ ✞ ✑✛✓ Do ✞ ✍ or ✞ ✑ .
4. Nondeterministic choice of arguments: ✞✄✂ ✢ ✠ ✞ . Nondeterministically pick a value for ✢ ,

and for that value of ✢ , do action ✞ .

5. Conditionals: if ✁ then ✞ ✍ else ✞ ✑ . Evaluate the expression ✁ and if it is true then do ✞ ✍
else do ✞ ✑ .

6. while loops: while ✁ do ✞ . Evaluate the expression ✁ and if it is true then do ✞ , otherwise

do nothing.

7. Procedures, including recursion.

In the subsequent sections we discuss two different semantics for Golog: evaluation se-

mantics and transition semantics.

2.3.1 Evaluation semantics

The evaluation semantics of Golog programs is defined by macro-expansion, using a ternary

relation Do. Do ✞✆☎ ✆ ✕ ✆ ✕ ☛ ✠ is an abbreviation for a situation calculus formula whose intuitive

meaning is that ✕ ☛ is a situation reached from situation ✕ by one of the sequences of actions

specified by the program ☎ (because ☎ may include nondeterministic operators the sequence of

actions specified by ☎ is not necessarily unique). To determine this sequence of actions from

☎ , one proves, using the situation calculus axiomatization of the background domain � , the

formula ✞✟✒✝✕✡✠ Do ✞✝☎ ✆ �✻✁ ✆ ✕✡✠ . Thus, it is assumed that a Golog programmer has certain intuitions

7It is important to understand that tests in Golog are distinguished from sensing: sensing measures values of

fluents in the external world, but tests are evaluated with respect to domain axioms.
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about the domain and is able to write a program ☎ such that any binding for the existentially

quantified variable ✕ obtained as a side effect of establishing the entailment

� ✄ ❃ ✞ ✒✝✕★✠ ✤ ☎✩✞✆☎ ✆ �✻✁ ✆ ✕✡✠
constitutes a suitable plan, in terms of the primitive actions, specified by ☎ . In his seminal work

[Green, 1969, Green, 1980], Cordell Green proposed a deductive approach to planning using

the situation calculus. In contrast to C.Green’s approach to “planning by theorem proving”,

a programmer may use any of Golog constructs to write a program that constrains the search

for a desirable plan (if a Golog program is deterministic, then no search is required to find

a binding for the existentially quantified variable ✕ ). Note also that in contrast to straight

line or partially ordered plans, a Golog program can be arbitrary complex, including loops,

conditionals, recursive procedures and nondeterministic choices between branches.

Do is defined inductively on the structure of its first argument as follows:

1. Primitive actions:

Do ✞ ☎✝✆ ✕ ✆ ✕ ☛ ✠ ☎✝✆✟✞❃ ✁ ☎ ✕ ✕✝✞ ☎ ✍ ✕ ✎ ✆ ✕✡✠ ☛ ✕ ☛ ❃❅✄✆☎✩✞ ☎ ✍ ✕ ✎ ✆ ✕✡✠ ✓ (2.22)

The notation ☎ ✍ ✕ ✎ mean the result of restoring the situation argument ✕ to all functional

fluents mentioned by the action term ☎ .

2. Test actions: Do ✞ ✁✁� ✆ ✕ ✆ ✕ ☛ ✠ ☎✝✆✟✞❃ ✁ ✍ ✕ ✎ ☛ ✕ ❃ ✕ ☛ ✆
where ✁ is a situation suppressed expression (see Definition 2.2.7) and ✁ ✍ ✕ ✎ is the situa-

tion calculus formula obtained by restoring situation variable ✕ to all fluent names in ✁
(see Definition 2.2.8).

3. Sequence: Do ✞✆☎ ✍ ✁ ☎ ✑✛✆ ✕ ✆ ✕ ☛ ✠ ☎✝✆✟✞❃ ✞ ✒✝✕ ✁ ✠ ✓ Do ✞✝☎ ✍✚✆ ✕ ✆ ✕ ✁ ✠ ☛ Do ✞✝☎ ✑✛✆ ✕ ✁ ✆ ✕ ☛ ✠ ✓

4. Nondeterministic choice of two actions: Do ✞✆☎ ✍ ✄ ☎ ✑✛✆ ✕ ✆ ✕ ☛ ✠ ☎✝✆ ✞❃ Do ✞✝☎ ✍✚✆ ✕ ✆ ✕ ☛ ✠ ✝ Do ✞✆☎ ✑✔✆ ✕ ✆ ✕ ☛ ✠ ✓

5. Nondeterministic choice of action arguments:

Do ✞✭✞ ✂ ✢ ✠ ☎✩✞ ✢ ✠ ✆ ✕ ✆ ✕ ☛ ✠ ☎✝✆ ✞❃ ✞✟✒ ✢ ✠ Do ✞✆☎✩✞ ✢ ✠ ✆ ✕ ✆ ✕ ☛ ✠ ✓

6. Nondeterministic iteration:

Do ✞✆☎ ✁ ✆ ✕ ✆ ✕ ☛ ✠
☎ ✆ ✞❃

✞✏✌ ✁ ✠ ✓ ✄✟✞✏✌ ✕ ✍ ✠ ✁ ✞ ✕ ✍✏✆ ✕ ✍ ✠ ☛ ✞✏✌ ✕ ✍✏✆ ✕ ✑✛✆ ✕ ✁ ✠ ✍ ✁ ✞ ✕ ✍✟✆ ✕ ✑ ✠ ☛
Do ✞✆☎ ✆ ✕ ✑✜✆ ✕ ✁ ✠ ✠ ✁ ✞ ✕ ✍✟✆ ✕ ✁ ✠ ✎ ✆

✠ ✁ ✞ ✕ ✆ ✕ ☛ ✠ ✓



CHAPTER 2. BACKGROUND 37

7. Conditionals: if ✁ then ☎ ✍ else ☎ ✑ endIf
☎ ✆ ✞❃ ✍ ✁ � ✁ ☎ ✍ ✎ ✄ ✍ ✑ ✁✁� ✁ ☎ ✑ ✎

8. while-loops: while ✁ do ☎ endWhile
☎✝✆✟✞❃ ✍ ✁ � ✁ ☎ ✎ ✁ ✑ ✁✁�

9. Procedures: First, we need an auxiliary macro definition of a complex action that con-

sists of procedure call
✁

only. For any predicate variable
✁

of arity ✘ ✆ ❋ that has

situation variables as the last two arguments

✤ ☎✩✞ ✁ ✞✯✕ ✍✏✆✔✓✔✓✜✓✜✆ ✕ ❁ ✠ ✆ ✕ ✆ ✕ ☛ ✠ ☎✝✆✟✞❃ ✁ ✞✫✕ ✍ ✍ ✕ ✎ ✆✜✓✔✓✔✓✜✆ ✕ ❁ ✍ ✕ ✎ ✆ ✕ ✆ ✕ ☛ ✠ ✓

Expressions of the form
✁ ✞✫✕ ✍✏✆✔✓✔✓✔✓✚✆ ✕ ❁ ✠ serve in programs as procedure calls, and macro

✤ ☎✟✞ ✁ ✞✫✕ ✍✡✆✔✓✔✓✔✓ ✆ ✕ ❁ ✠ ✆ ✕ ✆ ✕ ☛ ✠ means that executing the procedure
✁

on actual parameters ✕ ✍ ✍ ✕ ✎ ,
..., ✕ ❁ ✍ ✕ ✎ causes a transition from situation ✕ to ✕ ☛ .
Second, suppose that a program consists of procedures

✁ ✍✚✆✔✓✔✓✔✓ ✆ ✁ ❁ with formal parame-

ters ✖� ✍✏✆✔✓✔✓✔✓ ✆ ✖� ❁ and procedure bodies ☎ ✍✏✆✔✓✔✓✔✓ ✆ ☎ ❁ respectively, followed by a main program

body ☎ ✁ . Here, ☎ ✍✚✆✔✓✜✓✔✓✜✆ ☎ ❁✎✆ ☎ ✁ are complex actions expressions constructed from primitive

actions, tests, procedure calls and other constructs defined above. The result of evaluat-

ing a program of this form

proc
✁ ✍ ✞ ✖� ✍ ✠ ☎ ✍ endProc ✁ ✓✔✓✔✓ proc

✁ ❁ ✞ ✖� ❁ ✠ ☎ ❁ endProc ✁ ☎ ✁
is defined as follows:

✤ ☎✟✞ ✄ proc
✁ ✍ ✞ ✖� ✍ ✠ ☎ ✍ endProc ✁ ✓✜✓✔✓ proc

✁ ❁ ✞ ✖� ❁ ✠ ☎ ❁ endProc ✁ ☎ ✁ ✆ ✆ ✕ ✆ ✕ ☛ ✠ ☎✝✆ ✞❃
✞✍✌ ✁ ✍✚✆✜✓✔✓✔✓✜✆ ✁ ❁ ✠ ✓ ✍ � ❁☎✂✁ ✍ ✞✍✌ ✕ ✍✏✆ ✕ ✑✜✆ ✖� ☎ ✠ ✓ ✤ ☎✟✞✝☎ ☎ ✆ ✕ ✍✏✆ ✕ ✑ ✠✡✠ ✁ ☎ ✞✒✖� ☎ ✆ ✕ ✍✏✆ ✕ ✑ ✠ ✎

✠ ✤ ☎✩✞✆☎ ✁ ✆ ✕ ✆ ✕ ☛ ✠
Note that thanks to universal quantification over predicates

✁ ✍✟✆✔✓✔✓✔✓ ✆ ✁ ❁ this macro expan-

sion says that when
✁ ✍✏✆✜✓✔✓✔✓✜✆ ✁ ❁ are the smallest binary relations on situations that are

closed under the evaluation of their procedure bodies ☎ ✍✚✆✜✓✔✓✔✓✜✆ ☎ ❁ , then any sequence of

actions from ✕ to ✕ ☛ obtained by evaluating ☎ ✁ is a sequence of actions for the evaluation

of the given program.

In the sequel, we will consider Golog programs composed from primitive actions with an

additional time argument. These actions are axiomatized in the temporal situation calculus that

is overviewed in Section 2.1.2. To modify the Golog semantics in this case, we need to update

only the first item (2.22) from the above inductive definition. This new definition of the ✤ ☎
macro for primitive actions is the following:

✤ ☎✟✞ ☎✝✆ ✕ ✆ ✕ ☛ ✠ ☎✝✆✟✞❃ ✁ ☎ ✕ ✕✆✞ ☎✝✆ ✕✡✠ ☛ ✕ ✕ ☎ ✬✡✕ ✞ ✕✡✠ ✡ ✕✟✞ ✲ ✦ ✞ ☎ ✠ ☛ ✕ ☛ ❃ ✄✆☎✟✞ ☎✝✆ ✕✡✠ ✓
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Everything else about the definition of ✤ ☎ remains the same: ✤ ☎✟✞ ✑✔✬✏☎ ✪✟✬ ☎ ✲ ✆ ✕ ✆ ✕ ☛ ✠ is an abbre-

viation for a situation calculus formula whose intuitive reading is that ✕ ☛ is one of the situations

reached from ✕ by executing ✑✔✬✏☎✡✪✝✬ ☎ ✲ . The modified definition of the ✤ ☎ macro makes sure

that times of primitive actions leading from ✕ to ✕ ☛ form non-decreasing sequence. To evaluate

✑✔✬✏☎✡✪✝✬ ☎ ✲ , one must prove, using the situation calculus axiomatization of some background

domain, the situation calculus formula ✞ ✒✝✕✡✠ ✤ ☎✟✞ ✑✔✬✏☎ ✪✟✬ ☎ ✲ ✆ � ✁ ✆ ✕✡✠ . Any binding for ✕ obtained

by a constructive proof of this sentence is an execution trace, in terms of the primitive actions,

of ✑✔✬✏☎✡✪✝✬ ☎ ✲ . Depending on the application domain, temporal terms of actions that occur in

a binding for ✕ can be constants or variables: if they are variables, this means that the appli-

cation domain does not constrain completely times when actions have be executed. A Golog

interpreter for the situation calculus with time, written in Prolog, is described in [Reiter, 1998].

Example 2.3.1: The following is a nondeterministic Golog program for the blocks world ex-

ample. ✲ ☎ ✣ ✦ ✖✙✘ ✦ ✳✵☎✁✞ ✦ ✬✩✞ ✂ ✠ creates a single tower of blocks, using as a base the tower whose

top block is initially ✂ .

proc ✲ ☎ ✣ ✦ ✖ ✘ ✦ ✳✵☎✁✞ ✦ ✬✩✞ ✂ ✠
✑ ✞✟✒✎✣✩✠ ✓ ✣ ✆❃ ✂ ☛ ✾ ✷✜✦✛☎ ✬✩✞ ✣✩✠ �☎✄
✞✄✂ ✢ ✆ ✕✽✠ ✍ ✕ ✕ ☎ ✬★✕ ✁ ☎☎� ✦ ✞ ✢ ✆ ✂✎✆ ✕✽✠ ✁

✞✄✂ ✕ ☛ ✠ ✦ ✘☞✄ ✁ ☎✁� ✦ ✞ ✢ ✆ ✂ ✆ ✕ ☛ ✠ ✁ ✲ ☎ ✣ ✦ ✖✙✘ ✦ ✳✵☎✁✞ ✦ ✬✩✞ ✢ ✠ ✎
endProc

Like any Golog program, this is executed by proving

✞✟✒✝✕✡✠ ✤ ☎✩✞✫✲ ☎ ✣ ✦ ✖ ✘ ✦ ✳ ☎✁✞ ✦ ✬✩✞ ✂ ✠ ✆ �✻✁ ✆ ✕★✠ ✆
in our case, using background axioms above. We start with �✂✁ as the current situation. In gen-

eral, if ✗ is the current situation, ✲ ☎ ✣ ✦ ✖ ✘ ✦ ✳✵☎☎✞ ✦ ✬✮✞ ✂ ✠ terminates in situation ✗ if ✑ ✞✟✒✎✣✩✠ ✓ ✣ ✆❃
✂ ☛ ✾ ✷✫✦✛☎ ✬✩✞ ✣ ✆✡✗ ✠ holds. Otherwise it nondeterministically selects a block ✢ and time ✕ , and “per-

forms” ✕ ✕ ☎ ✬✡✕ ✁ ☎✁� ✦ ✞ ✢ ✆ ✂✎✆ ✕✽✠ , meaning it makes ✄✆☎✩✞ ✕ ✕ ☎ ✬✡✕ ✁ ☎✁� ✦ ✞ ✢ ✆ ✂✎✆ ✕✽✠ ✆✡✗ ✠ the current situation;

then it picks a time ✕ ☛ and “performs” ✦ ✘✻✄ ✁ ☎☎� ✦ ✞ ✢ ✆ ✂✎✆ ✕ ☛ ✠ , making

✄✆☎✟✞ ✦ ✘✻✄ ✁ ☎☎� ✦ ✞ ✢ ✆ ✂✎✆ ✕ ☛ ✠ ✆ ✄✆☎✩✞ ✕ ✕ ☎ ✬✡✕ ✁ ☎✁� ✦ ✞ ✢ ✆ ✂✎✆ ✕✽✠ ✆✡✗ ✠✽✠
the current situation; then it calls itself recursively. On termination, the current situation is

returned as a side effect of the computation; this is an execution trace of the program. It is

important to understand that this is an offline computation; the resulting trace is intended to

be passed to some execution module for the online execution of the primitive actions in the

program trace, in our example, to physically build the tower.
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2.3.2 Transition semantics

This semantics is defined using axioms for Trans and Final that are proposed in [De Giacomo et al., 1997b]

and discussed in [De Giacomo et al., 2000].8 The predicate Trans ✞✝☎ ✍✚✆ ✕ ✍✟✆ ☎ ✑✔✆ ✕ ✑ ✠ holds if a

Golog program ☎ ✍ makes a transition in situation ✕ ✍ to a program ☎ ✑ and results in situation

✕ ✑ . Often, ☎ ✑ is a structurally simpler program than ☎ ✍ , with an exception when ☎ ✍ is a while-

loop. The following set of axioms characterizes this predicate by induction on the structure of

the program term ☎ ✍ :

1. Empty program: Trans ✞ Nil
✆ ✕ ✆ ☎ ☛✌✆ ✕ ☛ ✠ ✒ False

2. Primitive actions9:

Trans ✞ ☎✝✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ✒ Poss ✞ ☎ ✆ ✕★✠ ☛ ☎ ☛ ❃ Nil ☛ ✕ ☛ ❃❅✄✆☎✩✞ ☎✝✆ ✕✡✠ ☛ ✕ ✕ ☎ ✬✡✕ ✞ ✕✡✠☛✡ ✕✟✞ ✲ ✦ ✞ ☎ ✠ ✆ (2.23)

where functional symbols ✕ ✕ ☎ ✬✡✕ ✞ ✕✡✠ ✆ ✕✟✞ ✲ ✦ ✞ ☎ ✠ are defined in Section 2.1.2 and related by

the equation (2.8).

3. Tests: Trans ✞ ✁✁� ✆ ✕ ✆ ☎ ☛✖✆ ✕ ☛ ✠✓✒ ✁☛✍ ✕ ✎ ☛ ☎ ☛ ❃ Nil ☛ ✕ ☛ ❃ ✕

4. Sequence:

Trans ✞✝☎ ✍ ✁ ☎ ✑✛✆ ✕ ✆ ☎ ☛✌✆ ✕ ☛ ✠ ✒ ✒ ✌ ✓ Trans ✞✆☎ ✍✏✆ ✕ ✆ ✌ ✆ ✕ ☛ ✠ ☛ ☎ ☛ ❃ ✌ ✁ ☎ ✑ ✝
✰ ✞ ✘ ☎✆✷ ✞✝☎ ✍✚✆ ✕★✠ ☛ Trans ✞✝☎ ✑✜✆ ✕ ✆ ☎ ☛✌✆ ✕ ☛ ✠

5. Nondeterministic choice:

Trans ✞✝☎ ✍ ✄ ☎ ✑✛✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ✒ Trans ✞✆☎ ✍✚✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ✝ Trans ✞✝☎ ✑✔✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠
6. Conditional:

Trans ✞ if ✁ then ☎ ✍ else ☎ ✑✛✆ ✕ ✆ ☎ ☛✌✆ ✕ ☛ ✠✓✒
✁ ✍ ✕ ✎ ☛ Trans ✞✆☎ ✍✏✆ ✕ ✆ ☎ ☛✖✆ ✕ ☛ ✠ ✝ ✑ ✁ ✍ ✕ ✎ ☛ Trans ✞✆☎ ✑✛✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠

7. Pick: 10 Trans ✞✄✂ � ✓ ☎✩✞ �✟✠ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ✒ ✒ ✢ ✓ Trans ✞✝☎ �✁ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠
8We omit axioms for procedures because they are too intricate, see [De Giacomo et al., 2000] for details. We

also omit axioms that define constructs included only in ConGolog.
9Because we are interested in temporal Golog programs, we consider a modified definition of Trans that is

applicable in the case when all primitive actions have a temporal argument. The original semantics of Trans

given in [De Giacomo et al., 1997b] is defined for non-temporal situation calculus; the axiom for transition over

a primitive action without a temporal argument is defined in that paper as follows:

Trans
✁✄✂✆☎✞✝✟☎✡✠ ✌ ☎✡✝ ✌☞☛✍✌ Poss

✁✎✂✏☎✞✝ ☛✒✑ ✠ ✌✏✓ Nil ✑ ✝ ✌✆✓✕✔✗✖ ✁✎✂✆☎✡✝ ☛✙✘
10Here,

✠✛✚✜ is the program resulting from substituting a fresh variable ✢ for ✣ uniformly in
✠
.
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8. Iteration: Trans ✞✆☎ ✁ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ✒ ✒ ✌ ✓ Trans ✞✝☎ ✆ ✕ ✆ ✌ ✆ ✕ ☛ ✠ ☛ ☎ ☛ ❃ ✌ ✁ ☎ ✁

9. Loop:

Trans ✞ while ✁ do ☎ ✆ ✕ ✆ ☎ ☛✖✆ ✕ ☛ ✠ ✒
✒ ✌ ✓ Trans ✞✆☎ ✆ ✕ ✆ ✌ ✆ ✕ ☛ ✠ ☛ ✁ ✍ ✕ ✎ ☛ ✞✆☎ ☛ ❃ ✌ ✁ while ✁ do ☎✿✠

Given a program ☎ and a situation ✕ , Trans ✞✝☎ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ tells us which is a possible next step

in the computation, returning the resulting situation ✕ ☛ and the program ☎ ☛ that remains to be

executed. In other words, Trans ✞✆☎ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ denotes a transition relation between configurations.

Thus, the assertions above characterize when a configuration ✞✝☎ ✆ ✕✡✠ can evolve (in a single step)

to a configuration ✞✝☎ ☛✖✆ ✕ ☛ ✠ . Note that conditional statements and loops can be defined from tests,

nondeterministic choice and iteration.

The predicate Final ✞✝☎ ✆ ✕✡✠ holds if term ☎ is a program in a final state in situation ✕ and either

the execution of ☎ successfully terminated or the execution of ☎ is stuck (i.e., it cannot be suc-

cessfully completed due to interference from exogenous actions). This predicate is inductively

characterized by the following axioms:

1. Empty program: Final ✞ Nil
✆ ✕✡✠ ✒ True

2. Primitive action: Final ✞ ☎✝✆ ✕✡✠✓✒ False

3. Test: Final ✞ ✁ � ✆ ✕✡✠✓✒ False

4. Sequence: Final ✞✆☎ ✍ ✁ ☎ ✑✔✆ ✕✡✠✓✒ Final ✞✝☎ ✍✚✆ ✕✡✠ ☛ Final ✞✝☎ ✑✛✆ ✕✡✠
5. Nondeterministic choice: Final ✞✝☎ ✍ ✄ ☎ ✑✔✆ ✕✡✠✓✒ Final ✞✝☎ ✍✚✆ ✕★✠ ✝ Final ✞✝☎ ✑✛✆ ✕★✠
6. Conditional:

Final ✞ if ✁ then ☎ ✍ else ☎ ✑✛✆ ✕★✠✓✒ ✁☛✍ ✕ ✎ ☛ Final ✞✝☎ ✍✚✆ ✕✡✠ ✝ ✑ ✁☛✍ ✕ ✎ ☛ Final ✞✆☎ ✑✔✆ ✕✡✠
7. Pick: Final ✞✄✂ � ✓ ☎ ✆ ✕★✠✓✒ ✒ ✢ ✓ Final ✞✝☎ �✁ ✆ ✕✡✠
8. Iteration: Final ✞✝☎ ✁ ✆ ✕✡✠ ✒ True

9. Loop: Final ✞ while ✁ do ☎ ✆ ✕★✠ ✒ Final ✞✝☎ ✆ ✕✡✠ ✝ ✑ ✁☛✍ ✕ ✎ ✓

This set of assertions characterizes when a configuration ✞✝☎ ✆ ✕✡✠ can be considered final, that is

whether the computation is completed (no program remains to be executed).

There are also axioms for procedures, see [De Giacomo et al., 2000] for details. We also

omit axioms that define constructs included only in ConGolog.
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In Chapter 4, to take into account programs that may get stuck we need also:

✞ Trans ✞ � ✕ ☎✥✑ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠✓✒ False ✠ ☛ ✞ Final ✞ �✚✕ ☎✥✑ ✆ ✕✡✠✓✒ True ✠ ✆ (2.24)

where � ✕ ☎✼✑ is an auxiliary constant that denotes an abnormally terminated execution (the ex-

ecution was aborted and the programmer must provide further instructions). Note that axioms

for both Nil and � ✕ ☎✥✑ are similar, but these two constant have different semantics: Nil rep-

resents the successfully completed execution, but � ✕ ☎✥✑ represents abnormal termination. We

introduce two different constants intentionally to distinguish between these two different cases

when the execution terminates.

The possible configurations that can be reached by a program ☎ starting in a situation ✕ are

those obtained by following repeatedly the transition relation denoted by Trans starting from

✞✝☎ ✆ ✕✡✠ , i.e. those in the reflexive transitive closure of the transition relation. Such a relation,

denoted by Trans ✁ , is defined as the (second-order) situation calculus formula:

Trans ✁✡✞✝☎ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠✓✒ ✌ ✳✢✍ ✓✔✓✔✓ ✠ ✳ ✞✆☎ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ✎
where ✓✔✓✔✓ stands for the conjunction of the universal closure of

✳ ✞✝☎ ✆ ✕ ✆ ☎ ✆ ✕✡✠
Trans ✞✆☎ ✆ ✕ ✆ ☎ ☛ ☛ ✆ ✕ ☛ ☛ ✠ ☛ ✳ ✞✆☎ ☛ ☛ ✆ ✕ ☛ ☛ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ✠ ✳ ✞✝☎ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠

Using Trans ✁ and Final, a definition of the Do relation of [Levesque et al., 1997] is this:

Do ✞✆☎ ✆ ✕ ✆ ✕ ☛ ✠✓✒ ✒ ☎ ☛ ✓ Trans ✁ ✞✝☎ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ☛ Final ✞✝☎ ☛ ✆ ✕ ☛ ✠ ✓

Recall that the relation ✤ ☎✩✞✆☎ ✆ ✕ ✆ ✕ ☛ ✠ means that ✕ ☛ is a terminating situation resulting from

an execution of program ☎ beginning with situation ✕ .

A straightforward implementation of this specification in Prolog is suggested in [De Giacomo et al., 1997b,

De Giacomo and Levesque, 1999b]. An incremental interpreter can work as follows. Given a

terminating program ☎ and a situation ✕ the interpreter determines whether the configuration

✞✝☎ ✆ ✕✡✠ is final. If yes, then a current substitution for ✕ corresponds to a sought for plan; oth-

erwise, if there is a transition Trans ✞✆☎ ✆ ✕ ✆ ☎ ☛✖✆ ✕ ☛ ✠ , then ✞✝☎ ☛✌✆ ✕ ☛ ✠ is a next configuration. The com-

putation continues incrementally until the interpreter arrives at a final configuration or until it

fails if no final configuration can be achieved. From the axioms for Trans and Final it fol-

lows that given a Golog program ✌ , at every step of computation the interpreter selects either

a next primitive action for execution or a next test condition for evaluation, until the program

terminates or fails.
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In the sequel, we use implemented Golog interpreters such that the domain specific action

precondition and successor state axioms, and axioms about the initial situation, are expressible

as Prolog clauses. Therefore, the implementation considered in this thesis inherits Prolog’s

closed world assumption, but this is a limitation of the implementation, not the general theory.

We emphasize that it is not necessary to tie up an implementation of Golog with the closed

world assumption. It is feasible to provide an implementation of Golog in the open world

along the lines suggested in [Finzi et al., 2000, Reiter, 2001a].

We reproduce below from [Reiter, 1998] a Golog program for a robot that can serve coffee

requests to employees in an office-type environment (the version of this program in [Reiter, 2001a]

has minor differences from the program discussed here). This Golog program relies on the ex-

ample (2.1.2) that illustrates the basic theory of actions in Section 2.1.2 where all actions are

instantaneous and have an explicit temporal argument.

Example 2.3.2: The top level Golog procedure ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞✯✕✽✠ (with one temporal argu-

ment) is a program that terminates successfully when everyone who wants coffee has been

given coffee. Otherwise, if there is at least one person who wants coffee and does not have it

yet, the program calls the procedure ✄ ✦ ✷ ✞ � ✦ ✬✏✖ ✘ ✦ ✂ ☎ � � ✦ ✦ ✞✯✕✽✠ (when the robot is near the coffee

machine), or sends the robot to the coffee machine and then the robot must execute the proce-

dure ✄ ✦ ✷ ✞ � ✦ ✬✿✖✙✘ ✦ ✂ ☎ � � ✦ ✦ ✞✜✘☞☎✁✞ ✠ at the time of the arrival. The program ✄ ✦ ✷ ✞ � ✦ ✬✿✖✙✘ ✦ ✂ ☎ � � ✦ ✦ ✞✫✕✽✠
picks up nondeterministically an employee to be served, finds the travel time to the office of

the employee from the coffee machine and chooses nondeterministically a wait interval, com-

mands to pick up the coffee, go to the office of the employee and give coffee to a waiting

person. Finally, the program calls recursively ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞✫✘☞☎✁✞ ✠ . This program uses two

procedures.

proc ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞✯✕✽✠
% Beginning at time t the robot serves coffee to everyone, if possible.

% Else (when the set of requests has no solution) the program fails.

✘✻☎☎✞ ✡ ✕ � ✁
✄ ✍ ✞✍✌✝✑ ✆ ✕ ☛✖✆ ✕ ☛ ☛ ✠ ✓ ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ☛✖✆ ✕ ☛ ☛ ✠ ✠ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✠ ✎ �

✄
if ✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾ ☎ ✕✟✞ ☎✡✘ ❃ ✂ ✁

then ✄ ✦ ✷ ✞ � ✦ ✬✏✖ ✘ ✦ ✂ ☎ � � ✦ ✦ ✞✯✕✽✠
else ✪✟☎✡✕ ☎✟✞ ✂ ✁ ✆ ✕✽✠ ✁❄✄ ✦ ✷ ✞ � ✦ ✬✿✖✙✘ ✦ ✂ ☎ � � ✦ ✦ ✞✜✘✻☎☎✞ ✠

endIf ✆
endProc
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proc ✄ ✦ ✷ ✞ � ✦ ✬✿✖✙✘ ✦ ✂ ☎ � � ✦ ✦ ✞✫✕✽✠
% Assuming the robot is located near the coffee machine,

% it delivers one cup of coffee.

✞✄✂✮✑ ✆ ✕ ✍✏✆ ✕ ✑✔✆ ✞ ☎ ✞ ✕✽✠ ✍ ✄✁✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞✒✑ ✆ ✕ ✍✏✆ ✕ ✑ ✠ ☛ ✑ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✠ ☛ ✞ ☎ ✞ ✕ ✁ � ☛

✕ ✍ ✡ ✕ ✆ ✞ ☎ ✞ ✕ ✆ ✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✑ ✠✽✠ ✡ ✕ ✑ ✆ � ✁
✑ ✞ ✾ ✣✟✓●✑ ✂ ☎ � � ✦ ✦ ✞✯✕ ✆ ✞ ☎ ✞ ✕✽✠ ✁
✪✟☎ ✕ ☎✩✞✜☎ � � ✞ ✾ ✦ ✞ ✑ ✠ ✆ ✘☞☎✁✞ ✠ ✁
✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✘☞☎✁✞ ✠ ✁
✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞✫✘☞☎✁✞ ✠ ✎

endProc

The above procedure introduces a functional fluent ✘✻☎☎✞✢✞ ✕✡✠ , which is identical to the fluent

✕ ✕ ☎ ✬★✕ ✞ ✕★✠ . We use it instead of ✕ ✕ ☎ ✬✡✕ because it has a certain mnemonic value, but, like ✕ ✕ ☎ ✬✡✕ ,
it denotes the current time. The remaining two procedures are very simple. The first pro-

cedure commands the robot to go from the current position denoted by the functional fluent

✬✏☎ ✂ ☎ ✕✂✁ ☎★✾ ☎ ✕✟✞ ☎★✘ to location ✷ ☎★✾ beginning at time ✕ . The second commands the robot to go from

the location ✷ ☎★✾★❉ to ✷ ☎★✾ ❋ beginning at time ✕ and taking � time units; it includes the sequence

of ✕ ✕ ☎ ✬✡✕ ✁ ☎ and ✦ ✘✻✄✂✁ ☎ .

proc ✪✟☎ ✕ ☎✩✞ ✷ ☎★✾ ✆ ✕✽✠ % Beginning at time t the robot goes to loc.

✪✟☎✏✛ ✦ ✕ ✞ ✦ ✦ ✘❄✞✫✬✿☎ ✂ ☎✡✕✂✁ ☎★✾ ☎ ✕✟✞ ☎★✘ ✆✥✷ ☎✏✾ ✆
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞✜✬✏☎ ✂ ☎ ✕✂✁ ☎★✾ ☎ ✕✟✞ ☎★✘ ✆✥✷ ☎✏✾ ✠ ✆ ✕✽✠

endProc

proc ✪✟☎★✛ ✦ ✕ ✞ ✦ ✦ ✘✚✞ ✷ ☎★✾★❉ ✆✹✷ ☎★✾ ❋ ✆ � ✆ ✕✽✠
% Beginning at time t the robot goes from loc1 to loc2,

% taking � time units for the transition.

✞ ✷ ☎★✾★❉✵❃ ✷ ☎★✾ ❋ ☛ � ❃ �●✠ � ✄
✍ ✞ ✷ ☎✏✾✡❉ ✆❃ ✷ ☎✏✾ ❋ ☛ �✂✁ �●✠ � ✁ ✕ ✕ ☎ ✬★✕ ✁✙☎✟✞ ✷ ☎✏✾✡❉ ✆✥✷ ☎★✾ ❋ ✆ ✕✽✠ ✁

✦ ✘☞✄✂✁✙☎✩✞ ✷ ☎✏✾✡❉ ✆✥✷ ☎★✾ ❋ ✆ ✕ ✆✄� ✠ ✎
endProc

It was mentioned in Section 2.1.2, that each pair of adjacent actions in any reachable sit-

uation must satisfy the inequality (2.9) between start time of the current situation (determined

by a previous action) and the occurrence time of the action to be executed (recall that we take

✕ ✕ ☎ ✬★✕ ✞ �✻✁ ✠ ❃ � ). When a Trans-based interpreter determines a transition for a primitive action

it makes sure that a similar inequality determines a constraint on occurrence times of each pair
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of adjacent primitive actions. In a general case, this set of temporal constraints may have in-

finitely many solutions and the execution of the Golog call

� ✄ ❃ ✒✝✕ ✓ ✤ ☎✟✞ ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞ ❉✡✠ ✆ �✻✁ ✆ ✕✡✠
will not result in a fully instantiated sequence of actions � . The actions in that sequence will

not have their occurrence times uniquely determined. Rather, these occurrence times will con-

sist of all feasible solutions to the system of constraints generated by the program execution.

So, to get a fixed schedule of coffee delivery, we can determine one or more of these feasible

solutions, e.g., by minimizing the occurrence time with respect to the set of constraints.

2.3.3 On vs. Off-Line Golog Interpreters

Later in this thesis (in Chapter 4), when we describe our approach to execution monitoring, we

distinguish carefully between on-line and off-line Golog interpreters. An on-line interpreter

based on Trans and Final was originally proposed in [De Giacomo and Levesque, 1999b] to

give an account of Golog/ConGolog programs with sensing actions. It was further employed in

our paper [De Giacomo et al., 1998] to define various versions of execution monitoring. Here

we make use of a simplified on-line interpreter that does not deal with sensing actions. As we

mentioned in the previous section, the relation ✤ ☎✟✞ ✌ ✆ ✕ ✆ ✕ ☛ ✠ has a natural Prolog implementation

in terms of the one-step interpreter ✕ ✬ ☎ ✘ ✕ :
offline(Prog,S0,Sf) :- final(Prog,S0), S0 = Sf ;

trans(Prog,S0,Prog1,S1),

offline(Prog1,S1,Sf).

A Brave On-Line Interpreter

The difference between on- and off-line interpretation of a Golog program is that the former

must select a first action from its program, commit to it (or, in the physical world, do it), then

repeat with the rest of the program. The following is such an interpreter:

online(Prog,S0,Sf) :- final(Prog,S0), S0 = Sf ;

trans(Prog,S0,Prog1,S1), /* Select a first action of Prog. */

( S1=S0 ; S1=do(A,S0), execute(A) ),

!, /* Commit to this action A. */

online(Prog1,S1,Sf).

The on and off-line interpreters differ mainly in the latter’s use of the Prolog cut (!) to

prevent backtracking to ✕ ✬ ☎ ✘ ✕ to select an alternative first action of
✁ ✬✿☎ ✪ .11 The effect is to

11Keep in mind that Golog programs may be nondeterministic.
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commit to the first action selected by ✕ ✬ ☎ ✘ ✕ . We need this because a robot cannot undo actions

that it has actually performed in the physical world. It is this commitment that qualifies the

clause to be understood as on-line interpreter. We refer to it as brave because it may well reach

a dead-end, even if the program it is interpreting has a terminating situation.

A Cautious On-Line Interpreter

To avoid the possibility of following dead-end paths, one can define a cautious on-line inter-

preter as follows:

online(Prog,S0,Sf) :- final(Prog,S0), S0 = Sf ;

trans(Prog,S0,Prog1,S1), /* Select a first action of Prog. */

offline(Prog1,S1,S2), /* Make sure the rest of Prog terminates.*/

( S1=S0 ; S1=do(A,S0), execute(A) ),

!, /* Commit to this action A. */

online(Prog1,S1,Sf).

This is much more cautious than its brave counterpart; it commits to a first action only if

that action is guaranteed to lead to a successful off-line termination of the program (assuming

there are no exogenous actions). Provided this program has a terminating situation, a cautious

on-line interpreter never reaches a dead-end.

A cautious on-line interpreter appeals to the off-line execution of the robot’s program (in

the process of guaranteeing that after committing to a program action, the remainder of the

program terminates). Therefore, this requirement precludes cautious interpretation of robot

programs that appeal to sensing actions [Levesque, 1996, Golden and Weld, 1996], since such

actions cannot be handled by the off-line interpreter.12 Because the brave interpreter never

looks ahead, it is suitable for programs with sense actions. The price it pays for this is a greater

risk of following dead-end paths.

Committing to an action is an intrinsically procedural notion, and so it is highly desirable,

in any logical approach to modeling dynamical systems, to very tightly delimit where in the

theory and implementation this nonlogical notion appears. In our case, we can point to the

Prolog cut operator in the above on-line interpreters as the exact point at which the procedural

notion of commitment is realized.

The full version of the cautious on-line interpreter is enclosed in Appendix A.1.

12However, one could imagine a cautious interpreter that verifies off-line that the program terminates for all

possible outcomes of its sensing actions.
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2.4 Markov Decision Processes

We begin with some basic background on MDPs (see [Ross, 1983, Bertsekas and Tsitsiklis, 1996,

Boutilier, 1999, Boutilier et al., 1999, Puterman, 1994] for further details on MDPs). We as-

sume that we have a stochastic discrete time dynamical system to be controlled by some de-

cision maker and in addition we assume that the system can experience the impact of various

exogenous actions or events (they are beyond the agent’s control). A fully observable MDP
✁ ❃ �✂✁ ✆☎✄ ✆✝✆✟✞ ✆✥✸✡✠ comprises the following components. ✁ is a set of states of the sys-

tem being controlled. The state changes over time, possibly in response to the occurrence

of exogenous actions (including nature’s actions) and/or actions on the part of the decision

maker. A set ✄ is a set of actions which influence the system state. Dynamics are given by
✆✟✞☞☛ ✁✍✌ ✄ ✌✎✁✑✏ ✍ � ✆ ❉ ✎ ; here ✆✒✞ ✞ ✕ ☎ ✆✟☎✝✆ ✕ ✁ ✠ denotes the probability that action ☎ , when executed

at state ✕ ☎ , induces a transition to ✕ ✁ .13 ✸✓☛ ✁✔✌ ✄ ✏ ✕ (or simply ✸✖☛ ✁✑✏ ✕ ) is a real-valued,

bounded reward function: ✸ ✞ ✕✡✠ is the instantaneous reward an agent receives for entering state

✕ ; ✸ ✞ ✕ ✆✟☎ ✠ is the reward for entering ✕ after doing ☎ .14 The notation ✆✟✞ ✞ ✕ ☎ ✆✟☎✝✆ ✕ ✁ ✠ emphasizes an

important assumption that the next state ✕☎✁ of the system depends only on the last state ✕ ☎ and

action ☎ and does not depend on any previous states or actions (Markov property). This no-

tation emphasizes also another important assumption that probabilities of transitions between

states do not change with time, i.e., that an environment is stationary and its probabilistic prop-

erties remain the same no matter for how long a decision maker is acting in this environment.

Similarly, the rewards are functions only of the last state and action. When effects of the exoge-

nous actions are folded into the transition probabilities associated with the agent’s action, such

models of actions are called implicit event models. Alternatively, we can think of transitions

as being determined by the effects of the agent’s chosen action and those of certain exogenous

events beyond the decision maker’s control, each of which may occur with a certain probabil-

ity. When the effects of actions are decomposed in this fashion, the action model is referred

as an explicit event model [Boutilier, 1999, Boutilier et al., 1999]. In this case, we can assume

that exogenous events at different times are independent and have stationary distributions. To

simplify mathematical assumptions that have to be made about an MDP we consider only the

case when ✁ ✆✗✄ are finite sets (i.e., actions and exogenous events have only finite number of

outcomes). There are monographs that consider cases when state ✁ and action ✄ spaces have

13In general case, different actions can be available at different states: ✘✚✙ denotes the set of feasible actions for

state
✝
.

14Rewards can be both positive and negative; in the latter case, they can be understood as punishments or costs.



CHAPTER 2. BACKGROUND 47

more than finitely many elements (e.g., see [Blackwell, 1965, Dynkin and Yushkevich, 1979,

Hinderer, 1970, Bertsekas and Shreve, 1978, Hernández-Lerma and Lasserre, 1996]).

The process is fully observable if the agent cannot predict with certainty the state that will

be reached when an action is taken, but it can observe that state precisely once it is reached.

Another extreme case would be non-observable system in which the agent receives no infor-

mation about the system state during execution. In such open-loop systems, the agent receives

no useful feedback about the result of its actions. An intermediate case between these two

extreme models is when the agent receives incomplete or noisy information about the system

state: partially observable MDPs or POMDPs. Formally, POMDP is described as a tuple
✁ ❃ �✂✁ ✆✗✄ ✆✝✆✟✞✜✆✥✸ ✆ ✁ ✆✄✂ ✆ ✂ ✁ ✠ , where observation space

✁
is introduced to model agent’s ob-

servational capabilities. The agent receives an observation from this set at each stage prior

to choosing its action at that stage. The probability distribution ✂ ❃ ✆✟✞ ✞ ☎ � ✄ ✕ ☎ ✆✟☎ ✠ ✆ ✕ ✁ ✠ deter-

mines the probability that the agent observes ☎ �✆☎ ✁
given that it performs ☎ ✠ in state ✕ ☎ and

ends up in state ✕ ✁ . Note that as with actions, we assume that observational distributions are

stationary. The information about the initial state of the world is represented by some belief
✂ ✁★✞ ✕✡✠ ❃ ✆✟✞ ✞ ✕ ✁✢❃ ✕★✠ that is the probability distribution over all possible states ✕ ☎ ✁ . In the

case of fully observable MDPs,
✁ ❃ ✁ and ✆✟✞ ✞✜☎ � ✄ ✕ ☎ ✆✟☎ ✠ ✆ ✕ ✁ ✠ =1 iff ☎ � ❃ ✕ ✁ ; otherwise, this

probability is 0. In the case of non-observable systems,
✁ ❃ ✄★☎ ✆ : the same observation is

reported at each stage, revealing no information about the state.

In subsequent chapters, we assume that an environment is fully observable: this corre-

sponds to a dynamic closed-world assumption that we make in robotics implementations. In

Chapter 3, we introduce sensing actions and propose an approach that allows us to implement

full observability assumption in our logical framework.

In decision theory, the goal of an agent is to maximize the expected utility (an average total

accumulated reward) earned over some time frame. The horizon ✶ defines this time frame by

specifying the number of time steps the agent must plan for. The horizon can be finite (if it is a

positive integer number) or infinite. In some tasks, MDP has a clearly defined terminal decision

epoch, but it can remain unknown what the precise value of horizon is until the decision process

will terminate (go into an absorbing state). In these cases (called indefinite horizon problems

or episodic tasks), one cannot choose a fixed finite horizon unless a bound needed to solve a

problem is known. These tasks can also be conveniently represented as infinite horizon decision

processes because the exact number of decision epochs cannot be determined ahead of time.

In all cases when the horizon ✶ is infinity, one way to guarantee convergence of the sum of

rewards earned at different stages is to multiply rewards by a discount factor ✌ . A discount
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factor ✌ is also used to indicate how rewards earned at different stages should be weighted. In

general, the more delayed a reward is, the smaller will be its weight. Therefore, � ✡ ✌ ✠❅❉ is a

real number indicating by how much a reward should be scaled down for every time step delay.

A reward earned ✣ steps in the future is scaled down by ✌ ✠
. Another way of dealing with the

infinite horizon is to consider an average reward per decision epoch.

2.4.1 Optimality Criteria and Decision Algorithms

To choose actions we must follow some policy. A policy (a course of action, contingency plan,

universal plan, strategy, a closed-loop control policy) specifies the decision rule to be used at

each stage. Formally, a policy ✂ is a sequence of decision rules � ☞ , i.e., ✂ ❃ ✞✁� ✍✟✆✔✓✔✓✔✓ ✆ � ☞ ✆✔✓✜✓✔✓ ✠ .
In general, we can place no restrictions on the class of allowable policies, and we can define

as a decision rule (a rule for choosing actions) any computable procedure for action selection

based on a portion of past history of actions and states. For example, the action specified

by a policy can be based on the history of all past actions and the history of observations

about the system state up to current point: this history can be denoted � ☞ . The history �✆☞✵❃
✞ ✕ ✍✏✆✡☎ ✍✚✆✜✓✔✓✔✓✚✆ ✕ ☞ ❆✝✍✚✆✟☎ ☞ ❆✝✍✚✆ ✕ ☞✜✠ can be defined recursively as � ☞ ❃ ✞ � ☞ ❆✝✍✚✆✟☎ ☞ ❆✝✍✚✆ ✕ ☞✜✠ , where ✕ ☎ and ☎ ☎

denote the state and action at decision epoch ✞ and � ✍ is simply an initial state ✕ ✍ . A rule

for choosing actions also may be randomized in the sense that it chooses action ☎ ☎ ✄ with

some probability � ☞ ✞ ☎✝✆ � ☞ ✠ that depends on the history � ☞ of past actions and observations.

In the latter case, � ☞ ✞ ☎✝✆ � ☞ ✠❈❃ ✆✟✞ ☞✽✞ ☎ ☞ ❃ ☎ ✄ ✕ ☞ ✆ ✕ ☞ ❆✝✍✚✆✟☎ ☞ ❆✝✍✚✆✔✓✔✓✜✓ ✆ ✕ ✍✏✆✡☎ ✍ ✠ . For example, when in

state ✕ , a coin or a die may be tossed to determine which of several possible actions to take.

However, the kind of coin (die) used may depend on the previous sequence of states and actions

taken. Degenerate probability distributions correspond to deterministic action choice. More

specifically, nonrandomized policies ✂ are sequences of mappings from the set of observable

histories to actions, that is ✂ ❃ ✞✂� ✍✏✆✜✓✔✓✔✓✜✆ � ☞ ✆✔✓✔✓✜✓ ✠ , where each � ☞ is a function that maps the

history �✆☞ into ✄ . This decision rule � ☞ is said to be deterministic because it chooses an action

with certainty.

An important subclass of the class of all policies is the class of Markovian (memoryless)

policies: if � ☞ is parametrized only by the current state ✕ ☞ , then policy ✂ that consists of a se-

quence of � ☞ ✞ ✕ ✆✟☎ ✠ ❃ ✆✟✞ ☞ ✞ ☎ ☞✌❃ ☎ ✄ ✕ ☞☞❃ ✕✡✠ is a Markovian policy. If, for each ✕ , � ☞ is parametrized

only by ✞ ✕ ✍✚✆ ✕ ☞✜✠ , then a policy ✂ is a semi-Markovian policy. In the case of nonrandomized (de-

terministic) Markovian policies, each � ☞ is simply a function that maps a current state ✕ ☞ into

an action ☎ ☞ ☎ ✄ to be chosen by a decision maker.
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In the class of nonrandomized Markovian policies, we can distinguish two interesting sub-

classes: stationary (time invariant) policies and other Markovian policies that depend on the

current stage. A policy is said to be stationary if the action it chooses at stage ✘ only depends

on the state of the process at stage ✘ . A stationary policy has the form ✂ ❃ ✞✁� ✆ � ✆✔✓✜✓✔✓ ✠ , where

� is a decision rule used to choose an action at any moment of time. In the case of stationary

Markovian policies, it is common to use the same notation ✂ to denote both a policy and a

rule � for choosing actions at any state ✕ . In other words, a stationary policy is a function

✂ ☛ ✁ ✏ ✄ mapping the state space ✁ into the action space ✄ , with the meaning that for

each state ✕ , ✂ ✞ ✕★✠ denotes the action the policy chooses when in state ✕ . For an MDP with a

finite horizon ✶ , a nonstationary policy ✂ ☛ ✁ ✌ ✄✆❉ ✆ �✂�✂� ✆ ✶ ✆ ✏ ✕ associates with each state

✕ and stage-to-go ✘ ✡ ✶ an action ✂ ✞ ✕ ✆ ✘ ✠ to be executed at ✕ with ✘ stages remaining. In

other words, an agent finding itself in state ✕ at stage ✘ must choose an action ✂ ✞ ✕ ✆ ✘☞✠❄❃ ☎ that

results stochastically in the next state ✕ ☛ .
In the class of randomized Markovian policies, we can similarly distinguish stationary and

nonstationary policies, but in this case they will be probability distributions over ✄ . In a more

general setting one can consider also nonmarkovian stationary policies, but we will not consider

them in this thesis.

The decision problem faced by the agent in an MDP is to adopt a course of action ✂ that

maximizes expected reward accumulated by implementing that course of action over some

horizon of interest. The expected value of policy ✂ depends on the specific objectives. A

finite-horizon decision problem with horizon ✶ measures the value of ✂ as

�✂✁ ✞ ✕✡✠❄❃☎✄ ✁ ✞
✆✝
❁ ✁ ✁

✸ ✞ ✕ ❁ ✠ ✄ ✕ ✁ ❃ ✕★✠ ✆

where ✄ ✁ represents the conditional expectation, given that policy ✂ is employed and the no-

tation
� ✁ ✞ ✕★✠ indicates that the value of a policy ✂ depends on the state ✕ in which the process

begins.

In a discounted infinite horizon MDP,

� ✁ ✞ ✕✡✠ ❃☎✄ ✁ ✞✟✞✝ ❁ ✁ ✁ ✌
❁ ✸ ✞ ✕ ❁ ✠ ✄✛✕ ✁ ❃ ✕✡✠ ✓

There are also other optimality criteria, but we do not consider them in this thesis.

The function
� ✁

is called the state-value function for policy ✂ . Similarly, one can define

the value of taking action ☎ in state ✕ under policy ✂ , denoted � ✁ ✞ ✕ ✆✟☎ ✠ , as the expected return
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that can be accumulated if a decision maker takes the action ☎ in ✕ and thereafter follows policy

✂ [Watkins, 1989, Watkins and Dayan, 1992]:

� ✁ ✞ ✕ ✆✟☎ ✠❄❃☎✄ ✁ ✞ ✞✝ ❁ ✁ ✁ ✌
❁ ✸ ✞ ✕ ❁ ✠ ✄ ✕ ✁ ❃ ✕ ✆✡☎ ✁ ❃ ☎ ✠ ✆

the function � ✁ ✞ ✕ ✆✟☎ ✠ is called the action-value function for policy ✂ .

A policy ✂ ✁ is optimal if, for all ✕ ☎ ✁ and all policies ✂ , we have
� ✁✁� ✞ ✕✡✠ ✁ � ✁ ✞ ✕✡✠ . There is

always at least one policy that is better than or equal to all other policies. Optimal policies share

the same state-value function, called the optimal state-value function, denoted
�

✁ , and defined

as
�

✁ ✞ ✕✡✠❄❃❅✲ ☎ ✢ ✁ � ✁ ✞ ✕✡✠ , for all ✕ ☎ ✁ (in other words,
�

✁ exists and is unique). Note that poli-

cies we consider are Markovian (the choice of action does not depend on history of past states

and actions). It can be shown that optimal courses of action lie within these classes of policies:

nonstationary Markovian policies for finite-horizon problems [Bellman, 1957, Derman, 1970],

and stationary deterministic Markovian policies for infinite-horizon problems [Bellman, 1957,

Howard, 1960, Blackwell, 1962, Howard, 1971, Ross, 1983].

Consider the problem of finding an optimal policy for some fixed, finite horizon ✶ . A sim-

ple algorithm for constructing optimal policies is value iteration [Bellman, 1957, Howard, 1971,

Puterman, 1994]. Define the ✘ -stage-to-go value function
� ❁ by setting

� ✁ ✞ ✕ ☎ ✠✙❃ ✸ ✞ ✕ ☎ ✠ and,

for all ❉ ✡ ✘ ✡ ✶ :

� ❁ ✞ ✕ ☎ ✠❄❃ ✸ ✞ ✕ ☎ ✠ ✆ ✂☎✄✝✆☛✟✞✡✠ ✄
✝

✝ � ✞ ✁
✆✟✞ ✞ ✕ ☎ ✆✟☎✝✆ ✕ ✁ ✠ � ❁✏❆✝✍ ✞ ✕ ✁ ✠ ✆ (2.25)

The computation of
� ❁ ✞ ✕ ☎ ✠ given

� ❁✏❆✝✍ ✞ ✕ ✁ ✠ is known as a Bellman backup and the equation

(2.25) is called the Bellman optimality equation. Using this equation, one can compute in

sequence the optimal state value functions up to the horizon ✶ of interest. Once this sequence

of the value functions is computed, one can easily find an optimal policy. By setting ✂ ✞ ✕ ☎ ✆ ✘☞✠ to

the action ☎ maximizing the right-hand term, the resulting policy ✂ will be optimal. Indeed, an

optimal policy is one with maximum expected value at each state-stage pair. In general case, an

optimal policy is nonstationary because of finite horizon. This remarkable algorithm is based

on “The Principle of Optimality” verbally stated in [Bellman, 1957], p.83:

“An optimal policy has the property that whatever the initial state and initial deci-

sions are, the remaining decisions must constitute an optimal policy with regard to

the state resulting from the first decision.”

This value iteration algorithm takes ✶ iterations. At each iteration, it does ✄ ✄ ✄ computations

of ✄ ✁ ✄ ✌ ✄ ✁ ✄ matrix times ✄ ✁ ✄ -vector. Thus, in total it requires ✖❀✞✜✶ ✌ ✄ ✄ ✄ ✌ ✄ ✁ ✄ ✁ ✠ operations.
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Because the number of states grows exponentially with increase in the number of features used

to represent each state (Bellman’s “curse of dimensionality”), the value iteration algorithm

becomes impractical once the number of boolean (propositional) features becomes large (e.g.,

state of the art MDP solvers can compute optimal policies in cases when the number of features

is no more than 35, i.e., when the number of states has the order of ❋ ✁✁�
✁ ✂ � ❉ �

✍ ✁
states).

Different compact representations of state space and approximation techniques are reviewed in

[Boutilier et al., 1999, Bertsekas and Tsitsiklis, 1996].

Consider the problem of finding an optimal policy in a discounted infinite horizon MDP.

Because optimal policies in this case are stationary Markovian policies, it can be shown that

the conditional expectation ✄ ✁ in the optimality criterion in this case can be rewritten as the

following recurrences (Bellman equations):

� ✁ ✞ ✕ ☎ ✠ ❃ ✸ ✞ ✕ ☎ ✠ ✆ ✌
✝

✝ � ✞ ✁
✆✟✞ ✞ ✕ ☎ ✆ ✂ ✞ ✕ ☎ ✠ ✆ ✕ ✁ ✠ � ✁ ✞ ✕ ✁ ✠ (2.26)

For each given policy ✂ , this is a system of ✄ ✁ ✄ linear equations with ✄ ✁ ✄ unknown variables� ✁ ✞ ✕ ☎ ✠ (each variable is the value of state ✕ ☎ for policy ✂ ). Each equation states an intuitively

clear fact that the value of state ✕ ☎ under policy ✂ is the sum of the immediate reward received

in ✕ ☎ and discounted expected value of the successor state. Since there exists a unique, optimal

value function,
�

✁ , [Blackwell, 1962] for any optimal policy ✂ ✁ we have

� ✁ ✞ ✕ ☎ ✠ ❃ ✸ ✞ ✕ ☎ ✠ ✆ ✌
✝

✝ � ✞ ✁
✆✟✞ ✞ ✕ ☎ ✆ ✂ ✁ ✞ ✕ ☎ ✠ ✆ ✕ ✁ ✠ � ✁ ✞ ✕ ✁ ✠ ✓

Hence, this system of Bellman optimality equations can be written in a special form without

reference to any specific policy

� ✁ ✞ ✕ ☎ ✠ ❃ ✂ ✄✝✆☛✟✞ ✠ ✄ ✸ ✞ ✕ ☎ ✠ ✆ ✌
✝

✝ � ✞ ✁
✆✟✞ ✞ ✕ ☎ ✆✟☎✝✆ ✕ ✁ ✠ �

✁ ✞ ✕ ✁ ✠☎✆ ✆ (2.27)

because the action ☎ ❃ ✂ ✁ ✞ ✕ ☎ ✠ chosen by an optimal policy must be the best action in every

state. A policy that prescribes to each state an action that maximizes the sum of the immediate

payoff and the discounted expected value of the successor state is called a greedy policy with

respect to a value function. If a current estimate (or approximation) of the state value function

is considered instead of the actual state value function, then a greedy policy with respect to this

estimate can be different from a greedy policy with respect to the actual function. Any policy

that is greedy with respect to the optimal value function is an optimal policy.

Equations (2.26) and (2.27) can be conveniently written using vector notation. Let ✸ ❃
✞ ✸ ✞ ✕ ✍ ✠ ✆✔✓✜✓✔✓✜✆✥✸ ✞ ✕✄✂ ✁☎✂✗✠✽✠✁✆ be the vector of payoffs,

� ☎ � ✂ ✌✝✂
be any vector of ✄✗� ✄ real numbers,
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� ✁ ❃ ✞ � ✁ ✞ ✕ ✍ ✠ ✆✜✓✔✓✔✓✜✆ � ✁ ✞ ✕✄✂ ✁☎✂ ✠✭✠ ✆ be vector of unknown state values under policy ✂ and let
✁ ✍ ✂✻✎

be the transition probability matrix under policy ✂ with elements ✑ ☎ ✂ ✁✧❃ ✆✟✞ ✞ ✕ ☎ ✆ ✂ ✞ ✕ ☎ ✠ ✆ ✕ ✁ ✠ for

any ❉ ✡ ✞ ✆✁� ✡ ✄ ✁ ✄ . It is convenient to introduce also two operators in a vector space. Let the

linear backup operator under policy ✂ be ✛ ✁ � ❃ ✸ ✆ ✌ ✁ ✍ ✂☞✎ � and the nonlinear (Bellman)

backup operator (it has no policy subscript) be ✛ � ❃ ✲ ☎ ✢ ✁ ✞✄✂ ✞ ✸ ✆ ✌ ✁ ✍ ✂☞✎ � ✠ , where ☎ is

the set of stationary Markovian policies (it has ✄ ✄ ✄ ✂ ✁☎✂
elements). Then, the system of linear

equations (2.26) can be written in vector form:

�✂✁ ❃ ✸ ✆ ✌ ✁ ✍ ✂☞✎ � ✁ ✆

or in operator form: � ✁ ❃ ✛ ✁ � ✁ ✓
The policy backup operator ✛ ✁ is monotone (i.e., for any ✄ ✁ ✄ -dimensional real vectors

� ✍ and� ✑ such that
� ✍ ✡ � ✑ and for any stationary Markovian policy ✂ we have ✛ ✁ � ✍ ✡ ✛ ✁ � ✑ ). Let

✆ � ✆ ❃ ✲ ☎ ✢ ✁ ✞ ✁ ✄ � ✞ ✢ ✠✟✄ . The operator ✛ ✁ is a contraction operator in maximum norm, i.e., for

any
� ✍✚✆ � ✑ ☎ � ✂ ✌ ✂

✆ ✛ ✁ � ✍✞✝ ✛ ✁ � ✑ ✆
✡ ✌ ✆ � ✍✟✝ � ✑ ✆ ✓

Therefore, by the contraction mapping theorem [Kolmogorov and Fomin, 1970],
� ✁

, the value

function of ✂ , is the unique fixed point of ✛ ✁ . Solving this allows to evaluate a fixed stationary

policy ✂ . Policy evaluation can be achieved by any algorithm that can solve linear systems of

equations. The system (2.27) in operator form:

� ✁ ❃ ✛ � ✁ ✓

The Bellman operator ✛ is also monotone: if
� ✍ ✞ ✕✡✠ ✡ � ✑ ✞ ✕✡✠ , then ✛ � ✍ ✡❊✛ � ✑ ; this is also a

contraction operator because
✆ ✛ � ✝ � ✁

✆
✡ ✌ ✆ � ✝ � ✁

✆
for any

� ☎ � ✂ ✌ ✂
. The optimal

value function
�

✁ is the unique fixed point of the Bellman backup operator ✛ . Because ✛ is

nonlinear operator solving this in a reasonable amount of time requires clever search in the set

☎ (recall that ☎ is the set of stationary Markovian policies introduced above). Let ✛ ✠✁ be the

composition of ✣ copies of ✛ ✁ and ✛ ✠
be interpreted similarly. Then we can say that for any� ☎ � ✂ ✌ ✂

� ✁ ❃✡✠☞☛ ✂✠✍✌
✞
✛ ✠✁ � and

� ✁ ❃✡✠✎☛ ✂✠✏✌
✞
✛ ✠ � ✓

There are two most well known dynamic programming algorithms that compute an optimal

policy for an MDP with an infinite horizon: policy iteration and value iteration [Puterman, 1994,

Bertsekas and Tsitsiklis, 1989, Kaelbling et al., 1996, Bertsekas and Tsitsiklis, 1996].
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Policy iteration does search in the set ☎ : begins with an arbitrary policy ✂✻✁ , then iteratively

computes an improved policy ✂ ❁ ✎
✍ upon the old one ✂ ❁ ( ✘✂✁ � ). Each iteration has two steps,

policy evaluation (prediction problem) and policy improvement (control problem).

1. At the policy evaluation step, we solve (2.26) by computing the value function
� ✁ ✄ ✞ ✕✡✠

for each ✕ ☎ ✁ . This can be achieved using the method of successive approximations

if the model of the environment is available (we know a priori the transition proba-

bilities
✁

and rewards ✸ ). This model-based method has two main variations. The

(Jacobi) synchronous successive approximation method updates the values for all states

simultaneously:
� ☎

✎
✍ ❃ ✛ ✁ ✄ � ☎ , where

� ☎ is an ✞ th approximation to solution
� ✁ ✄

of

(2.26). This synchronous algorithm converges to
� ✁ ✄

because ✛ ✁ ✄ is a contraction op-

erator. The (Gauss-Seidel) asynchronous approximation method updates the values for

the states as follows. At each step, some subset ✁✁� ✁ is chosen and for each ✕ ☎ ✁ ,� ☎
✎
✍ ✞ ✕★✠ ❃ ✛ ✁ ✄✩✞ ✕✡✠ � ☎ ✞ ✕✡✠ , and

� ☎
✎
✍ ✞ ✕✡✠ ❃ � ☎ ✞ ✕✡✠ if ✕ ✆☎ ✁ , where the linear backup operator

for state ✢ is

✛ ✁ ✄✟✞ ✢ ✠ � ❃ ✸ ✞ ✢ ✠ ✆ ✌
✝

✆ ✞ ✁
✆✟✞ ✞ ✢ ✆ ✂ ❁ ✞ ✢ ✠ ✆ ✣✮✠ � ✞ ✣✮✠ ✓

The strategy for selecting ✁ at each stage must ensure that every state ✕ is updated often;

convergence is proved in [Bertsekas and Tsitsiklis, 1989, Bertsekas and Tsitsiklis, 1996].

2. Once policy is evaluated, we can improve the policy ✂ ❁ , i.e., for each ✢ ☎ ✁ , find an

action ☎ ✁ which maximizes

� ✁ ✄❁
✎
✍ ✞ ✢ ✆✟☎ ✠ ❃ ✸ ✞ ✢ ✠ ✆ ✌

✝
✆ ✞ ✁

✆✟✞ ✞ ✢ ✆✟☎✝✆ ✣✮✠ � ✁ ✄ ✞ ✣✩✠ ✓

If � ✁ ✄❁
✎
✍ ✞ ✢ ✆✟☎ ✁ ✠ ✁ � ✁ ✄ ✞ ✢ ✠ , then a new policy ✂ ❁ ✎

✍ ✞ ✢ ✠ ❃ ☎ ✁ ; otherwise, ✂ ❁ ✎
✍ ✞ ✢ ✠ ❃ ✂ ❁ ✞ ✢ ✠ .

When we discussed the policy evaluation step above, we mentioned model-based methods.

Besides them, there are also model-free methods that can be used to evaluate a policy ✂ ❁
even if the model of the environment is not available (i.e., they can be used on-line when the

agent interacts with an unknown environment): Monte-Carlo methods [Barto and Duff, 1994,

Tsitsiklis, 2002] and the method TD(0) [Sutton, 1988, Sutton, 1995, Sutton and Barto, 1998a].

When the agent executes (or simulates execution of) an action ✂ ❁ ✞ ✕✡✠ , observes a transition from

state ✕ to state ✕ ☛ and receives reward ✬ , TD(0) adjusts
� ✞ ✕✡✠ as follows:

� ☎ ✞ ✕✡✠✄✂ � ☎ ❆✝✍ ✞ ✕✡✠ ✆ ✞ ☎ ✞ ✕✡✠ ✍✗✬ ✆ ✌ � ☎ ❆✝✍ ✞ ✕ ☛ ✠ ✝ � ☎ ❆✝✍ ✞ ✕✡✠ ✎ ✆
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where � ✡ ✞ ☎ ✞ ✕✡✠ ✡ ❉ is a learning rate, that depends on state ✕ , and ✬ ✆ ✌ � ☎ ❆✝✍ ✞ ✕ ☛ ✠ is the sampled

estimate of right-hand-side of the Bellman equation. For ✓ ✆❃ ✕ ,
� ☎ ✞✜✓ ✠ ✂ � ☎ ❆✝✍ ✞✫✓✻✠ ✓

In [Singh, 1993, Jaakkola et al., 1994], it is proved that with probability 1,
� ☎ converges to� ✁ ✄

under the usual assumptions that guarantee convergence of stochastic approximation algo-

rithms [Robbins and Monro, 1951, Benveniste et al., 1990], i.e., if every state is updated often

and for any ✕ ☎ ✁ the sequence ✞ ☎ ✞ ✕✡✠ is decayed at a suitable rate:
✁

✞
☎✂✁ ✁ ✞ ☎ ✞ ✕★✠ ❃✄✂ and

✁
✞

☎✂✁ ✁ ✞
✑☎ ✞ ✕✡✠ ✠☎✂ .

The policy iteration algorithm continues until ✂✝✆ ✎
✍ ✞ ✕✡✠✢❃ ✂✞✆ ✞ ✕✡✠ at some iteration ✟ for

every state ✕ ☎ ✁ . Because the set ☎ of stationary Markovian policies is finite, this algorithm

converges to an optimal policy since each new policy is guaranteed to be a strict improvement

over previous one (unless it is already optimal).

As we see, in policy iteration, each iteration involves policy evaluation step which may

itself require a time consuming computation in the state space. Value iteration algorithm avoids

this by replacing policy evaluation step by a single backup of each state. It starts with an

arbitrary value function
� ✁ , but instead of applying ✛ ✁ for a particular policy, it applies the

Bellman operator ✛ , which maximizes over all actions:

� ❁
✎
✍ ✂ ✛ � ❁ ✓

This is a (Jacobi) synchronous value iteration algorithm; convergence can be proved because ✛
is a contraction operator. Similarly to policy evaluation, there is asynchronous value iteration

when not all states are updated at once. At each step, some ✁ � ✁ is chosen and for each

✕ ☎ ✁ ,
� ❁

✎
✍ ✞ ✕✡✠ ❃ ✛ ✞ ✕✡✠ � ❁ ✞ ✕✡✠ ; otherwise

� ❁
✎
✍ ✞ ✕★✠ ❃ � ❁ ✞ ✕✡✠ (for ✢ ✆☎ ✁ ), where the Bellman

backup operator for state ✢ is

✛ ✞ ✢ ✠ � ❃ ✸ ✞ ✢ ✠ ✆ ✌ ✂☎✄✝✆☛✟✞✡✠ ✄
✝

✆ ✞ ✁
✆✒✞ ✞ ✢ ✆✟☎✝✆ ✣✩✠ � ✞ ✣✩✠☎✆ ✓

The asynchronous value iteration algorithm allows the agent to sample the state space by ran-

domly selecting the state to which the update equation is applied. Asynchronous algorithm

includes synchronous and Gauss-Seidel algorithms as special cases: if for each step ✁ ❃ ✁ ,

then this is a synchronous dynamic programming; Gauss-Seidel results when each set ✁ con-

sists of a single state and the collection of states is an ordered sequence of states (from the state

1 up to the state ✄ ✁ ✄ and then again starting from the state 1, etc.). Convergence is guaranteed
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if the strategy for selecting states for backup never eliminates any state from possible selection

in the future.

As for an effective stopping criterion for the value iteration algorithm, it can be formulated

in terms of the Bellman residual of the current value function [Williams and Baird, 1993b,

Singh and Yee, 1994]. More specifically, if
✆ � ❁

✎
✍ ✝ � ❁ ✆

, the maximum difference be-

tween two successive value functions, is less than � , then the value function
� ✁ ✄✂✁ ✁

of the

greedy policy ✂ ❁ ✎
✍ with respect to

� ❁ , differs from the value function
�

✁ of the optimal pol-

icy by no more than
✑☎✄✝✆

� ✍ ❆✞✆ ✂ at any state. As for computational complexity of dynamic pro-

gramming algorithms, each iteration of the synchronous value iteration algorithm can be per-

formed in ✖❀✞ ✄ ✄ ✄ ✄ ✁ ✄ ✑ ✠ steps, or faster if there is sparsity in the transition function. However,

the number of iterations required can grow exponentially as the discount factor approaches

1. In practice, policy iteration is known to converge in fewer iterations than value itera-

tion, although the per-iteration costs of ✖❀✞ ✄ ✄ ✄ ✄ ✁ ✄ ✑
✆ ✄ � ✄ ✁ ✠ can be prohibitive in the case of

large state spaces. Additional details about dynamic programming algorithms, about their

variations and about connections with the field of reinforcement learning can be found in

[Puterman, 1994, Bertsekas and Tsitsiklis, 1996, Kaelbling et al., 1996].

MDPs are natural models for decision-theoretic planning, but traditional framework re-

quires explicit state and action enumeration, which grow exponentially with the number of

domain features. On the other hand, most AI problems involving decision-theoretic plan-

ning can be viewed in terms of logical propositions, random variables, relations between

objects, etc. Logical representations have significant advantage over traditional state-based

representations because they can allow compact specifications of the system. For this reason,

many researchers studied how to represent and solve large state space MDPs using alternative

representation techniques, most notably probabilistic STRIPS [Hanks and McDermott, 1994,

Kushmerick et al., 1995], dynamic Bayesian networks [Dean and Kanazawa, 1989, Boutilier and Goldszmidt, 1996],

decision trees [Dearden and Boutilier, 1997, Boutilier et al., 2000b], logical rules [Poole, 1997,

Poole, 1998], algebraic decision diagrams [Hoey et al., 1999, Hoey et al., 2000] and the situ-

ation calculus [Boutilier et al., 2000a, Boutilier et al., 2001]. Most of these representations and

related developments of efficient methods for solving MDPs are reviewed in [Boutilier et al., 1999].

In Chapter 5 we consider our approach to representation of MDPs in the predicate logic.



CHAPTER 2. BACKGROUND 56

2.4.2 Decision Tree Search-Based Methods

When the system is known to start in a given state ✕★✁ , the reachability structure of the MDP can

be exploited, restricting value and policy computations to states reachable by some sequence

of actions from ✕ ✁ . This form of directed value iteration can be effected by building a search

tree rooted at state ✕ ✁ : its successors at level 1 of the tree are possible actions; the successors at

level 2 of any action node are those states that can be reached with nonzero probability when

that action is taken at state ✕✡✁ ; and deeper levels of the tree are defined recursively in the same

way. For an MDP with finite horizon ✣ , the tree is built to level ❋ ✣ : the value of any state is

given by the maximum among all values of its successor actions, and the value of an action

is given by the expected value of its successor states.15 It is easy to see that the value
� ✞ ✕✡✁✥✠

of the state ✕ ✁ at the root of a tree with ❋ ✘ levels is precisely
� ❁ ✞ ✕ ✁ ✠ defined in the equation

(2.25) for value iteration. This observation provides the basis for the well known relation-

ships between heuristic search techniques and other dynamic programming algorithms. For

short horizon problems with small branching factor, the advantage of tree search over other

algorithms becomes apparent from the fact that only states reachable from the initial state

✕ ✁ need to be taken into account to compute the value function (all other states may remain

unexplored). Search-based approaches to solving MDPs can use heuristics, learning, sam-

pling and pruning to improve their efficiency [Barto et al., 1995, Dearden and Boutilier, 1997,

Kearns et al., 1999, Koenig and Simmons, 1995]. Declarative search control knowledge, used

successfully in classical planning [Bacchus and Kabanza, 1996, Bacchus and Kabanza, 2000,

Gabaldon, 2003], might also be used to prune the search space. In an MDP, this could be

viewed as restricting the set of policies considered. This type of approach has been explored in

the more general context of value iteration for MDPs by Parr and Russell [Parr and Russell, 1998]:

they use a finite state machine to model a partial policy and devise an algorithm to find the op-

timal policy consistent with the constraints imposed by the FSM. Their work as well as related

work will be discussed later in Chapter 5.

Historically, the idea of interrupting computationally intensive search for a plan earlier in

favor of executing (possibly suboptimal, but promising) actions from an initial segment that can

be extended later to a plan leading to a goal was first formulated in [Korf, 1990]. In particular,

Korf presents in this paper a new algorithm, called Real-Time- ✕ ✁ (RTA ✁ ), that makes locally

optimal decisions and is guaranteed to find a solution in a finite problem space with positive

edge costs and finite heuristic values if a goal state is reachable from every state. Simulations

15States at the leaves are assigned their reward value.
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on several sliding tile puzzles (with a well known Manhattan Distance heuristic function) show

this algorithm can outperform (in terms of total running time) other algorithms that try to

compute a plan by looking ahead up to a goal state before committing even to a very first

action from the plan. However, RTA ✁ is a suboptimal algorithm in a sense that it can find plans

with a length greater than optimal. A learning version of the same algorithm, called Learning

Real-Time- ✕ ✁ (LRTA ✁ ), improves its performance over successive problem solving trials by

learning more accurate heuristic values over repeated problem solving trials. This learning

version (when search horizon is 1) can be summarized as follows, assuming that �✚✞ ✕✡✠ is a

heuristic function for a distance to a goal (i.e., for a minimal number of actions that have to be

executed starting from ✕ to reach one of a goal states) and ✕ ✓ ✾ ✾ ✦ ✕ ✕ ☎✡✬✮✞ ✕ ✆✡☎ ✠ is a state reachable

from ✕ by executing action ☎✆☎ ✄ ✞ ✕✡✠ . Initially, values of all states ✕ ☎ ✁ are
� ✞ ✕✡✠ ❃ � ✞ ✕✡✠ . The

algorithms starts in state ✕ ✁ and proceeds iteratively:

1. ✕ ✂ the current state.

2. If ✕ is a goal state, then stop successfully.

3. Otherwise, compute ☎ ❃ ☎ ✬✡✪ ✂ ☛✁� ☛ ✞ ✠ � ✝ ✂
� ✞ ✕ ✓ ✾ ✾ ✦ ✕ ✕ ☎✡✬✮✞ ✕ ✆✡☎ ✠✽✠ .

4. Update
� ✞ ✕✡✠ ✂ ✲ ☎ ✢☛✞ � ✞ ✕✡✠ ✆ ❉ ✆ � ✞ ✕ ✓ ✾ ✾ ✦ ✕ ✕ ☎★✬✩✞ ✕ ✆✟☎ ✠✽✠✭✠ .

5. Execute action ☎ in reality (or simulate this execution on computer); this leads to a state

✕ ✓ ✾ ✾ ✦ ✕ ✕ ☎★✬✩✞ ✕ ✆✟☎ ✠ .
6. Repeat.

Thus, LRTA ✁ looks one action execution ahead and always greedily chooses an action that

leads to a successor state with the minimal value (ties can be broken randomly). The planning

time of LRTA ✁ between action executions is linear in ✄ ✄ ✞ ✕✡✠ ✄ , the number of actions available

in the current state. Therefore, if ✄ ✄ ✞ ✕✡✠ ✄ is bounded (or does not depend on the number of

states), then the planning time between action executions is constant (or does not depend on

✄ ✁ ✄ , respectively). LRTA ✁ is extensively analyzed in [Ishida, 1997].

Both algorithms, RTA ✁ and LRTA ✁ , were proposed for deterministic domains with complete

information, where each state has only one successor. However, real-time heuristic search

methods (this term is suggested by Korf) that interleave search with action execution can be

also successfully applied to other domains. In particular, [Genesereth and Nourbakhsh, 1993,

Nourbakhsh, 1997] present pruning rules for problem solving with incomplete information.



CHAPTER 2. BACKGROUND 58

These rules are domain-independent and lead to savings in planning costs. The rules are

of special importance in the case of interleaved planning and execution in that they allow

the planner to terminate search without planning to the goal. The min-max LRTA ✁ algo-

rithm, a simple extension of LRTA ✁ to non-deterministic domains is proposed and analyzed

in [Koenig and Simmons, 1995, Koenig, 2001]. The authors describe which non-deterministic

domains can be solved using their new algorithm, and analyze its performance for these do-

mains. The min-max LRTA ✁ algorithm (with a search horizon 1) is summarized in [Koenig and Simmons, 1995]

as follows. Note that in nondeterministic domains actions can lead to several different states:

✕ ✓ ✾ ✾ ✦ ✕ ✕✡☎✡✬✩✞ ✕ ✆✟☎ ✠ � ✁ . Initially, values of all states ✕ ☎ ✁ are
� ✞ ✕✡✠ ❃ �✚✞ ✕✡✠ (a heuristic function

�✚✞ ✕★✠ is domain dependent). The algorithm starts in state ✕★✁ and proceeds iteratively:

1. ✕ ✂ the current state.

2. If ✕ is a goal state, then stop successfully.

3.

☎ ❃ ☎ ✬★✪ ✂ ☛ �☛ ✞ ✠ � ✝ ✂
✂☎✄✝✆

✝ ✄ ✞ ✝✗✠ ✎ ✎ ✆ ✝✟✝ ☎ ✝ � ✝ ✂ ☛ ✂
� ✞ ✕ ☛ ✠ ✓

4.
� ✞ ✕✡✠ ✂ ✲ ☎ ✢☛✞ � ✞ ✕✡✠ ✆ ❉ ✆ ✂☎✄✝✆

✝ ✄ ✞ ✝✔✠ ✎ ✎ ✆ ✝✟✝ ☎✄✝ � ✝ ✂ ☛ ✂
� ✞ ✕ ☛ ✠✽✠ ✓

5. Execute action ☎ in reality; nature selects the new state from the set ✕ ✓ ✾ ✾ ✦ ✕ ✕ ☎★✬✩✞ ✕ ✆✟☎ ✠ � ✁ .

6. Repeat.

In contrast to traditional (off-line) search techniques, which must plan for every possible con-

tingency in an environment (where nature, and possibly other agents, can execute actions inter-

fering with the agent’s actions), real-time search methods only need to choose actions for those

outcomes that actually occur. In a complex large-scale domain, without interleaving planning

and execution, the agent has to compute a potentially large conditional plan. But with inter-

leaving, the agent has to find only the beginning of such a plan. Because the agent repeats the

process of planning and executing from the state that actually resulted from the execution of the

initial subplan, only this state matters. The purely planning agent must consider all states that

could have resulted from execution of this subplan. Thus, real-time search methods can poten-

tially decrease search time, although possibly at the expense of computing longer suboptimal

plans.
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An algorithm that combines ideas of a forward look-ahead search from an initial state

✕ ✁ with asynchronous value iteration algorithm is called Real-Time Dynamic Programming

(RTDP). It is introduced and analyzed in [Barto et al., 1995, Bradtke, 1994]. From the dynamic

programming perspective, LRTA ✁ can be characterized as deterministic specialization of the

asynchronous value iteration algorithm applied on-line. From the control systems perspective,

LRTA ✁ is a kind of receding horizon control16 that can accommodate the possibility of closed-

loop control and can improve over time because it accumulates the results of shallow searches

forward by updating the evaluation function. RTDP extends LRTA ✁ in two ways: it generalizes

LRTA ✁ to stochastic problems, and it includes the option of backing up values of many states in

the time intervals between the executions of actions. Both RTDP and LRTA ✁ may be augmented

by look-ahead search. This means that instead of using values of successors of the current state,

each of this algorithms can perform an off-line forward search from the current state to a depth

determined by the amount of computational resources available. RTDP refers to cases when

decision-theoretic planning is interleaved with executing of actions as follows. First, an action

selected for execution is the greedy action with respect to the most recent estimate of the state

value function (ties can be resolved randomly). Second, between the execution of actions, the

value of the current state (and possibly also any other states generated by look-ahead search) is

backed up using the current estimates of values of successor states. In the discounted case, the

only condition that is required for convergence of the associated asynchronous value iteration

algorithm to the optimal value function is that no state is completely ruled out from backing

up. This can be implemented in the trial-based RTDP by choosing a new start state randomly

in the state space each time when a new trial must be started again after reaching one of goal

states. However, it is possible to focus RTDP to start each trial only in one of designated start

states �✻✁ and consider only those states ✕ ☛ (called relevant in [Barto et al., 1995]) that can be

reached from ✕ ✁ ☎ �✻✁ by following an optimal policy. Conditions under which this is possible

are stated precisely in [Barto et al., 1995, Bradtke, 1994]. Further developments of RTDP are

studied in [Bonet and Geffner, 2003, Feng et al., 2003].

Another method for efficient planning in MDPs that focuses on a restricted set of states is

considered in [Dean et al., 1995]. To cope with large state spaces, a highly restricted subset of

the entire state space, called envelope, is proposed as a domain for computing a partial policy.

Their basic algorithm consists of two stages: envelope alteration followed by policy generation.

16The receding horizon approach to MDPs is studied in [Hernández-Lerma and Lasserre, 1990,

Chang and Marcus, 2003].
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More specifically, the algorithm takes an envelope and a policy as input and generates as output

a new envelope and policy. The algorithm is applied in the manner of iterative refinement (with

more than one invocation of the algorithm). In this paper, the authors consider the meta-level

control problem of deliberation scheduling related to allocating computational resources to

several iterative refinement routines. They propose precursor models and recurrent models of

planning and execution. In precursor models decision making is performed prior to execution,

but in recurrent models decision making is performed in parallel with execution, accounting

for actually observed states. Using the robot navigation domain (with about 1000 states) as

a testbed, the paper provides an experimental comparison of RTDP, a version of recurrent

deliberation algorithm, and two algorithms based on the standard AI planning assumptions:

trajectory planning with replanning (an initial path to the goal is found, if the agent falls off the

path, the reflexes are executed until a new path is found) and trajectory planning with recover

(if the agent falls off the nominal path, a path is planned back to the original path, rather than

to the goal).

The idea of interleaving decision-theoretic planning with execution realized in RTDP sug-

gests a possible way of circumventing computational difficulties associated with decision tree

search algorithms (in decision analysis, see [Raiffa, 1968], decision trees are called also decision-

flow diagrams). These difficulties are inherent in many practical problems, where the branching

factor of a decision tree is large and a deep decision tree must be constructed (if a finite hori-

zon is a large number, or if infinite horizon problem must be approximated by a finite depth

decision tree). More specifically, the agent can build a look-ahead tree up to some depth (depth

can depend on time pressures or availability of computational resources). To choose an action

optimal with respect to this partial look-ahead tree, the agent can apply the roll-back proce-

dure that computes first values at the leaves of the tree and then determines recursively values

at more shallow levels.17 Then the agent can execute this action and proceed iteratively with

building a new look-ahead tree. This offers a significant computational savings because the ac-

tual outcome of the execution of the action can be used to prune all those branches which grow

from states corresponding to unrealized outcomes: only subtree rooted at the realized state mat-

ters. This approach is proposed and analyzed in [Dearden and Boutilier, 1994], which relies in

turn on an extension of the alpha-beta tree pruning strategy to trees with ‘probability’ nodes

17[Raiffa, 1968] describes this method as follows. “We first transported ourselves in conceptual time out to the

very tips of the tree, where the evaluations are given directly in terms of the data of the problem. We then worked

out way backwards by successive use of two devices: 1) an averaging-out process at each chance juncture, and 2)

a choice process that selects the path yielding the maximum future evaluation at each decision juncture. We call

this the averaging out and folding back procedure.”
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[Ballard, 1983]. While this approach reduces the computational cost of planning in stochastic

domains, it sacrifices optimality because searching is done to a fixed depth and a heuristic func-

tion is used to estimate the value of states. The paper [Dearden and Boutilier, 1994] considers

several new techniques (similar to alpha-beta) for pruning the search tree. Because knowledge

of the heuristic function is required by these techniques, the paper also describes how it can

be computed using the approach in [Boutilier and Dearden, 1994] (a more recent version is

provided in [Dearden and Boutilier, 1997]).

2.5 Robotics

The frameworks described in the subsequent chapters have been implemented on the mobile

robot Golem: it is a B21 robot manufactured by Real World Interface (RWI).

Golem is equipped with a laser range finder (it determines distances to surrounding obsta-

cles with a high accuracy) that is installed in a space between base and enclosure. The robot

has also 24 sonar proximity sensors, bumpers, one on-board computer with a dual Pentium II

300MHz processor system and 128Mb RAM, and a laptop computer (installed on the console)

with one Pentium 200MHz processor and 32Mb RAM (both computers run Linux). The lap-

top computer has a sound card and can reproduce voice recordings. Golem can communicate

with external computers via a radio Ethernet link, but in our implementation we do not use it,

because we run all software on-board.

The low-level software that we run on our robot was initially developed in the University

of Bonn and Carnegie–Mellon University to control RHINO, another RWI B21 robot; see

[Burgard et al., 1998] for details. We mention briefly what modules we run on the on-board

computer:

✎ tcxServer – a communication manager that provides asynchronous communication

and coordination between the other modules;

✎ baseServer – a program which controls physical motion and gathers information from

wheel encoders about the distance traveled by robot;

✎ plan – a path planning module that computes a shortest trajectory from a current location

to a goal location using a dynamic programming algorithm;

✎ laserServer – an auxiliary module that determines distances to obstacles using the

laser range finder;
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✎ colliServer – collision avoidance program that changes the speed and direction of

motion whenever the robot’s sensors detect obstacles ahead (this program is highly reac-

tive and dynamically modifies the motion of the robot);

✎ localize – a program which determines the probability of the current location given a

map and a stream of current measurements from sensors (the map of our office environ-

ment is built only once using a neural-networks based sensor interpretation program).

It is important to emphasize that all sensor readings performed by the aforementioned modules

are not accessible to the high-level control.

Our Prolog code (we run Eclipse Prolog on the robot’s computer) communicates with the

low-level software using the software package ✶ ✁ �
[Hähnel, 1998, Hähnel et al., 1998] that

provides a high-level interface to all other modules. The implementation of ✶ ✁ �
relies on the

Prolog–C interface of Eclipse Prolog. In particular, to execute the primitive action ✕ ✕ ☎ ✬★✕ ✁✙☎
we call the predicate � ✷ ✞ ✪✟☎ ✑ ☎ ✕ � from Prolog (Golem simply says that it has reached a desti-

nation when it has to execute the action ✦ ✘✻✄✂✁ ☎ ). The implementation of � ✷ ✞ ✪✟☎ ✑ ☎ ✕ � in ✶ ✁ �

ensures that the robot will successfully reach its destination by sending commands to low-level

programs even if some of them malfunction [Hähnel et al., 1998]. Because Golem does not

have an arm, it vocalizes appropriate audio recordings whenever it has to execute the actions

✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ and ✑ ✞ ✾ ✣✝✓✆✑ ✂ ☎ � � ✦ ✦ and expects an appropriate human reaction.



Chapter 3

The projection task with sensing actions

Sensing and its effects on the knowledge of a robot have been traditionally approached from

different perspectives in robotics and logic-based AI. Nevertheless, with the advance of cog-

nitive robotics, there emerged a new trend to designing logical specifications of high level

controllers that can be directly implemented on autonomous robotics systems. In particular,

[De Giacomo and Levesque, 1999a, Pirri and Finzi, 1999] proposed different logical formal-

izations of reasoning about physical and sense actions in the situation calculus. These propos-

als led to successful implementation of robotics control systems [Piazzolla et al., 2000] and

[Levesque and Pagnucco, 2000] capable of updating their model of the world by information

gathered from sensors.

In this chapter, we propose a new alternative representation of sense actions1 in the sit-

uation calculus that does not rely on the epistemic fluent � ✞ ✕ ☛✖✆ ✕★✠ and accounts for sense

actions directly in successor state axioms. In addition, we consider an approach (introduced

in [Reiter, 2001b]) to reasoning about effects of actions, knowledge, and sensing that reduces

reasoning about knowledge to provability. Finally, we provide a formal comparison of the

latter approach with ours. It is shown that under certain assumptions these two approaches

lead to essentially equivalent solutions of the forward projection task. In particular, if infor-

mation delivered by a stream of sense actions is consistent, then, under certain assumptions,

in a situation that results from doing all these sense actions (and possibly some other physi-

cal actions), a given domain theory (augmented with sensory data, according to the proposal

of [Reiter, 2001b]) entails that an agent knows a logical formula ✁ if and only if the domain

theory of this agent (with successor state axioms modified according with our approach) en-

1The papers [Scherl and Levesque, 1993, Scherl and Levesque, 2003] use the term ‘knowledge-producing ac-

tions’, but we follow [Reiter, 2001a] and call them either ‘sense’ or ‘sensing’ actions.
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tails ✁ . Later in this chapter, we will see that this comparison provides a formal justification

for our approach and also indicates that it remains useful in cases when sense actions gather

inconsistent information. For this reason, our approach to dealing with sense actions that re-

lies on modification of successor state axioms can be instrumental for the development of an

adequate execution monitoring framework in Chapter 4 because it lifts an unrealistic assump-

tion about observability of all exogenous actions (this assumption was essential in the earlier

proposal of [De Giacomo et al., 1998]). We will see also in Chapter 6 that our technical ma-

chinery proves to be applicable to the design of an on-line decision-theoretic Golog interpreter

that computes an optimal policy to control a mobile robot and needs sensing to determine an

outcome of stochastic actions. Later in this chapter, in Section 3.6, we compare our approach

with [Demolombe and Pozos-Parra, 2000], who independently from [Soutchanski, 2000], use

both physical and sense actions in successor state axioms to describe effects of actions on ‘sub-

jective’ fluents, but their sense actions are different from sense actions considered here. Their

approach is thoroughly investigated and compared with the � ✞ ✕ ✆ ✕ ☛ ✠ -fluent based approach in

the recent paper [Petrick and Levesque, 2002] (see Section 3.6).

The content of this chapter is a significantly revised and extended version of our paper

[Soutchanski, 2001a] that develops ideas announced in [Soutchanski, 2000, Soutchanski, 2001b].

3.1 Introduction

In Section 2.1.1, we considered the syntactic form of the successor-state axioms that provide

the solution of the frame problem: what logical properties of the world change and what prop-

erties persist when an agent executed a physical action that intuitively effects only a limited

number of properties in the world. Furthermore, in Section 2.1.3 we have seen that this solu-

tion can be extended to reasoning about agents’ knowledge and sense actions by elaborating

an earlier proposal by [Moore, 1985] that an accessibility relation between possible worlds

[Kripke, 1963a, Kripke, 1963b, Hintikka, 1962] can be represented in a situation calculus log-

ical theory by a binary predicate � ✞ ✕ ✆ ✕ ☛ ✠ relating two ‘epistemically alternative’ situations

✕ and ✕ ☛ ; this predicate is called epistemic fluent. The successor state axiom for this fluent

(2.17) (proposed in [Scherl and Levesque, 1993]) characterizes how knowledge changes from

the current situation to a successor situation resulting from the execution of a sense action in

the current situation. In particular, this axiom (2.17) states that only sense actions may effect

the accessibility between situations, more specifically, they ‘shrink’ the accessibility relation

by eliminating those situations which do not ‘agree’ with the results of sensing. Because fewer
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possible worlds become accessible after doing sense actions, the knowledge of an agent be-

comes more complete; in other words, sense actions increase (or produce) knowledge for the

agent. Observe that in the axiom (2.17) sense actions are understood in very general terms as

actions determining a truth value of an arbitrary (situation suppressed) expression. In addition,

the initial theory with knowledge � ✁✌✏✎ in general case may include arbitrary first-order sen-

tences about the world itself, about agents knowledge, whether an agent knows what another

agent knows, etc.

The generality of this approach to reasoning about knowledge and sensing may hinder prac-

tical computer implementations. In particular, realistic high-level controllers implemented in

Golog need an account of sensing that is promising computationally. In robotics and other

application domains alternative (approximate or considering special cases) approaches to rea-

soning about sense actions may facilitate implementations and still be sound with respect to

the original � -based general specification. For example, in computer animation, [Funge, 1998]

incorporates interval arithmetic into the situation calculus to provide a representation of epis-

temic uncertainty of agents and of the dynamics of this uncertainty when agents obtain a new

sensory input. As another example, reduction of knowledge to provability in [Reiter, 2001a,

Reiter, 2001b] serves as a sound foundation of knowledge-based programming in an epistemic

extension of Golog. In contrast to the version of Golog considered in Section 2.3, programs

written in his extension of Golog can include not only physical actions, but also sense actions,

and test expressions can mention Knows ✞ ✁ ✠ and KWhether ✞ ✂ ✠ when it is necessary to evalu-

ate what an agent executing the program knows about the world at the current step of execution.

Reduction of knowledge to provability is achieved by considering a certain important special

case of � ✁✌ ✎ : when this theory consists exclusively of sentences declaring what the agent knows

about the world it inhabits (sentences declaring what is actually true of the world, and what the

agent knows about what it knows are not allowed). Because we also intend to consider Golog

programs with sensing actions, and we are interested in implementing these programs on a

mobile robot, let’s formulate several criteria for a logical account of sensing in the situation

calculus (some of these criteria arise naturally in the robotics context).

✎ Sensing actions have to accommodate both binary and real valued data returned from

sensors.

✎ Certain properties in the world vary unpredictably in time and cannot be modeled (e.g.,

the temperature outdoors, the humidity, the number of people we meet today, etc). Cer-

tain other properties can be effected by external agents that function independently and
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whose actions cannot always be observed (e.g., stock prices). Sequential sense actions

have to allow updating of the currently available information about all types of properties

(including properties that we mention), but updates should not lead to inconsistencies.

✎ Sensing needs to be performed whenever it is necessary, in particular, if the information

about the world is incomplete and can be enriched only from sensing or if we have

good reasons to believe that previous sensory data are no longer valid (e.g., because of

complications mentioned in the previous paragraph).

✎ There has to exist a computationally efficient mechanism of using both sensing infor-

mation and the information about the initial situation given the specifications of how a

dynamical system evolves from one situation to another. Because regression can be an

efficient (under certain conditions2) mechanism for the solution of the forward projection

task, it is desirable to integrate regression with reasoning about sensory information.

✎ Ideally, the specification of sense actions in the situation calculus has to lead directly to

a natural and sound implementation, e.g., in Prolog.

Below we propose a representation of sensing that satisfies these criteria. In addition, we

consider a correspondence between our account of sensing and an approach of [Reiter, 2001a,

Reiter, 2001b] to provide an argument in favor of the correctness of our approach with respect

to the � -fluent based specification.

3.2 The language and basic action theories

In this section, we consider a version of the situation calculus characterized in Section 2.1.3

with the following two simplifying assumptions: 1) the language has no functional fluents,

but non-fluent function symbols are permitted; 2) the language has no non-fluent predicate

symbols except for the equality predicate, the predicate symbol ✂ (it occurs in the foundational

axioms to define the order between situations), and the predicate symbol
✁ ☎ ✕ ✕ (it occurs in

precondition axioms to characterize actions possible in certain situations). Neither assumption

leads to any loss of expressiveness. First, instead of a functional fluent, the axiomatizer can use

a corresponding relational fluent (but should enforce via an appropriate axiomatization that the

2[Reiter, 2001a] formulates a sufficient condition when regression is computationally efficient: it is sufficient

to consider basic action theories such that successor state axioms are context free, i.e., right hand sides of axioms

do not mention other fluents.
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object argument of the fluent must always exist and be unique). Second, a non-fluent predicate

symbol can be replaced by a relational fluent (the axiomatizer should add an obvious successor

state axiom saying that the truth value of such a fluent persists from situation to situation no

matter what action has been performed). We introduce these restrictions on the language to

simplify formalization. 3

In the sequel, we will also need the definition of an objective situation-suppressed sentence

and the definition of a subjective sentence; both definitions are introduced in [Reiter, 2001b].

An objective situation-suppressed sentence is an expression without any free variables com-

posed from situation suppressed relational fluent atoms and expressions ✕ ✦ ✬★✲ ✍ ❃ ✕ ✦ ✬★✲ ✑ by

boolean connectives and quantifiers; in a nutshell, objective situation-suppressed sentences are

expressions that do not mention � and have no situational argument. For the sake of brevity,

these sentences are called simply objective. A subjective sentence about a ground situation

term ✗ is a sentence of the form Knows ✞ � ✆✘✗ ✠ , where
�

is objective, or it has the form ✑ � ,

where � is a subjective sentence about ✗ , or it has the form � ✍ ✝ � ✑ , where � ✍ and � ✑ are

subjective sentences about ✗ . In a nutshell, subjective sentences are boolean combinations of

statements about what the agent knows or does not know about the objective world.

In this chapter, we will use boolean constant symbols YES and NO; informally, these sym-

bols will correspond to values of objective sentences measured by sensors.

3.2.1 Sensing Actions

As described in [Levesque, 1996, Golden and Weld, 1996], sensing actions are those actions

which the agent or robot takes to obtain information about certain properties of the external

world, rather than to change them. We find convenient to associate each sense action with a

value returned by a sensor at a time when the sensor gathers information from the real world:

this value can be a boolean constant or a real number. More specifically, we introduce a ternary

term ✕ ✦ ✘ ✕ ✦ ✞✂✁ ✆ � ✆ ✕✽✠ to represent sense actions. The first argument can be either a term, e.g., a

physical quantity that needs to be measured (in this case, � can be a real or rational number

that represents a value of the physical quantity returned by a sensor), or an objective situation-

suppressed sentence whose truth value the sensor has to detect (in this case, � can be a boolean

constant representing a truth value returned by a sensor). The last argument ✕ is a moment of

3The first assumption helped to simplify treatment of knowledge-based programs with sensing in

[Reiter, 2001a, Reiter, 2001b]: because ✄✆☎
✂ ✔ knowledge-producing actions sense the values of functional flu-

ents they can be ignored if there are no functional fluents. The second assumption was introduced there for purely

technical reasons.
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time. We do not include axioms of real or rational numbers in any of basic theories of actions

� , but assume instead that the second and the third arguments of ✕ ✦ ✘ ✕ ✦ ✞✂✁ ✆ � ✆ ✕✽✠ have a standard

interpretation.

In the remainder of this chapter, we concentrate on sense actions that estimate a truth value

of an objective sentence ✁ . In addition, without loss of generality, in this chapter we are going

to ignore the temporal argument of sense actions because in this chapter we are more interested

in issues that are easier to introduce without having to worry about explicit temporal arguments.

Later, in Chapter 6 we consider sense actions with three arguments.

Informally, ordinary fluents are usually understood as properties of the world external to

the mind of the agent that reasons about the world and does physical actions in the world.

Consequently, the common understanding of successor state axioms formulated in Section

2.1.1 is that they characterize causal effects of physical actions on properties of the real world

and that the right hand side of each axiom provides complete explanation of any change of a

property in the environment in terms of physical actions executed in the environment. As for

sense actions, we have seen in Section 2.1.3 that it is convenient to formulate no side-effects

assumption (2.11) to obtain the successor state axiom for the epistemic fluent � ✞ ✗ ✆ ✕✡✠ .
Nevertheless, we propose to consider a different perspective according to which fluents

are understood as internal (‘mental’) representations of the properties of the real world and

successor state axioms characterize the dynamics of this internal representation in the mind of

the agent. According to this new perspective, whenever the agent does a physical action in

the real world or uses sensors to gather information about the external world, both physical

and sense actions may have effects on the agent’s internal representation of the real world, in

other words, both types of actions may have effects on fluents. As a consequence, a change

in a value of a fluent can be explained not only by physical actions performed by the agent,

but also by data gathered by a sensor in the real world. In addition, in the general case, we

cannot assume that the results of sensing are conditioned by the current ‘mental model’ of the

agent: external forces and agents may produce changes in the real world, but those exogenous

actions and events are not necessarily directly observable by the agent acting in the world. The

most important example of exogenous actions that are not directly observable by the agent are

actions that nature does when the agent initiates a stochastic action. However, sensing may

provide the agent with information about effects of exogenous actions and events and these

effects will serve as indirect indications of external events that occurred in the environment

or exogenous actions that have been executed by other agents or by nature. The agent may

be able to compare data measured by sensors with currently expected values of properties
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and, in the case when there are discrepancies, the agent may be able to find what external

factors can explain the observed discrepancies. Consequently, the dynamic nature of real world

environments and inability of the agent to observe directly all occurrences of exogenous actions

is one of the important reasons why information gathered by sensors of the agent should be

grounded in the real world and not in the current ‘mental model’ of the agent.4 In brief, the

agent should be able to sense the real information in the external world, not just information

that the agent may expect to sense. Formally, this means that the precondition axioms for

sense actions in the general case should not constrain results of sensing by formulas that hold

in the current situation. There are cases when sensors can malfunction, or when the agent

can be blinded by mis-perceptions (e.g., a wall that is perceived white in the day light will

have the green color in the green light). Below, we assume that sensors function correctly

and we do not consider the problem of mis-perceptions (this problem is extensively studied in

[Pirri and Finzi, 1999]).

Thus, to accommodate our new perspective in terms of basic theories of actions, we can

keep the syntactic form of precondition and successor state axioms intact, but we have to

modify the right hand sides of successor state axioms to account for those logical conditions

on sense actions that ‘cause’ certain effects on fluents. Together with formulas ✌ ✎✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ and

✌
❆✡ ✞☞✖✢ ✆✡☎ ✆ ✕★✠ that mention physical actions only (see the successor state axiom 2.6), all those new

logical conditions that mention sense actions will characterize completely the dynamics of the

agent’s internal representation of the property ✰ . This modification of successor state axioms

will be the only change in the axiomatization that we make to be able to reason about the effects

of both sense and physical actions: no other predicates have to be introduced, no other axioms

have to be included in the domain theory � (besides precondition axioms for sense actions).

We defer to the last section of this chapter any further informal discussions of the proposed

perspective and comparison with other alternative approaches.5 To summarize the proposed

approach, let us consider a generic successor state axiom (2.6):

✰ ✞☞✖✢ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠✓✒✍✌ ✎✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠ ✝ ✰ ✞☞✖✢ ✆ ✕✡✠ ☛ ✑ ✌ ❆✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ ✆

that mentions physical actions only, and let us assume that we have a fixed set of sense actions

4Another reason can be logical incompleteness of the theory that characterizes the environment: sensing can

deliver new information to the agent.
5Note that the axiomatizer can try to account for differences between the agent’s internal representation of

the properties of the real world, ‘objective’ representation of the external world, and the agent’s representation of

other agents internal representations by introducing a new argument of the sort agent to each fluent; we do not

explore this approach in this dissertation.
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✕ ✦ ✘ ✕ ✦ ✞ ✁ ✍✚✆ � ✍ ✠ , ..., ✕ ✦ ✘ ✕ ✦ ✞ ✁ ❁✎✆ � ❁ ✠ , where the first argument is like a constant that names a sens-

ing action, but we write this name using ✁ ✍✚✆✔✓ ✓ ✓ ✆ ✁ ❁ : situation suppressed expressions that do

not mention the � fluent (they can be objective sentences, but they can also have occurrences

of free object variables, in the latter case, we have a sensing action term with variables as ar-

guments). In other words, no reification is needed in these sensing actions. In addition, let the

actions ✕ ✦ ✘ ✕ ✦ ✞ ✁ ☎ ✁ ✆ � ☎ ✁ ✠ , ... , ✕ ✦ ✘ ✕ ✦ ✞ ✁ ☎ ☛ ✆ � ☎ ☛ ✠ make the fluent ✰ true if in situation ✕ conditions

(they are formulas uniform in ✕ ) � ✎✍ ✞☞✖✢ ✆ � ☎ ✁ ✆ ✕✡✠ , ... ,
� ✎✠ ✞☞✖✢ ✆ � ☎ ☛ ✆ ✕✡✠ hold, respectively, and the ac-

tions from the following subset ✕ ✦ ✘ ✕ ✦ ✞ ✁ ✁ ✁ ✆ �✄✁ ✁ ✠ , ... , ✕ ✦ ✘ ✕ ✦ ✞ ✁ ✁ ✞ ✆ �✝✁ ✞ ✠ make the fluent ✰ false if,

respectively, conditions (they are also formulas uniform in ✕ ) � ❆✍ ✞☞✖✢ ✆ �✄✁ ✁ ✆ ✕✡✠ , ... ,
� ❆✆ ✞ ✖✢ ✆ �✄✁ ✞ ✆ ✕✡✠

hold in situation ✕ . To account for effects of sense actions we suggest to modify the successor

state axiom for ✰ :

✰✧✞☞✖✢ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠✓✒ ✌ ✎✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ ✝
✞✟✒✟� ☎ ✁ ✠ ☎ ❃ sense ✞ ✁ ☎ ✁ ✆ � ☎ ✁ ✠ ☛ � ✎✍ ✞☞✖✢ ✆ � ☎ ✁ ✆ ✕✡✠ ✝ ✓✔✓✔✓ ✝ ✞✟✒✟� ☎ ☛ ✠ ☎ ❃ sense ✞ ✁ ☎ ☛ ✆ � ☎ ☛ ✠ ☛ � ✎✠ ✞☞✖✢ ✆ � ☎ ☛ ✆ ✕✡✠ ✝

✰✧✞☞✖✢ ✆ ✕✡✠ ☛ ✑ ✌
❆✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠ ☛

✞ ✑ ✞✟✒✟�✄✁ ✁ ✠ ☎ ❃ sense ✞ ✁ ✁ ✁ ✆ �✄✁ ✁ ✠ ☛ � ❆✍ ✞☞✖✢ ✆ �✄✁ ✁ ✆ ✕✡✠ ☛ ✓✔✓✔✓ ☛ ✑ ✞ ✒✟�✝✁ ✞ ✠ ☎ ❃ sense ✞ ✁ ✁ ✞ ✆ �✄✁ ✞ ✠ ☛ � ❆✆ ✞☞✖✢ ✆ �✝✁ ✞ ✆ ✕✡✠✭✠ ✆
(3.1)

where we assume that sense actions mentioned in the axiom are all the sense actions that may

have an effect on fluent ✰ (this is the causal completeness assumption that is needed to solve

the frame problem; a similar assumption was formulated for physical actions in [Reiter, 1991],

see also Section 2.1.1 for details). The following example illustrates how modified successor

state axioms can be written using sense actions.

Example 3.2.1: Consider the following successor state axiom for the fluent ✂ ✬✏☎✿✣ ✦ ✘✚✞ ✢ ✠ , where

✢ is an object that can be smashed or repaired by an agent; this axiom has occurrences of

physical actions only:

✂ ✬✏☎✏✣ ✦ ✘❄✞ ✢ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ☎ ❃ ✕ ✲ ☎ ✕ �✂✞ ✢ ✠ ✝ ✂ ✬✿☎✏✣ ✦ ✘❄✞ ✢ ✆ ✕✡✠ ☛ ☎✝✆❃ ✬ ✦ ✑ ☎ ✞ ✬✮✞ ✢ ✠ ✓

Let us assume that our agent has a sensor that can report whether an object is occluded or

broken:

✕ ✦ ✘ ✕ ✦ ✞✭✞ ✒✎✣✮✠ ✓ ☎★✾ ✾ ✷ ✓ ✄ ✦ ✄ ✞ ✢ ✆ ✣✮✠ ✝ ✂ ✬✿☎✏✣ ✦ ✘✚✞ ✢ ✠ ✆ � ✍ ✠ ✆
where � ✍ may have values YES or NO and ☎★✾ ✾ ✷ ✓ ✄ ✦ ✄ ✞ ✢ ✆ ✣ ✆ ✕★✠ is a fluent that holds in ✕ if ✢ is

occluded by an object ✣ (if the agent looks at ✢ from the current viewpoint).6 The agent has also

6Note that the first argument
✁✁�✄✂ ☛ ✘ ✖✆☎✝☎✟✞✡✠ ✔ ☎ ✔ ✁ ✢ ☎☛✂ ☛✌☞✎✍ ✄✛✖✑✏ ☎✓✒ ✁ ✢ ☛ of the sense action is not a reified formula, but

rather a name of this particular action that has two variables, ✢ and ✣✄✔ , as its arguments
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an internal power source provided by an electric battery. There is no model of how the battery

voltage (characterized by the fluent �✝☎ ✷ ✕ ☎ ✪ ✦ ✞ � ✑✛✆ ✕✡✠ , where � ✑ is a nominal value of the voltage)

changes when the agent executes physical actions in the world, but the agent can measure the

voltage any time by doing the sense action ✕ ✦ ✘ ✕ ✦ ✞✜✛ ☎ ✕ ✕ ✦ ✬ ✣ ✆ � ✑ ✠ (we can assume that when the

battery is connected to a charger, the upper limit on voltage is 24). Let ✷ ☎★☎✏✣ ✞ ✘ ✪ ✕ ✕ ✞ ✢ ✆ ✕✡✠ be a

fluent that holds if the agent looks at the object ✢ ; then the precondition axioms for the sense

actions can be

✞✍✌ � ✍✚✆ ✕✡✠ ✓ ✁ ☎ ✕ ✕✆✞ ✕ ✦ ✘ ✕ ✦ ✞✽✞✟✒✎✣✩✠ ✓ ☎✏✾ ✾ ✷ ✓ ✄ ✦ ✄ ✞ ✢ ✆ ✣✩✠ ✝ ✂ ✬✿☎✏✣ ✦ ✘✚✞ ✢ ✠ ✆ � ✍ ✠ ✆ ✕★✠ ✒ ✷ ☎★☎✿✣ ✞ ✘ ✪ ✕ ✕ ✞ ✢ ✆ ✕✡✠
✞✍✌ � ✑✛✆ ✕✡✠ ✓ ✁ ☎ ✕ ✕✆✞ ✕ ✦ ✘ ✕ ✦ ✞✜✛ ☎ ✕ ✕ ✦ ✬ ✣ ✆ � ✑ ✠ ✆ ✕✡✠ ✒ � ✡ � ✑ ✡ ❋ ✄ ✓

Note that the values � ✍ that can be measured by sensors are not constrained on the right hand

side. (We omit precondition axioms for physical actions ✕ ✲ ☎ ✕ �✌✞ ✢ ✠ ✆ ✬ ✦ ✑ ☎ ✞ ✬✩✞ ✢ ✠ because they

are not essential for this example.)

The modified successor state axiom for ✂ ✬✏☎✏✣ ✦ ✘ accounts for sense actions in addition to

physical actions:

✂ ✬✏☎✏✣ ✦ ✘❄✞ ✢ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠✓✒ ☎ ❃ ✕ ✲ ☎ ✕ �✌✞ ✢ ✠ ✝
☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✽✞✟✒✎✣✩✠ ✓ ☎✏✾ ✾ ✷ ✓ ✄ ✦ ✄ ✞ ✢ ✆ ✣✩✠ ✝ ✂ ✬✏☎✿✣ ✦ ✘❄✞ ✢ ✠ ✆ YES ✠ ☛ ✑ ✞✟✒✎✣✩✠✽☎★✾ ✾ ✷ ✓ ✄ ✦ ✄ ✞ ✢ ✆ ✣ ✆ ✕✡✠ ✝

✂ ✬✿☎✏✣ ✦ ✘❄✞ ✢ ✆ ✕✡✠ ☛ ✍ ☎✝✆❃❅✬ ✦ ✑ ☎ ✞ ✬✩✞ ✢ ✠ ☛ ☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞✽✞✟✒✎✣✩✠ ✓ ☎✏✾ ✾ ✷ ✓ ✄ ✦ ✄ ✞ ✢ ✆ ✣✩✠ ✝ ✂ ✬✏☎✏✣ ✦ ✘❄✞ ✢ ✠ ✆ NO ✠✟✎ ✓
�✟☎ ✷ ✕ ☎ ✪ ✦ ✞ � ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✜✛ ☎ ✕ ✕ ✦ ✬ ✣ ✆ �✟✠ ✝ �✝☎ ✷ ✕ ☎ ✪ ✦ ✞✠� ✆ ✕✡✠ ☛ ✑ ✞ ✒✟� ☛ ✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✜✛ ☎ ✕ ✕ ✦ ✬ ✣ ✆ � ☛ ✠ ✓

As we see from the example, if an axiomatizer works with actions that sense specific ob-

jective properties (e.g., ✞✟✒✎✣✩✠ ✓ ☎✏✾ ✾ ✷ ✓ ✄ ✦ ✄ ✞ ✢ ✆ ✣✩✠ ✝ ✂ ✬✏☎✿✣ ✦ ✘✚✞ ✢ ✠ ), then the modified successor state

axiom can be easily obtained from the given successor state axiom for a fluent, but in the case

of sensing actions ✕ ✦ ✘ ✕ ✦ ✞ ✁ ✆ �✩✠ that have to detect a truth value � of an unspecified ✁ , we can de-

scribe only a generic form of a modified successor state axiom: the precise form of expressions
� ❆✍ ✞☞✖✢ ✆ �✝✁ ✁ ✆ ✕✡✠ , ... ,

� ❆✆ ✞☞✖✢ ✆ �✄✁ ✞ ✆ ✕✡✠ and
� ✎✍ ✞ ✖✢ ✆ � ☎ ✁ ✆ ✕✡✠ , ... ,

� ✎✠ ✞ ✖✢ ✆ � ☎ ☛ ✆ ✕★✠ is domain dependent. How-

ever, for one particular case, when ✁ is a situation suppressed fluent expression, it is possible to

specify precisely all modified successor state axioms. This case is also interesting because for

sense actions of this restricted form, we can establish the correspondence between solutions of

the forward projection problem formulated in [Reiter, 2001b] and in [Soutchanski, 2001a].

For this reason, we introduce here two mutually exclusive sets of sense actions. One of

them will be used in theories with the � fluent, another set of sensing actions with a run time

argument will be used in theories without the � fluent. In the first set (see [Reiter, 2001b]),

all sense actions have the form ✕ ✦ ✘ ✕ ✦ ✆ ✞☞✖✢ ✠ , where ✂ ✞☞✖✢✻✠ is an objective situation-suppressed
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expression. Below we pay attention to a strict subset of this set: sense-fluent actions which are

a special case of previously mentioned sensing actions. Thus, we consider only sense actions

where ✂ ✞☞✖✢ ✠ is a situation-suppressed relational fluent symbol: ✕ ✦ ✘ ✕ ✦ ✡ ✁ ✞☞✖✢ ✍ ✠ , ..., ✕ ✦ ✘ ✕ ✦ ✡ ✞ ✞ ✖✢ ✆ ✠ ,
where ✲ is the number of fluents (we call them usual sensing actions). The second set con-

sists of all those substitutions of a binary action term ✕ ✦ ✘ ✕ ✦ ✞✂✁ ✆ �✟✠ , which have a situation-

suppressed relational fluent atom as their first argument and a truth value constant as their

second argument (we call these run-time sensing actions).7 So, we consider two distinct

subsets of run-time sensing actions and we consider ✲ distinct action terms in each subset:

✕ ✦ ✘ ✕ ✦ ✞ ✰ ✍ ✞☞✖✢ ✍ ✠ ✆ �✟✠ ,..., ✕ ✦ ✘ ✕ ✦ ✞ ✰ ✆ ✞ ✖✢ ✆ ✠ ✆ �✟✠ , where � ☎ ✄ YES
✆
NO ✆ .8

In the next subsection, we formulate the syntactic form of two types of basic action theories

(each of them uses its own set of sense actions and either has or does not have an epistemic

fluent � ✞ ✗✙✆ ✕✡✠ ), then we formulate the forward projection task in each of these basic action

theories, and finally, we formulate and prove the correspondence between solutions of these

two different forward projection tasks.

3.2.2 Basic Action Theories

We consider two types of basic action theories:

� ✁ ❃ � ✁✝✟✝ ✁ � ✁☛✔✓ ✁ � ✁✌✏✎ ✁ ✁ ✂ ❁✆☎ ☞ ✁ ✟ ✁ ✁ � ✠ ❁☞☛
� ❃ � ✝✟✝ ✁ � ☛✔✓ ✁ � ✌✏✎ ✁ ✟ ✁ � ✠ ❁☞☛

The differences and correspondences between � ✁ and � are the following. Sense actions

✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞☞✖✢ ☎ ✠ ✆ �✟✠ may occur only in � and sense actions ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖✢ ☎ ✠ may occur only in � ✁ ; a

physical action ✕ ✞☞✖✢ ✠ occurs in � if and only if it occurs in � ✁ .

The theory � ✁ above is a basic action theory with knowledge as characterized in Section

2.1.3. In particular, a set � ✁✝✟✝ includes successor state axioms that have the syntactic form (2.6)

and mention physical actions only; this set includes also the successor state axiom (2.14) for

the epistemic fluent � ✞ ✕ ☛✖✆ ✕✡✠ that have only occurrences of sense actions. In contrast, the set

� ✝✟✝ does not include a successor state axiom for � fluent. As we discussed in Section 2.1.1,

in the general case the successor state axioms are logically equivalent to the conjunction of

both effect axioms and state constraints (2.7), if the causal completeness assumption holds.

In this general case, the modified successor state axioms in � ✝ ✝ can be quite intricate (we

7Notice that we do not allow more expressive sense actions which may have quantifiers over object variables

in objective expression � .
8Thus, we assume that all fluents are directly observable. We would have less sense actions if some fluents

were not directly observable, i.e., data about their truth values were not available to sensors.
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consider an example in the next section). Let us consider here only the simpler case when

the domain theory has no state constraints, i.e., there is no uniform situation calculus formula

✁ ✞ ✕✡✠ with ✕ as its only free variable such that the universal closure ✌ ✕ ✓ ✁☛✞ ✕✡✠ is entailed by � ✝✟✝
(because logically valid sentences are trivially entailed by � ✝✟✝ we assume here that ✁ ✞ ✕★✠ is not

a logically valid sentence). In this case, there are no causal dependencies between fluents9 , all

fluents evolve independently from each other and the axiom (3.1) has the much simpler form

(3.2) below. All successor state axioms in � ✝✟✝ mention both physical and sense actions (recall

that only sense actions ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞☞✖✢ ☎ ✠ ✆ �✩✠ may occur in � ✝✟✝ ). Every axiom is obtained by the

following transformation from the corresponding successor state axiom (2.6) in � ✁✝✟✝ :

✰✧✞☞✖✢ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠ ✒
✌ ✎✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ ✝ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✜✰✧✞☞✖✢✻✠ ✆ YES ✠ ✝ (3.2)

✰✧✞☞✖✢ ✆ ✕✡✠ ☛ ✞ ✑ ✌
❆✡ ✞ ✖✢ ✆✟☎✝✆ ✕✡✠ ☛ ☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ✞ ✖✢✻✠ ✆ NO ✠✔✠ ✓

In other words, the fluent ✰ ✞☞✖✢ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ is true iff ☎ is a physical action and the condition

✌ ✎✡ ✞☞✖✢ ✆✡☎ ✆ ✕★✠ holds or ☎ is a sense action and the sensors tell that the fluent is true or the fluent

was true in ✕ and neither ✌
❆✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ is true nor ☎ is a sense action determining that the fluent

is false.

� ☛✔✓ is a set of action precondition axioms, one for each primitive action ✕✢✞ ✖✢✻✠ , having the

syntactic form

✁ ☎ ✕ ✕✆✞✔✕ ✞☞✖✢ ✠ ✆ ✕★✠✓✒ ✘ ✙✚✞☞✖✢ ✆ ✕✡✠ ✆
where ✘✚✙✚✞☞✖✢ ✆ ✕★✠ is an objective formula with free variables among ✖✢ ✆ ✕ ✆ and whose only situ-

ation term is ✕ . Action precondition axioms characterize (via the formula ✘ ✙ ✞☞✖✢ ✆ ✕✡✠ ) the con-

ditions under which it is possible to execute action ✕✢✞☞✖✢ ✠ in situation ✕ . If ✕ ✞☞✖✢✻✠ is an action

✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖✢ ☎ ✠ ✆ �✟✠ , then the right hand side of this axiom does not mention � : as we have argued

in the previous section, any boolean value � must be possible in any situation ✕ when the agent

executes a sense action ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞☞✖✢ ☎ ✠ ✆ �✩✠ .
� ✁☛✔✓ is also a set of action precondition axioms. These coincide with axioms in � ☛✔✓ for phys-

ical and sense actions, i.e., they may not mention subjective expressions with Knows ✞ ✁ ✆ ✕✡✠ .
� ✁✌✏✎ is a set of first order sentences whose only situation terms are �✂✁ , and they are all of

the form Knows ✞✁� ☎ ✆ �✻✁✼✠ , ✞ ❃ ❉ ✆✔✓✔✓✔✓✚✆ ✘ , where each � ☎ is objective. In other words, the ini-

tial database consists exclusively of sentences declaring what the agent knows about the world

9This means also that under the causal completeness assumption, the successor state axioms are logically

equivalent to positive and negative effect axioms only.
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she inhabits, but there are no objective sentences, and there are no sentences declaring what

the agent knows about what she knows. Note that beside the restriction that each � ☎ is objec-

tive, formulas � ☎ can be arbitrary and may include disjunctions, existential quantifiers and any

boolean combinations of fluents. This means that the agent may have incomplete knowledge

about the world, but the theory completely characterizes what incomplete knowledge the agent

has (e.g., Knows ✞ ✁ ✆ �☞✁✼✠ ✝ Knows ✞ � ✆ �✻✁ ✠ is not allowed). Note that there can be fluents about

which nothing is known in the initial situation. So we can simply suppose that � ✁✌✒✎ consists of

a single sentence of the form Knows ✞ � ✆ � ✁✥✠ ✆ where � is objective (possibly, it is a conjunction

of other objective sentences). Then, �✍✌✒✎❀❃ � ✍ ✍ �✻✁✭✎ ☛ �✂�✂� ☛ � ❁ ✍ �✻✁✭✎ , i.e., we can simply sup-

pose that a special class of initial databases consists of a single objective sentence of the form

�✌✍ �✻✁✹✎ . Note how � ✌✒✎ and � ✁✌✏✎ correspond to each other; we consider this special class of initial

databases because it is considered in [Reiter, 2001b] and we are interested in establishing the

correspondence between [Reiter, 2001b] and [Soutchanski, 2001a].10

✁ ☎ ❁ ☎ ☞ includes the reflexivity axiom (2.18); as we will see, in this case Lemma 3.4.9 holds.

Theories like �✂✁ characterized by all these assumptions are called epistemically accurate the-

ories in [De Giacomo et al., 2002, Sardina et al., submitted], meaning that what is known by

the agent accurately reflects what the theory says about the dynamic system.

� ✠ ❁✁☛ is the set of unique names axioms for actions. These will include unique names

axioms for sense actions.

3.3 A blocks world example

In this section, we consider an example of reasoning about effects of sequences of actions

using theories � and �
✁

. In particular, we rely on a standard axiomatization of the blocks

world with successor state and action precondition axioms considered in 2.1.1, but we add an

agent argument to all physical action terms. Assume that there is a robot who wants to put

all blocks on the table (initially, there may be some towers of blocks) and possibly there are

several other agents (who act independently and can also move blocks from one location to

another). The robot is not able to observe occurrences of their actions directly, but the robot

can notice effects of their actions by sensing values of fluents. We leave sense actions without

an agent argument because we attribute them to the robot only. We use the following function

10Another reason for considering
✡✄✂
☎✝✆ of this special form is that it seems reasonable to start with an epis-

temically uniform initial theory and pay attention to epistemically correct theories by introducing the axiom of

reflexivity, see Lemma 3.4.9.
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and predicate constants.

Fluents

✎ ✖✙✘❄✞ ✢ ✆ ✣ ✆ ✕✡✠ : Block ✢ is on block ✣ , in situation ✕ .
✎✄✂✙✷✫✦✛☎ ✬✩✞ ✢ ✆ ✕★✠ : Block ✢ has no other blocks on top of it, in situation ✕ .
✎ ✖✙✘ ✕ ☎✄✂✼✷✜✦ ✞ ✢ ✆ ✕✡✠ : Block ✢ is on the table in ✕ .

Actions

✎ ✲ ☎✁� ✦ ✞✫✪ ✆ ✢ ✆ ✣✩✠ : Agent ✪ moves block ✢ onto block ✣ , provided both are clear.

✎ ✲ ☎✁� ✦ ✳ ☎ ✳ ☎✄✂ ✷✫✦ ✞✯✪ ✆ ✢ ✠ : Agent ✪ moves block ✢ onto the table, provided ✢ is clear and is

not on the table.

✎ ✕ ✦ ✘ ✕ ✦✁�✮❁ ☞ ☛ ✠✄✂ ✆ ✞ ✢ ✠ : Sense whether block ✢ is on the table.

✎ ✕ ✦ ✘ ✕ ✦ ✂☎✂ ✆ ☛ ✝✡✞ ✢ ✠ : Sense whether block ✢ is clear.

✎ ✕ ✦ ✘ ✕ ✦✁�✮❁ ✞ ✢ ✆ ✣✩✠ : Sense whether block ✢ is on top of ✣ .

These last three ‘usual’ sensing actions can occur only in � ✁ . The outcome of all afore-

mentioned sense actions can be either “yes” or “no”. In the case when the outcome of

a sense action is “yes”, we would like to add knowledge about the fluent corresponding

to the subscript of the sense action to the original theory � ✁ . Object arguments of this

fluent coincide with object arguments of the sense action, and the situational argument is

determined by the situation when the sense action has been executed. In the case when

the outcome of a sense action is “no”, we would like to add knowledge about the nega-

tion of the fluent corresponding to the subscript of the sense action to the original theory

� ✁ (arguments of the fluent are determined similarly to the previous case). By sup-

plementing � ✁ with new formulas, we are able to repeatedly use information obtained

from sensors in subsequent reasoning. The following three ‘run-time’ sensing actions

can occur only in � .

✎ ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✘ ✕ ☎✄✂✼✷✫✦ ✞ ✢ ✠ ✆ �✟✠ : Connect to a sensor, if block ✢ is on the table, then � has the

value YES, if not, then � is NO.
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✎ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ✷✫✦✛☎ ✬✮✞ ✢ ✠ ✆ �✟✠ : Ask a sensor whether the block ✢ is clear; if it is, then the value �

is YES, otherwise � is NO.

✎ ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✘❄✞ ✢ ✆ ✣✩✠ ✆ �✟✠ : Query a sensor whether ✢ is on top of ✣ ; if it is, then � is YES,

otherwise � is NO.

We start our examples with considering the theory �
✁

and later in this section we consider the

theory � . The theory �
✁

includes the standard set of unique name axioms for actions and the

following axioms.

Successor state axioms ( ✤ ✁✝✟✝ )

✖ ✘❄✞ ✢ ✆ ✣ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ✞ ✒✟✪✮✠ ✓✟☎ ❃ ✲ ☎✁� ✦ ✞✫✪ ✆ ✢ ✆ ✣✩✠ ✝
✖✙✘❄✞ ✢ ✆ ✣ ✆ ✕✡✠ ☛ ✑ ✞✟✒✟✪✩✠ ✓✟☎ ❃ ✲ ☎☎� ✦ ✳✵☎✡✳ ☎✄✂✼✷✫✦ ✞✫✪ ✆ ✢ ✠ ☛ ✑ ✞✟✒✟✪ ✆ ✂ ✠ ☎ ❃ ✲ ☎☎� ✦ ✞✫✪ ✆ ✢ ✆ ✂ ✠ ✓

✖ ✘ ✕ ☎✄✂✼✷✫✦ ✞ ✢ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒ ✞ ✒✟✪✮✠ ✓ ☎ ❃ ✲ ☎☎� ✦ ✳✵☎✡✳ ☎✄✂✼✷✫✦ ✞✫✪ ✆ ✢ ✠ ✝
✖ ✘ ✕ ☎ ✂✼✷✫✦ ✞ ✢ ✆ ✕★✠ ☛ ✑ ✞ ✒✟✪ ✆ ✣✮✠ ✓✟☎ ❃ ✲ ☎✁� ✦ ✞✯✪ ✆ ✢ ✆ ✣✩✠ ✓

✂ ✷✫✦✛☎ ✬✮✞ ✢ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠✓✒ ✞✟✒✟✪ ✆ ✣ ✆ ✂ ✠ ✓ ✍ ☎ ❃ ✲ ☎☎� ✦ ✞✯✪ ✆ ✣ ✆ ✂ ✠ ✝ ☎ ❃ ✲ ☎☎� ✦ ✳✵☎✡✳ ☎✄✂✼✷✫✦ ✞✫✪ ✆ ✣✩✠✟✎ ☛ ✖✙✘❄✞ ✣ ✆ ✢ ✆ ✕★✠ ✝
✂ ✷✫✦✛☎ ✬✩✞ ✢ ✆ ✕✡✠ ☛ ✑ ✞✟✒✟✪ ✆ ✞ ✠ ☎ ❃ ✲ ☎☎� ✦ ✞✫✪ ✆ ✞ ✆ ✢ ✠ ✓

Note that these axioms have no occurrences of sense actions. A version of the axiom (2.17) is

also included in ✤ ✁✝✟✝ : it mentions only actions ✕ ✦ ✘ ✕ ✦ �✮❁ ☞ ☛ ✠✄✂ ✆ ✞ ✢ ✠ , ✕ ✦ ✘ ✕ ✦ ✂☎✂ ✆ ☛ ✝★✞ ✢ ✠ , ✕ ✦ ✘ ✕ ✦✁�✮❁ ✞ ✢ ✆ ✣✩✠ .

Action precondition axioms ( ✤ ✁☛ ✓ )
✁ ☎ ✕ ✕✆✞✜✲ ☎✁� ✦ ✞✫✪ ✆ ✢ ✆ ✣✩✠ ✆ ✕★✠ ✒ ✂ ✷✫✦✛☎ ✬✩✞ ✢ ✆ ✕✡✠ ☛ ✂✙✷✫✦✛☎ ✬✩✞ ✣ ✆ ✕✡✠ ☛ ✢ ✆❃ ✣ ✓
✁ ☎ ✕ ✕✆✞✜✲ ☎✁� ✦ ✳✵☎✡✳ ☎✄✂✼✷✜✦ ✞✯✪ ✆ ✢ ✠ ✆ ✕✡✠✓✒ ✂✙✷✫✦✛☎ ✬✩✞ ✢ ✆ ✕★✠ ☛ ✑ ✖✙✘ ✕ ☎✄✂✼✷✫✦ ✞ ✢ ✆ ✕✡✠ ✓

In this example, all sense actions are always possible, i.e., the right hand sides of precondition

axioms for sense actions are true.

Let the initial situation be such that Knows ✞ ✂✙✷✫✦✛☎ ✬✩✞ ✛✢✠ ✆ � ✁✼✠ , nothing else is known about

which blocks are where and whether they are clear or not. In addition, there are state constraints

associated with the blocks world, and we must suppose the robot knows that these constraints

hold initially11:

Knows ✞✭✞✏✌ ✢ ✆ ✣✩✠ ✓ ✖ ✘❄✞ ✢ ✆ ✣✩✠ ✠ ✑ ✖ ✘❄✞ ✣ ✆ ✢ ✠ ✆ �✻✁✥✠ ✆
11As we mentioned in Example 2.1.1, one can prove by induction over situations that these state constraints

hold in any situation
✝
.
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Knows ✞✭✞✏✌ ✢ ✆ ✣ ✆ ✂ ✠ ✓ ✖ ✘✚✞ ✣ ✆ ✢ ✠ ☛ ✖ ✘❄✞ ✂✎✆ ✢ ✠ ✠ ✣ ❃ ✂✎✆ �✻✁ ✠ ✆
Knows ✞✭✞✏✌ ✢ ✆ ✣ ✆ ✂ ✠ ✓ ✖ ✘✚✞ ✢ ✆ ✣✩✠ ☛ ✖ ✘❄✞ ✢ ✆ ✂ ✠ ✠ ✣ ❃ ✂✎✆ �✻✁ ✠ ✆
Knows ✞✭✞✏✌ ✢ ✠ ✓ ✖ ✘ ✕ ☎ ✂✼✷✫✦ ✞ ✢ ✠ ✒ ✑ ✞✟✒✎✣✩✠✽✖✙✘❄✞ ✢ ✆ ✣✮✠ ✆ �☞✁✹✠ ✆
Knows ✞✭✞✏✌ ✢ ✠ ✓ ✂ ✷✫✦✛☎ ✬✩✞ ✢ ✠ ✒ ✑ ✞ ✒✎✣✮✠ ✖ ✘✚✞ ✣ ✆ ✢ ✠ ✆ �✻✁✭✠ ✓

The conjunction of axioms about the initial situation is Knows ✞ � ✆ �✌✁✼✠ . Because this set of

axioms is weak (it does not even entail whether block ✛ is on the table or not), we are intending

to augment �
✁

with axioms representing sensory information whenever the robot does one of

sense actions.

To illustrate reasoning about effects of both physical and sense actions we consider two

different scenarios. The first scenario provides an example of ‘belief expansion’ (beliefs change

as the result of new information acquired). The second scenario provides an example of ‘belief

update’ (beliefs change as the result of the realization that the world has changed).

First scenario.

In the theory �✂✁ we are primarily interested in solving the forward projection tasks of the form

� ✁ ✄ ❃ Knows ✞ ✂ ✆ � ✠ , where ✂ is objective and � is a ground situation term. Because � ✁✌✒✎ in-

cludes neither Knows ✞ ✑ ✂✙✷✫✦✛☎ ✬✩✞✔✕ ✠ ✆ �☞✁ ✠ , nor Knows ✞ ✖ ✘✚✞ ✛ ✆ ✕ ✠ ✆ �☞✁✼✠ , nor Knows ✞ ✑ ✖ ✘❄✞✜✛ ✆ ✕ ✠ ✆ �☞✁✥✠ ,
one can easily observe that � ✁ ✆✄ ❃ Knows ✞ ✑ ✂✙✷✜✦✛☎ ✬✩✞✔✕ ✠ ✆ �✻✁ ✠ , � ✁ ✆✄ ❃ Knows ✞✜✖ ✘❄✞✜✛ ✆ ✕ ✠ ✆ �✻✁✥✠ ,

� ✁ ✆✄ ❃ Knows ✞ ✑ ✖ ✘✚✞ ✛ ✆ ✕ ✠ ✆ �☞✁✹✠ ✓ Suppose that the robot ✸ does the sensing action ✕ ✦ ✘ ✕ ✦ �✮❁ ✞ ✛ ✆ ✕ ✠
to determine whether the block ✛ is on top of the block ✕ , and suppose that the sensor replies

‘yes’, then we add Knows ✞✜✖ ✘✚✞ ✛ ✆ ✕ ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ �✔❁ ✞✜✛ ✆ ✕ ✠ ✆ �✻✁✼✠✽✠ to �
✁

. This is a case of belief

expansion. This properly augmented set of axioms is now sufficient to solve the following set

of the forward projection tasks:

� ✁ ✁ Knows ✞✜✖ ✘❄✞✜✛ ✆ ✕ ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✁�✔❁ ✞✜✛ ✆ ✕ ✠ ✆ �✻✁✼✠✽✠ ✄ ❃
Knows ✞ ✑ ✂ ✷✫✦✛☎ ✬✩✞✔✕ ✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ �✮❁ ✞ ✛ ✆ ✕ ✠ ✆ �✻✁✼✠✭✠ ✆

� ✁ ✁ Knows ✞✜✖ ✘❄✞✜✛ ✆ ✕ ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✁�✔❁ ✞✜✛ ✆ ✕ ✠ ✆ �✻✁✼✠✽✠ ✄ ❃
Knows ✞ ✂✙✷✜✦✛☎ ✬✩✞✔✕ ✠ ✆ ✄✆☎✟✞✜✲ ☎✁� ✦ ✳✵☎ ✳ ☎ ✂✼✷✫✦ ✞ ✸ ✆ ✛ ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✁�✮❁ ✞✜✛ ✆ ✕ ✠ ✆ �✻✁✼✠✽✠✭✠ ✆

� ✁ ✁ Knows ✞ ✖✙✘❄✞✜✛ ✆ ✕ ✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ �✮❁ ✞ ✛ ✆ ✕ ✠ ✆ �✻✁✼✠✭✠ ✄ ❃
Knows ✞ ✑ ✖ ✘✚✞ ✛ ✆ ✕ ✠ ✆ ✄✆☎✟✞✜✲ ☎✁� ✦ ✳ ☎ ✳ ☎✄✂ ✷✫✦ ✞ ✸ ✆ ✛ ✠ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦✁�✮❁ ✞ ✛ ✆ ✕ ✠ ✆ �✻✁✥✠✭✠✭✠ ✓

Second scenario.

Let the robot do the following sequence of actions. First, the robot senses whether ✛ is on the

table or not; suppose, that ✛ is not on the table. In this case, because it is not known initially

where ✛ is located we want to add the axiom Knows ✞ ✑ ✖✙✘ ✕ ☎✄✂✼✷✫✦ ✞ ✛ ✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ �✮❁ ☞ ☛ ✠✄✂ ✆ ✞ ✛ ✠ ✆ �✻✁✼✠✽✠
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to � ✁ : this axiom will supplement axioms about the initial situation. In the sequel, we denote

�✝✆ ❃ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦✁�✮❁ ☞ ☛ ✠✄✂ ✆ ✞✜✛ ✠ ✆ �✻✁✼✠✭✠ . Second, the robot ✸ moves the block ✛ to the table; let’s de-

note the resulting situation � � ❃ ✄✆☎✟✞✜✲ ☎✁� ✦ ✳ ☎ ✳ ☎✄✂ ✷✫✦ ✞ ✸ ✆ ✛ ✠ ✆ �✝✆ ✠ . We are interested in solving

the following entailment task:

�
✁ ☛ Knows ✞ ✑ ✖ ✘ ✕ ☎ ✂✼✷✫✦ ✞ ✛✢✠ ✆ �✝✆ ✠ ✄ ❃ Knows ✞ ✖✙✘ ✕ ☎✄✂✼✷✫✦ ✞ ✛ ✠ ✆ � � ✠ ✓ (3.3)

One can prove that the formula at the right hand side is entailed by axioms on the left hand side.

Now, suppose that someone else moves block ✛ from the table onto another block and suppose

that the robot did not observe the occurrence of this action (it was looking elsewhere). In other

words, from the robot’s perspective the current situation is still � � . This means that in the

second scenario we allow unobservable exogenous actions and the robot works in a partially

observable environment. At this moment, if the robot does the sense action ✕ ✦ ✘ ✕ ✦ �✮❁ ☞ ☛ ✠✄✂ ✆ ✞ ✛✢✠ ,
then the outcome from sensors is ‘no’. One can prove

Knows ✞ ✑ ✖ ✘ ✕ ☎ ✂✼✷✫✦ ✞ ✛✢✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✁�✔❁ ☞ ☛ ✠✄✂ ✆ ✞✜✛ ✠ ✆ � � ✠✭✠
is inconsistent with Knows ✞✜✖ ✘ ✕ ☎✄✂✼✷✫✦ ✞ ✛ ✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ �✮❁ ☞ ☛ ✠✄✂ ✆ ✞✜✛ ✠ ✆ � � ✠✭✠ which is a logical conse-

quence of (3.3) and the successor state axiom for knowledge (2.14).

Let us consider now the theory � . It includes the following set of successor state axioms.

✖ ✘❄✞ ✢ ✆ ✣ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ✒✟✪ ✞ ☎ ❃ ✲ ☎✁� ✦ ✞✫✪ ✆ ✢ ✆ ✣✩✠✭✠ ✝ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✖✙✘❄✞ ✢ ✆ ✣✮✠ ✆ YES ✠ ✝

✖ ✘❄✞ ✢ ✆ ✣ ✆ ✕✡✠ ☛ ✑ ✒✟✪ ✞ ☎ ❃ ✲ ☎✁� ✦ ✳✵☎ ✳ ☎ ✂✼✷✫✦ ✞✫✪ ✆ ✢ ✠✽✠ ☛ ✑ ✒✟✪ ✆ ✂ ✞ ☎ ❃ ✲ ☎✁� ✦ ✞✯✪ ✆ ✢ ✆ ✂ ✠✽✠ ☛
☎✝✆❃ ✕ ✦ ✘ ✕ ✦ ✞ ✖✙✘❄✞ ✢ ✆ ✣✮✠ ✆ NO ✠ ☛

✑ ✞✟✒ ✂ ✠ ✓ ✍ ✂ ✆❃ ✢ ☛ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✖✙✘❄✞ ✂✎✆ ✣✩✠ ✆ YES ✠ ✎ ☛ ✑ ✞✟✒✟✞ ✠ ✓ ✍ ✞ ✆❃ ✣ ☛ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✘❄✞ ✢ ✆ ✞ ✠ ✆ YES ✠ ✎ ☛
☎✝✆❃ ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✘ ✕ ☎✄✂✼✷✫✦ ✞ ✢ ✠ ✆ YES ✠ ☛ ☎✝✆❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂✙✷✫✦✛☎ ✬✮✞ ✣✮✠ ✆ YES ✠ ✓

✖ ✘ ✕ ☎✄✂✼✷✫✦ ✞ ✢ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒ ✒✟✪ ✞ ☎ ❃ ✲ ☎☎� ✦ ✳✵☎ ✳ ☎✄✂✼✷✫✦ ✞✫✪ ✆ ✢ ✠✽✠ ✝
☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✘ ✕ ☎ ✂✼✷✫✦ ✞ ✢ ✠ ✆ YES ✠ ✝

✖ ✘ ✕ ☎✄✂ ✷✫✦ ✞ ✢ ✆ ✕✡✠ ☛ ✑ ✞✟✒✟✪ ✆ ✣✩✠ ✓✟☎ ❃ ✲ ☎✁� ✦ ✞✫✪ ✆ ✢ ✆ ✣✩✠ ☛
☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✘ ✕ ☎ ✂✼✷✫✦ ✞ ✢ ✠ ✆ NO ✠ ☛ ✑ ✞✟✒✟✞ ✠ ✓ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✖ ✘✚✞ ✢ ✆ ✞ ✠ ✆ YES ✠ ✓

✂ ✷✫✦✛☎ ✬✮✞ ✢ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠ ✒ ✞✟✒✟✪ ✆ ✣ ✆ ✂ ✠ ✓ ✍ ☎ ❃ ✲ ☎☎� ✦ ✞✯✪ ✆ ✣ ✆ ✂ ✠ ✝ ☎ ❃ ✲ ☎✁� ✦ ✳ ☎ ✳ ☎✄✂ ✷✫✦ ✞✯✪ ✆ ✣✮✠✟✎ ☛ ✖ ✘✚✞ ✣ ✆ ✢ ✆ ✕✡✠ ✝
☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ✷✫✦✛☎ ✬✮✞ ✢ ✠ ✆ YES ✠ ✝

✂ ✷✫✦✛☎ ✬✩✞ ✢ ✆ ✕✡✠ ☛ ✑ ✒✟✪ ✆ ✞ ✞ ☎ ❃ ✲ ☎☎� ✦ ✞✯✪ ✆ ✞ ✆ ✢ ✠✽✠ ☛
☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ✷✫✦✛☎ ✬✮✞ ✢ ✠ ✆ NO ✠ ☛ ✑ ✞✟✒✎✣✩✠ ✓ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✖✙✘❄✞ ✣ ✆ ✢ ✠ ✆ YES ✠ ✓

The set � ✝ ✝ does not include the successor state axiom (2.17) for the � fluent. The set of

precondition axioms � ☛✔✓ coincides with �✂✁☛ ✓ ; ✤ also includes the set of unique names axioms
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for actions. Let � ✌✏✎ includes ✂ ✞ �☞✁✼✠ , these are state constraints mentioned in the example

(2.1.1), and ✂✙✷✫✦✛☎ ✬✮✞✜✛ ✆ �☞✁✼✠ , nothing else is known about the initial locations of blocks. In � ,

we are interested in the solution of the forward projection task of the form � ✄ ❃ ✂ ✞ � ✠ , where

� is a ground situation term. We would like to compare the solution of this task in � with the

solution in �✂✁ , for this reason we consider the same two scenarios.

First scenario.

Obviously, � ✆✄ ❃ ✂✙✷✫✦✛☎ ✬✮✞✗✕ ✆ �☞✁ ✠ , � ✆✄ ❃ ✖✙✘❄✞✜✛ ✆ ✕ ✆ �☞✁✥✠ , � ✆✄ ❃ ✑ ✖✙✘❄✞ ✛ ✆ ✕ ✆ �✻✁✹✠ . Suppose that

the robot ✸ senses whether ✛ is on ✕ and finds that this is true. One can prove the following

entailments:

� ✄ ❃ ✑ ✂✙✷✫✦✛☎ ✬✩✞✔✕ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✖✙✘❄✞ ✛ ✆ ✕ ✠ ✆ YES ✠ ✆ �☞✁✼✠✽✠ ✆
� ✄ ❃ ✂ ✷✫✦✛☎ ✬✮✞✗✕ ✆ ✄✆☎✟✞✜✲ ☎✁� ✦ ✳ ☎ ✳ ☎✄✂ ✷✫✦ ✞ ✸ ✆ ✛ ✠ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✘✚✞ ✛ ✆ ✕ ✠ ✆ YES ✠ ✆ �✻✁✼✠✭✠✽✠ ✆
� ✄ ❃ ✑ ✖✙✘❄✞✜✛ ✆ ✕ ✆ ✄✝☎✟✞✜✲ ☎✁� ✦ ✳✵☎✡✳ ☎✄✂✼✷✜✦ ✞ ✸ ✆ ✛ ✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✖ ✘✚✞ ✛ ✆ ✕ ✠ ✆ YES ✠ ✆ �☞✁✼✠✽✠✭✠ ✓

Notice that we can solve all these forward projection tasks without augmenting the given set of

axioms � .

Second scenario.

Consider again the same sequence of actions and again suppose that initially ✛ is not on

the table. First, the robot does ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✘ ✕ ☎✄✂✼✷✫✦ ✞ ✛ ✠ ✆ NO ✠ , in other words, it determines that B is

not on the table; we denote ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✖ ✘ ✕ ☎✄✂ ✷✫✦ ✞✜✛ ✠ ✆ NO ✠ ✆ � ✁✼✠ by � ☛❁ . Second, the robot moves

✛ to the table. Clearly,

� ✄ ❃ ✖ ✘ ✕ ☎ ✂✼✷✫✦ ✞ ✛ ✆ ✄✆☎✩✞✫✲ ☎☎� ✦ ✳✵☎✡✳ ☎✄✂✼✷✫✦ ✞ ✸ ✆ ✛ ✠ ✆ � ☛❁ ✠✽✠ ✓

In the sequel, we denote ✄✆☎✩✞✫✲ ☎☎� ✦ ✳✵☎✡✳ ☎✄✂✼✷✫✦ ✞ ✸ ✆ ✛✢✠ ✆ � ☛❁ ✠ by � ☛✆ . Similarly to the previous sce-

nario, let someone move ✛ from the table, assume that this action is not observable, i.e., the

robot thinks that the current situation is still � ☛✆ . Now the robot does ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✘ ✕ ☎ ✂✼✷✫✦ ✞ ✛✢✠ ✆ NO ✠
in the situation � ☛✆ ; one can prove that

� ✄ ❃ ✑ ✖ ✘ ✕ ☎ ✂✼✷✫✦ ✞ ✛ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✖ ✘ ✕ ☎✄✂ ✷✫✦ ✞✜✛ ✠ ✆ NO ✠ ✆ � ☛✆ ✠✽✠ ✓

Thus, we can obtain correct entailments from � even if occurrences of exogenous actions are

not observable.12 We see that ‘beliefs’ of the robot have been updated, unlike in � ✁ .

12The last entailment can be considered as an indication that the actual situation just before doing the second

sense action is different from
� ✌✁ . But the task of determining what physical actions occurred between

� ✌✁ and

the moment when the robot did the second sense action remains outside the scope of the approach presented in

this chapter. A solution to this task is necessary to compute the corrected situation term that includes occurrences

of exogenous physical actions. The approach to solving diagnostic problems suggested in [McIlraith, 1998] can

be used to compute actual situation terms.
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In the subsequent sections, we consider only the case when axioms corresponding to new

sensory information are consistent with previously obtained set of axioms: we make this sim-

plifying assumption because we are primarily interested in establishing the correspondence

between reasoning about effects of actions in �
✁

and reasoning about effects of actions in � .

3.4 The forward projection task

In this section, our main goal is to find the connection between solutions to the forward pro-

jection task in the two different frameworks outlined above. First, we consider this task when

� is the domain axiomatization and sense actions have the form ✕ ✦ ✘ ✕ ✦ ✞✜✰ ☎ ✞ ✖✢ ✠ ✆ � ☎ ✠ . Second,

we consider this task when the domain axiomatization is � ✁ and sense actions have the form

✕ ✦ ✘ ✕ ✦ ✡ ✆✽✞☞✖✢ ✠ .
As we have seen in Section 2.2.1, when � is a domain theory without knowledge and

sensing, after repeatedly applying the regression operator � a necessary number of times,

the original projection task reduces to first order theorem proving in the initial database � ✌✏✎
together with unique names axioms for actions ✳ ✠ ❁✁☛ :

Theorem 3.4.1: (The Regression Theorem, [Reiter, 2001a, Pirri and Reiter, 1999]) Sup-

pose that � is a basic action theory (without knowledge), and that ✁☛✞ � ✠ is a regressable sen-

tence, where � is a ground situation term that mentions physical actions only. Then

� ✄ ❃ ✁ ✞ � ✠ iff � ✠ ❁✁☛ ✁ � ✌✒✎ ✄ ❃ �✁�✴✍ ✁☛✞ � ✠ ✎

Note that �✁� ✍ ✁ ✞ � ✠ ✎ can mention only situation independent atoms and fluent atoms whose

only situation argument is �☞✁ . Observe also that the regression operator is defined relative to

the set of successor state and precondition axioms in � : if one varies these axioms, the result

of regression varies as well.

3.4.1 The theory
✂

Let a basic action theory � with sense actions have the form � . It is surprisingly straightfor-

ward to use regression in this setting to solve the forward projection task if ✁ is an objective

regressable sentence and we are given a ground situation term � ✍ that may mention both phys-

ical and sensing actions (recall that the second argument of all sense actions mentioned in �
is either the constant YES or the constant NO). No modifications of the regression operator are

required and the regression theorem 3.4.1 applies also in this setting:
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Theorem 3.4.2: (The Regression Theorem in � )

Suppose that � is a basic action theory, and that ✁☛✞ � ✍ ✠ is a regressable sentence that does not

mention � . Then

� ✄ ❃ ✁ ✞ � ✍ ✠ iff � ✠ ❁✁☛✍✁ �✡✌✒✎☎✄ ❃ �☎✄ ✍ ✁ ✞ � ✍ ✠ ✎
The subscript in �☎✄ indicates that the regression operator depends on � ; in particular, the

regression operator eliminates all occurrences (if any) of fluents with complex situation terms

✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✆ � ✠ ✆ � ☛ ✠ using axioms (3.2). Note that the same proof as in the previous Theorem

3.4.1 applies in this case because sensing actions are the usual action terms (i.e., no reification

is needed).

Note the price that we pay to enjoy this solution: no occurrences of Knows are permitted

in the formula ✁☛✞ � ✠ . Hence, if an agent needs to evaluate a formula that mixes objective and

subjective sentences, the theorem 3.4.2 cannot be applied. However, as long as the agent needs

to reason only about the world, but does not need to reflect about knowledge of the world that

she possesses, this theorem remains useful.

3.4.2 The theory
✂✁�

Let a basic action theory with sense actions � have the form � ✁ . Let ground situation term

� mention both physical actions ✕✢✞ ✖✂ ✠ and sense actions ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ . Assume that all sense

actions in � are useful, i.e., they provide consistent new information. Formally, this means that

for every subterm ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ☛ ✠✡✄❅� of � we have:

� ✁ ✆✄ ❃ Knows ✞✜✰ ☎ ✞ ✖� ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ☛ ✠✽✠
� ✁ ✆✄ ❃ Knows ✞ ✑ ✰ ☎ ✞ ✖� ✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ☛ ✠✽✠

(every sense action may have only two outcomes: either it determines that a fluent is true, or it

determines that a fluent is false). Under this reasonable assumption, we no longer can solve the

projection problem for a formula ✁☛✞ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ✠✽✠ if ✁ includes an atom Knows about

the fluent ✰ ☎ : our axioms are not strong enough to entail whether the agent knows ✰ ☎ . To solve

the projection problem we need to extend our basic action theory by axioms about outcomes of

sense actions. Consequently, we have to define the result of augmenting � ✁ with knowledge

about the outcomes of all the sense actions occurring in � . To do this, we need a concept of

the sense outcomes of a given action sequence � .

Definition 3.4.3: Sense outcome function 13

13Both the notation and results formulated in the rest of this sub-section are introduced in [Reiter, 2001a,
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A sense outcome function is any mapping � from ground situation terms to knowledge sen-

tences, such that:

1. � ✞ �✻✁ ✠❄❃ ✄ ✆ ✆

2. If ✞ is not a sense action,

� ✞✜✄✝☎✟✞ ✞ ✆ � ✠✭✠✚❃✁� ✞ � ✠ ✓

3. If ✞ is a sense action ✕ ✦ ✘ ✕ ✦ ✆ ✞ ✖� ✠ ✆
� ✞ ✄✆☎✟✞ ✞ ✆ � ✠✭✠❂❃✂� ✞ � ✠ ✁ ✄ Knows ✞ ✂ ✞ ✖� ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖� ✠ ✆ � ✠✭✠ ✆ or

� ✞ ✄✆☎✟✞ ✞ ✆ � ✠✭✠❂❃✂� ✞ � ✠ ✁ ✄ Knows ✞ ✑ ✂ ✞ ✖� ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖� ✠ ✆ � ✠✭✠ ✆ ✓

In the sequel, we shall be interested in � ✁ ✁ � ✞ � ✠ , namely, the original basic action theory

� ✁ , augmented by knowledge about the outcomes of all sense actions in the action history � ,

according to the sense outcome function � . Because we are intending to use regression as a

solution to the forward projection problem and obtain a version of the regression theorem for

augmented basic action theories we need also a definition of �☎✄✿✞ � ✠ - a regressed version of

� ✞ � ✠ .
According to Definition 2.2.8, when ✂ ✞☞✖✢ ✠ is an objective expression, and ✗ a situation term,

then ✂ ✞☞✖✢ ✠ ✍ ✗ ✎ is that situation calculus formula resulting from adding an extra situation argu-

ment ✗ to every situation-suppressed fluent mentioned by ✂ . According to Definition 2.2.2,

� ✍ � ✎ is a situation calculus formula (whose only situation term is �✌✁ ) obtained by applying

the regression operator to a regressable sentence � . Thus, � ✍ ✂ ✞☞✖✢✻✠ ✍ ✗ ✎ ✎ is a situation calcu-

lus formula obtained by applying the regression operator to the formula ✂ ✞☞✖✢✻✠ ✍ ✗ ✎ . Recall also

that � ✞ ✁ ✆✡✗ ✠ is a ‘multi-step’ regression operator that transforms ✁ through action terms men-

tioned in ✗ to a simpler expression without occurrences of ✄✆☎✩✞ �✌✆ � ✠ , and that by Lemma 2.2.12
� ✞ ✁ ✆✡✗ ✠ ✍ �✻✁✭✎ and � ✍✡✁ ✍ ✗ ✎ ✎ are logically equivalent relative to the given basic action theory.

Suppose � is a sense outcome function, ✗ is a ground situation and ✗ ☛ is a sub-term of ✗ .

�✆✄✏✞ ✗ ✠ ❃ � ✄ � ✞ ✂ ✞ ✖� ✠ ✆✡✗ ☛ ✠ ✄ Knows ✞ ✂ ✞ ✖� ✠ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖� ✠ ✆✡✗✙☛ ✠✭✠ ☎ � ✞ ✗ ✠☎✆ ☛
� ✄ � ✞ ✑ ✂ ✞ ✖� ✠ ✆✡✗ ☛ ✠ ✄ Knows ✞ ✑ ✂ ✞ ✖� ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖� ✠ ✆✡✗✙☛ ✠✭✠ ☎ � ✞ ✗ ✠ ✆ ✆

where both conjunctions are over all sub-terms ✗✒☛ of ✗ such that � ✞ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✆ ✞ ✖� ✠ ✆✡✗✙☛ ✠✭✠ con-

tains a subjective sentence. By convention, �☎✄✿✞ ✗ ✠✺❃ ✕ ✬✏✓ ✦ when � ✞ ✗ ✠✺❃ ✄ ✆ ✓ Notice that

Reiter, 2001b] where the reader can find additional details.
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� ✄ ✞ ✗ ✠ is a situation-suppressed sentence and that ‘multi-step’ regression operator � ✞ ✁ ✆✡✗ ✠ is

understood here with respect to successor state axioms of the theory � ✁ .

The following lemma is a consequence of Corollary 3.4.9, Theorem 2.2.4 and Lemma

2.2.12:

Lemma 3.4.4: [Reiter, 2001a, Reiter, 2001b] When ✁ ✂ ❁✆☎ ☞ includes the reflexivity axiom (2.18),

� ✁ ✄ ❃ � ✄ ✞ ✗ ✠ ✍ �✻✁✹✎ ✒
�

� ✝ ✆ ❁ ✝ ✆ ☛ ✎☛☞ ☎ ☎ ❁ ✝ ☎ ❁ ✠✄✂
� ✞ ✗ ✠ ,

in other words, � ✄✏✞ ✗ ✠ ✍ �✻✁✹✎ and the conjunction of the sentences in � ✞ ✗ ✠ are logically equivalent,

relative to � ✁ .

[Reiter, 2001a, Reiter, 2001b] introduce the following technical definition as a condition on

a basic action theory. Suppose ✳ is any situation calculus theory. We say that ✳ decides all

equality sentences iff for any sentence
�

over the language of ✳ whose only predicate symbol

is equality, ✳ ✄ ❃ �
or ✳ ✄ ❃ ✑ � ✓

The following crucial theorem (see Theorem 11.7.14 in [Reiter, 2001a]) asserts that the

forward projection task can be also solved in � ✁ for a formula Knows ✞ ✁ ✆✡✗ ✠ , when ✁ is an ob-

jective sentence. This theorem is a consequence of the regression theorem (3.4.1) and Lemma

3.4.4. Recall that �✂✁✌✒✎ ❃ Knows ✞✁� ✆ �☞✁✼✠ , � ✌✏✎ ❃ �✌✍ �✻✁✹✎ , where � is objective and ✁ ✂ ❁ ☎ ☞ includes

the reflexivity axiom.

Theorem 3.4.5: [Reiter, 2001a, Reiter, 2001b] (The Regression Theorem in � ✁ ).

Suppose that ✁ is an objective regressable sentence, �✍✠ ❁☞☛ ✁ ✄ �✌✍ �✻✁✹✎ ✆ decides all equality sen-

tences, � ✑ is a ground situation term. Then

� ✁ ✁ � ✞ � ✑ ✠ ✄ ❃ Knows ✞ ✁ ✆ � ✑ ✠ iff � ✠ ❁✁☛✍✁ �✡✌✒✎ ✁ �✆✄❂✞ � ✑ ✠ ✍ �✻✁✹✎ ✄ ❃ � ✁ ✍ ✁☛✍ � ✑ ✎ ✎ ✓

Note that in this theorem the regression operator � ✁ is defined with respect to �
✁

. Using this

theorem, one can reduce reasoning about what an agent knows about a future situation � ✑ to an

entailment task with respect to a much simpler set of first order axioms that may have occur-

rences of �☞✁ only; neither foundational axioms, nor precondition and successor state axioms

are required to solve the entailment task. It is also remarkable that reasoning about the agent’s

knowledge can be accomplished mechanically (under assumptions stated above) by theorem

proving that does not require manipulations with Knows. This has important computational

advantages, because the forward projection task can be solved without reasoning about possible

worlds.
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3.4.3 Some Metatheoretic Properties of Basic Action Theories with Knowl-

edge

The following propositions and lemmas formulated and proved in [Reiter, 2001a, Reiter, 2001b]

will be useful in the sequel. They provide connections between knowledge about a formula in

two consecutive situations or connections between knowledge about an objective formula and

the formula itself (outside of epistemic context). Some of the following proofs are taken ver-

batim from Reiter, some other proofs are minor variations of his proofs (they are included here

to keep this chapter self-contained).

Proposition 3.4.6: Suppose � ✞☞✖✢ ✠ is a situation suppressed expression with free variables ✖✢ ,

and ✕ ✞ ✖✣✩✠ is not a sense action. Then,

� ✁ ✄ ❃ ✞✍✌ ✖✢ ✆ ✖✣ ✆ ✕★✠ ✓ Knows ✞ � ✞☞✖✢ ✠ ✆ ✄✝☎✟✞✔✕✢✞ ✖✣✟✠ ✆ ✕★✠✽✠✓✒ Knows ✞ �
✍ ✞ � ✞ ✖✢ ✠ ✆ ✕ ✞ ✖✣✟✠✽✠ ✆ ✕✡✠ ✓

Proof: From Lemma 2.2.10, it follows that when � ✞☞✖✢ ✠ is an objective situation suppressed

expression,

� ✁ ✄ ❃ ✞✍✌ ✖✢ ✆ ✖✣ ✆ ✕✡✠ ✓ � ✞☞✖✢ ✆ ✄✝☎✟✞✔✕✢✞ ✖✣✝✠ ✆ ✕✡✠✭✠ ✒ �
✍ ✞ � ✞☞✖✢ ✠ ✆ ✕✢✞ ✖✣✟✠✭✠ ✍ ✕ ✎ ✓

To complete the proof, consider the successor state axiom for � .

Proposition 3.4.7: Suppose � ✞☞✖✢ ✠ is a situation suppressed expression with free variables ✖✢ ,

and ✕ ✦ ✘ ✕ ✦ ✆ ✞ ✖✣✟✠ is a sense action. Then,

� ✁ ✄ ❃ ✞✍✌ ✖✢ ✆ ✖✣ ✆ ✕★✠ ✓ Knows ✞ � ✞☞✖✢ ✠ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖✣✟✠ ✆ ✕✡✠✭✠✓✒
✄ ✂ ✞ ✖✣ ✆ ✕✡✠✡✠ Knows ✞ ✂ ✞ ✖✣✟✠✡✠ �

✍ ✞ � ✞☞✖✢ ✠ ✆ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖✣✟✠✭✠ ✆ ✕✡✠☎✆ ☛
✄ ✑ ✂ ✞ ✖✣ ✆ ✕★✠ ✠ Knows ✞ ✑ ✂ ✞ ✖✣✩✠✡✠ �

✍ ✞ � ✞☞✖✢ ✠ ✆ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖✣✩✠ ✆ ✕✡✠☎✆ ✓

Proof: By the no side-effects assumption for sensing actions (2.11)

� ✁ ✄ ❃ ✞✍✌ ✖✢ ✆ ✖✣ ✆ ✕✡✠ ✓ � ✞☞✖✢ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖✣✩✠ ✆ ✕★✠✽✠✓✒ � ✞ ✖✢ ✆ ✕✡✠ ✓

Now we can use the successor state axiom for � .

Lemma 3.4.8:

� ✁ ✄ ❃ ✞✍✌ ✖✣ ✆ ✕✡✠ ✓ Knows ✞ ✂ ✞ ✖✣✩✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✆ ✞ ✖✣✟✠ ✆ ✕✡✠✭✠ ✒ ✂ ✞ ✖✣ ✆ ✕✡✠ ✝ Knows ✞ ✂ ✞ ✖✣✟✠ ✆ ✕★✠ ✆

� ✁ ✄ ❃ ✞✍✌ ✖✣ ✆ ✕✡✠ ✓ Knows ✞ ✑ ✂ ✞ ✖✣✟✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✆ ✞ ✖✣✟✠ ✆ ✕✡✠✽✠✓✒ ✑ ✂ ✞ ✖✣ ✆ ✕✡✠ ✝ Knows ✞ ✑ ✂ ✞ ✖✣✮✠ ✆ ✕✡✠ ✓
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Proof: Take � to be ✂ , then ✑ ✂ , in Proposition 3.4.7, and use the no side-effects assumption

for sense actions (2.11).

Corollary 3.4.9: When ✁ ✂ ❁✆☎ ☞ includes the reflexivity axiom,

� ✁ ✄ ❃ ✞✍✌ ✖✣ ✆ ✕✡✠ ✓ Knows ✞ ✂ ✞ ✖✣✩✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✆ ✞ ✖✣✟✠ ✆ ✕✡✠✭✠ ✒ ✂ ✞ ✖✣ ✆ ✕✡✠ ✆

� ✁ ✄ ❃ ✞✍✌ ✖✣ ✆ ✕✡✠ ✓ Knows ✞ ✑ ✂ ✞ ✖✣✟✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✆ ✞ ✖✣✟✠ ✆ ✕✡✠✽✠✓✒ ✑ ✂ ✞ ✖✣ ✆ ✕✡✠ ✓

Proof: We know from (2.18) that when reflexivity holds in the initial situation, it holds in

all situations, so that what is known in ✕ is true in ✕ : ✞✍✌ ✕✡✠ Knows ✞ ✂ ✆ ✕✡✠ ✠ ✂ ✍ ✕ ✎ . Next, we can

use Lemma 3.4.8 and consider three cases: when Knows ✞ ✂ ✆ ✕✡✠ is true in a model of � ✁ , when

Knows ✞ ✑ ✂ ✆ ✕✡✠ is true in a model of �✂✁ and when both formulas are false.

Lemma 3.4.10: When ✁✝✂ ❁ ☎ ☞ includes the reflexivity axiom,

� ✁ ✄ ❃ ✞✍✌ ✖✢ ✆ ✖✣ ✆ ✕★✠ ✓ Knows ✞ ✂ ✞ ✖✣✟✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖✣✟✠ ✆ ✕✡✠✭✠✡✠
Knows ✞ ✁ ✞☞✖✢ ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖✣✟✠ ✆ ✕✡✠✭✠✓✒ Knows ✞ ✂ ✞ ✖✣✩✠✡✠ ✁☛✞ ✖✢ ✠ ✆ ✕★✠ ✆

� ✁ ✄ ❃ ✞✍✌ ✖✢ ✆ ✖✣ ✆ ✕★✠ ✓ Knows ✞ ✑ ✂ ✞ ✖✣✮✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✆ ✞ ✖✣✟✠ ✆ ✕★✠✽✠✡✠
Knows ✞ ✁ ✞☞✖✢ ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖✣✟✠ ✆ ✕✡✠✭✠✓✒ Knows ✞ ✑ ✂ ✞ ✖✣✟✠ ✠ ✁ ✞☞✖✢ ✠ ✆ ✕✡✠ ✓

Proof: By Proposition 3.4.7

� ✁ ✄ ❃ ✞✍✌ ✖✢ ✆ ✖✣ ✆ ✕★✠ ✓ Knows ✞ � ✞☞✖✢ ✠ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖✣✟✠ ✆ ✕✡✠✭✠✓✒
✄ ✂ ✞ ✖✣ ✆ ✕✡✠✡✠ Knows ✞ ✂ ✞ ✖✣✟✠ ✠ � ✞☞✖✢ ✠ ✆ ✕✡✠☎✆ ☛ ✄ ✑ ✂ ✞ ✖✣ ✆ ✕✡✠✡✠ Knows ✞ ✑ ✂ ✞ ✖✣✟✠ ✠ � ✞☞✖✢ ✠ ✆ ✕✡✠ ✆ ✓

which is equivalent to

� ✁ ✄ ❃ ✞✍✌ ✖✢ ✆ ✖✣ ✆ ✕★✠ ✓ ✄ ✂ ✞ ✖✣ ✆ ✕✡✠✡✠ ✞ Knows ✞ � ✞☞✖✢ ✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✆ ✞ ✖✣✟✠ ✆ ✕✡✠✭✠ ✒ Knows ✞ ✂ ✞ ✖✣✟✠ ✠ � ✞ ✖✢ ✠ ✆ ✕★✠✔✠ ✆ ☛

✄ ✑ ✂ ✞ ✖✣ ✆ ✕★✠✡✠❊✞ Knows ✞ � ✞☞✖✢ ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦✝✆ ✞ ✖✣✟✠ ✆ ✕✡✠✭✠✓✒ Knows ✞ ✑ ✂ ✞ ✖✣✟✠ ✠ � ✞☞✖✢ ✠ ✆ ✕✡✠✔✠ ✆ ✓

To complete the proof it is sufficient to consider an arbitrary model of � ✁ , use Corollary 3.4.9

and consider two cases: the first case is when ✂ ✞ ✖✣ ✆ ✕✡✠ is true in the model, the second case is

when it is false.

3.5 A formal comparison

Before we argue that our successor state axiom modification approach is correct with respect to

Reiter’s approach, let us re-write the modified successor state axiom in (3.2) into the equivalent
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form:

✍ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ✞☞✖✢ ✠ ✆ YES ✠ ✠ ✞ ✰ ✞☞✖✢ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ ✒❇✕ ✬★✓ ✦ ✠✟✎ ☛

✍ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✜✰✧✞☞✖✢✻✠ ✆ NO ✠ ✠ ✰ ✞☞✖✢ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒ � ☎✆✷ ✕ ✦ ✠✟✎ ☛

✍ ☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ✞ ✖✢ ✠ ✆ YES ✠ ☛ ☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞✜✰✧✞☞✖✢☞✠ ✆ NO ✠✟✎ ✠
✞❂✰✧✞☞✖✢ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ✌ ✎✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠ ✝ ✰ ✞ ✖✢ ✆ ✕✡✠ ☛ ✑ ✌

❆✡ ✞☞✖✢ ✆✟☎✝✆ ✕✡✠✔✠ ✓
(3.4)

This new form clearly demonstrates that for physical actions the usual successor state axiom

(2.6) and the axiom (3.4) yield the same results, but in the case of sensing actions fluents can

be set to a new value in any situation ✕ . In the sequel, we make a full observability assumption:

all occurrences of actions (including exogenous actions and natural actions) are observable and

mentioned explicitly in a situation term.14 In addition, we make the uniqueness assumption

about the sequences of ground actions that we would like to consider: all occurrences of sense

actions in a ground situation term are unique, i.e., we never sense the same fluent twice. Note

that according to these assumptions, the second scenario in the blocks world example in Section

3.3 is impossible.

Before we formulate the correspondence between our approach and Reiter’s approach to

the solution of the forward projection task that involves both physical and sense actions, we

define when these two tasks in � and � ✁ have similar structure.

Definition 3.5.1: We call the four-tuple ✄ � ✆ ✄ ✆ ✂ ✞ ✕✡✠ ✆ � ✆ the representation of the forward

projection task � ✁ ✄ ✄ ❃ ✂ ✞ � ✠ if � is a basic action theory, ✄ is a collection of extra axioms

(about results of sense actions) added to � , ✂ ✞ ✕✡✠ is a regressable situation calculus formula

(it has the only free variable ✕ of the sort situation) and � is a ground situation term that can

mention both physical and sense actions.

In the sequel, we use the notation ✷✜✦ ✘ ✪✆✕ �✂✞ � ✠ to denote the number of action terms that

occur in � : ✷✫✦ ✘ ✪✆✕ �✌✞ �✻✁ ✠ ☎✝✆✟✞❃ � , ✷✫✦ ✘ ✪✆✕ �✌✞ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠ ☎✝✆✟✞❃ ✷✫✦ ✘ ✪✆✕ �✌✞ ✕✡✠ ✆ ❉ ✓

Definition 3.5.2: Let ✄ � ✆ � ✆ ✁ ✆ � ✍ ✆ be the representation of a forward projection task in � :

� ✄ ❃ ✁ ✞ � ✍ ✠ and ✄ � ✁ ✆ � ✞ � ✑ ✠ ✆ Knows ✞ ✁ ✆ ✕✡✠ ✆ � ✑ ✆ be the representation of a forward projection

task in �✂✁ : � ✁ ✁ � ✞ � ✑ ✠ ✄ ❃ Knows ✞ ✁ ✆ � ✑ ✠ . We call these two tasks similar, if the following

conditions hold:

1. � and � ✁ are theories as described in Section 3.2.2;

14Recall also that there is the causal completeness assumption that the right hand side of each successor state

axiom (2.6) accounts for all positive and negative effects.
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2. Both � ✍ and � ✑ are ground situation terms and ✷✫✦ ✘ ✪✝✕ �✌✞ � ✍ ✠❄❃ ✷✫✦ ✘ ✪✆✕ �✌✞ � ✑ ✠ ;
3. For any ✕ ☛✌✆ ✕ ☛ ☛ and actions ☎☞☛ ✆✟☎ ☛ ☛ such that ✷✫✦ ✘ ✪✆✕ �✌✞ ✕ ☛ ✠❄❃ ✷✫✦ ✘ ✪✆✕ �✌✞ ✕ ☛ ☛ ✠ , � ✄ ❃ ✄✆☎✩✞ ☎☞☛✌✆ ✕ ☛ ✠✡✄❅� ✍

and �✂✁ ✄ ❃ ✄✆☎✟✞ ☎ ☛ ☛✌✆ ✕ ☛ ☛ ✠ ✄ � ✑ , one of the following cases is true:

(a) if ☎ ☛ is a physical action, then ☎☞☛ ☛ is the same physical action, i.e., ☎ ☛ ❃ ☎ ☛ ☛ ,
(b) if ☎ ☛ is a sense action ☎☞☛ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆ � ✠ , then ☎☞☛ ☛ ❃ ✕ ✦ ✘ ✕ ✦ ✡ ✆✽✞ ✖� ✠ , and vice versa.

In addition, if in the term ✕ ✦ ✘ ✕ ✦ ✞✜✰ ☎ ✞ ✖� ✠ ✆ � ✠ the value
�

is YES, then

� ✞✜✄✆☎✩✞ ☎☞☛ ☛✖✆ ✕ ☛ ☛ ✠✭✠❂❃✂� ✞ ✕ ☛ ☛ ✠ ✁ ✄ Knows ✞ ✰ ☎ ✞ ✖� ✠ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ ✕ ☛ ☛ ✠✽✠☎✆ ,

otherwise, if
� ❃ NO, then

� ✞✜✄✆☎✩✞ ☎☞☛ ☛✖✆ ✕ ☛ ☛ ✠✭✠❂❃✂� ✞ ✕ ☛ ☛ ✠ ✁ ✄ Knows ✞ ✑ ✰ ☎ ✞ ✖� ✠ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ ✕ ☛ ☛ ✠✽✠☎✆ ✓

We call actions ☎☞☛✖✆✟☎ ☛ ☛ similar, if they satisfy all aforementioned requirements.

Informally, this definition says that tasks are similar, if the corresponding situation terms have

similar structure, and whenever a sense action of one type determines that a fluent is true, a

similar sense action also determines that a fluent is true, and the theory with knowledge is

augmented with a formula expressing knowledge of the fluent, otherwise, if it happens that a

sensed fluent is false, then the formula expressing knowledge about the negation of the fluent

is added to previously constructed knowledge base of the agent.

Recall that � ✁✌✒✎ ❃ Knows ✞✁� ✆ �☞✁✼✠ , �✡✌✒✎ ❃ �✌✍ �✻✁✹✎ , where � is objective. The following set

of statements formulate the correspondence between two projection tasks. First, we prove

soundness of our approach with respect to � -based approach. Second, we prove a (partial)

completeness of our approach with respect to � -based approach for a large and interesting

sub-class of theories.

Theorem 3.5.3: Let ✁ be a ground objective regressable expression15, � ✠ ❁✁☛ ✁ ✄ �✌✍ �✻✁✹✎ ✆ decides

all equality sentences, � ☎ ❁ ☎ ☞ includes the reflexivity axiom, ✄ �✂✁ ✆ � ✞ � ✑ ✠ ✆ Knows ✞ ✁ ✆ ✕✡✠ ✆ � ✑ ✆ and

✄ � ✆ � ✆ ✁ ✆ � ✍ ✆ are representations of similar forward projection tasks in � ✁ and � , respectively.

Assume also that all successor state axioms in � ✝✟✝ have the syntactic form (3.4), and assume

that occurrences of all actions are observable.

If � ✄ ❃ ✁ ✞ � ✍ ✠ , then � ✁ ✁ � ✞ � ✑ ✠ ✄ ❃ Knows ✞ ✁ ✆ � ✑ ✠ .

Proof: We prove this statement by induction on the length of situation term � ✍ (we know

that ✷✫✦ ✘ ✪✝✕ �✌✞ � ✍ ✠ ❃ ✷✜✦ ✘ ✪✆✕ �✂✞ � ✑ ✠ because projection tasks are similar).

15In other words, ☛ has no occurrences of quantifiers and all terms mentioned in ☛ are ground.
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Base case. According to Theorems 3.4.2 and 3.4.5, we have to prove that

� ✠ ❁☞☛✍✁ � ✌✏✎ ✁ �✆✄✿✞ � ✑ ✠ ✍ �✻✁✹✎ ✄ ❃ � ✁ ✍ ✁☛✍ � ✑ ✎ ✎ if � ✠ ❁✁☛ ✁ �✡✌✒✎☎✄ ❃ �☎✄ ✍ ✁ ✍ � ✍ ✎ ✎ ✆
where ✷✫✦ ✘ ✪✆✕ �✌✞ � ✍ ✠ ❃ ✷✫✦ ✘ ✪✆✕ �✌✞ � ✑ ✠ ❃ � . Because �✆✄✏✞ �✻✁ ✠❄❃ ✕ ✬★✓ ✦ , � ✁ ✍ ✁ ✍ �✻✁✭✎ ✎ ❃ ✁ ✞ �✻✁✼✠ , �☎✄ ✍ ✁ ✍ �✻✁✭✎ ✎ ❃
✁ ✞ �✻✁✼✠ , the statement is obviously true.

Inductive step. Let the statement be true for the case when ✷✫✦ ✘ ✪✝✕ �✌✞ � ✍ ✠ ❃ ✘ . We want to

prove that

if � ✄ ❃ ✁ ✞✜✄✆☎✩✞ ☎☞☛✌✆ � ✍ ✠✽✠ , then � ✁ ✁ � ✞✜✄✝☎✟✞ ☎ ☛ ☛✖✆ � ✑ ✠✭✠ ✄ ❃ Knows ✞ ✁ ✆ ✄✆☎✟✞ ☎ ☛ ☛✖✆ � ✑ ✠✭✠ ,

where ☎ ☛ ✆✡☎ ☛ ☛ are similar actions. We consider two cases.

First, let ☎ ☛ ☛ be a physical action ✕✢✞ ✖✂ ✠ . Then, � ✞ ✄✆☎✟✞✔✕✢✞ ✖✂ ✠ ✆ � ✑ ✠✭✠✢❃ � ✞ � ✑ ✠ , by definition.

From Proposition (3.4.6) follows that we have to prove

if � ✄ ❃ ✁ ✞✜✄✆☎✩✞✗✕ ✞ ✖✂ ✠ ✆ � ✍ ✠✭✠ , then �✂✁ ✁ � ✞ � ✑ ✠ ✄ ❃ Knows ✞ �
✍
✁ ✞ ✁ ✆ ✕✢✞ ✖✂ ✠✽✠ ✆ � ✑ ✠ ,

where the subscript � indicates that the 1-step regression operator �
✍
✁ is defined relative to the

successor state axioms in � ✁ . From Lemma 2.2.10 follows that

� ✄ ❃ �
✍� ✞ ✁ ✆ ✕✢✞ ✖✂ ✠✭✠ ✍ � ✍ ✎ iff � ✄ ❃ ✁ ✞✜✄✆☎✩✞✗✕ ✞ ✖✂ ✠ ✆ � ✍ ✠✭✠ ,

where the subscript ✤ indicates that the 1-step regression operator �
✍� is defined relative to the

successor state axioms in � . Therefore, to complete the proof it is sufficient to show that

� ✄ ❃ �
✍
✁ ✞ ✁ ✆ ✕✢✞ ✖✂ ✠✭✠ ✍ � ✍ ✎ iff � ✄ ❃ �

✍� ✞ ✁ ✆ ✕✢✞ ✖✂ ✠✭✠ ✍ � ✍ ✎ ,

because the inductive hypothesis yields that

if � ✄ ❃ �
✍
✁ ✞ ✁ ✆ ✕✢✞ ✖✂ ✠✭✠ ✍ � ✍ ✎ then �✂✁ ✁ � ✞ � ✑ ✠ ✄ ❃ Knows ✞ �

✍
✁ ✞ ✁ ✆ ✕✢✞ ✖✂ ✠✭✠ ✆ � ✑ ✠ .

From the axiom (3.4) we see that the right-hand sides of corresponding successor state axioms

in � and �✂✁ , respectively, are logically equivalent for any physical action ✕✢✞ ✖✂ ✠ . As a conse-

quence, the definition (2.2.9) of the 1-step regression operator yields that

� ✄ ❃ �
✍
✁ ✞ ✁ ✆ ✕✢✞ ✖✂ ✠✭✠ ✍ � ✍ ✎ iff � ✄ ❃ �

✍� ✞ ✁ ✆ ✕✢✞ ✖✂ ✠✭✠ ✍ � ✍ ✎ ,

as it was required. This completes the first case.

Second, let ☎☞☛ ☛ be a sense action in �✂✁ : ☎☞☛ ☛ ❃ ✕ ✦ ✘ ✕ ✦ ✡ ✆✭✞ ✖� ✠ . Then, � ✞ ✄✆☎✩✞ ☎☞☛ ☛ ✆ � ✑ ✠✭✠ ❃✁� ✞ � ✑ ✠ ✁
Knows ✞ ✁ ✰ ☎ ✞ ✖� ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ✑ ✠✭✠ , where ‘plus’ corresponds to the case when this sense

action determines that ✰ ☎ ✞ ✖� ✠ is true, and ‘minus’ – to the case when this sense action finds

that ✰ ☎ ✞ ✖� ✠ is false (i.e., ‘minus’ stands for negation). Because we consider similar forward

projection tasks, the corresponding action term in � is ☎ ☛ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆ YES ✂ NO ✠ .
Consider the single step regression operator �

✍� that is defined relative to the theory � . By

Lemma 2.2.10

� ✄ ❃ ✁ ✞ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞✜✰ ☎ ✞ ✖� ✠ ✆ YES ✂ NO ✠ ✆ � ✍ ✠✽✠ iff � ✄ ❃ �
✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆ YES ✂ NO ✠✽✠ ✍ � ✍ ✎ .

Let the formula ✁ ☛ ✞ � ✍ ✠ be ✁☛✞ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆ YES ✂ NO ✠ ✆ � ✍ ✠✭✠ with all occurrences (if any) of

✰ ☎ ✞ ✖� ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞✜✰ ☎ ✞ ✖� ✠ ✆ YES ✂ NO ✠ ✆ � ✍ ✠✽✠ replaced by true (false, respectively) according to the
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axiom (3.4) and occurrences of all other fluent literals

✰ ✁✏✞ ✖✂ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞✜✰ ☎ ✞ ✖� ✠ ✆
YES ✂ NO ✠ ✆ � ✍ ✠✽✠ , where �✝✆❃ ✞ ,

replaced by ✰ ✁✏✞ ✖✂ ✆ � ✍ ✠ : because all successor state axioms in � have the syntactic form (3.4),

the last sense action ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆
YES ✂ NO ✠ has no effect on any other fluent literal. Note that

the formula �
✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞✜✰ ☎ ✞ ✖� ✠ ✆

YES ✂ NO ✠✭✠ ✍ � ✍ ✎ is logically equivalent to ✁ ☛ ✞ � ✍ ✠ . From this

observation we see that:

if � ✄ ❃ �
✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞✜✰ ☎ ✞ ✖� ✠ ✆

YES ✂ NO ✠✽✠ ✍ � ✍ ✎ , then � ✁ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✄ ❃ ✁ ✞ � ✍ ✠ .

Indeed, this last statement can be proved inductively over the structure of a regressable formula

✁ with the base cases when a regressable formula is an atom or equality between terms.

1. Suppose that ✁ ✞ � ✍ ✠ is ✰ ☎ ✞ ✖� ✆ � ✍ ✠ , and, consequently, ✁ ☛ ✞ � ✍ ✠ is either true (if the result of

sensing is YES) or false (if the result of sensing is NO). In the first case, our statement

yields if � ✄ ❃ ✕ ✬✏✓ ✦ , then � ✄ ❃ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ . In the second case, the statement

reduces to this: if � ✄ ❃ � ☎✆✷ ✕ ✦ , then � ✄ ❃ ✑ ✰ ☎ ✞ ✖� ✆ � ✍ ✠✡✠ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ .
2. Suppose that ✁ ✞ � ✍ ✠ is ✰ ✁✏✞ ✖✂ ✆ � ✍ ✠ , where �✄✆❃ ✞ , and, consequently, ✁ ☛ ✞ � ✍ ✠ is ✰ ✁✿✞ ✖✂ ✆ � ✍ ✠ .

No matter what is the result of sensing, our statement holds: if � ✄ ❃ ✰ ✁✏✞ ✖✂ ✆ � ✍ ✠ , then

� ✁ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✄ ❃ ✰ ✁✿✞ ✖✂ ✆ � ✍ ✠ .
3. When ✁☛✞ � ✍ ✠ is the negation of a fluent atom, we can use the same arguments as in the

two previous steps to prove our statement.

4. If ✁☛✞ � ✍ ✠ is equality between terms ✕ ✍ ❃ ✕ ✑ , then it has no occurrences of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ and

our statement obviously holds without regard to the result of sensing: if � ✄ ❃❊✕ ✍ ❃ ✕ ✑ ,

then � ✁ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✄ ❃ ✕ ✍ ❃❀✕ ✑ .

5. Next, suppose that ✁ ✞ � ✍ ✠ is a disjunction of fluent literals � ✆
✂ ✁ ✍ ✁ ✰ ✂ ✞ ✖�

✂ ✆ � ✍ ✠ with posi-

tive occurrence of the fluent atom ✰ ☎ ✞ ✖� ✆ � ✍ ✠ , and, consequently, ✁ ☛ ✞ � ✍ ✠ is either the same

disjunction, but without occurrences of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ (if sensing of this fluent returns NO) or

true (if sensing of this fluent returns YES). If the result of sensing is NO, then our state-

ment holds: if � ✄ ❃ � ✆
✂ ✁ ✍ ✂ ✂✂✁✁ ☎ ✁ ✰ ✂ ✞ ✖�

✂ ✆ � ✍ ✠ , then � ✄ ❃ ✑ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ � ✆
✂ ✁ ✍ ✁ ✰ ✂ ✞ ✖�

✂ ✆ � ✍ ✠ .
If the result of sensing returns YES, then our statement also holds: if � ✄ ❃ ✕ ✬★✓ ✦ , then

� ✄ ❃❅✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠✄� ✆
✂ ✁ ✍ ✁ ✰ ✂ ✞ ✖�

✂ ✆ � ✍ ✠ . When ✁ ✞ � ✍ ✠ is a disjunction of fluent literals with

negative occurrence of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ , we can repeat the same argument with obvious modi-

fications. When ✁ ✞ � ✍ ✠ is a disjunction of fluent literals with no occurrences of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ,
the statement obviously holds. If ✁☛✞ � ✍ ✠ is a disjunction of fluent literals and equalities
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between terms, then we can simply repeat the same argument as above because equalities

between terms have no occurrences of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ .

6. Finally, without loss of generality, let ✁ ✞ � ✍ ✠ be a CNF
� ❁ ✠ ✁ ✍ ✂ ✠●✞ � ✍ ✠ , where ✂ ✠●✞ � ✍ ✠ are

prime implicates of ✁☛✞ � ✍ ✠ . Because our statement holds for each individual prime impli-

cate, we can conclude that it holds also in this case. Because all terms in ✁☛✞ � ✍ ✠ are ground

(i.e., this formula has no occurrences of quantifiers), this case completes the proof.

Thus, we proved that

if � ✄ ❃ ✁☛✞ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆
YES ✂ NO ✠ ✆ � ✍ ✠✭✠ , then � ✄ ❃ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ ✁☛✞ � ✍ ✠ .

Therefore, by inductive hypothesis, we have that if

� ✄ ❃ ✁ ✞ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞✜✰ ☎ ✞ ✖� ✠ ✆
YES ✂ NO ✠ ✆ � ✍ ✠✽✠ , then � ✁ ✁ � ✞ � ✑ ✠ ✄ ❃ Knows ✞ ✁ ✰ ☎ ✞ ✖� ✠✡✠ ✁ ✆ � ✑ ✠ ,

and, consequently, also

� ✁ ✁ � ✞ � ✑ ✠ ✁ Knows ✞ ✁ ✰ ☎ ✞ ✖� ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ✑ ✠✭✠ ✄ ❃ Knows ✞ ✁ ✰ ☎ ✞ ✖� ✠✡✠ ✁ ✆ � ✑ ✠ .
To complete the proof, observe that by Lemma 3.4.10

if � ✄ ❃ ✁☛✞ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆
YES ✂ NO ✠ ✆ � ✍ ✠✭✠ , then

� ✁ ✁ � ✞ � ✑ ✠ ✁ Knows ✞ ✁ ✰ ☎ ✞ ✖� ✠ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ✑ ✠✽✠ ✄ ❃ Knows ✞ ✁ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ✑ ✠✭✠ .

The last theorem demonstrates that if a formula about a ground situation is entailed by

the theory � that uses modified successor state axioms, then it is also entailed by the theory

� ✁ (that relies on the epistemic fluent � to represent possible worlds reasoning) augmented

with axioms representing results of sensing. This theorem has important computational con-

sequences. If one decides to employ theory � as a basic theory of action underlying a Golog

interpreter, then evaluation of tests from Golog programs can be accomplished by checking

whether a formula corresponding to a test expression is entailed from the theory � . Because in

the general case (as demonstrated by the second scenario in the example considered in Section

3.3) augmenting �✂✁ with axioms representing results of sensing requires checking consistency

of new axioms with the previous collection of axioms, it is computationally simpler to use �
rather than � ✁ as an underlying basic theory of action. The theorem above provides an assur-

ance that solving the forward projection task with respect to � is sound in comparison with

solving the forward projection task with respect to � ✁ .

However, the following example16 demonstrates a lack of completeness, i.e., that there is

16This example was proposed by Yves Lespérance.
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a ground formula that can be entailed from � ✁ augmented with results of sensing, but this

formula is not entailed by � .

Example 3.5.4: Consider two fluents
✁ ✞ ✕✡✠ ✆ � ✞ ✕✡✠ characterized by two successor-state axioms:

✁ ✞✜✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✁ ✆
YES ✠ ✝ ✁ ✞ ✕✡✠ ☛ ☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞ ✁ ✆

NO ✠
(3.5)� ✞✜✄✆☎✩✞ ☎ ✆ ✕★✠✽✠✓✒ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ � ✆

YES ✠ ✝ � ✞ ✕✡✠ ☛ ☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞ � ✆
NO ✠

in the theory � (i.e., in the theory � ✁ the fluents
✁ ✞ ✕✡✠ ✆ � ✞ ✕✡✠ never change). Assume that

�✡✌✒✎✴❃ ✁ ✞ �✻✁✼✠ ✝ � ✞ �✻✁ ✠ , i.e., �✂✁✌✒✎ ❃ Knows ✞ ✁ ✝ � ✆ �✻✁ ✠ , and assume that all actions are always

possible. Consider the situation ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✂ ✆ �✻✁✼✠ that results from sensing the fluent
✁

and let

sensor report that this fluent is false. Then, it is easy to see that

� ✁ ✁ Knows ✞ ✑ ✁ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✂ ✆ �✻✁✼✠✭✠ ✄ ❃ Knows ✞ ✁ ✝ � ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✂ ✆ �✻✁✼✠✽✠ ,
� ✁ ✁ Knows ✞ ✑ ✁ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✂ ✆ �✻✁✼✠✭✠ ✄ ❃ Knows ✞ � ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✂ ✆ �✻✁✥✠✭✠ ,

but

� ✆✄ ❃ � ✞ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞ ✁ ✆
NO ✠ ✆ �✻✁✼✠✭✠

(consider a model in which
✁ ✞ � ✁✼✠ is true, but � ✞ �☞✁ ✠ is false). This happens because augment-

ing the initial knowledge about disjunction by the axiom about the result of sensing of one of

the fluents entails in �✂✁ new information about another fluent, but the theory � updates the

truth value of the sensed fluent without providing any additional logical consequences of this

update. Thus, in a general case, � does not get all the logical entailments of sensing results

that � ✁ gets.

Later, in Chapters 5 and 6, we consider fully observable MDPs. This assumption of full

observability implies that the agent is aware in what state it is; in particular, this means that the

agent knows which fluents are true or false in the initial state. For this reason, we are interested

in a special case of theories about � ✁ , when �✂✍ �✻✁✹✎ is a conjunction of ground fluent literals

(if the agent’s knowledge is incomplete, then �✌✍ � ✁✭✎ does not include some of fluent literals).

Logical models can assign any truth values to fluents and can represent any environment, but in

the physical reality, the agent functions in a given environment and has some knowledge (it can

be incomplete) about this environment. To characterize a given environment and sensing per-

formed by the agent in the environment we have to choose which logical models can represent

the environment. In particular, if we are interested only in veridical (i.e., correct) sensing ac-

tions, then we have to allow only those models which agree with results of sensing to represent

the environment. Because we make the full observability assumption, all other logical models

should be excluded from consideration. For example, if the situation ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✁ ✆
NO ✠ ✆ �☛✁✥✠
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results from sensing that the fluent
✁

is false in the given environment, then the logical model

in which
✁ ✞ �✻✁✼✠ is true should not be allowed as a faithful representation of the environment.

Similarly, the sensing action ✕ ✦ ✘ ✕ ✦ ✞ ✁ ✆
YES ✠ executed in �✌✁ were not veridical, if it finds that

the fluent
✁

is true, but we would allow the logical model in which
✁ ✞ �✌✁✼✠ is false to represent

the given environment. The following formal definition is intended to capture this distinction

between faithful models representing the environment and other counter-intuitive logical mod-

els that we would like to exclude. Because theories � and � ✁ , as we described them in Section

3.2.2, have similar vocabularies, we can talk about the corresponding models of these theories:

a model � � of � and a model � ✁ of � ✁ are corresponding, if they assign the same truth

values to all fluents and other common predicates.

Definition 3.5.5: Let � ✍ be any ground situation term composed from actions mentioned

in the theory � and let � ✑ be a similar ground situation term composed from actions men-

tioned in the theory � ✁ (see Definition 3.5.2; both � ✍ and � ✑ can be equal to �☞✁ ). A model

� � of � is a faithful (representation of the environment) if for any fluent we have � � ✄ ❃
✁ ✰ ☎ ✞ ✖� ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆ YES ✂ NO ✠ ✆ � ✍ ✠✭✠ iff � � ✄ ❃ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ , where ‘plus’ corresponds

to the case when the sense action determines that ✰ ☎ ✞ ✖� ✠ is true, and ‘minus’ – to the case

when this sense action finds that ✰ ☎ ✞ ✖� ✠ is false. Similarly, a corresponding model � ✁ of

� ✁ is a faithful (representation of the environment) if for any fluent ✰ ☎ we have � ✁ ✄ ❃
✁ ✰ ☎ ✞ ✖� ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ✑ ✠✽✠ iff � ✁ ✄ ❃ ✁ ✰ ☎ ✞ ✖� ✆ � ✑ ✠ .
Because all propositions, lemmas and theorems mentioned previously are proved for arbitrary

models, they remain in force when we talk only about faithful models. In the remaining part

of this section, we would like to consider only those successor state axioms that have no oc-

currences of other fluents in the right hand side (context free axioms) [Lin and Reiter, 1997a,

Reiter, 2001a]. In axioms of this form, ✌ ✎✡ ✞☞✖✢ ✆✟☎ ✠ and ✌
❆✡ ✞☞✖✢ ✆✟☎ ✠ are situation independent for-

mulae (recall that in more general case (3.2) these logical formulae can mention fluents). The

basic action theories satisfying these two assumptions are still quite interesting in many do-

mains. The following theorem states that if � and � ✁ are theories of this form, then solving

the forward projection task in � is not only sound, but also complete with respect to solving

the forward projection task in � ✁ .

Theorem 3.5.6: Let �✂✍ �☞✁✭✎ be a conjunction of ground fluent literals. Suppose that ✁ is a

ground objective regressable expression, � ☎ ❁ ☎ ☞ includes the reflexivity axiom, � ✠ ❁✁☛ ✁ ✄ �✌✍ �✻✁✭✎ ✆
decides all equality sentences, ✄ � ✁ ✆ � ✞ � ✑ ✠ ✆ Knows ✞ ✁ ✆ ✕★✠ ✆ � ✑ ✆ and ✄ � ✆ � ✆ ✁ ✆ � ✍ ✆ are represen-

tations of similar forward projection tasks in � ✁ and � , respectively. Assume also that all



CHAPTER 3. THE PROJECTION TASK WITH SENSING ACTIONS 93

successor state axioms in �✞✝✟✝ have the syntactic form (3.2), they are context free and assume

that occurrences of all actions are observable. Then, for any faithful model � � of � and a

corresponding model � ✁ of � ✁
� � ✄ ❃ � ✠ ✁ ✞ � ✍ ✠ iff � ✁ ✄ ❃ � ✁ ☛ � ✞ � ✑ ✠ ✠ Knows ✞ ✁ ✆ � ✑ ✠ .

Proof: We prove this statement by induction on the length of situation term � ✍ (we know

that ✷✫✦ ✘ ✪✝✕ �✌✞ � ✍ ✠ ❃ ✷✫✦ ✘ ✪✆✕ �✌✞ � ✑ ✠ because projection tasks are similar). Because occurrences of

all actions are observable, we are guaranteed that this induction will cover all possible cases.

Base case is similar to the previous theorem.

Inductive step. Let the statement be true for the case when ✷✫✦ ✘ ✪✝✕ �✌✞ � ✍ ✠ ❃ ✘ . We want to

prove that for any faithful model � � of � and a corresponding model � ✁ of � ✁
� � ✄ ❃ � ✠ ✁ ✞✜✄✆☎✩✞ ☎☞☛ ✆ � ✍ ✠✽✠ iff � ✁ ✄ ❃ � ✁ ☛ � ✞ ✄✆☎✟✞ ☎ ☛ ☛ ✆ � ✑ ✠✭✠ ✠ Knows ✞ ✁ ✆ ✄✆☎✟✞ ☎☞☛ ☛✖✆ � ✑ ✠✽✠ ,

where ☎☞☛ ✆✡☎☞☛ ☛ are similar actions. We consider two cases.

First, let ☎ ☛ ☛ be a physical action ✕ ✞ ✖✣✩✠ . In this case, we can repeat the same argument that

we used in the previous theorem. It is easy to check that the argument from the soundness

theorem works actually in both directions.

Second, let ☎ ☛ ☛ be a sense action: ☎ ☛ ☛ ❃ ✕ ✦ ✘ ✕ ✦ ✡ ✆✭✞ ✖� ✠ . Then, � ✞ ✄✆☎✟✞ ☎ ☛ ☛ ✆ � ✑ ✠✭✠❈❃ � ✞ � ✑ ✠ ✁
Knows ✞ ✁ ✰ ☎ ✞ ✖� ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ✑ ✠✭✠ , where ‘plus’ corresponds to the case when this sense

action determines that ✰ ☎ ✞ ✖� ✠ is true, and ‘minus’ – to the case when this sense action finds

that ✰ ☎ ✞ ✖� ✠ is false (i.e., ‘minus’ stands for negation). From Lemma 3.4.10 follows that for any

faithful model � � of � and a corresponding model � ✁ of � ✁
� ✁ ✄ ❃ � ✁ ☛ � ✞ ✄✆☎✟✞ ☎ ☛ ☛✌✆ � ✑ ✠✭✠ ✠ Knows ✞ ✁ ✆ ✄✆☎✩✞ ☎☞☛ ☛ ✆ � ✑ ✠✽✠ iff

� ✁ ✄ ❃ � ✁ ☛ � ✞ � ✑ ✠ ☛ Knows ✞ ✁ ✰ ☎ ✞ ✖� ✠ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✡ ✆ ✞ ✖� ✠ ✆ � ✑ ✠✭✠ ✠ Knows ✞ ✁ ✰ ☎ ✞ ✖� ✠ ✠ ✁ ✆ � ✑ ✠ .
According to Theorem 3.4.5, the last entailment holds iff

� ✁ ✄ ❃ � ✠ ❁✁☛✓☛ � ✌✏✎ ☛ �✆✄✏✞ � ✑ ✠ ✍ �✻✁✭✎ ✠ � ✁ ✍ ✁ ✰ ☎ ✞ ✖� ✆ � ✑ ✠✡✠ ✁☛✍ � ✑ ✎ ✎
which is equivalent by inductive hypothesis and Theorem 3.4.2 to

� � ✄ ❃ � ✠ ❁✁☛✓☛ �✡✌✒✎ ✠ �☎✄ ✍ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ ✁ ✍ � ✍ ✎ ✎ ✆
Consider the single step regression operator �

✍� that is defined relative to the theory � . Because

by Lemma 2.2.10

� ✄ ❃ ✁☛✞ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆ YES ✂ NO ✠ ✆ � ✍ ✠✭✠ iff � ✄ ❃ �
✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞✜✰ ☎ ✞ ✖� ✠ ✆ YES ✂ NO ✠✽✠ ✍ � ✍ ✎ ,

it remains to prove that for any faithful model � � of �
� � ✄ ❃ � ✠ �

✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆ YES ✂ NO ✠✽✠ ✍ � ✍ ✎ iff

� � ✄ ❃ � ✠ ❁☞☛ ☛ �✡✌✒✎ ✠ �☎✄ ✍ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ ✁☛✍ � ✍ ✎ ✎ ,
where �

✍� replaces all occurrences of ✰ ☎ (if any) in the formula ✁ by true (false), depending on
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data returned by sensor at run time, and leaves occurrences of all remaining fluents unchanged.

By Theorem 3.4.2, this last statement can be transformed to the following equivalent statement

that we find more convenient to prove:

� � ✄ ❃ �
✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆

YES ✂ NO ✠✽✠ ✍ � ✍ ✎ iff � � ✄ ❃ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ ✁ ✞ � ✍ ✠ .
Note that this statement has two parts. In the soundness theorem, we proved that this statement

is true from left to right (for any model of � ). Now we prove that this statement is true from

right to left under additional assumptions stated in this theorem. Similarly to the previous

theorem, we prove this last statement by induction on the structure of a regressable formula

✁ ✞ � ✠ with the base cases when this formula is an atom or equality between terms.

1. Suppose that ✁ ✞ � ✍ ✠ is ✰ ☎ ✞ ✖� ✆ � ✍ ✠ , and, consequently, according to the successor state

axiom 3.4, �
✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆

YES ✂ NO ✠✭✠ ✍ � ✍ ✎ is either true in a faithful model � � of

� (if the result of sensing is YES) or false (if the result of sensing is NO). In the first

case, our statement yields if � � ✄ ❃ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠❊✰ ☎ ✞ ✖� ✆ � ✍ ✠ , then � � ✄ ❃❊✕ ✬★✓ ✦ . In the

second case, the statement reduces to this: if � � ✄ ❃ ✑ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ , then

� � ✄ ❃ � ☎✆✷ ✕ ✦ , but because the model � � is faithful, if a sensor reports that the fluent

✰ ☎ is NO after sensing this fluent in � ✍ , then ✰ ☎ ✞ ✖� ✆ � ✍ ✠ is false in � � .

2. Suppose that ✁ ✞ � ✍ ✠ is ✰ ✁✿✞ ✖✂ ✆ � ✍ ✠ , where � ✆❃ ✞ , and, consequently, the left-hand side

formula �
✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆

YES ✂ NO ✠✭✠ ✍ � ✍ ✎ is ✰ ✁✿✞ ✖✂ ✆ � ✍ ✠ . Therefore, our statement is

equivalent to this: if � � ✄ ❃ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ ✰ ✁✏✞ ✖✂ ✆ � ✍ ✠ , then � � ✄ ❃ ✰ ✁★✞ ✖✂ ✆ � ✍ ✠ . By

Theorem 3.4.2 and the definition (2.2.2) of the regression operator, this last statement

can be expressed as this: if � � ✄ ❃ � ✠ ❁☞☛ ☛ � ✌✏✎ ☛ �☎✄ ✍ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✎ ✠ �☎✄ ✍ ✰ ✁✏✞ ✖✂ ✆ � ✍ ✠ ✎ ,
then � � ✄ ❃ � ✠ ❁☞☛ ☛ �✡✌✒✎ ✠ �☎✄ ✍ ✰ ✁✿✞ ✖✂ ✆ � ✍ ✠ ✎ . Because we assumed that all successor state

axioms in � ✝✟✝ are context free, the formula �✆✄ ✍ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✎ is logically equivalent to

either ✰ ☎ ✞ ✖� ✆ �✻✁✼✠ or to ✑ ✰ ☎ ✞ ✖� ✆ �✻✁✼✠ , and, similarly, �✆✄ ✍ ✰ ✁✏✞ ✖✂ ✆ � ✍ ✠ ✎ is logically equivalent

to either ✰ ✁★✞ ✖✂ ✆ �✻✁ ✠ or to ✑ ✰ ✁✏✞ ✖✂ ✆ �✻✁✼✠ (presence or absence of negation depends on actions

that occur in the situation term � ✍ and on the successor state axioms). To complete the

proof in this case, it is sufficient to recall that �✍✌✒✎ is a conjunction of literals. If this

conjunction augmented with a literal
✁ ✰ ☎ ✞ ✖� ✆ �✻✁ ✠ (together with unique name axioms)

entails ✰ ✁✿✞ ✖✂ ✆ �✻✁✥✠ (or its negation), then �✡✠ ❁☞☛ ☛ � ✌✏✎ also entails the same atom ✰ ✁✿✞ ✖✂ ✆ �✻✁✥✠
(or its negation, respectively) because ✰ ☎ ✞ ✖� ✆ �✻✁✥✠ and ✰ ✁✿✞ ✖✂ ✆ �✻✁✥✠ are different atoms.

3. When ✁☛✞ � ✍ ✠ is the negation of a fluent atom, we can use the same arguments as in the

two previous steps to prove our statement.
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4. If ✁☛✞ � ✍ ✠ is equality between terms ✕ ✍ ❃❀✕ ✑ , then it has no occurrences of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ and our

statement holds without regard to the result of sensing: � � ✄ ❃ ✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ ✕ ✍ ❃ ✕ ✑ ,

iff � � ✄ ❃ ✕ ✍ ❃ ✕ ✑ .

5. Next, suppose that ✁☛✞ � ✍ ✠ is a disjunction of fluent literals � ✆
✂ ✁ ✍ ✁ ✰ ✂ ✞ ✖�

✂ ✆ � ✍ ✠ with positive

occurrence of the atom ✰ ☎ ✞ ✖� ✆ � ✍ ✠ , and, consequently, �
✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆

YES ✂ NO ✠✽✠ ✍ � ✍ ✎
is either the same disjunction, but without occurrences of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ (if sensing of this

fluent returns NO) or true (if sensing of this fluent returns YES). If the result of sensing

is NO, then our statement is equivalent to the following: if � � ✄ ❃ ✑ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠
✞❂✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✝ � ✆

✂ ✁ ✍ ✂ ✂ ✁✁ ☎ ✁ ✰ ✂ ✞ ✖�
✂ ✆ � ✍ ✠ ), then � � ✄ ❃ � ✆

✂ ✁ ✍ ✂ ✂ ✁✁ ☎ ✁ ✰ ✂ ✞ ✖�
✂ ✆ � ✍ ✠ , but this last

statement holds because � � is a faithful model and in this model ✰ ☎ ✞ ✖� ✆ � ✍ ✠ is false

if we assume that sensing of this fluent returns the value NO. If the result of sensing

returns YES, then our statement saying that if � � ✄ ❃ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✠ ✞❂✰ ☎ ✞ ✖� ✆ � ✍ ✠ ✝

� ✆
✂ ✁ ✍ ✂ ✂✂✁✁ ☎ ✁ ✰ ✂ ✞ ✖�

✂ ✆ � ✍ ✠ ), then � � ✄ ❃ ✕ ✬★✓ ✦ also holds.

When ✁ ✞ � ✍ ✠ is a disjunction of fluent literals with negative occurrence of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ , we

can repeat the same arguments with appropriate modifications.

When ✁☛✞ � ✍ ✠ is a disjunction of fluent literals with no occurrences of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ , the

statement also holds: we can repeat arguments similar to those that we formulated in the

item 2 above.

If ✁☛✞ � ✍ ✠ is a disjunction of fluent literals and equalities between terms, then we can

simply repeat the same argument as above because equalities between terms have no

occurrences of ✰ ☎ ✞ ✖� ✆ � ✍ ✠ .

6. Finally, without loss of generality, let ✁ ✞ � ✍ ✠ be a CNF
� ❁

✠ ✁ ✍ ✂ ✠●✞ � ✍ ✠ , where ✂ ✠●✞ � ✍ ✠ are

prime implicates of ✁ ✞ � ✍ ✠ . Because our statement holds for each individual prime im-

plicate, we can conclude that it holds also in this case. Because all terms in ✁☛✞ � ✍ ✠ are

ground (i.e., this formula has no occurrences of quantifiers), this case completes the in-

duction over structure of a regressable formula ✁ ✞ � ✍ ✠ .

As a consequence, regression of ✁☛✞ � ✍ ✠ is true in a faithful model of axioms �✡✠ ❁☞☛ ✁ � ✌✏✎ aug-

mented by regression of the literal
✁ ✰ ☎ ✞ ✖� ✆ � ✍ ✠ if and only if �

✍� ✞ ✁ ✆ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ☎ ✞ ✖� ✠ ✆
YES ✂ NO ✠✭✠ ✍ � ✍ ✎

is true in a faithful model of axioms � . This completes our proof.
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3.6 Discussion

When an axiomatizer expresses in her axioms dynamic properties of a domain with respect to

actions that her program will execute, she describes how an internal logical model of the world

(truth values assigned to properties according to axioms) should evolve as a result of actions

(commands that her program sends to effectors). If her program runs in the external (with

respect to the program) real world, and not all dynamic aspects of the world are captured in the

logical model, then real effects of actions may not coincide with effects predicted by axioms

of the model. In addition, the axiomatization of the initial situation (the situation that exists

before the program does any actions) will be incomplete in many realistic applications. For this

reason, if the program is capable to gaining sensory feedback from the real world, it can use it

to supplement the knowledge expressed in the internal model, e.g. to compare sensory readings

with predicted values of properties in the model. Consequently, sensory feedback is intended

to complete the gaps of unavoidable ignorance of the axiomatizer about numerous properties

and causal relationships of the world (the axiomatizer is either not aware of them or not able

to formalize them). Even if successor state axioms capture all relevant causal dependencies

between actions and domain properties, in many realistic scenarios occurrences of exogenous

actions are not observable, but can be determined indirectly from sensing; this is another reason

why an agent executing a program in the real world needs sense actions.

By choosing the situation calculus as our representation language, we decide to represent

properties of an application domain by fluents with a situation argument. From our perspective,

fluents are internal subjective representations (‘beliefs’) of the objective real world, actions in

the logical model are symbolic representations of commands that the program sends to its

effectors (these actions are called physical actions) or symbolic representations of sensory

inputs that the program receives from outside (these actions are called sense actions). Hence,

it is convenient to treat both physical and sense actions the same in axioms.

In contrast to this perspective, a traditional approach to axiomatization of physical and

sense actions separates them in different sets of axioms. A set of axioms is intended to capture

the dynamics of ‘objective’ fluents with respect to causal effects of physical actions. Another

set of axioms is intended to capture the dynamics of the epistemic fluent – something in the

mind of an agent. It was assumed that the agent exists outside of the axiomatizer and may not

be informed about certain properties of the real world that are accessible to a more knowledge-

able axiomatizer. However, if the axiomatizer is supposed to express what she really knows

about the world, she does her best to achieve this and she has no reason to hide valuable in-
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formation from her program (that will drive actions of the agent in the real world), the first

perspective seems also reasonable. Moreover, our ontology can be easily extended by adding

an agent argument to all fluents (the agent ‘nature’ holds objective beliefs). By doing this, the

axiomatizer may wish to distinguish between beliefs of agents vs. ‘facts of nature’, but we

restrained from exploring this option in this chapter.

There are several other approaches to logical formalization of reasoning about both phys-

ical and sense actions. [De Giacomo and Levesque, 1999a] introduces guarded sensed flu-

ent axioms (GSFA) and guarded successor state axioms (GSSA) and assumes that there is

a stream of sensor readings available at any time. These readings are represented by unary

sensing functions (syntactically, they look like functional fluents). [De Giacomo et al., 2001]

provides formal definitions of guarded theories of actions and proves soundness and correct-

ness of an IndiGolog interpreter that can evaluate correctly sensor-fluent formulas if a given

guarded action theory is consistent, the history of physical actions and sensing readings is

coherent and a Golog program is bounded (and does not have nested search operators). As

far as an implementation is concerned, both their approach and ours rely on a sort of dy-

namic closed-world assumption that is important for an efficient implementation in Prolog

[Levesque and Pagnucco, 2000]. According to this assumption, in the situation resulting from

execution of physical and sensing actions, the truth value of any fluent that is not known to be

true with respect to an augmented theory is considered to be false. Our approach is different

from the papers mentioned above because we have sensing actions rather than online sensors

providing streams of data. As a consequence, our sensing actions can be mentioned explicitly

in Golog programs or can be executed by the interpreter. One can imagine domains where both

sensing functions and our sense actions would be useful: it remains to see how both represen-

tations can be combined together. In addition, our representation does not require consistency

of sensory readings about values of fluents with the values computed from the action theory

(this can be handled by solving a diagnostic task: [McIlraith, 1997]).

An interesting proposal for reasoning about perception [Pirri and Finzi, 1999, Piazzolla et al., 2000]

also avoids an epistemic fluent (as we do in this chapter). The authors introduce sense actions

with an argument perceptible that can hold or not hold in the visual scene; this second boolean

valued argument gets bound at run-time by doing the corresponding sense action in the outside

world. Our representation is similar to their representation, but we allow real valued data as

run-time arguments, not only boolean valued perceptibles. The major difference is that we

suggest to use modified successor state axioms for reasoning about physical and sense actions

in the usual language of the situation calculus, but Pirri and Finzi introduce several auxiliary
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predicates to reason about perception. In [Pirri and Finzi, 1999], the authors consider the im-

portant problem of mis-perception that remains outside of scope of this chapter. It would be

interesting to see how this problem can be addressed using our approach to reasoning about

sensing information.

[Demolombe and Pozos-Parra, 2000] proposes to consider two new sets of ’subjective flu-

ents’ ✛ ✰ ☎ and ✛ ✑ ✰ ☎ for each usual ‘objective fluent’ ✰ ☎ , where the ✛✢✰ ☎ and ✛ ✑ ✰ ☎ are com-

pound names of new fluents and the symbol of logical negation should be understood as a part

of the names of new fluents. Informally, ✛ ✰ ☎ is understood as a belief in the fluent and ✛ ✑ ✰ ☎

is understood as a belief in the negation of fluent; the notations ✑ ✛✢✰ ☎ and ✑ ✛ ✑ ✰ ☎ (where the

external symbol of logical negation is applied to new fluents) mean the lack of belief in fluents.

In addition to the standard successor state axiom for ✰ ☎ , the authors propose to consider two

new successor state axioms for ‘subjective’ fluents ✛ ✰ ☎ and ✛ ✑ ✰ ☎ . These axioms can mention

on the right hand side both physical and sensing actions, similarly to our approach.17 However,

we do not consider ‘objective fluents’ (in our theory they could be represented as beliefs of

nature), and we consider only one kind of ‘subjective fluent’ that corresponds to ✛✢✰ ☎ . Other

differences from our approach are that in [Demolombe and Pozos-Parra, 2000] the precondi-

tion axioms for physical actions can mention both ‘subjective’ and ‘objective’ fluents, and the

sensing actions do not have an argument that gets bound at the run time. The main represen-

tational difference between our approaches stems from the fact that lack of belief is difficult

to capture in our approach. The following example demonstrates this. Let ✾ ☎ ✷ ☎★✬✩✞ ✢ ✆ ✾ ✆ ✕✡✠ be a

fluent that holds if the color of an object ✢ is ✾ in a situation ✕ and �✂✞ ✕ ✞ ✂ ✷✫✦ ✞ ✢ ✆ ✕✡✠ be a fluent that

holds if the object ✢ is visible in ✕ . For simplicity, we assume that a scene is static and visibility

of objects does not change:

�✂✞ ✕ ✞ ✂✼✷✫✦ ✞ ✢ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ ✒ �✂✞ ✕ ✞ ✂✼✷✜✦ ✞ ✢ ✆ ✕✡✠ ✓
We assume that all actions are always possible and that an agent can do the action ✕ ✦ ✘ ✕ ✦ ✞ ✢ ✆ ✾ ✠
to find the color of ✢ . The following successor state axiom characterizes this fluent:

✾ ☎ ✷ ☎★✬✩✞ ✢ ✆ ✾ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠✓✒ �✂✞ ✕ ✞ ✂ ✷✫✦ ✞ ✢ ✆ ✕✡✠ ☛ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✢ ✆ ✾ ✠ ✝
✾ ☎ ✷ ☎✡✬✮✞ ✢ ✆ ✾ ✆ ✕★✠ ☛ �✂✞ ✕ ✞ ✂✼✷✫✦ ✞ ✢ ✆ ✕✡✠ ☛ ✑ ✒✮✾ ☛ ✞ ✾ ✆❃❅✾ ☛✞☛ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✢ ✆ ✾ ☛ ✠✭✠ ✓

If in the initial situation ✑ �✂✞ ✕ ✞ ✂ ✷✫✦ ✞✜✖ ✂ � ✆ �☞✁ ✠ and ✾ ☎ ✷ ☎✡✬✮✞✜✖ ✂ � ✆ ✁ ✬ ✦ ✦ ✘ ✆ �✻✁✼✠ ✝ ✑ ✾ ☎ ✷ ☎✡✬✩✞ ✖ ✂ � ✆✥✸ ✦ ✄ ✆ �✻✁✥✠ ,
then in the situation � ✍ that results from sensing the color of ✖ ✂ � we have that ✑ ✾ ☎ ✷ ☎★✬✩✞ ✖ ✂ � ✆ ✁✙✬ ✦ ✦ ✘ ✆ � ✍ ✠ ☛
✑ ✾ ☎ ✷ ☎★✬✩✞ ✖ ✂ � ✆✥✸ ✦ ✄ ✆ � ✍ ✠ . This can be interpreted that an agent believes that the color of object

17Both proposals were developed independently from each other: [Demolombe and Pozos-Parra, 2000] was

published in October 2000, and [Soutchanski, 2000] in August 2000.
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is neither green nor red. Let us consider now an axiomatization with two subjective fluents.

To represent visibility we need two fluents ✂✼✦ ✷ ✞ ✦ � ✦ � ✞ ✕ ✞ ✂✼✷✫✦ ✞ ✢ ✆ ✕★✠ and ✂✼✦ ✷ ✞ ✦ � ✦ ✟ ☎ ✕ � ✞ ✕ ✞ ✂✼✷✫✦ ✞ ✢ ✆ ✕✡✠ ,
they never change similar to previous axiomatization:

✂✼✦ ✷ ✞ ✦ � ✦ � ✞ ✕ ✞ ✂✼✷✫✦ ✞ ✢ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ ✒ ✂✼✦ ✷ ✞ ✦ � ✦ � ✞ ✕ ✞ ✂✼✷✜✦ ✞ ✢ ✆ ✕✡✠
✂✼✦ ✷ ✞ ✦ � ✦ ✟ ☎ ✕ � ✞ ✕ ✞ ✂✼✷✫✦ ✞ ✢ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ ✒ ✂✼✦ ✷ ✞ ✦ � ✦ ✟ ☎ ✕ � ✞ ✕ ✞ ✂✼✷✫✦ ✞ ✢ ✆ ✕★✠

To represent colors of objects we also need two fluents ✂✼✦ ✷ ✞ ✦ � ✦ ✂ ☎ ✷ ☎★✬✩✞ ✢ ✆ ✾ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ and the

contrary fluent ✂✼✦ ✷ ✞ ✦ � ✦ ✟ ☎ ✕ ✂ ☎ ✷ ☎★✬✩✞ ✢ ✆ ✾ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ :
✂✼✦ ✷ ✞ ✦ � ✦ ✂ ☎ ✷ ☎✡✬✮✞ ✢ ✆ ✾ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ✂ ✦ ✷ ✞ ✦ � ✦ � ✞ ✕ ✞ ✂✼✷✫✦ ✞ ✢ ✆ ✕✡✠ ☛ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✢ ✆ ✾ ✠ ✝

✂✼✦ ✷ ✞ ✦ � ✦ ✂ ☎ ✷ ☎★✬✩✞ ✢ ✆ ✾ ✆ ✕✡✠ ☛ ✂✼✦ ✷ ✞ ✦ � ✦ � ✞ ✕ ✞ ✂ ✷✫✦ ✞ ✢ ✆ ✕✡✠ ☛ ✑ ✒✮✾ ☛ ✞✜✾ ✆❃❅✾ ☛ ☛ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✢ ✆ ✾ ☛ ✠✽✠ ✆
✂✼✦ ✷ ✞ ✦ � ✦ ✟❈☎✡✕ ✂ ☎ ✷ ☎✡✬✮✞ ✢ ✆ ✾ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ✂✼✦ ✷ ✞ ✦ � ✦ � ✞ ✕ ✞ ✂✼✷✜✦ ✞ ✢ ✆ ✕✡✠ ☛ ✒✮✾ ☛ ✞ ✾ ✆❃ ✾ ☛ ☛ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✢ ✆ ✾ ☛ ✠✭✠ ✝

✂✼✦ ✷ ✞ ✦ � ✦ ✟ ☎ ✕ ✂ ☎ ✷ ☎★✬✩✞ ✢ ✆ ✾ ✆ ✕✡✠ ☛ ✂✼✦ ✷ ✞ ✦ � ✦ � ✞ ✕ ✞ ✂✼✷✫✦ ✞ ✢ ✆ ✕★✠ ☛ ☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞ ✢ ✆ ✾ ✠ ✓

Similarly, to the previous axiomatization, let ✑ ✂✼✦ ✷ ✞ ✦ � ✦ � ✞ ✕ ✞ ✂✼✷✫✦ ✞ ✖ ✂ � ✆ �✌✁ ✠ and also
✂ ✦ ✷ ✞ ✦ � ✦ ✂ ☎ ✷ ☎✡✬✩✞ ✖ ✂ � ✆ ✁ ✬ ✦ ✦ ✘ ✆ �✻✁ ✠ ✝ ✂✼✦ ✷ ✞ ✦ � ✦ ✟❈☎✡✕ ✂ ☎ ✷ ☎✡✬✮✞✜✖ ✂ � ✆✥✸ ✦ ✄ ✆ �✻✁ ✠ .

In this theory, we can easily express the lack of belief after sensing the color of ✖ ✂ � :

✑ ✂ ✦ ✷ ✞ ✦ � ✦ ✂ ☎ ✷ ☎✡✬✩✞ ✖ ✂ � ✆ ✁ ✬ ✦ ✦ ✘ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞ ✖ ✂ � ✆ ✁✙✬ ✦ ✦ ✘ ✠ ✆ �✻✁ ✠✭✠ ☛
✑ ✂✼✦ ✷ ✞ ✦ � ✦ ✟ ☎ ✕ ✂ ☎ ✷ ☎★✬✩✞ ✖ ✂ � ✆ ✁✙✬ ✦ ✦ ✘ ✆ ✄✝☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✂ � ✆ ✁ ✬ ✦ ✦ ✘☞✠ ✆ �✻✁ ✠✽✠ ,

✑ ✂ ✦ ✷ ✞ ✦ � ✦ ✂ ☎ ✷ ☎✡✬✩✞ ✖ ✂ � ✆✥✸ ✦ ✄ ✆ ✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞✜✖ ✂ � ✆ ✁ ✬ ✦ ✦ ✘☞✠ ✆ �✻✁ ✠✭✠ ☛
✑ ✂✼✦ ✷ ✞ ✦ � ✦ ✟ ☎ ✕ ✂ ☎ ✷ ☎★✬✩✞ ✖ ✂ � ✆✥✸ ✦ ✄ ✆ ✄✆☎✩✞ ✕ ✦ ✘ ✕ ✦ ✞ ✖ ✂ � ✆ ✁ ✬ ✦ ✦ ✘ ✠ ✆ �✻✁ ✠✽✠ .

Note how these formulas express the lack of belief regarding the color of sensed object, but in

the previous axiomatization the interpretation was different. In [Demolombe and Pozos-Parra, 2000],

an axiomatizer must ensure consistency of beliefs: for any pair of subjective fluents ✛✢✰ ☎ ✠
✑ ✛ ✑ ✰ ☎ (i.e., ✑ ✛✢✰ ☎ ✝ ✑ ✛ ✑ ✰ ☎ ). If for every fluent ✰ ☎ , the axiomatizer specifies also that

✑ ✛ ✑ ✰ ☎ ✠ ✛ ✰ ☎ (i.e., ✛✢✰ ☎ ✝ ✛ ✑ ✰ ☎ , the agent has one of the two beliefs), then ✛✢✰ ☎ ✒ ✑ ✛ ✑ ✰ ☎ ,
i.e., the axiomatizer can use only one subjective fluent to represent beliefs and lack of beliefs.

Note that in Chapters 5 and 6 we make a full observability assumption when we consider

MDPs. According to this assumption, in any state, the agent must have one of the two beliefs

(either ✛✢✰ ☎ , i.e., the agent believes that the fluent ✰ ☎ holds, or ✛ ✑ ✰ ☎ , i.e., the agent believes

that the negation of ✰ ☎ holds). As a consequence, in subsequent chapters we can consider only

one subjective fluent to represent beliefs.

The recent paper [Petrick and Levesque, 2002] considers combined action theories that use

both a successor state axiom for the � fluent as proposed in [Scherl and Levesque, 1993] (SL

theory) and successor state axioms for subjective fluents as proposed in the previously men-

tioned paper [Demolombe and Pozos-Parra, 2000] (DP theory). The authors formulate several
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additional properties that the combined action theories must satisfy (e.g., that the agent knows

disjunction of fluent literals iff the agent knows one of the literals). Their combined action

theories encode a correspondence between a SL theory (possible worlds) and a DP theory

(‘subjective’ fluents). The authors do an in depth investigation of the correspondences between

SL and DP theories and provide examples of differences between them. In particular, they

prove when in combined theories the same fluent literals are known according to both SL and

to DP approaches. First, this demonstrates the correctness of the DP treatment of knowledge

and action in terms of � -fluent based specification. Second, this allows to translate certain SL

theories into equivalent DP theories that avoid the computational drawbacks of possible world

reasoning.

In this chapter we also introduce subjective fluents and propose to use both physical and

sensing actions in the successor state axioms for subjective fluents. However, we investigate

an issue that is different from the issues investigated in [Petrick and Levesque, 2002]. Our

concern is in establishing a correspondence between the augmentation approach proposed in

[Reiter, 2001a] (when sentences representing new sensory information are added to the theory

to supplement incompleteness of knowledge in the initial theory) and our axiom modification

approach that allows to incorporate new sensory information in an argument of run-time sens-

ing actions.

There are several accounts of sensing in the situation calculus [Scherl and Levesque, 1993,

Bacchus et al., 1999, Funge, 1998, Grosskreutz, 2000, Lakemeyer, 1999, Levesque, 1996] and

also [Lakemeyer and Levesque, 1998, Shapiro et al., 2000] that address different aspects of

reasoning about sensory and physical actions and are either inspired by the development of

the epistemic fluent approach or concerned with fundamental issues of planning in the pres-

ence of incoming sensory information. Our approach is different partly because it is driven by

implementational concerns. As was discussed in [Funge, 1998], the implementation of reason-

ing about sense actions based on � ✞ ✕ ☛ ✆ ✕✡✠ is problematic, especially in the case when the agent

has to consider sensing of time-varying continuous fluents like outdoor temperature or battery

voltage.

There is also an extensive literature on reasoning about sensing and physical actions in

knowledge representation frameworks different from the situation calculus, e.g. [Coradeschi, 1996,

De Giacomo et al., 1997a, De Giacomo et al., 1999, Shanahan, 1998, Doherty, 1999, Thielscher, 2000b,

Coradeschi and Saffiotti, 2000, Baral and Son, 2001] to mention a few. For example, the ap-

proach to reasoning about actions advocated in [De Giacomo et al., 1997a, De Giacomo et al., 1999]

is based on description logics; all sense actions have precondition axioms saying that an action
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sensing a boolean value of a proposition is possible only if both potential values of the propo-

sition to be sensed are consistent with the current set of interpretations. A formal comparison

with this and other approaches remains a topic for further research.

There are several approaches to reasoning about knowledge and action (e.g., see [Konolige, 1982,

Morgenstern, 1988, Lespérance, 1991, Davis and Morgenstern, 1993a, Davis and Morgenstern, 1993b,

Lespérance and Levesque, 1995]). An interesting future direction for research is reasoning

about knowledge and action from the perspective of the approach developed in this chapter.



Chapter 4

Execution Monitoring

4.1 Introduction and Motivation.

Our ultimate goal is to program a robot that will be able to maintain a logical (mental) model

of the world while it performs some actions in the real world.1 This chapter will demonstrate

that the mental model is useful when a program controlling the robot encounters unexpected

circumstances. We assume that the robot needs to deliberate only when circumstances are such

that there is no reactive procedure that may help to solve a problem. Informally speaking, we

expect that our robot will not deliberate when it is simply moving towards a friend’s house and

the path is clear, but will start to deliberate if it finds (unexpectedly) that the friend is not at

home. The usefulness of models in mobile robotics is eloquently discussed in [Thrun, 1997].

Imagine a robot that is executing a Golog program on-line, and, insofar as it is reasonable

to do so, wishes to continue with this on-line program execution, no matter what exogenous

events occur in the world.2 An example of this setting, which we treat in this chapter, is a

robot executing a program to build certain towers of blocks in an environment inhabited by

a (sometimes) malicious agent who might arbitrarily move some block while the robot is not

looking. The robot is equipped with sensors, so it can observe when the world fails to conform

to its internal representation of what the world would be like in the absence of malicious agents.

What could the robot do when it observes such a discrepancy between the actual world and its

mental model of the world? There are (at least) three possibilities:

1. It can give up trying to complete the execution of its program.

1Informally speaking, values of fluents according to axioms constitute the internal mental model of an agent.
2We allow nondeterministic programs, so to avoid potential complications associated with an on-line execution

of a program we distinguish between brave and cautious approaches to on-line execution. See Section 2.3.3 in the

introductory chapter 2.
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2. It can call on its programmer to give it a more sophisticated program, one that antici-

pates all possible discrepancies between the actual world and its internal model, and that

additionally instructs it what to do to recover from such failures.

3. It can have available to it a repertoire of general failure recovery methods, and invoke

these as needed. One such recovery technique involves planning; whenever it detects a

discrepancy, the robot computes a plan that, when executed, will restore the state of the

world to what it would have been had the exogenous action not occurred. Then it exe-

cutes the plan, after which it resumes execution of its program. Another failure recovery

method takes advantage of the nondeterminism of the program when computation in the

current branch fails and it cannot be recovered using planning. For example, this may

happen when actions in the current branch are delayed and if robot continues with these

actions, then it will miss an important deadline at the end. This second recovery tech-

nique involves reconsidering a previous nondeterministic choice between branches of the

program and taking an alternative branch. Sometimes, the robot may need an appropriate

combination of two aforementioned techniques.

Execution monitoring is the robot’s process of observing the world for discrepancies be-

tween “physical reality”, and its “mental reality”, and recovering from such perceived dis-

crepancies especially when the plan can no longer be executed. The approach to execution

monitoring that we take in this chapter is option 3 above. While option 2 certainly is valu-

able and important, we believe that it will be difficult to write programs that take into account

all possible exceptional cases. It will be easier (especially for inexperienced programmers) to

write simple programs in a language like Golog , and have a sophisticated execution monitor

(written by a different, presumably more experienced programmer) keep the robot on track in

its actual execution of its program.

In general, we have the following picture: The robot is executing a program on-line. By

this, we mean that it is physically performing actions in sequence, as these are specified by

the program. Before each execution of a primitive action and after each evaluation of a test,

the execution monitor observes whether any exogenous actions have occurred. If so, the mon-

itor determines whether the exogenous actions can affect the successful outcome of its on-line

execution. If not, it simply continues with this execution. Otherwise, there is a serious discrep-

ancy between what the robot sensed and its internal world model. Because this discrepancy

will interfere with the further execution of the robot’s program, the monitor needs to determine

another corrected program that the robot should continue executing on-line instead of its origi-
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nal program. So we will understand an execution monitor as a mechanism that gets output from

sensors, compares sensor measurements with its internal model and, if necessary, produces a

new program whose on-line execution will make things right again.

Our purpose in this chapter is to provide a situation calculus-based account of such on-line

program executions, with monitoring. To illustrate the theory and implementation, we consider

two simple examples later in this chapter.

The first example is a standard blocks world as an environment in which a robot is executing

a Golog program to build a suitable tower. The monitor makes use of a simple kind of plan-

ner for recovering from malicious exogenous actions performed by another agent. After the

robot performs the sequence of actions generated by the recovery procedure, the discrepancy

is eliminated and the robot can resume building its goal tower.

The second example is a coffee delivery robot (2.1.2) described in Section 2.1.2. In this

example, temporal plans (sequences of actions with an explicit time argument) are generated

from a given nondeterministic Golog program and are performed in a dynamic and uncertain

environment. After doing each action, the monitor may sense the current time and find whether

actions in the remaining part of the program can be scheduled according to temporal constraints

in the program (including a program postcondition) and initial data. If there is no schedule for

the actions remaining in the current branch of the program (i.e., one of the constraints remains

violated), then the monitor (after doing auxiliary actions, if necessary) backtracks to a previous

computation state and tries an alternative branch of the program. As a real-life example of this

problem, consider a program that must non-deterministically perform several unrelated errands

with a mobile robot in an office environment: clean a lab, deliver coffee, give a tour. If the robot

was delayed in a corridor and missed the deadline of a coffee delivery request, this does not

mean that the overall program failed: the robot has to execute as many of the remaining tasks

as possible. The declarative framework developed here is supported by an implementation on

a B21 robot manufactured by RWI. We are able to concentrate on cognitive level issues thanks

to software [Burgard et al., 1998, Hähnel, 1998, Hähnel et al., 1998] that provides stable low

level control and a reliable interface to the high level control.

Already in [McCarthy and Hayes, 1969], the authors argued that the situation calculus can

serve as a basis for a high level programming language. In addition, the situation calculus has

been considered as a convenient framework for the specification of constructs of programming

languages, for proving properties of programs and programming languages and for transform-

ing a given program to improve its efficiency: e.g., see [Burstall, 1969, Manna and Waldinger, 1980,

Manna and Waldinger, 1981, Lin and Reiter, 1997b, Lin, 1997]. To solve a difficult problem
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in the software specification community, Reiter’s (partial) solution [Reiter, 1991] of the frame

problem [McCarthy and Hayes, 1969] is used to provide an approach for formal specification

of procedures [Borgida et al., 1995]; the authors propose to reify procedures and then pro-

vide axioms explaining under what circumstances a predicate or function can change from

one program state to the next. Given the history of these previous research developments, the

work reported in this chapter can be considered as an attempt of developing the automated

tools that can assure a correct functioning of a program even in cases when the program en-

counters runtime deviations in the behavior of its environment. Somewhat similar research

problems are considered in the area of requirements engineering [Cohen et al., May 1997,

Feather et al., April 1998, Lamsweerde and Letier, 2000, Letier and van Lamsweerde, 2002].

The remaining part of this chapter is structured as follows. In Section 4.2, we provide

general logical specifications of Golog program interpreting and execution monitoring. Two

particular realizations of our framework are considered in subsequent sections. In Section 4.3,

we consider planning as a recovery technique and the blocks world example. The second failure

recovery technique and the coffee delivery example are described in the following Section 4.4.

Finally, in Section 4.5 we formulate the correctness properties of our recovery procedures.

Finally, we discuss other execution monitoring frameworks and compare them with that of

proposed here.

4.2 Execution Monitoring: The General Framework

In this section we elaborate on a framework developed in our paper [De Giacomo et al., 1998],

without committing to any particular details of the monitor: we introduce the notion of trace

and expand the framework accordingly.

In the introductory Section 2.3, we considered generation of plans from Golog programs.

In particular, in Section 2.3.3 we have seen that a sequence of actions can be incrementally

computed by a brave or by a cautious on-line interpreter based on a transition semantics. Ac-

cording to the initial Golog proposals [Levesque et al., 1997, De Giacomo et al., 1997b], it was

assumed that once a sequence of actions is computed, it can be simply given to an execution

module that has to execute each action in the real world. However, even in benign and well-

structured office-type environments there is no guarantee that during the execution of actions

the truth values of relational fluents or values of functional fluents computed from the succes-

sor state axioms will remain in exact correspondence to their values in the real world: other

agents perform their actions independently from the robot and those actions may change the
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actual values of fluents. The behavior of other agents is neither predictable, nor always can

be observed and often cannot be modeled an advance3. Nevertheless, feedback from the ex-

ternal world can help to account for unpredictable effects and obtain the desirable closed-loop

behavior. Thus, imagine that at any stage of planning, when the interpreter selects a primitive

action for execution or a test condition for evaluation, a high-level control module of the robot

executes a set of predefined sense actions4 to compare reality with its internal representation

(i.e., with values of fluents according to successor state axioms). If the robot does not notice

any relevant discrepancies, then it executes the action in reality (and proceeds executing the

remaining program). Otherwise, the high-level control module (called the monitor) attempts

to recover from unexpected discrepancies by finding a corrected program from the remaining

part of the program and then proceeds with the corrected program or fails. If the remainder of a

program is long enough, then it seems computationally advantageous to recover from discrep-

ancies and then use the remaining program rather than throw it away and plan from scratch.

The processes of interpreting and execution monitoring continues until the program reaches the

final configuration or fails. It is natural to imagine that all discrepancies between the robot’s

mental world and reality are the result of sensory input, but our formal model remains the same

if we assume that the high level control module is explicitly told also about exogenous actions.5

We want to characterize the processes of program interpretation, execution, and execution

monitoring, in a declarative framework. In the sequel, we need the notion of trace which is a

sequence of program states; intuitively, the trace for a Golog program is a history composed

from states that the program goes through when it is being executed. We introduce a new

sort for traces: we use letters � ✆ � ✍✚✆ � ✑ and similar letters with subscripts to denote variables

of sort trace. Let constant ✶ ✁ denote the empty trace, and the functional symbol ✕ ✬ ☎ ✾ ✦ ✞✝☎ ✆ � ✠
denote a new trace composed from a program state ☎ and the previous trace � . We use a binary

predicate symbol � taking arguments of sort trace to express an order relation between traces.

The notation � ✍✂✁ � ✑ is used as shorthand for � ✍ � � ✑✎✝ � ✍ ❃ � ✑ . The set of traces satisfies the

following axioms:

✕ ✬ ☎ ✾ ✦ ✞✆☎ ✍✚✆ � ✍ ✠ ❃ ✕ ✬ ☎ ✾ ✦ ✞✆☎ ✑✛✆ � ✑ ✠✡✠ ☎ ✍ ❃ ☎ ✑ ☛ � ✍ ❃ � ✑✛✆ (4.1)

3In many realistic scenarios, when the agent is placed in an unfamiliar and unmodelled environment, the agent

lacks even a probabilistic model that could be used to anticipate various contingencies.
4As we discussed in Chapter 3, sense actions have an argument which represents data returned from sensors

at the run time.
5In other words, for modeling purposes we can abstract away without loss of generality from the definition of

how and where those exogenous (with respect to robot’s mind) actions are obtained.
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✞✍✌ ✁ ✠ ✓ ✁ ✞✜✶ ✁✹✠ ☛ ✞✍✌ ☎ ✆ � ✠ ✍ ✁ ✞ � ✠✡✠ ✁ ✞✫✕ ✬ ☎ ✾ ✦ ✞✝☎ ✆ � ✠✽✠ ✎ ✠ ✞✍✌ � ✠ ✁ ✞ � ✠ ✆ (4.2)

✑ ✞ ✒ ☎ ✆ � ✠✂✕ ✬ ☎ ✾ ✦ ✞✝☎ ✆ � ✠✂� ✶ ✁ ✆ (4.3)

� � ✕ ✬ ☎ ✾ ✦ ✞✝☎ ✆ � ☛ ✠ ✒ � ✁ � ☛ ✓ (4.4)

The axiom (4.2) is a second order induction axiom saying that the sort trace is the smallest

set containing ✶ ✁ that is closed under the application of ✕ ✬ ☎ ✾ ✦ to a program term and trace.

The axiom (4.1) is a unique names axiom for traces that together with (4.2) imply that if two

traces are the same, then each of them is the result of the same sequence of program states

going from ✶ ✁ (informally, different sequences of program states forking from ✶✧✁ cannot join

later resulting in the same trace). The axiom (4.3) means that ✶✧✁ has no predecessors, and (4.4)

asserts that a trace � is a predecessor of any other trace that results from adding a program state

☎ to a trace � ☛ if and only if � is a predecessor of � ☛ or � is equal to � ☛ . These axioms are domain

independent (notice that they are similar to the foundational axioms for situations).

The on-line closed-loop system (interpreter and execution monitor) is characterized for-

mally by a new predicate symbol TransEM ✞ ✕ ✆ ✆ ☎ ✍✟✆ ✕ ✍✏✆ � ✍✏✆ ☎ ✑✛✆ ✕ ✑✔✆ � ✑ ✠ , describing a one-step tran-

sition consisting of a single ✳ ✬ ☎ ✘ ✕✆✞✝☎ ✍✏✆ ✕ ✍✟✆ ☎ ☛ ✆ ✕ ☛ ✠ step of program interpretation, followed by a

process, called
✁ ☎★✘ ✞ ✕ ☎✡✬ , of execution monitoring. The arguments ☎ ✍✟✆ ✕ ✍✏✆ � ✍ can be understood

as the current program state, the current situation, the current trace and the argument ✕ ✆ repre-

sents the situation that results when several (or no) exogenous actions are executed in ✕ ✍ . The

role of the execution monitor is to get new sensory input in the form of sensing and exogenous

actions and (if necessary) to generate a program to counter-balance any perceived discrepancy.6

As a result of all this, the system passes from ✞✝☎ ✍✏✆ ✕ ✍✏✆ � ✍ ✠ to the configuration ✞✝☎ ✑✔✆ ✕ ✑✔✆ � ✑ ✠ :
TransEM ✞ ✕ ✆ ✆ ☎ ✍✚✆ ✕ ✍✏✆ � ✍✏✆ ☎ ✑✛✆ ✕ ✑✔✆ � ✑ ✠ ✒

✞✟✒ ☎ ☛✖✆ ✕ ☛✌✆ � ☛ ✠ Trans ✞✝☎ ✍✚✆ ✕ ✍✏✆ ☎ ☛✖✆ ✕ ☛ ✠ ☛ � ☛ ❃ ✕ ✬ ☎ ✾ ✦ ✞✝☎ ✍✚✆ � ✍ ✠ ☛
✁ ☎✡✘ ✞✜✕ ☎★✬✩✞ ✕ ✍✚✆ ✕ ✆ ✆ ☎ ☛✖✆ ✕ ☛✖✆ � ☛✌✆ ☎ ✑✜✆ ✕ ✑✔✆ � ✑ ✠ ✓

In the predicate
✁ ☎★✘ ✞ ✕ ☎✡✬✮✞ ✕ ✍✜✆ ✕ ✆ ✆ ☎ ☛✖✆ ✕ ☛✌✆ � ☛✖✆ ☎ ✑✔✆ ✕ ❁ ✆ � ✑ ✠ , the first argument ✕ ✍ is the current situ-

ation before any exogenous or sensing action happened, ✕ ✆ is the situation that occurs in the

result of exogenous or pre-specified sensing actions, the next three arguments ☎ ☛ ✆ ✕ ☛ ✆ � ☛ represent

the proposed transition and the last three arguments ☎ ✑✔✆ ✕ ✑✔✆ � ✑ represent corrected values. Note

that if the Trans-based interpreter happens to choose a branch (in a nondeterministic program

6We assume that sense actions are domain specific; a domain axiomatizer must specify which sequence of

sense actions has to be executed after every primitive action to find its real effects.
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☎ ✍ ) that leads to a dead-end, then the program may not terminate successfully even if no ex-

ogenous action will happen (compare with a brave version of the on-line interpreter in Section

2.3.3, see also [De Giacomo and Levesque, 1999b]). A cautious version avoids unsuccessful

branches of ☎ ✍ :7

TransEM ✞ ✕ ✆ ✆ ☎ ✍✚✆ ✕ ✍✏✆ � ✍✏✆ ☎ ✑✔✆ ✕ ✑✔✆ � ✑ ✠✓✒
✞✟✒ ☎ ☛✌✆ ✕ ☛✖✆ � ☛ ✠ Trans ✞✝☎ ✍✚✆ ✕ ✍✟✆ ☎ ☛✌✆ ✕ ☛ ✠ ☛ � ☛ ❃ ✕ ✬ ☎ ✾ ✦ ✞✆☎ ✍✚✆ � ✍ ✠ ☛

✞✟✒✝✕ � ✠ ✤ ☎✟✞✝☎ ☛✌✆ ✕ ☛✌✆ ✕ � ✠ ☛ ✁ ☎✡✘ ✞ ✕ ☎✡✬✩✞ ✕ ✍✚✆ ✕ ✆ ✆ ☎ ☛✌✆ ✕ ☛✖✆ � ☛✌✆ ☎ ✑✛✆ ✕ ✑✔✆ � ✑ ✠ ✓
(4.5)

Note that in the axiom (4.5) we use an off-line interpreter ✤ ☎✩✞✆☎ ☛ ✆ ✕ ☛✖✆ ✕ � ✠ defined in 2.3.2 (see

the discussion in Section 2.3.3). Note also that either ✒ ☎ ✓ ✕ ☛ ❃ ✄✆☎✩✞ ☎ ✆ ✕ ✍ ✠ (a first primitive action

in ☎ ✍ is selected for execution), or ✕ ☛ ❃ ✕ ✍ (a test is evaluated).8

Let ✦ ✍ be an exogenous event, which might be as simple as a sensing action or a primitive

exogenous action or as complex as an arbitrary Golog program consisting of exogenous actions

and domain specific sensing actions. Then, Trans ✞ ✦☞✍✚✆ ✕ ✍✏✆✥✦✔✑✔✆ ✕ ✆ ✠ holds if ✕ ✆ is a situation result-

ing after doing ✦ ✍ in ✕ ✍ ; informally, ✕ ✆ takes into account an influence of the external real world

(environment). The possible configurations that can be reached with execution monitoring by

a program ☎ given ✕ and a trace � are those obtained by repeatedly following TransEM transi-

tions interleaved with exogenous actions, i.e. those in its reflexive transitive closure TransEM ✁ :

DoEM ✞✝☎ ✆✥✦ ✢ ☎ ✆ ✕ ✆ � ✆ ✕ ✞ ✠ ✒ ✒ ☎ ✞ ✆ � ✞ ✓ TransEM ✁ ✞ ✦ ✢ ☎ ✆ ☎ ✆ ✕ ✆ � ✆ ☎ ✞ ✆ ✕ ✞ ✆ � ✞ ✠ ☛ Final ✞✝☎ ✞ ✆ ✕ ✞ ✠ ✆
where ✦ ✢ ☎ is an exogenous program that interferes with the execution of the given Golog

program ☎ ; in other words, we model environment as a program ✦ ✢ ☎ . TransEM ✁ is defined as

the following second-order situation calculus formula:

✞✍✌ ✦ ✆ ☎ ✆ ✕ ✆ � ✆ ☎ ☛✖✆ ✕ ☛✌✆ � ☛ ✠ TransEM ✁ ✞ ✦ ✆ ☎ ✆ ✕ ✆ � ✆ ☎ ☛✖✆ ✕ ☛✌✆ � ☛ ✠ ✁✄✂✆☎❃ ✌ ✝ ✌ ✦✜☛ ✍ ✓✔✓✜✓ ✠ ✝ ✞ ✦ ✆ ☎ ✆ ✕ ✆ � ✆✥✦✜☛ ✆ ☎ ☛✌✆ ✕ ☛✖✆ � ☛ ✠ ✎
and the ellipsis stands for the conjunction of the universal closure of the following clauses:

✝ ✞ ✦ ✆ ☎ ✆ ✕ ✆ � ✆✥✦ ✆ ☎ ✆ ✕ ✆ � ✠
✝ ✞ ✦ ✆ ☎ ✆ ✕ ✆ � ✆✥✦✜☛ ✆ ☎ ☛✌✆ ✕ ☛✖✆ � ☛ ✠ ☛ Trans ✁ ✞ ✦✜☛✌✆ ✕ ☛✖✆✥✦✜☛ ☛✖✆ ✕ ✆ ✠ ☛

TransEM ✞ ✕ ✆ ✆ ☎ ☛✖✆ ✕ ☛✌✆ � ☛✖✆ ☎ ☛ ☛✖✆ ✕ ☛ ☛✖✆ � ☛ ☛ ✠ ✠ ✝ ✞ ✦ ✆ ☎ ✆ ✕ ✆ � ✆✥✦✜☛ ☛ ✆ ☎ ☛ ☛✌✆ ✕ ☛ ☛✖✆ � ☛ ☛ ✠ ✓
This means that none, one, or several transitions in the execution of the exogenous program

may occur between consecutive configurations of the agent program. For example, if the ex-

ogenous program is blocked in the current situation (i.e., it does not make any transitions), then

the agent program is allowed to execute nonetheless.

7Thanks to ✞ ✖ ✁✄✠ ✌ ☎✡✝ ✌ ☎✞✝✠✟ ☛ the system is cautious enough to avoid dead-ends: the system looks ahead and does

a transition from
✠ ✔ to

✠ ✌ only to a configuration from which it can terminate off-line in a goal situation
✝✡✟

.
8Trans

✁ ☛☞☛ ☎✞✝✟☎ ✒✍✌ ✞ ☎✡✝ ☛ if ☛ holds in
✝
, i.e., transitions over tests do not change the situation argument; see Section

2.3.2 for details.
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We give a formal definition of the monitor and then we explain in English the intuition

expressed in this definition. The behavior of a generic monitor is specified by:

✁ ☎★✘ ✞ ✕ ☎✡✬✮✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✚✆ ✕ ✍✏✆ � ✍✏✆ ☎ ✑✔✆ ✕ ✑✛✆ � ✑ ✠✓✒ ✒ ☎✝✓
✍ ✑ ✸ ✦ ✷✫✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✚✆ ✕ ✍✏✆ � ✍ ✠ ☛ ☎ ✑ ❃ ☎ ✍ ☛ � ✑ ❃ � ✍ ☛

✞ ✕ ✍ ❃ ✕ ☛ ✕ ✑ ❃ ✕ ✆ ✝ ✕ ✍ ❃✺✄✆☎✟✞ ☎✝✆ ✕✡✠ ☛ ✕ ✑ ❃✺✄✆☎✟✞ ☎✝✆ ✕ ✆ ✠✔✠ ✝
✸ ✦ ✷✫✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✏✆ � ✍ ✠ ☛ ✕ ✑ ❃ ✕ ✆ ☛

✞☞✕ ✍ ❃ ✕ ☛❈✸ ✦ ✾ ☎☎� ✦ ✬✩✞ ✕ ✆ ☎ ✍✏✆ � ✍✚✆ ✕ ✆ ✆ ☎ ✑✛✆ � ✑ ✠ ✝
✕ ✍ ❃ ✄✝☎✟✞ ☎✝✆ ✕✡✠ ☛✺✸ ✦ ✾ ☎✁� ✦ ✬✮✞ ✕ ✆ ✞ ☎ ✁ ☎ ✍ ✠ ✆ � ✍✚✆ ✕ ✆ ✆ ☎ ✑✜✆ � ✑ ✠✔✠ ✎ ✓

(4.6)

Here, ✸ ✦ ✷✫✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✏✆ � ✍ ✠ is a predicate that specifies whether the discrepancy be-

tween ✕ and ✕ ✆ is relevant in the current configuration of the program. If this discrepancy does

not matter – ✑ ✸ ✦ ✷✫✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✚✆ ✕ ✍✏✆ � ✍ ✠ – then the execution monitor does not modify the

remaining program – ☎ ✑ ❃ ☎ ✍ , and keeps the current trace: � ✑ ❃ � ✍ . In addition, if the last tran-

sition was a test ( ✕ ✍ ❃ ✕ ), the monitor does nothing else, but if it was a primitive action ( ✕ ✍ ❃
✄✆☎✩✞ ☎✝✆ ✕✡✠ ), the monitor does the action ☎ in the real world (this execution results in a new situ-

ation ✕ ✑ ❃ ✄✆☎✩✞ ☎ ✆ ✕ ✆ ✠ ). Otherwise, if this discrepancy does matter – ✸ ✦ ✷✜✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✚✆ ✕ ✍✏✆ � ✍ ✠
– the monitor should recover. The predicate ✸ ✦ ✾ ☎✁� ✦ ✬✩✞ ✕ ✆ ☎ ✆ � ✍✏✆ ✕ ✆ ✆ ☎ ✑✔✆ � ✑ ✠ provides for this by

determining (possibly, using � ✍ and ☎ – which is either ☎ ✍ or ☎ ✁ ☎ ✍ ) a new program, ☎ ✑ , whose

execution in situation ✕ ✆ is intended to achieve an outcome equivalent (in a sense left open for

the moment) to that of program ☎ , had the exogenous event not occurred and ☎ was simply

executed in ✕ as it was originally expected. Informally speaking, (4.6) tells the following. The

monitor takes the current situation, the current program state and the trace and looks for a feed-

back from sensors and for information about exogenous actions. If the situation resulting from

getting the feedback is such that the remaining program can be safely continued, then the mon-

itor resumes execution of the remaining program without making any changes in the program.

But if the remaining program cannot be successfully completed, then the monitor computes a

new corrected program (the recovery procedure may use parts of the remaining program and

the trace that contains past program states) and resumes execution with the corrected program.

A wide range of monitors can be achieved by defining ✸ ✦ ✷✫✦ � ☎ ✘ ✕ and ✸ ✦ ✾ ☎☎� ✦ ✬ in dif-

ferent ways. For example, corrective plans are suggested as a domain-independent recovery

technique in our paper [De Giacomo et al., 1998]. Another example is when a new program

☎ ✑ is determined by going back to a previous program state (that involves a nondeterminis-

tic operator) and choosing an alternative branch; the past state ☎ ✑ can be found because the

trace � ✍ keeps all program states which the interpreter has visited already [Soutchanski, 1999a,
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Soutchanski, 1999b]. As a third example, in some implemented execution monitoring systems,

to recover from failures the system relies on a precompiled library of recovery plans, e.g., see

[Gat, 1996, Earl and Firby, 1996, Firby, 1989].

In the next section (4.3), we consider monitoring of usual Golog programs. In the subse-

quent section (4.4), we adapt the framework outlined above to the case of temporal Golog

programs. In both sections, we develop an implementation based on particular predicates
✸ ✦ ✷✫✦ � ☎ ✘ ✕ and ✸ ✦ ✾ ☎☎� ✦ ✬ . Finally, in Section 4.5 we put forward constraints on ✸ ✦ ✷✜✦ � ☎ ✘ ✕ and
✸ ✦ ✾ ☎☎� ✦ ✬ .

4.3 A Specific Monitor Based on a Planner

Now we develop a simple realization of the above general framework, by fixing on particular

predicates ✸ ✦ ✷✫✦ � ☎ ✘ ✕ and ✸ ✦ ✾ ☎✁� ✦ ✬ . This will serve as a basis for the implementation described

in the section 4.3.1.

We begin by assuming that for each application domain a programmer provides:

1. The specification of all primitive actions (robot’s and exogenous) and their effects, to-

gether with an axiomatization of the initial situation, as described in Section 2.1.1.

2. A Golog program ✌ that may or may not take into account exogenous actions occurring

when the robot executes the program. Before we give a suitable definition of ✸ ✦ ✾ ☎✁� ✦ ✬ ,

we make an important assumption about the syntactic form of the monitored program ✌ .

We shall assume that this program has a particular form, one that takes into account the

programmer’s goal in writing it. Specifically, we assume that along with her program,

the programmer provides a first order sentence describing the program’s goal, or what

programmers call a program postcondition. We assume further that this postcondition

is postfixed to the program. In other words, if ✌ is the original program, and ✪✩☎ ☎✆✷ is its

postcondition, then the program we shall be dealing with in this section will be ✌ ✁✭✪✟☎ ☎✆✷ � .

This may seem a useless thing to do whenever ✌ is known to satisfy its postconditions,

but as we shall see below, our approach to execution monitoring may change ✌ , and we

shall need a guarantee that whenever the modified program terminates, it does so in a

situation satisfying the original postcondition.
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Next, we take ✸ ✦ ✷✫✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✟✆ � ✍ ✠ to be the following:

✸ ✦ ✷✜✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✚✆ ✕ ✍✏✆ � ✍ ✠ ✒
✞ ✕ ✍ ❃ ✕☎✠ ✑ ✒✝✕ � ✤ ☎✩✞✆☎ ✍✚✆ ✕ ✆ ✆ ✕ � ✠✔✠ ☛
✞✍✌ ☎ ✠ ✓ ✞ ✕ ✍ ❃ ✄✆☎✩✞ ☎ ✆ ✕★✠✡✠ ✑ ✒✝✕ � ✤ ☎✟✞ ☎ ✁ ☎ ✍✟✆ ✕ ✆ ✆ ✕ � ✠✔✠ ✓

(4.7)

If the most recent transition is a test, we use ✤ ☎✟✞✝☎ ✍✏✆ ✕ ✆ ✆ ✕ � ✠ to look ahead off-line whether the re-

maining program ☎ ✍ can successfully terminate starting from the situation ✕ ✆ that resulted from

the exogenous or sensing actions. Similarly, we use the off-line interpreter ✤ ☎✟✞ ☎ ✁ ☎ ✍✏✆ ✕ ✆ ✆ ✕ � ✠ ,
if the last proposed transition was a primitive action ☎ , to find out whether ☎ followed by the

remaining program ☎ ✍ terminates in a goal situation ✕ � . Because we assume that the monitored

program has a postcondition, we can simply try to execute the program off-line to see whether

the postcondition still will be true (despite those interferences produced by exogenous actions

which are mentioned in ✕ ✆ ). But if we find that there is no such situation ✕ � , where the program

postcondition evaluates to true, then we know that the exogenous actions are relevant: we sim-

ply cannot continue with ☎ ✍ without making any corrections. Using (4.7), the definition (4.6)

of
✁ ☎★✘ ✞ ✕ ☎✡✬ becomes:

✁ ☎★✘ ✞ ✕ ☎✡✬✮✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✟✆ ✕ ✍✏✆ � ✍✏✆ ☎ ✑✛✆ ✕ ✑✔✆ � ✑ ✠ ✒ ✒ ☎✝✓
✍ ✞ ✕ ✍ ❃ ✕ ☛ ✒✝✕ � ✤ ☎✩✞✆☎ ✍✏✆ ✕ ✆ ✆ ✕ � ✠ ☛ ☎ ✑ ❃ ☎ ✍ ☛ ✕ ✑ ❃ ✕ ✆ ☛ � ✑ ❃ � ✍ ✝

✕ ✍ ❃✺✄✆☎✟✞ ☎✝✆ ✕✡✠ ☛ ✒✝✕ � ✤ ☎✟✞ ☎ ✁ ☎ ✍✏✆ ✕ ✆ ✆ ✕ � ✠ ☛ ☎ ✑ ❃ ☎ ✍✎☛ ✕ ✑ ❃✺✄✆☎✟✞ ☎✝✆ ✕ ✆ ✠ ☛ � ✑ ❃ � ✍ ✠ ✝
✞ ✕ ✍ ❃ ✕ ✠ ✑ ✒✝✕ � ✤ ☎✟✞✝☎ ✍✚✆ ✕ ✆ ✆ ✕ � ✠✔✠ ☛ ✞✍✌ ☎ ✠ ✓ ✞ ✕ ✍ ❃ ✄✆☎✩✞ ☎ ✆ ✕★✠✡✠ ✑ ✒✝✕ � ✤ ☎✟✞ ☎ ✁ ☎ ✍✟✆ ✕ ✆ ✆ ✕ � ✠✔✠ ☛

✕ ✑ ❃ ✕ ✆ ☛ ✞☞✕ ✍ ❃ ✕ ☛ ✸ ✦ ✾ ☎✁� ✦ ✬✩✞ ✕ ✆ ☎ ✍✏✆ � ✍✏✆ ✕ ✆ ✆ ☎ ✑✛✆ � ✑ ✠ ✝
✕ ✍ ❃✺✄✆☎✟✞ ☎✝✆ ✕✡✠ ☛ ✸ ✦ ✾ ☎✁� ✦ ✬✩✞ ✕ ✆ ✞ ☎ ✁ ☎ ✍ ✠ ✆ � ✍✏✆ ✕ ✆ ✆ ☎ ✑✔✆ � ✑ ✠✔✠ ✎ ✓

✁ ☎✡✘ ✞✜✕ ☎★✬ takes the situation ✕ ✆ reached by an exogenous program from the current situation

✕ , and if the monitored program ☎ ✍ terminates off-line, the monitor returns ☎ ✍ without making

any changes, else it invokes a recovery mechanism to determine a new program ☎ ✑ from ☎ ✍ and

� ✍ . Therefore,
✁ ☎★✘ ✞ ✕ ☎✡✬ appeals to ✸ ✦ ✾ ☎✁� ✦ ✬ only as a last resort; it prefers to let the monitored

program keep control, so long as this is guaranteed to terminate off-line in a situation where

the program’s goal holds. (Remember that this goal has been postfixed to the original program,

as described above.)

It only remains to specify the aforementioned predicate ✸ ✦ ✾ ☎☎� ✦ ✬✩✞ ✕ ✆ ☎ ✆ � ✍✚✆ ✕ ✆ ✆ ☎ ✑✛✆ � ✑ ✠ that is

true whenever ☎ is the current state of the program being monitored9, ✕ is the situation prior

9If the most recent transition was a test, then
✠

is
✠ ✔ , as in the previous definition of � ✖ ✒✍✌ ☞ ✖ ✄ , but if the last

transition involved a primitive action
✂
, then

✠
is (

✂✂✁ ✠ ✔ ), where
✠ ✔ is the remaining program.
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to the occurrence of the exogenous program, ✕ ✆ is the situation after the exogenous event, � ✍
is the current trace, and ☎ ✑ is a new program to be executed on-line in place of ☎ , beginning

in situation ✕ ✆ . We adopt the following specifications of ✸ ✦ ✾ ☎☎� ✦ ✬ ; it forms the basis of the

implementation to be described later:

✸ ✦ ✾ ☎☎� ✦ ✬✩✞ ✕ ✆ ☎ ✆ � ✍✏✆ ✕ ✆ ✆ ☎ ✑✛✆ � ✑ ✠ ✒
� ✑ ❃ � ✍ ☛ ✞ ✒✏✑ ✓ � �✔☎✡✬★✕ ✦ ✕ ✕ ✞ ✑ ✆ ✕ ✆ ✆ ☎✏✠ ☛ ☎ ✑ ❃ ✞ ✑ ✁ ☎✏✠ ✝

✑ ✒✏✑ ✓ � �✔☎★✬✡✕ ✦ ✕ ✕ ✞ ✑ ✆ ✕ ✆ ✆ ☎✏✠ ☛ ☎ ✑ ❃✺� ✕ ☎✼✑ ✠ ✆
(4.8)

where

� � ☎✡✬✡✕ ✦ ✕ ✕ ✞✒✑ ✆ ✕ ✆ ✆ ☎✏✠ ✒ ✕ ✕ ✬ ☎ ✞ ✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✿☎ ✪✻✞ ✑ ✠ ☛ ✒✝✕ � ✓ ✤ ☎✟✞ ✑ ✁ ☎ ✆ ✕ ✆ ✆ ✕ � ✠ ☛

✍ ✌✝✑ ☛ ✆ ✕ ☛✌✓ ✕ ✕ ✬ ☎ ✞✜✪ �✮✕✂✁ ✞ ✘ ✦ ✁ ✬✿☎ ✪✻✞ ✑ ☛ ✠ ☛❈✤ ☎✟✞ ✑ ☛ ✁ ☎ ✆ ✕ ✆ ✆ ✕ ☛ ✠ ✠
✷✜✦ ✘ ✪✆✕ �✂✞✒✑ ✠ ✡ ✷✫✦ ✘ ✪✆✕ �✌✞ ✑ ☛ ✠ ✎ ✓

Here, the recovery mechanism is conceptually quite simple; it determines a shortest straight-

line program ✑ such that, when prefixed onto the program ☎ , yields a program that terminates

off-line. This is quite easy to implement; in its simplest form, simply generate all length one

prefixes, test whether they yield a terminating off-line computation, then all length two pre-

fixes, etc, until one succeeds, or some complexity bound is exceeded. If no shortest straight-

line program ✑ exists, then the recovery procedure returns the constant � ✕ ☎✼✑ indicating that

the program cannot be recovered and terminates abnormally (see the definitions (2.24) in Sec-

tion 2.3.2). Notice that here we are appealing to the assumption 2 above that all monitored

programs are postfixed with their goal conditions. We need something like this because the

recovery mechanism changes the program being monitored, by adding a prefix to it. The re-

sulting program may well terminate, but in doing so, it may behave in ways unintended by

the programmer. But so long as the goal condition has been postfixed to the original program,

all terminating executions of the altered program will still satisfy the programmer’s intentions.

The predicate ✕ ✕ ✬ ☎ ✞✜✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✏☎ ✪☞✞✒✑ ✠ and the function ✷✫✦ ✘ ✪✝✕ �✌✞✒✑ ✠ are defined inductively. Any

primitive action is a straight line program, if ✁ is a straight line program and ☎ is a primitive

action, then ✞ ✁ ✁ ☎ ✠ is a straight line program. The length of the term ☎ , ✷✫✦ ✘ ✪✝✕ �✌✞ ☎ ✠ , where ☎
is a primitive action, is defined as 1, and ✷✫✦ ✘ ✪✆✕ �✌✞✂✁ ✁ ☎ ✠ , where ✁ is a straight line program, is

defined as ✷✫✦ ✘ ✪✝✕ �✌✞ ✁❂✠ ✆ ❉ .
One disadvantage of the above recovery mechanism is that it will not recognize instances

of exogenous events that happen to help in achieving the goal condition. In the extreme case

of this, an exogenous event might create a situation that actually satisfies the goal. The above

recovery procedure, being blind to such possibilities, will unthinkingly modify the current
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program state by prefixing to it a suitable plan, and execute the result, despite the fact that

in reality, it is already where it wants to be. In effect, the recovery procedure has a built-in

assumption that all exogenous events, if not neutral with respect to achieving the goal, are

malicious.

We would like to make here a few comments regarding our choice of the recovery proce-

dure. First, there are other alternative specifications, e.g., if an exogenous disturbance happens

when the remainder of the program is short, it can be more advantageous to find a sequence

of actions that leads directly to the goal, rather than recover from the disturbance and resume

execution of the remaining program. We do not provide here alternative specifications be-

cause our intention is to introduce a conceptual framework; more sophisticated versions of

recovery mechanism will be minor variations of the recovery mechanism considered here.

Second, we are aware that the suggested implementation of ✕ ✕ ✬ ☎ ✞✜✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✏☎ ✪☞✞✒✑ ✠ is com-

putationally inefficient, but it is still acceptable as long as the upper bound on the length of ✑
is a small number. For any given application domain, computational efficiency of the imple-

mentation can be significantly improved by introducing domain specific declarative constraints

on search for an appropriate ✕ ✕ ✬ ☎ ✞✜✪ �✮✕✂✁ ✞ ✘ ✦ ✁ ✬✿☎ ✪✻✞ ✑ ✠ . It is well known that this approach leads

to efficient domain specific planning [Kibler and Morris, 1981, Bacchus and Kabanza, 1996,

Bacchus and Kabanza, 2000, Kvarnström and Doherty, 2001, Sierra-Santibáñez, 2001, Reiter, 2001a,

Gabaldon, 2003]. Note that an efficient implementation of ✕ ✕ ✬ ☎ ✞ ✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✏☎✡✪✻✞✒✑ ✠ based on

declarative constraints on the search for a shortest sequence will be applicable to the task of

monitoring of an arbitrary program in the domain of application: the recovery procedure will

remain the same as long as all monitored programs use primitive actions from the same ba-

sic theory of actions. Third, in the real world, if the initial situation is different from what

the programmer has expected, it may happen that the original program
✁ ✬✿☎ ✪ cannot even be

started. However, in this case we can simply run monitor once, find what kind of disturbance

occurred, obtain a new (corrected) version of the program
✁ ✬✿☎ ✪ ✂ ☎✡✬★✬ and start executing this

program. The implementation of a cautious on-line monitor that can correct initial situations

is straightforward.

Finally, before we consider the implementation of the mechanism introduced in this sec-

tion, we would like to formulate and prove a correctness property for our specification. Intu-

itively, we expect that whenever a correct closed-loop system (a Golog program coupled with

an execution monitor) does a transition from ✞✆☎ ✍✟✆ ✕ ✍✏✆ � ✍ ✠ to ✞✆☎ ✑✛✆ ✕ ✑✔✆ � ✑ ✠ there is an execution

of ☎ ✑ leading to a situation where a postcondition ✪✩☎ ☎✆✷ ✞ ✕✡✠ is true no matter what exogenous

disturbance interfered with the normal execution of the program. However, computing a new
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program ☎ ✑ might not be possible in all domains. More specifically, we see from the specifi-

cation (4.8) that recovering from arbitrary exogenous disturbances is possible only if an agent

has a rich repertoire of primitive actions such that a program for achieving arbitrary goals can

be assembled from those primitive actions. We can characterize the richness of repertoire by

the condition

� ✄ ❃ ✪✟☎ ☎✆✷ ✞ ✕ � ✠✡✠ ✒✏✑ ✓ ✕ ✕ ✬ ☎ ✞ ✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✏☎✡✪✻✞✒✑ ✠ ☛ ✤ ☎✟✞ ✑ ✆ ✕ ✁ ✆ ✕ � ✠ ✆
meaning that for any initial and goal situations there is a sequence of actions leading to a

goal situation ( � is Reiter’s basic action theory that provides axiomatization of an application

domain). Note that this condition holds for the blocks-world domain. Formally speaking, this

condition is necessary because TransEM can terminate abnormally in the program state � ✕ ☎✥✑
if recovery is impossible, but when this condition holds it guarantees that won’t happen.

Theorem 4.3.1: Let the predicate ✳ ✬ ☎ ✘ ✕ ✄ ✁ ✞ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✏✆ � ✍✚✆ ☎ ✑✔✆ ✕ ✑✔✆ � ✑ ✠ be defined as in (4.5),

where the predicate
✁ ☎✡✘ ✞✜✕ ☎★✬✩✞ ✕ ✍ ✆ ✕ ✆ ✆ ☎ ☛✌✆ ✕ ☛✖✆ � ☛✌✆ ☎ ✑✛✆ ✕ ✑✔✆ � ✑ ✠ is defined by (4.6) and its parametric

predicates are defined by (4.7) and (4.8). Let ✪✟☎ ☎✆✷ ✞ ✕✡✠ be a program postcondition. Then the

execution monitoring system satisfies the following requirement:

� ✄ ❃ ✍ ✪✩☎ ☎✆✷ ✞ ✕ � ✠✡✠✍✒✏✑ ✓ ✕ ✕ ✬ ☎ ✞✜✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✏☎ ✪☞✞✒✑ ✠ ☛✺✤ ☎✩✞✒✑ ✆ ✕ ✍✏✆ ✕ � ✠ ✎ ☛
✳ ✬ ☎ ✘ ✕ ✄ ✁ ✞ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✟✆ � ✍✚✆ ☎ ✑✔✆ ✕ ✑✜✆ � ✑ ✠ ✠ ✒✝✕ ✞ ✓ ✤ ☎✟✞✝☎ ✑✜✆ ✕ ✑✔✆ ✕ ✞ ✠ ☛ ✪✟☎ ☎✆✷ ✞ ✕ ✞ ✠

Proof: To prove this statement consider two possible cases. First, let the exogenous distur-

bance ✦ be irrelevant to the currently executed program, i.e. ✑ ✸ ✦ ✷✜✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✚✆ � ✍ ✠ . Then,

from the definition (4.7) follows that the right-hand side of the above implication is true. Sec-

ond, let the exogenous disturbance ✦ be relevant, i.e., ✸ ✦ ✷✜✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✚✆ ✕ ✍✟✆ � ✍ ✠ is true. Then,

from the definition (4.8) immediately follows that the recovered program ☎ ✑ is such that the

right-hand side of the above implication is true.

4.3.1 An Implementation

In contrast to straight line or partially ordered plans, a Golog program can be arbitrary complex,

including loops, recursive procedures and nondeterministic choice. For this reason, monitoring

of execution of Golog programs is a more complex enterprise than monitoring execution of

ordinary plans.

The above theory of execution monitoring is supported by an implementation, in Prolog,

that we demonstrate here for a blocks world program. The underlying basic theory of actions

for the blocks world is provided in Example 2.1.1.
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Example 4.3.2: The following is a blocks world Golog program that nondeterministically

builds a tower of blocks spelling “paris” or “rome”. In turn, the procedure for building a Rome

tower nondeterministically determines a block with the letter “e” that is clear and on the table,

then nondeterministically selects a block with letter “m” and moves it onto the “e” block, etc.

There is a similar procedure for makeParis; neither procedure has any parameters.

proc tower makeParis ✄ makeRome endProc.

proc makeRome

✂ ✂ ✁ ✓ ✍ ✦ ✞ ✂ ✁ ✠ ☛ ☎✡✘ ✕ ☎✄✂✼✷✫✦ ✞ ✂ ✁ ✠ ☛ ✾ ✷✜✦✛☎ ✬✩✞ ✂ ✁ ✠ ✎ � ✁
✂ ✂✜✍✚✓ ✲ ✞ ✂✜✍ ✠ � ✁✭✲ ☎☎� ✦ ✞ ✂✜✍✚✆ ✂ ✁✼✠✂✁

✂ ✂✟✑✛✓ ☎✟✞ ✂✟✑ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂✟✑✔✆ ✂✜✍ ✠✂✁
✂ ✂ ✁ ✓ ✬✩✞ ✂ ✁ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂ ✁ ✆ ✂✟✑ ✠

endProc

proc makeParis

✂ ✂ ✁ ✓ ✍ ✕✆✞ ✂ ✁ ✠ ☛ ☎✡✘ ✕ ☎✄✂✼✷✫✦ ✞ ✂ ✁ ✠ ☛ ✾ ✷✫✦✛☎ ✬✩✞ ✂ ✁ ✠ ✎ � ✁
✂ ✂✜✍✚✓ ✞✹✞ ✂✜✍ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂✜✍✚✆ ✂ ✁✼✠✂✁

✂ ✂✟✑✛✓ ✬✩✞ ✂✟✑ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂✟✑✛✆ ✂✜✍ ✠✂✁
✂ ✂ ✁ ✓ ☎ ✞ ✂ ✁ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂ ✁ ✆ ✂✟✑ ✠

✂ ✂✁�✛✓ ✑✂✞ ✂✁� ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂✁� ✆ ✂ ✁ ✠
endProc

Note that this program is very simple: both procedures are sequences of non-deterministic

choices of arguments followed by primitive actions. The execution of this program may easily

get stuck if an action performed by another agent will make impossible one of the primitive

actions that the program is supposed to execute.

We use the cautious on-line monitor of Section 4.2, and a straightforward implementation

of
✁ ☎★✘ ✞ ✕ ☎✡✬ and ✕ ✕ ✬ ☎ ✞ ✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✏☎✡✪✻✞ ✑ ✠ . The Prolog code is provided in Appendix A.

In our example, the initial situation is such that all blocks are on the table and clear (see

Figure 4.1). There is no block with the letter “p”10, but there are several blocks with letters for

spelling “aris” and “rome”, as well as blocks with letters “n” and “f” (which are irrelevant to

building a tower spelling “rome” or “paris”).

The program goal is:

✁✙☎ ☎✆✷ ✞ ✕✡✠✓✒ �✻✑ ✦ ✷✫✷ ✕ ✁ ☎ ✬ ✞ ✕✝✞ ✕✡✠ ✝ �✻✑ ✦ ✷✫✷ ✕ ✸ ☎✡✲ ✦ ✞ ✕✡✠ ✆
10We selected this arrangement intentionally to illustrate the difference between cautious and brave interpreters.
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r o m e a i s n f ....

Figure 4.1: Part of the initial situation.

�✻✑ ✦ ✷✫✷ ✕ ✸ ☎✡✲ ✦ ✞ ✕✡✠ ✒ ✞✟✒ ✂ ✁ ✆ ✂✜✍✚✆ ✂✟✑✛✆ ✂ ✁ ✠ ✓✿✸ ✞ ✂ ✁ ✠ ☛ ✖❀✞ ✂✏✑ ✠ ☛ ✁ ✞ ✂✔✍ ✠ ☛ ✄✧✞ ✂ ✁ ✠ ☛
✖✙✘ ✕ ☎✄✂✼✷✜✦ ✞ ✂ ✁ ✆ ✕★✠ ☛ ✖ ✘✚✞ ✂✜✍✏✆ ✂ ✁ ✆ ✕✡✠ ☛ ✖✙✘❄✞ ✂✏✑✜✆ ✂✜✍✚✆ ✕✡✠ ☛ ✖ ✘✚✞ ✂ ✁ ✆ ✂✟✑✔✆ ✕✡✠ ☛ ✂✙✷✫✦✛☎ ✬✮✞ ✂ ✁ ✆ ✕★✠ ✓

�✻✑ ✦ ✷✫✷ ✕ ✁ ☎ ✬ ✞ ✕✆✞ ✕✡✠✓✒ ✞✟✒ ✂ ✁ ✆ ✂✜✍✚✆ ✂✟✑✛✆ ✂ ✁ ✆ ✂✁� ✠ ✓ ✁ ✞ ✂✁� ✠ ☛ ✕✢✞ ✂ ✁ ✠ ☛❈✸ ✞ ✂✟✑ ✠ ☛ � ✞ ✂✜✍ ✠ ☛ � ✞ ✂ ✁ ✠ ☛
✖✙✘ ✕ ☎✄✂✼✷✜✦ ✞ ✂ ✁ ✆ ✕★✠ ☛ ✖ ✘❄✞ ✂✜✍✏✆ ✂ ✁ ✆ ✕✡✠ ☛ ✖ ✘✚✞ ✂✟✑✔✆ ✂✜✍✚✆ ✕✡✠ ☛ ✖✙✘❄✞ ✂ ✁ ✆ ✂✟✑✔✆ ✕✡✠ ☛ ✖ ✘✚✞ ✂✁� ✆ ✂ ✁ ✆ ✕✡✠ ☛ ✂✙✷✫✦✛☎ ✬✮✞ ✂ � ✆ ✕✡✠ ✓

r1

o2

m1

e2

Figure 4.2: A goal arrangement of blocks.

Figure 4.2 represents an arrangement of blocks that satisfies the program goal. On that

figure, ✬ ✍✏✆ ☎ ✑✔✆ ✲ ✍✚✆✹✦✔✑ are object constants that make predicates ✬✩✞ � ✠ ✆ ☎✩✞ � ✠ ✆ ✲ ✞ � ✠ ✆✥✦ ✞ � ✠ , re-

spectively, true.

An Execution Trace

The original procedure ✕ ☎✁✞ ✦ ✬ is very simple and was not designed to respond to external dis-

turbances of any kind. However, as the trace demonstrates, the execution monitor is able to

produce fairly sophisticated behavior in response to unforeseen exogenous events.

In Golog, tests do not change the situation, but all other primitive actions do. Each time

the program performs a primitive action or evaluates a test, an exogenous program may occur.

In the example below, any sequence of actions that is possible in the current situation can be

performed by an external agent. This is realized in the implementation by interactively asking

the user to provide exogenous events after each elementary program operation (test or primitive

action).

The following is an annotated trace of the first several steps of our implementation for this

blocks world setting. We use this font for the actual output of the program and italics for
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states of the Golog program ✕ ☎✁✞ ✦ ✬ of Example 4.3.2. The symbol “:” in the Prolog implemen-

tation of the interpreter corresponds to sequential composition “;” in Golog and Prolog’s term

“pi” corresponds to ✂ in Golog, etc.

[eclipse] onlineEM((tower : ?(goal)), s0, S).

Program state = (nil: pi(b1,?(m(b1)) : move(b1,e1):

pi(b2,?(o(b2)) : move(b2,b1) : pi(b3,?(r(b3)) :

move(b3,b2))))) : ?(goal)

Current situation: s0

The cautious interpreter first tried to execute ✲ ☎ ✣ ✦ ✁ ☎ ✬ ✞ ✕ off-line. This failed because there

is no “p” block. It then proceeded with ✲ ☎ ✣ ✦ ✸ ☎✡✲ ✦ .11 According to the implementation of a

cautious on-line interpreter (see section 2.3.3), ✳ ✬ ☎ ✘ ✕ does the first step of ✲ ☎ ✣ ✦ ✸ ☎✡✲ ✦ :

✂ ✂ ✁ ✓ ✍ ✦ ✞ ✂ ✁ ✠ ☛ ☎✡✘ ✕ ☎✄✂✼✷✜✦ ✞ ✂ ✁ ✠ ☛ ✾ ✷✫✦✛☎ ✬✮✞ ✂ ✁ ✠ ✎ � ✁
by determining that the block ✦ ✍ will be the base of a goal tower. The remainder of the program

(the “program state” in the output above) is the following:

✘ ✞ ✷ ;

✂ ✂✜✍✏✓ ✲ ✞ ✂✜✍ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂✜✍✏✆✥✦ ✍ ✠✂✁
✂ ✂✟✑✛✓ ☎✟✞ ✂✟✑ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂✟✑✔✆ ✂✜✍ ✠✂✁
✂ ✂ ✁ ✓ ✬✩✞ ✂ ✁ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂ ✁ ✆ ✂✟✑ ✠ ✁ ✞✫✪✟☎ ☎✝✷ ✠ �

where ✘ ✞ ✷ results after the first step (see axioms of ✳ ✬ ☎ ✘ ✕ for ✂ � ✓ ☎ and ✁✁� ).
>Enter: an exogenous program or noOp if none occurs.

move(n,m1) : move(f,n) : move(i2,o3).

No recovery necessary. Proceeding with the next step of program.

Program state = (nil : move(m2, e1) :

pi(b2, ?(o(b2)) : move(b2, m2) :

pi(b3, ?(r(b3)) : move(b3, b2)))) : ?(goal)

Current situation: do(move(i2, o3), do(move(f, n),

do(move(n, m1), s0)))

The first exogenous program covered blocks ✲ ✍ , ✘ and ☎ ✁ (see Fig. 4.3), but the remaining

program

11A brave interpreter would have eventually failed, without even trying � ✂ ✏ ☎
✁ ✖ � ☎ .
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�

r1 r2 o1 o2 o3 m1 m2 e1 e2 i1

n

f

i2

....

Figure 4.3: The first exogenous disturbance occurred when the program was ready to move ✲ ✑
on top of ✦ ✍ .

✘ ✞ ✷ ;

✲ ☎✁� ✦ ✞✫✲ ✑✛✆✥✦ ✍ ✠✂✁
✂ ✂✟✑✛✓ ☎✟✞ ✂✟✑ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂✟✑✔✆ ✲ ✑ ✠✂✁

✂ ✂ ✁ ✓ ✬✩✞ ✂ ✁ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂ ✁ ✆ ✂✟✑ ✠ ✁ �✆✞✫✪✟☎ ☎✆✷ ✠
can still be successfully completed because there remain enough uncovered blocks of the right

kind to construct “rome”, so it continues.

>Enter: an exogenous program or noOp if none occurs.

move(i1,o1) : move(r2,o2).

Start recovering...

New program = moveToTable(r2) :

(nil : move(m2,e1) : pi(b2,?(o(b2)) :

move(b2,m2) : pi(b3,?(r(b3)) :

move(b3,b2)))) : ?(goal)

After the second exogenous program move(i1,o1) : move(r2,o2), all three blocks

with letter “o” are covered (see Figure 4.4).

�

r1

r2

o1 o2 o3 m1 m2 e1 e2

n

f

i2i1

....

Figure 4.4: The second exogenous disturbance.

Because it is not possible to move blocks ☎ ✍✚✆ ☎ ✑✔✆ ☎ ✁ (by the precondition axiom for ✲ ☎☎� ✦ ✞ ✢ ✆ ✣✮✠ ),
the remaining program cannot be completed. Hence, the

✁ ☎★✘ ✞ ✕ ☎✡✬ gives control to ✸ ✦ ✾ ☎✁� ✦ ✬
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that, with the help of the planner ✕ ✕ ✬ ☎ ✞ ✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✏☎✡✪✻✞ ✑ ✠ , determines a shortest corrective se-

quence ✑ of actions (namely moveToTable(r2)) in order to allow the program to resume, and

prefixes this action to the previous program state:

✲ ☎✁� ✦ ✳✵☎ ✳ ☎ ✂✼✷✫✦ ✞✜✬ ❋ ✠✂✁✔✘ ✞ ✷ ;

✲ ☎✁� ✦ ✞✫✲ ✑✛✆✥✦ ✍ ✠✂✁
✂ ✂✟✑✛✓ ☎✟✞ ✂✟✑ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂✟✑✔✆ ✲ ✑ ✠✂✁

✂ ✂ ✁ ✓ ✬✩✞ ✂ ✁ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂ ✁ ✆ ✂✟✑ ✠ ✁ �✆✞✫✪✟☎ ☎✆✷ ✠
From this point on, the on-line evaluation continues by doing one step of the new program.

If after that, no exogenous disturbances occur during the next two steps of the execution of this

new program, it will reach the following program state:

✘ ✞ ✷ ✁
✲ ☎☎� ✦ ✞ ☎ ✑✔✆ ✲ ✑ ✠✂✁

✂ ✂ ✁ ✓ ✬✩✞ ✂ ✁ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂ ✁ ✆ ☎ ✑ ✠✂✁ �✝✞✯✪✟☎ ☎✆✷ ✠
(4.9)

o1

r2

r1

a1

o2 o3 m1

m2

e1 e2

n

f

i2i1

....

Figure 4.5: The pile of blocks covers the block ☎ ✑ .

Let assume that at this point a third exogenous program occurs (see Figure 4.5):

>Enter: an exogenous program or noOp if none occurs.

move(a1,o2) : move(r1,a1) : move(r2,r1).

Start recovering...

New program = (moveToTable(r2) :

moveToTable(r1) : moveToTable(a1)) :

(nil : move(o2, m2) : pi(b3, ?(r(b3)) :

move(b3, o2))) : ?(goal)

Program state = (nil : moveToTable(r1) :

moveToTable(a1)) : (nil : move(o2, m2) :

pi(b3, ?(r(b3)) : move(b3, o2))) : ?(goal)
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Current situation: do(moveToTable(r2),

do(move(r2, r1), do(move(r1, a1),

do(move(a1, o2), do(move(m2, e1),

do(moveToTable(r2), do(move(r2, o2),

do(move(i1, o1), do(move(i2, o3),

do(move(f,n), do(move(n,m1), s0)))))))))))

The recovery procedure determined that the sequence of three corrective actions

moveToTable(r2) : moveToTable(r1) : moveToTable(a1)

will lead to a situation where the program (4.9) can be resumed, and moreover, this is a shortest

such correction. If no other exogenous actions happen, the program will eventually success-

fully terminate, having built a tower for “rome”.

4.3.2 Towards a better recovery procedure

Before we introduce another implementation of the program monitor, let us consider again the

program in (4.9). In a program state

✂ ✂✟✑✛✓ ☎✩✞ ✂✟✑ ✠ � ✁✹✲ ☎☎� ✦ ✞ ✂✏✑✛✆ ✲ ✑ ✠✂✁
✂ ✂ ✁ ✓ ✬✩✞ ✂ ✁ ✠ � ✁✹✲ ☎✁� ✦ ✞ ✂ ✁ ✆ ✂✟✑ ✠ ✁ �✆✞✫✪✟☎ ☎✆✷ ✠ (4.10)

preceding the Golog program in (4.9), to execute the test ✂ ✂✜✑✛✓ ☎✟✞ ✂✟✑ ✠ � the interpreter picks non-

deterministically a block ✂✚✑ with the letter “o” and because at this moment only ☎ ✑ is clear

and can be moved subsequently into the goal tower, it is chosen in (4.9). However, observe

that after the sequence of three exogenous actions that cover ☎ ✑ , this block is obviously not the

best choice to move on top of ✲ ✑ . Indeed, the monitor needs the sequence of three corrective

actions before it can proceed, but if it would be feasible to make another choice of the block

with the letter “o” imprinted on it, e.g., the block ☎ ✍ , then the monitor would need only one cor-

rective action. This observation suggests that it can be advantageous to combine in a recovery

procedure two techniques: planning and backtracking to a previous computation state. Indeed,

one can easily imagine a modified recovery procedure: try all length one sequences of actions,

if none succeeds, go back to a previous computation state and try from there all length one

sequences of actions, if this does not work, go to an earlier computation state and search for a

single corrective action from there, etc. If all these attempts fail, try all length two sequences of
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actions from the current computation state, if none succeeds, go back to a previous computation

state and try from there all length two sequences of actions, etc. This modified procedure will

insert as few corrective actions as possible: it attempts to trade of corrective actions for back-

tracking to a previous program counter ☎ from which one can resume execution to reach a goal.

Because certain primitive actions have been already executed in the real world, it is not always

possible simply backtrack to a previous program state and use it as a new program when we

find that the execution of the current program fails in the situation that results from exogenous

actions. It may be necessary to do one or several auxiliary physical actions (and possibly ‘re-

verse’ effects of one or several already done actions), before computation can be resumed from

one of the previous program states. Note that doing an auxiliary action that reverses effects

of one of the previously done actions to continue execution with an alternative branch can be

unwise if the alternative branch starts with the same action that just was reversed. This never

happens if the monitored Golog programs are in a certain normal form: all branches after a

nondeterministic choice start with different primitive actions. Indeed, it is always possible to

transform a Golog program into a normal form by taking the initial sequence of actions (which

belongs to several branches) and writing it just before the nondeterministic choice.

It is not difficult to see that this new recovery procedure is more general than the previous

procedure (4.8) and that would we use this modified recovery procedure, the block ☎ ✍ were

chosen in (4.10). One can imagine also even more sophisticated techniques, when one assigns

rewards for achieving certain effects, costs for doing certain actions and the interpreter looks

not just for a sequence of actions leading to a goal situation, but for a sequence of actions

with the minimal total cost such that it provides the highest accumulated reward. However, to

simplify the subsequent definitions we restrain from considering this approach.

4.3.3 An Extended Recovery Procedure.

In this section we specify a generalized recovery mechanism that was informally described

in the previous section. The recovery procedure looks for a shortest sequence of corrective

actions that can be prefixed to the current program state or to one of the past program states:
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✸ ✦ ✾ ☎☎� ✦ ✬✩✞ ✕ ✆ ☎ ✆ � ✍✏✆ ✕ ✆ ✆ ☎ ✑✛✆ � ✑ ✠ ✒ ✒✏✑ ✓ ✕ ✕ ✬ ☎ ✞ ✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✿☎ ✪✻✞ ✑ ✠ ☛
✞ ✒✝✕ � ✓ ✤ ☎✟✞ ✑ ✁ ☎ ✆ ✕ ✆ ✆ ✕ � ✠ ☛ ☎ ✑ ❃ ✞ ✑ ✁ ☎✏✠ ☛ � ✑ ❃ � ✍ ✝

✒ ✞✆☎ ☛ ✆ � ☛ ✠ ✓ � ✞ ✬ ✕ ✕ ✕ ✷ ✕ ✦ ✬✏✘ ☎ ✕✟✞ � ✦ ✞ � ✍✏✆ ☎ ☛ ✆ � ☛ ✠ ☛✺✸ ✦ ✾ ☎✁� ✦ ✬✮✞ ✕ ✆ ✞ ✑ ✁ ☎ ☛ ✠ ✆ � ☛ ✆ ✕ ✆ ✆ ☎ ✑✔✆ � ✑ ✠✔✠ ☛
✍ ✌✚✞✒✑ ☛✖✆ ✕ ☛✌✆ ☎ ☛✑ ✆ � ☛ ✑ ✠ ✓ ✕ ✕ ✬ ☎ ✞ ✪ �✩✕✂✁ ✞ ✘ ✦ ✁ ✬✿☎ ✪✻✞ ✑ ☛ ✠ ☛ ✞ ✤ ☎✟✞ ✑ ☛ ✁ ☎ ✆ ✕ ✆ ✆ ✕ ☛ ✠ ✝

✒ ✞✆☎ ☛ ✆ � ☛ ✠ ✓ � ✞ ✬ ✕ ✕ ✕ ✷ ✕ ✦ ✬✏✘ ☎ ✕✟✞ � ✦ ✞ � ✍✏✆ ☎ ☛✖✆ � ☛ ✠ ☛❈✸ ✦ ✾ ☎✁� ✦ ✬✮✞ ✕ ✆ ✞ ✑ ☛ ✁ ☎ ☛ ✠ ✆ � ☛✌✆ ✕ ✆ ✆ ☎ ☛✑ ✆ � ☛ ✑ ✠✔✠✡✠
✷✫✦ ✘ ✪✆✕ �✌✞ ✑ ✠ ✡ ✷✫✦ ✘ ✪✆✕ �✌✞ ✑ ☛ ✠✟✎ ✆

(4.11)

This recovery procedure finds a shortest (possibly empty) sequence of corrective actions such

that 1) either after executing them from the current program state we reach successfully the

goal situation, 2) or after executing them from a past program state mentioned in the trace we

can successfully compute a recovered program.12 Because the trace keeps all program states

passed by the monitored program, we need actually to consider only those past states which

include alternative branches. In particular, our recovery procedure must consider the very first

past program state that includes alternative nondeterministic branches. The occurrence of the

predicate ✸ ✦ ✾ ☎☎� ✦ ✬ on the right hand side makes sure that program states further in the past will

be recursively considered too.

The predicate � ✞ ✬ ✕ ✕ ✕ ✷ ✕ ✦ ✬★✘ ☎ ✕✟✞ � ✦ ✞ � ✍✚✆ ☎ ☛✌✆ � ☛ ✠ holds if ☎ ☛ is a first (if one looks backwards from

the current trace � ✍ towards ✶ ✁ ) program state mentioned in the trace � ✍ such that ☎ ☛ is a

nondeterministic choice between several sub-programs. This predicate is specified by

� ✞ ✬ ✕ ✕ ✕ ✷ ✕ ✦ ✬✏✘ ☎ ✕✟✞ � ✦ ✞ � ✍✚✆ ☎ ☛✌✆ � ☛ ✠ ✒ � ☛ ✁ � ✍ ☛
✒ ✞ � ☛ ☛ ✠ � ☛ ❃ ✕ ✬ ☎ ✾ ✦ ✞✆☎ ☛✌✆ � ☛ ☛ ✠ ☛ ✒ ✞ ✌ ✍✚✆ ✌ ✑✜✆ ✌ ✁ ✠ ✓ ✞✆☎ ☛ ❃ ✞ ✌ ✍ ✄ ✌ ✑ ✠ ✝ ☎ ☛ ❃ ✂ ✢ ✓ ✌ ✁ ✠ ☛
✌✚✞ � ✠ ✓ ✞ � � � ✍✎☛ ✒ ✞ � ☛ ☛ ✆ ☎ ✆ ✌ ☛✍ ✆ ✌ ☛✑ ✆ ✌ ☛

✁ ✠ ✓ �✴❃❀✕ ✬ ☎ ✾ ✦ ✞✝☎ ✆ � ☛ ☛ ✠ ☛ ✞✝☎☞❃ ✞ ✌ ☛✍ ✄ ✌ ☛✑ ✠ ✝ ☎✻❃ ✂ ✢ ✓ ✌ ☛
✁ ✠✡✠

� ✁ � ☛ ✠ ✓
(4.12)

Informally, given a trace � ✍ , this predicate computes the sub-trace � ☛ of � ✍ such that this sub-

trace is composed by a program state ☎ ☛ that is a nondeterministic choice between sub-programs

(i.e., ☎ ☛ leads to several alternative branches) and � ☛ is the longest sub-trace that has this prop-

erty. In other words, all other sub-traces � that are composed from program states which are

nondeterministic choices between sub-programs are further away in the past than the sub-trace

� ☛ .
Note that our new recovery procedure (4.11) will determine a shortest (possibly empty) se-

quence of actions such that execution of actions (if any) from this sequence followed by current

12The condition in square brackets guarantees that the sequence of corrective actions is the shortest one.
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program state or followed by one of the past program states leads to a situation where the pro-

gram postcondition holds. Moreover, only those past program states are considered which are

nondeterministic choices between several sub-programs. Recovery using backtracking has a

number of limitations. In particular, it may require ‘undoing’ some of the previously executed

actions and this can be feasible only in domains with reversible actions.

In the next section, we consider a special but interesting case of this general recovery mech-

anism: when no already done actions should be undone and no corrective actions need to be

inserted in front of the past program states and a new program state is determined by the re-

covery procedure exclusively from backtracking to a past program state.

4.4 Another Specific Monitor

We propose a domain independent execution monitoring technique for a class of high level

logic-based temporal programs. The execution of a temporal program is interleaved with mon-

itoring. Given a remaining part of a program, an execution trace, and the current time, if at this

time no plan satisfying temporal constraints can be generated from the remaining program,

the monitor backtracks (if possible) to a previous computation state of the restartable program

where a new plan and an appropriate schedule can be constructed. We provide a declarative

framework and its implementation on a mobile robot.

In this section we consider another specific monitor that implements the general specifica-

tion in (4.6). Before we introduce formal definitions, we consider issues related to execution

of temporal Golog programs and several simple examples.

4.4.1 Interpretation of Temporal Golog Programs

Before we proceed, let us consider again the definition of Trans for primitive actions with a

time argument in Section 2.3.2. According to (2.23), each transition over a primitive action
☎ determines an inequality ✕ ✕ ☎ ✬★✕ ✞ ✕✡✠ ✡ ✕✟✞ ✲ ✦ ✞ ☎ ✠ saying that ☎ may not occur in a situation ✕
before the start time of ✕ . Hence, an execution of a temporal program beginning in the situa-

tion �☞✁ may terminate in ✕ only if a set of all such temporal inequalities together with the set of

domain specific temporal constraints has a solution. Any substitution for the existentially quan-

tified variable ✕ obtained as a side effect of establishing the entailment � ✄ ❃ ✞ ✒✝✕★✠ ✤ ☎✟✞✝☎ ✆ �✂✁ ✆ ✕✡✠
specifies a unique temporal plan only if the solution is unique. Otherwise, the constructive

proof that determines a situation term ✕ will not uniquely determine occurrence times of ac-
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tions in ✕ (in a general case, a consistent set of temporal constraints may have infinitely many

solutions). For this reason, when we obtain a situation term ✕ and want to find an executable

plan, we need an additional relation �❄✾✒� ✦ ✄●✓ ✷✫✦ ✞ ✕ ✆ ✕ ☛ ✠ . This relation is true if ✕ ❃ ✕ ☛ , or if a set

of temporal inequalities determined by a sequence of actions leading from ✕ to ✕ ☛ has a solution

(we call it schedule) and according to the schedule actions occur as early as possible.

Examples (4.4.1) and (4.4.2) in the next section, provide motivation why we need a general

framework of execution monitoring. They also show that if certain actions are significantly

belated, the monitor may backtrack to old choice points in a given program and try alternative

branches.

In the sequel, we describe a new specific monitor that forms the basis for the Section 4.4.5.

4.4.2 Monitoring of Temporal Golog Programs: Motivation

Let a next primitive action ✕ be selected for the execution by the interpreter. In reality, some

unexpected exogenous actions may delay completion of the previous agent’s action. For this

reason, before doing ✕ that was scheduled to be executed at time ✳ ✍ , the agent senses the

real time ✳ ✑ . If ✳ ✑ ✡ ✳ ✍ then agent waits until ✳ ✍ and then performs ✕ . If ✳ ✍ ✠ ✳ ✑ , but

there is an alternative solution of the system of temporal constraints allowing the remainder

of the program to be successfully rescheduled, then the execution monitor reschedules the rest

of the program (in particular, it assigns new execution time ✳ ✁ ✁❇✳ ✑ to the action ✕ ), and

(after waiting for some time, if necessary) performs ✕ at the time ✳ ✁ . Otherwise, if there is

no alternative schedule, then either it is too late to perform action ✕ , or one of the subsequent

actions will miss its deadline. In this case, the original plan (deduced from a given program)

is doomed to fail. However, if the plan that includes action ✕ was selected as one of possible

alternatives of a nondeterministic choice, and in another branch there is a possible action ✛
that can be scheduled at this moment, and there is a schedule for all those remaining actions

which follow ✛ , then the execution monitor abandons ✕ (and actions that follow it) in favor of

✛ and subsequent actions. When the monitor does this, we say that the monitor recovers from

a failure by skipping belated actions and backtracking to a previous computation state. The

ability to backtrack is conditioned upon the structure of a sub-program state currently being

executed: only in a restartable program13 an alternative branch can be attempted without doing

13A program is restartable in a current situation if it can be started anew. A related notion of a restartable plan

has been proposed in [Beetz and McDermott, 1996]: “we call a plan � restartable if for any task ☞ that has � as its

plan, starting the execution of � , causing its evaporation, and executing � completely afterwards causes a behavior

that satisfies the task ☞ ”.
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in the real world certain auxiliary actions or reversing physically those actions which preceded

A. This loop of interpreting a program, sensing, monitoring and executing repeats until the

program completes successfully or fails.

Below we consider two examples to give a motivation for our execution monitor: they use

fluents and actions from the coffee delivery example (2.1.2) and use the procedure goto(loc,t)

defined in the Golog program for a delivery robot (2.3.2).

Example 4.4.1:

This example demonstrates that backtracking to a non-deterministic choice between two sub-

programs allows (sometimes) modification of a plan that would fail otherwise.

The program visit1 relies on a functional fluent ✘✻☎☎✞✢✞ ✕✡✠ (introduced in Example 2.3.2).

Let the initial situation �☞✁ start at 0, the robot is located near the coffee machine ✂ ✁
, travel

time from ✂ ✁
to

✁ ☎ ✬ ✣ is 10 units, travel time to �❄✓ ✦ is 15 units, and to ✛ ✞ ✷✫✷ is 8 units.

proc �✂✞ ✕ ✞ ✕✼❉
✪✟☎ ✕ ☎✩✞✜☎ � � ✞ ✾ ✦ ✞ ✁ ☎ ✬ ✣✮✠ ✆ ❉✡✠ ✁

✍ ✪✩☎ ✕ ☎✟✞ ✂ ✁ ✆ ❉❂❉✡✠ ✁✭✪✟☎ ✕ ☎✩✞✜☎ � � ✞ ✾ ✦ ✞ �✚✓ ✦ ✠ ✆ ✘✻☎☎✞ ✠ ✄
✪✟☎ ✕ ☎✩✞ ✂ ✁ ✆ ❉❂❉✡✠ ✁✭✪✟☎✡✕ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞✜✛ ✞ ✷✫✷ ✠ ✆ ✘✻☎☎✞ ✠ ✎ ✁ ✞✜✘✻☎☎✞ ✠ ✄ �●✠ �

endProc

The robot starts to execute visit1 in the initial situation. It has to visit
✁ ☎ ✬ ✣ (this takes

10 units) and then at moment 11 either return back to the coffee machine and go to the office of

�✚✓ ✦ or return back to the coffee machine and start going to the office of ✛ ✞ ✷✫✷ . After the robot

reaches one of those offices, the value of time has to be less than 40.

Let the robot select the left branch of the non-deterministic choice, i.e. it decides go to

�✚✓ ✦ . The overall plan: go to
✁ ☎ ✬ ✣ at 1, then come back to ✂ ✁

at 21 (the round trip takes 20

units), and go to �✚✓ ✦ seems correct because the robot is supposed to arrive in the office of �✚✓ ✦
at 36. But assume that the robot will be delayed by people walking around when it is going

back to ✂ ✁
and it will arrive there at 26 (instead of 21); so, it is too late to start going to �✚✓ ✦ .

At this moment, the robot can change its original plan by backtracking to the non-deterministic

choice and selecting another branch (go to the office of ✛ ✞ ✷✜✷ ). This plan modification does

not require extra physical actions or reversing effects of those actions which have been already

performed.14 The plan modified in this way can be executed successfully, because the robot

will reach ✛ ✞ ✷✫✷ before 40.

14Indeed, note that for any moment ☞ , if ✄✛✖✑✍✙✖ ☞✁� ✖✆☎ ✂ ☞✆✌ ✖ ✒ ✓✄✂ � , then ☎ ✖ ☞ ✖ ✁ ✂ � ☎ ☞ ☛ is equivalent to an empty

sequence of actions according to the Example (2.3.2).
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Example 4.4.2:

This example demonstrates that backtracking to a non-deterministic choice of an argument to

a program allows (sometimes) to modify a plan that would fail otherwise.

Let us assume that the current time is 91, the robot just gave coffee to �☞☎ ✦ , and it is located

in his office. The robot has to construct and execute a plan specified by the Golog procedure

visit2. According to visit2, the robot has to select a person ✑ who does not have coffee

and wants coffee during the interval from ✕ ✍ to ✕ ✑ , then go to ✂ ✁
and pickup a coffee there

(the expected travel time from � ☎ ✦ to ✂ ✁
is 10). After that, the robot has to go to the office of

the selected person ✑ , arrive there some time later and the time of the arrival must be before ✕ ✑ .

proc �✂✞ ✕ ✞ ✕ ❋
✂ ✑ ✆ ✕ ✍✚✆ ✕ ✑✔✓ ✍ ✞ ✑ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞✒✑ ✠ ☛ ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ✍✏✆ ✕ ✑ ✠✽✠ � ✁

✪✟☎✡✕ ☎✟✞ ✂ ✁ ✆ ✆ ❉ ✠ ✁❂✑ ✞ ✾ ✣✝✓✆✑ ✂ ☎ � � ✦ ✦ ✞✫✘☞☎✁✞ ✠ ✁
✪✟☎✡✕ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞ ✑ ✠ ✆ ✘✻☎☎✞ ✠ ✁ ✞✜✘☞☎✁✞ ✡ ✕ ✑ ✠ � ✎ ✓

endProc

Let the robot select ✛ ✞ ✷✫✷ (he wants coffee from 100 to 110, see Example 2.1.2). The overall

plan: go to the coffee machine at 91, pick up a coffee there at 101, go to the office of Bill and

arrive there before 110 — seems correct, because the travel time from ✂ ✁
to ✛ ✞ ✷✜✷ is 8. But

imagine that the robot was significantly delayed when it was moving from the office of � ☎ ✦
to ✂ ✁

, and at the moment when the robot has arrived there, the time was 120 units. At this

moment, it is too late to start going to ✛ ✞ ✷✫✷ , because at the very best, the robot will arrive in

his office at 128 which is greater than 110. However, if the monitor backtracks to the top level

non-deterministic choice and selects
✁ ☎ ✬ ✣ (she wants coffee from 130 to 170) instead of ✛ ✞ ✷✫✷ ,

then the robot can execute a modified plan specified by visit2: pickup a coffee at 120, start

go to
✁ ☎ ✬ ✣ at 120 and arrive in her office at the time 130 (the travel time to the office of

✁ ☎ ✬ ✣
equals 10) which is less than 170. Note that if the robot is already located at coffee machine
✂ ✁

, then it does not need to go anywhere given the procedure ✪✟☎ ✕ ☎✩✞ ✂ ✁ ✆ ✆ ❉✡✠ ; in other words,

✪✟☎✡✕ ☎✟✞ ✂ ✁ ✆ ✆ ❉✡✠ can be executed not only at 91, but at any other moment ✕ , because ✪✟☎ ✕ ☎✩✞ ✂ ✁ ✆ ✕✽✠
is equivalent to an empty sequence of actions if ✬✏☎ ✂ ☎ ✕✂✁ ☎★✾ ☎ ✕✟✞ ☎★✘ ❃ ✂ ✁

(see the Example (2.3.2)

).
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4.4.3 A Specific Monitor for Temporal Golog Programs

To simplify the subsequent presentation, we consider only one primitive sense action: watching

the clock and assume that there are no other exogenous actions. Thus, a high-level control

module can sense in the external world only the real time. We emphasize that other information

from sensors may have effects only on functioning of the low-level software (e.g., the collision

avoidance program) and is not accessible to a cognitive level. We axiomatize this exogenous

action by:

✌ ✕ ✆ ✕ ✓ ✁ ☎ ✕ ✕✆✞ ✞ ☎ ✕ ✾✁�✌✞✯✕✽✠ ✆ ✕✡✠ ☛ ✕✟✞ ✲ ✦ ✞✠✞ ☎ ✕ ✾✒�✌✞✫✕✽✠✽✠ ❃ ✕ ✓
Recall that in the axiom (4.5) either ✒ ☎✝✓ ✕ ☛ ❃ ✄✆☎✩✞ ☎ ✆ ✕ ✍ ✠ (a first primitive action in ☎ ✍ is

selected for execution), or ✕ ☛ ❃ ✕ ✍ (a test is evaluated).15 Because tests do not have temporal

arguments and we consider in this section only one exogenous action ✞ ☎ ✕ ✾✒�✌✞✫✕✽✠ , there is no

need to monitor evaluation of tests. Note also, that the axiom (4.5) has to be modified in the

case of temporal Golog programs: we have to add the predicate �❄✾✒� ✦ ✄●✓ ✷✫✦ ✞ ✕ ✍✟✆ ✕ ☛ ☛ ✠ mentioned in

Section 4.4.1, to schedule uniquely a next primitive action ☎ selected tentatively for execution.

Thus, the axiom (4.5) can be transformed as follows:

TransEM ✞ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✚✆ � ✍✟✆ ☎ ✑✔✆ ✕ ✑✜✆ � ✑ ✠✓✒ ✞✟✒ ☎ ☛ ✆ ✕ ☛✖✆ � ☛ ✠✌✳ ✬ ☎ ✘ ✕✝✞✆☎ ✍✏✆ ✕ ✍✟✆ ☎ ☛✌✆ ✕ ☛ ✠ ☛
� ☛ ❃ ✕ ✬ ☎ ✾ ✦ ✞✝☎ ✍✚✆ � ✍ ✠ ☛ ✒✝✕ ☛ ☛ ✓ ✤ ☎✟✞✝☎ ☛✖✆ ✕ ☛✖✆ ✕ ☛ ☛ ✠ ☛
✍ ✕ ☛ ❃ ✕ ✍ ❃ ✕ ✑ ☛ ☎ ✑ ❃ ☎ ☛ ☛ � ✑ ❃ � ☛ ✝

✒ ☎✝✓ ✕ ☛ ❃❅✄✆☎✟✞ ☎✝✆ ✕ ✍ ✠ ☛ �❄✾✒� ✦ ✄●✓ ✷✫✦ ✞ ✕ ✍✏✆ ✕ ☛ ☛ ✠ ☛
✁ ☎✡✘ ✞✜✕ ☎★✬✩✞ ✕ ✍✚✆ ✕ ✆ ✆ ☎ ☛ ✆ ✕ ☛ ✆ � ☛ ✆ ☎ ✑✔✆ ✕ ✑✜✆ � ✑ ✠ ✎ ✓

(4.13)

We also have to transform axiom (4.6) to an appropriate form that corresponds to monitoring

of primitive actions only:

✁ ☎★✘ ✞ ✕ ☎✡✬✮✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✏✆ � ✍✚✆ ☎ ✑✔✆ ✕ ✑✔✆ � ✑ ✠ ✒ ✞✟✒✟✕ ✑✛✆✡☎ ✠ ✕ ✆ ❃ ✄✆☎✩✞ ✞ ☎ ✕ ✾✒�✂✞✯✕ ✑ ✠ ✆ ✕★✠ ☛
✍ ✑ ✸ ✦ ✷✫✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✏✆ � ✍ ✠ ☛ ☎ ✑ ❃ ☎ ✍✎☛ ✕ ✍ ❃✺✄✆☎✟✞ ☎✝✆ ✕✡✠ ☛

✸ ✓ ✘ ✕ ✾✥✕✟✞ ☎✡✘❄✞ ☎✝✆ ✕ ✆ ✆ ✕ ✑ ✠ ☛ � ✑ ❃ � ✍✓✝
✸ ✦ ✷✜✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✚✆ � ✍ ✠ ☛ ✕ ✑ ❃ ✕ ✆ ☛

✸ ✦ ✾ ☎☎� ✦ ✬✩✞ ✕ ✆ ✞ ☎ ✁ ☎ ✍ ✠ ✆ � ✍✚✆ ✕ ✆ ✆ ☎ ✑✔✆ � ✑ ✠ ✎ ✓

(4.14)

Note that sensed time may be relevant with respect to execution of ☎ ✍ only if action ☎ is belated:

✕✟✞ ✲ ✦ ✞ ☎ ✠ ❃ ✕ ✍ , ✕ ✕ ☎ ✬★✕ ✞ ✕ ✆ ✠ ❃ ✕ ✑ , ✕ ✑ ✁ ✕ ✍ . If an action is belated (but the delay is not relevant), it

should be rescheduled (i.e., the time argument of the action has to be replaced by a new time

15Recall that Trans
✁ ☛ ☛ ☎✡✝✗☎ ✒✍✌ ✞ ☎✡✝ ☛ if ☛ holds in

✝
, i.e., transitions over tests do not change the situation argument.
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value) because actions cannot be executed in the past. Otherwise, if an action is not belated,

it is sufficient to wait until the time when the action was scheduled originally and then do the

action in reality. Formally, the relation ✸ ✓ ✘ ✕ ✾✥✕✟✞ ☎✡✘❄✞ ☎✝✆ ✕ ✆ ✆ ✕ ✑ ✠ is specified as follows:

✸ ✓ ✘ ✕ ✾✥✕✟✞ ☎✡✘❄✞ ☎✝✆ ✕ ✆ ✆ ✕ ✑ ✠ ✒ ✞ ✒✟✕ ✍✚✆ ✕ ✑✔✆✟☎ ☛ ✠☞✕✟✞ ✲ ✦ ✞ ☎ ✠ ❃ ✕ ✍✎☛ ✕ ✕ ☎ ✬★✕ ✞ ✕ ✆ ✠ ❃ ✕ ✑ ☛
✍ ✕ ✑ ✁ ✕ ✍✎☛ ✸ ✦ ✑ ✷ ☎ ✾ ✦ ✳ ✞ ✲ ✦ ✞✫✕ ✍ ✆ ✕ ✑✔✆✡☎ ✆✡☎☞☛ ✠ ☛ ✕ ✑ ❃ ✄✆☎✩✞ ☎☞☛✌✆ ✕ ✆ ✠ ✝
✕ ✑ ✡ ✕ ✍✎☛ � ☎ ✞ ✕ ✞✯✕ ✑✛✆ ✕ ✍ ✠ ☛ ✕ ✑ ❃ ✄✆☎✩✞ ☎✝✆ ✕ ✆ ✠ ✎ ✆

where the relation ✸ ✦ ✑ ✷ ☎ ✾ ✦ ✳ ✞ ✲ ✦ ✞ ✢ ✍ ✆ ✢ ✑✛✆ ✢ ✁ ✆ ✢ � ✠ is true iff all occurrences of ✢ ✍ (if any) in ✢ ✁

are replaced by ✢ ✑ , and ✢ � is the result of this substitution; if there are no occurrences of ✢ ✍ in

✢ ✁ , this relation is true if ✢ � ❃ ✢ ✁ .16

The relation � ☎ ✞ ✕ ✞✯✕ ✑✛✆ ✕ ✍ ✠ is true iff the current clock time is ✕ ✑ , and after the system waits

for ✕ ✍ ✝ ✕ ✑ units of time, the current clock time is ✕ ✍ .
The difference between the real time ✕ ✕ ☎ ✬✡✕ ✞ ✕ ✆ ✠ and the scheduled time ✕✟✞ ✲ ✦ ✞ ☎ ✠ is rele-

vant iff ✕✟✞ ✲ ✦ ✞ ☎ ✠ ✠ ✕ ✕ ☎ ✬★✕ ✞ ✕ ✆ ✠ (action ☎ is belated), and there is no execution of a rescheduled

sequence ( ☎ ✁ ☎ ✍ ) that leads to a situation, where a post-condition of ☎ ✍ evaluates to true:

✸ ✦ ✷✫✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✚✆ ✕ ✍✟✆ � ✍ ✠✓✒ ✞✟✒ ☎✝✆ ✕ ✍✏✆ ✕ ✑✛✆✟☎ ☛✖✆ ☎ ☛✍ ✠✝✕ ✍ ❃✺✄✆☎✟✞ ☎✝✆ ✕✡✠ ☛
✕✟✞ ✲ ✦ ✞ ☎ ✠✴❃ ✕ ✍ ☛ ✕ ✕ ☎ ✬✡✕ ✞ ✕ ✆ ✠❄❃ ✕ ✑ ☛ ✕ ✑ ✁ ✕ ✍☞☛

✸ ✦ ✑ ✷ ☎ ✾ ✦ ✳ ✞ ✲ ✦ ✞✫✕ ✍ ✆ ✕ ✑✔✆ ☎ ✍✚✆ ☎ ☛✍ ✠ ☛
✸ ✦ ✑ ✷ ☎ ✾ ✦ ✳ ✞ ✲ ✦ ✞✫✕ ✍✜✆ ✕ ✑✔✆✡☎ ✆✡☎ ☛ ✠ ☛

✑ ✒✝✕ ☛ ✤ ☎✟✞ ☎ ☛ ✁ ☎ ☛✍ ✆ ✕ ✆ ✆ ✕ ☛ ✠ ✓

Note that we use an off-line interpreter ✤ ☎✩✞ ☎ ☛ ✁ ☎ ☛ ✍ ✆ ✕ ✆ ✆ ✕ ☛ ✠ to look ahead whether the remaining

program ☎☞☛ ✁ ☎ ☛✍ can terminate off-line in a goal situation. If there is no situation where this

program terminates, then exogenous interferences that delayed the robot are relevant: no matter

what branches in the remaining program will be chosen, the program post-condition evaluates

16Because primitive actions are terms that have time as their last argument
✁

☎ � ✞ ✂ ☎ ☎✁� ✌ � ☎ takes as input a

primitive action
✂✆✁✁✂✢ ☎ ☞ ✔ ☛ that the agent was supposed to execute at time ☞ ✔ and returns the action

✂ ✁✄✂✢ ☎ ☞✆☎ ☛ that must

be executed now.
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to false at the final situation. The predicate ✸ ✦ ✾ ☎✁� ✦ ✬✩✞ ✕ ✆ ✞ ☎ ✁ ☎ ✍ ✠ ✆ � ✍✏✆ ✕ ✆ ✆ ☎ ✑✛✆ � ✑ ✠ is defined by:

✸ ✦ ✾ ☎✁� ✦ ✬✮✞ ✕ ✆ ✞ ☎ ✁ ☎ ✍ ✠ ✆ � ✍✏✆ ✕ ✆ ✆ ☎ ✑✛✆ � ✑ ✠ ✒ ✞✟✒ � ☛✖✆ ✕ ✍✚✆ ✕ ✑✔✆ ☎✏✠✌✕✟✞ ✲ ✦ ✞ ☎ ✠ ❃ ✕ ✍ ☛ ✕ ✕ ☎ ✬✡✕ ✞ ✕ ✆ ✠ ❃ ✕ ✑ ☛

✞ � ✍ ✆❃❅✶ ✁ ☛ ✍ � ✍ ❃ ✕ ✬ ☎ ✾ ✦ ✞✆☎ ✆ � ☛ ✠ ☛

✒ ☎ ☛ ✓✥✸ ✦ ✑ ✷ ☎ ✾ ✦ ✳ ✞ ✲ ✦ ✞✫✕ ✍✚✆ ✕ ✑✛✆ ☎ ✆ ☎ ☛ ✠ ☛ ✒ ☎ ☛ ✓✥✸ ✦ ✑ ✷ ☎ ✾ ✦ ✳ ✞ ✲ ✦ ✞✫✕ ✍ ✆ ✕ ✑✜✆✟☎✝✆✟☎ ☛ ✠ ☛

✞ ✒✝✕ ☛ ✤ ☎✟✞✝☎ ☛✖✆ ✕ ✆ ✆ ✕ ☛ ✠ ☛ ☎ ✑ ❃ ☎ ☛ ☛ � ✑ ❃ � ☛ ✝

✒✝✕ ☛ ✤ ☎✟✞ ☎ ☛ ✁ ☎ ☛✖✆ ✕ ✆ ✆ ✕ ☛ ✠ ☛ ☎ ✑ ❃ ✞ ☎ ☛ ✁ ☎ ☛ ✠ ☛ � ✑ ❃ � ☛ ✝
✸ ✦ ✾ ☎✁� ✦ ✬✮✞ ✕ ✆ ✞ ☎ ✁ ☎ ✍ ✠ ✆ � ☛✌✆ ✕ ✆ ✆ ☎ ✑✔✆ � ✑ ✠✔✠ ✎

✝ � ✍ ❃ ✶ ✁ ☛ ☎ ✑ ❃✺� ✕ ☎✼✑ ☛ � ✑ ❃ ✶ ✁✥✠ ✓

This predicate also appeals to the off-line executions performed by ✤ ☎ to look ahead whether

a program will terminate in a situation where the postcondition evaluates to true. If given a

non-empty trace � ✍ , there is a program state ☎ such that � ✍ ❃ ✕ ✬ ☎ ✾ ✦ ✞✆☎ ✆ � ☛ ✠ , and ☎ ☛ – a resched-

uled program ☎ – terminates in a goal situation (i.e., ✒✝✕ ☛ ✤ ☎✩✞✆☎ ☛ ✆ ✕ ✆ ✆ ✕ ☛ ✠ is true), then the monitor

leaves ☎ and subsequent actions; it resumes execution from the program state ☎ ☛ in situation ✕ ✆ .
The second disjunctive case is when ✒✝✕ ☛ ✤ ☎✩✞ ☎ ☛ ✁ ☎ ☛ ✆ ✕ ✆ ✆ ✕ ☛ ✠ is true, where ☎ ☛ is the appropriately

rescheduled action ☎ . In this case, the monitor executes ☎ ☛ , but leaves subsequent actions; it

resumes execution from the program state ☎ ☛ in situation ✄✝☎✟✞ ☎ ☛✖✆ ✕ ✆ ✠ . Otherwise, recursively, it

may happen that ✸ ✦ ✾ ☎☎� ✦ ✬✩✞ ✕ ✍✏✆ ✞ ☎ ✁ ☎ ✍ ✠ ✆ � ☛✖✆ ✕ ✆ ✆ ☎ ✑✔✆ � ✑✜✆ ✕ ✑ ✠ is true. If a trace � ✍ is empty, then the

program ☎ ✍ cannot be recovered ( ☎ ✑ ❃ � ✕ ☎✥✑ ), and the monitor terminates its execution. Note

that we need two mutually disjoint cases when we define a recovery procedure. In the first case,

the procedure abandons the action ☎ that was scheduled for execution. In the second case, the

procedure does execute ☎ . Both cases are needed because in the temporal situation calculus

fluents are processes extended in time: they are initiated and terminated by instantaneous ac-

tions. If the action ☎ scheduled for execution happen to be an action initiating a process that

will not complete in time, then the recovery procedure abandons this action ☎ , but if ☎ happen

to be an action that terminates a delayed process, then it makes sense to execute ☎ before trying

another branch of a past program state ☎ ☛ .
To formulate the correctness property of our recovery procedure, we need the following

definition. The program ☎ (which started originally in a situation ✕ ) with the post-condition

✞✫✪✟☎ ☎✆✷ ✠ � is restartable in a configuration ✞ ✕ ☛ ✆ ☎ ☛ ✠ after any delay shorter than ✤ if and only if

✸ ✦ ✕ ✕ ☎ ✬✡✕ ☎ ✂✼✷✫✦ ✞✝☎ ✆ ✕ ☛ ✆ ☎ ☛ ✆✹✤ ✠ ☎✝✆✟✞❃
✌ ✕ ✆ ✕ ✆ ✕ ✆ ✓ ✍ Trans ✁ ✞✆☎ ✆ ✕ ✆ ☎ ☛✌✆ ✕ ☛ ✠ ☛ ✕ ✆ ❃✺✄✆☎✟✞✠✞ ☎ ✕ ✾✒�✌✞✫✕✽✠ ✆ ✕ ☛ ✠ ☛ ✞ ✕ ✕ ☎ ✬✡✕ ✞ ✕ ☛ ✠ ✡ ✕☛✡ ✕ ✕ ☎ ✬✡✕ ✞ ✕ ☛ ✠ ✆ ✤ ✠ ✎

✠✍✒✝✕ ✞ ✞ ✤ ☎✩✞✆☎ ✆ ✕ ✆ ✆ ✕ ✞ ✠ ☛ ✪✩☎ ☎✆✷ ✞ ✕ ✞ ✠✭✠ ✓
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This formula can be read as follows. If (after one or several transitions) the current configu-

ration is ✞ ✕ ☛✖✆ ☎ ☛ ✠ , and ✕ ✆ is the situation resulting from watching the current time ✕ in ✕ ☛ , and

time ✕ is no later than ✤ units from the initial time ✕ ✕ ☎ ✬✡✕ ✞ ✕ ☛ ✠ of situation ✕ ☛ , then there is a

terminating execution of the original program ☎ from ✕ ✆ such that this execution satisfies the

program postcondition.

Example 4.4.3: (continuation of Example 4.4.2).

Let’s reconsider the Golog program visit2 that commands the robot go from the Joe’s office at

time 91 to the main office, pick up coffee there and deliver it to an employee who wants coffee

at the specified interval of time. Let the situation � ☛ be

� ☛ ❃ ✄✆☎✟✞ ✦ ✘✻✄ ✁✙☎✟✞ ☎ � � ✞ ✾ ✦ ✞ �☞☎ ✦ ✠ ✆ ✂ ✁ ✆ ❉ �✩❉✡✠ ✆ ✄✆☎✩✞ ✕ ✕ ☎ ✬✡✕ ✁✙☎✩✞✜☎ � � ✞ ✾ ✦ ✞ � ☎ ✦ ✠ ✆ ✂ ✁ ✆☎✆ ❉✡✠ ✆ �✻✁✥✠✭✠
The program visit2 is restartable in the situation � ☛ , when the program

☎ ☛ ❃ ✑ ✞ ✾ ✣✝✓✆✑ ✂ ☎ � � ✦ ✦ ✞✫✘☞☎✁✞ ✠ ✁✽✪✩☎ ✕ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞ ✛ ✞ ✷✫✷ ✠ ✆ ✘✻☎☎✞ ✠ ✁✡✞✫✘☞☎✁✞ ✡ ❉❂❉ �●✠
remains to be performed, only if the delay is less than 59 time units. Indeed, ✕ ✕ ☎ ✬✡✕ ✞ � ☛ ✠✴❃ ❉ �✟❉
and according to axioms of Example 2.1.2

✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ✍✟✆ ✕ ✑ ✠ ✒ ✑✴❃❈�✚✓ ✦ ☛ ✕ ✍ ❃ ❉ ✄ � ☛ ✕ ✑ ❃ ❉✁� � ✝ ✑✴❃ ✁ ☎ ✬ ✣ ☛ ✕ ✍ ❃ ❉✁✂ � ☛ ✕ ✑ ❃ ❉ � � ✝

✑✴❃✺✛ ✞ ✷✫✷ ☛ ✕ ✍ ❃ ❉ � � ☛ ✕ ✑ ❃ ❉❂❉ � ✝ ✑✴❃ � ☎ ✦ ☛ ✕ ✍ ❃ ✆ � ☛ ✕ ✑ ❃ ❉ � � ✓

Hence, for any moment of time ✕ ✁ ✕ ✕ ☎ ✬★✕ ✞ � ☛ ✠ ✆ ✄ ✆ it is too late to go to Mary because travel

time to Mary from CM is 10 and the robot must arrive in her office before 170. (There are not

other people who can be selected when real time ✕ ✁ ❉✁� � .)

Let ☎ ✁ be a Golog program restartable in a configuration ✞ ✕ ✍✏✆ ☎ ✍ ✠ after any delay shorter

than ✤ , ✪✟☎ ☎✆✷ ✞ ✕✡✠ be a situation calculus formula expressing a post-condition, �✂✁ be the initial

situation, ✶ ✁ be an empty trace and � ✍ ✆❃ ✶ ✁ be a trace leading from ✶ ✁ and ☎ ✁ to ☎ ✍ (assume

�✻✁ ✆❃ ✕ ✍ and ☎ ✁ ✆❃ ☎ ✍ ). Then, the recovery procedure based on backtracking is correct in the

following sense:

✍ ✸ ✦ ✕ ✕ ☎ ✬★✕ ☎✄✂✼✷✫✦ ✞✝☎ ✁ ✆ ☎ ✍✚✆ ✕ ✍✏✆✥✤ ✠ ☛ TransEM ✁ ✞ ✦ ✢ ☎ ✆ ☎ ✁ ✆ �✻✁ ✆ ✶ ✁ ✆ ☎ ✍✏✆ ✕ ✍✏✆ � ✍ ✠ ☛ ✞✟✒ ☎✝✆ ✕✡✠✝✕ ✍ ❃✺✄✆☎✟✞ ☎✝✆ ✕✡✠ ☛

✞ ✕ ✕ ☎ ✬★✕ ✞ ✕✡✠ ✡ ✕☛✡ ✕ ✕ ☎ ✬✡✕ ✞ ✕✡✠ ✆ ✤ ✠ ☛ ✕ ✆ ❃ ✄✆☎✩✞ ✞ ☎ ✕ ✾✒�✂✞✯✕✽✠ ✆ ✕✡✠ ☛
✸ ✦ ✷✫✦ � ☎ ✘ ✕ ✞ ✕ ✆ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✏✆ � ✍ ✠ ✎ ✠

✞✟✒ ☎ ✑✛✆ � ✑ ✠ ✸ ✦ ✾ ☎☎� ✦ ✬✩✞ ✕ ✆ ✞ ☎ ✁ ☎ ✍ ✠ ✆ � ✍✟✆ ✕ ✆ ✆ ☎ ✑✛✆ � ✑ ✠ ☛

✒✝✕ ☛ ☛ ✞ ✤ ☎✩✞✆☎ ✑✔✆ ✕ ✆ ✆ ✕ ☛ ☛ ✠ ☛ ✪✟☎ ☎✆✷ ✞ ✕ ☛ ☛ ✠✭✠ ✓
This is a direct consequence of the definition of a restartable program and the definition of the

recovery procedure. Indeed, by induction over the length of trace � ✍ , if this trace mentions only
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one program state, then from the definition of the recovery predicate it immediately follows that

the original restartable program ☎ ✁ will be determined from this trace. If this trace mentions

✘ ✆ ❉ program states, then using the inductive hypothesis, we see that ☎ ✁ will also be determined

from � ✍ . For a restartable program ☎ ✁ , the above correctness property demonstrates that even

if execution of actions from this program will be delayed, then the recovery mechanism will

determine a program that can be successfully executed after detecting a delay.

There are simple cases when a Golog program ☎ is restartable: when ☎ has either the syn-

tactic form ☎ ❃ ✞ ✌ ✍ ✄ ✌ ✑ ✠ or if ☎ ❃ ✂ ✢ ✓ ✌ ✞ ✢ ✠ , and at any step of execution of one of the

alternative branches the rest of the branch can be skipped (if necessary) and ☎ can be started

anew.17 In all those cases, a program post-condition has to be flexible. For example, ✪✟☎ ☎✆✷ has

to express weaker requirement ‘deliver coffee to as many people as possible’, instead of overly

strict requirement ‘deliver coffee to all people strictly in their preferred times’ (this postcondi-

tion determines termination of the recursive procedure in Example 2.3.2). If the postcondition

is not flexible, then the program that uses this postcondition cannot be restarted if just one of

the deliveries fails. Therefore, the proposed recovery mechanism has a number of limitations:

it can recover restartable programs only and this requires postconditions of a certain syntac-

tic form. It turns out that goals of the type ‘accomplish as many errands as possible’ can be

conveniently expressed by adapting certain concepts from decision theory. In the next section

we introduce the required fluents and predicates and then show how they can be applied to the

modified version of the coffee delivery example 2.3.2.

4.4.4 Preferences and utilities.

It is convenient to view robots as economic agents that seek behavior maximizing their utility

against cost. In [McFarland and Bösser, 1993], this point of view is supported by numerous

examples of animals behavior. In AI there are different ways of representing utilities (e.g., see

[Boutilier and Puterman, 1995, Bacchus et al., 1996, Boutilier et al., 1999]), but we propose

here to represent them as situation calculus fluents and axiomatize accumulation of rewards

by means of an appropriate successor state axiom. As we shall see, the main advantage of this

approach is that the reward functions for process-oriented problems (e.g., serving requests) and

for complex behaviors can be formulated without any additional representational overhead.

We represent preferences of a decision maker in an application by the fluent
✁ ✬ ✦ � ✞ ✕ ✍✏✆ ✕ ✑✔✆ ✕✡✠ :

17In a more general case, we need a recovery mechanism that combines backtracking with inserting corrective

actions as suggested in Section 4.3.3.
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a situation ✕ ✍ is more preferable than a situation ✕ ✑ , where both ✕ ✍ and ✕ ✑ are future situations

with respect to ✕ or one of them coincides with ✕ . The successor state axiom for this fluent

characterizes how preferences of a decision maker change between situations. As any other

successor state axiom, this axiom is domain dependent. Because we want to consider the

preference relation which is irreflexive and anti-symmetric, we require that in any domain this

successor state axiom must satisfy the following set of constraints:

✁ ✬ ✦ �✚✞ ✕ ✑✔✆ ✕ ✍✟✆ ✕✡✠✡✠ ✑ ✁ ✬ ✦ �✚✞ ✕ ✍✟✆ ✕ ✑✔✆ ✕✡✠ ✆
✒✝✕ ✍✚✆ ✕ ✑✔✓ ✁ ✬ ✦ �✚✞ ✕ ✍✏✆ ✕ ✑✛✆ �✻✁✥✠ ☛ ✕ ✍ ✆❃ ✕ ✑ ☛ �✻✁ ✄ ✕ ✍ ☛ �✻✁ ✄ ✕ ✑✔✆
✁ ✬ ✦ �✚✞ ✕ ✍✏✆ ✕ ✑✜✆ ✕✡✠✡✠ ✞ ✕✆✄ ✕ ✍ ☛ ✕✆✄ ✕ ✑ ☛ ✕ ✍ ✆❃ ✕ ✑ ✠ ✆

where the ordering relation ✕ ✍ ✄ ✕ ✑ is characterized in the set of foundational axioms (2.1)–

(2.4). The fluent
✁ ✬ ✦ �✚✞ ✕ ✍✟✆ ✕ ✑✔✆ ✕✡✠ characterizes preferences in a purely qualitative manner.

In our application, we express preferences using the utility fluent:
✝ ✕✟✞ ✷ ✞✠� ✆ ✕✡✠ holds when a

situation ✕ is evaluated by means a number � . We do not axiomatize real or rational numbers,

but rely instead on the standard interpretation of the reals and their operations and relations.

The following successor state axiom tells how the utility fluent changes:

✝ ✕✟✞ ✷ ✞✠� ✑ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠ ✒
✞ ✒✏✑ ✦ ✬ ✕✡☎✡✘ ✆ ✕ ✆ ✕ ✍✏✆ ✕ ✑✛✆ � ✆ � ✍ ✠ ✍ ☎ ❃ ✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕✽✠ ☛ ✝ ✕✟✞ ✷ ✞ � ✆ ✕✡✠ ☛

✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕ ✍✏✆ ✕ ✑ ✠ ☛ ✑ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✡✠ ☛
� ✍ ✡❊✞✫✕ ✑ ✝ ✕✽✠ ✂ ❋ ☛ � ✍ ✡ ✕ ✝ ✞ ✂✏✕ ✍✟✝ ✕ ✑ ✠ ✂ ❋ ☛ � ✑ ❃ � ✆ � ✍ ✎ ✝

✝ ✕✟✞ ✷ ✞ � ✑ ✆ ✕✡✠ ☛ ✑ ✞ ✒✏✑ ✦ ✬ ✕✡☎✡✘ ✆ ✕✽✠ ☎ ❃ ✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕✽✠
The utility fluent is intended to represent a cumulative reward gained for a certain behavior. In

the case of our example, utility remains the same if the robot executed an action different from

✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ . Otherwise, the new value of the utility � ✑ is a sum of the utility � in the previous

situation and a reward � ✍ for doing the action ✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✽✠ at time ✕ . The reward � ✍
is bounded from above by a pair of linear functions: one of them is increasing with time, the

other is decreasing with time. Note that � ✍ has a maximal value ✂✏✕ ✍ if ✕ ❃ ✕ ✍ (this is a moment

of time when the linear functions intersect) and � ✍ ✡ � if either ✕ ✡ ✞ ✂✏✕ ✍ ✝ ✕ ✑ ✠ ✂ ❋ or ✕ ✁ ✕ ✑ .
Linear functions are chosen intentionally to provide the maximum reward at the moment ✕ ✍ :
this reward function encourages the robot to arrive near the office of an employee just before

✕ ✍ (and wait for some time, if the robot arrives too early). Axioms
✁

in conjunction with the

following axiom say that preferences can be expressed in terms of utilities:

✁ ✬ ✦ �✚✞ ✕ ✑✔✆ ✕ ✍✟✆ ✕✡✠ ✒ ✒✟� ✑✛✆ � ✍ ✞ ✕✆✄ ✕ ✍ ☛ ✕ ✄ ✕ ✑ ☛ ✝ ✕✟✞ ✷ ✞ � ✑ ✆ ✕ ✑ ✠ ☛ ✁ ☎ ✢☛✞✠� ✑ ✆ ✕ ✑ ✠ ☛
✝ ✕✟✞ ✷ ✞ � ✍ ✆ ✕ ✍ ✠ ☛ ✁ ☎ ✢☛✞✠� ✍✜✆ ✕ ✍ ✠ ☛ � ✑ ✁✄� ✍ ✠ ✆
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where
✁ ☎ ✢☛✞✠� ✆ ✕✡✠ holds if � is a maximal value with respect to the set of those linear temporal

inequalities which constrain values of time variables mentioned in the situational term ✕ (as a

positive side effect, this maximization operation allows us to choose numerical values for all

temporal variables mentioned in the situation terms). Therefore, in the intended interpretation,

the value � can be determined by solving the corresponding linear programming problem.

In the section (2.3.1), any solution of the entailment task � ✄ ❃ ✞ ✒✝✕✡✠ ✤ ☎✟✞✝☎ ✆ �✌✁ ✆ ✕✡✠ ✆ i.e., any

substitution for ✕ , has been considered an appropriate sequence of actions. But if a decision

maker has preferences over different hypothetical plans, then they all have to be compared with

each other and only the best plan must be taken as a solution of the planning problem. Thus,

we need the predicate ✛ ✦ ✕ ✕ ✳ ✬ ☎ ✘ ✕✆✞✆☎ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ saying that the configuration ✞✝☎ ☛ ✆ ✕ ☛ ✠ is the best

one that can be reached from the configuration ✞✝☎ ✆ ✕✡✠ by doing one step of computation along a

sequence of actions that constitutes an optimal plan:

✛ ✦ ✕ ✕ ✳ ✬ ☎ ✘ ✕✆✞✝☎ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ✒
✞ ✒✝✕ ✞ ✠ ✳ ✬ ☎ ✘ ✕✆✞✆☎ ✆ ✕ ✆ ☎ ☛ ✆ ✕ ☛ ✠ ☛ Do ✞✝☎ ☛ ✆ ✕ ☛ ✆ ✕ ✞ ✠ ☛ ✁ ✬ ✦ �✚✞ ✕ ✞ ✆ ✕ ✆ ✕★✠ ☛

✑ ✞ ✒✝✕ ✍ ✠ ✞ Do ✞✝☎ ✆ ✕ ✆ ✕ ✍ ✠ ☛ ✁ ✬ ✦ �✚✞ ✕ ✍✚✆ ✕ ✞ ✆ ✕★✠✽✠ ✓

We have now a convenient framework to represent the requirement ‘deliver coffee to as

many people as possible’.

First, we introduce the predicate ✪✟☎ ☎✝✷ ✞ ✕★✠ (assume ✪✟☎ ☎✆✷ ✞ � ✁✼✠ is true):

✪✟☎ ☎✆✷ ✞✜✄✆☎✩✞ ☎ ✆ ✕★✠✽✠✓✒
✞ ✒✏✑ ✆ ✕✽✠ ☎ ❃ ✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞✒✑ ✆ ✕✽✠ ☛ ✁ ✬ ✦ �✚✞ ✄✆☎✟✞ ☎✝✆ ✕✡✠ ✆ ✕ ✆ �✻✁✹✠ ✝

✑ ✞ ✒✏✑ ✆ ✕✽✠ ☎ ❃ ✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞✒✑ ✆ ✕✽✠ ☛ ✪✟☎ ☎✆✷ ✞ ✕✡✠
(4.15)

Informally, a final situation must be such that every ✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ action results in a better sit-

uation. According to the utility function, the robot shall never give a coffee to a person ✑
after the time ✕ ✑ if ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ✍✚✆ ✕ ✑ ✠ . Hence, the test ✞✫✪✟☎ ☎✆✷ ✠ � evaluates to true iff utility

either increases monotonically or remains the same along the sequence of actions leading to

the final situation where this test is evaluated. In the sequel, we consider a modified coffee

delivery program ✌ (the Golog code of this program is provided in the next section). The inter-

preter coupled with the monitor generate and schedule plans (and later modify and re-schedule

plans, if necessary) using the program ☎✙❃✍✌ ✁✡✞✯✪✩☎ ☎✆✷ ✠ � , i.e., the test ✞✫✪✟☎ ☎✆✷ ✠ � is appended to ✌ to

represent the post-condition (4.15).

Second, because we want to compute optimal schedules in our implementation and resched-

ule remaining actions in an optimal way, we have to transform the expression characterizing
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transitions of a closed-loop system between configurations. Thus, the axiom (4.13) has to be

replaced by the following axiom:

✳✵✬ ☎ ✘ ✕ ✄ ✁ ✞ ✕ ✆ ✆ ☎ ✍✏✆ ✕ ✍✏✆ � ✍✏✆ ☎ ✑✛✆ ✕ ✑✔✆ � ✑ ✠ ✒ ✞ ✒ ☎ ☛ ✆ ✕ ☛ ✆ � ☛ ✠
✛ ✦ ✕ ✕ ✳✵✬ ☎ ✘ ✕✆✞✝☎ ✍✚✆ ✕ ✍✏✆ ☎ ☛ ✆ ✕ ☛ ✠ ☛ � ☛ ❃ ✕ ✬ ☎ ✾ ✦ ✞✝☎ ✍✚✆ � ✍ ✠ ☛

✍✡✕ ☛ ❃ ✕ ✍ ❃ ✕ ✑ ☛ ☎ ✑ ❃ ☎ ☛ ☛ � ✑ ❃ � ☛ ✝

✞✟✒ ☎ ✠✘✕ ☛ ❃ ✄✆☎✩✞ ☎ ✆ ✕ ✍ ✠ ☛ ✁ ☎✡✘ ✞✜✕ ☎★✬✩✞ ✕ ✍ ✆ ✕ ✆ ✆ ☎ ☛✖✆ ✕ ☛ ✆ � ☛✌✆ ☎ ✑✛✆ ✕ ✑✛✆ � ✑ ✠ ✎ ✓
(4.16)

The definition

DoEM ✞✝☎ ✆✥✦ ✢ ☎ ✆ ✕ ✆ � ✆ ✕ ✞ ✠ ✒ ✒ ☎ ✞ ✆ � ✞ ✓ TransEM ✁ ✞ ✦ ✢ ☎ ✆ ☎ ✆ ✕ ✆ � ✆ ☎ ✞ ✆ ✕ ✞ ✆ � ✞ ✠ ☛ Final ✞✝☎ ✞ ✆ ✕ ✞ ✠ ✆
where TransEM ✁ is the reflexive transitive closure of TransEM defined in (4.16) remains the

same. Note that the program ✦ ✢ ☎ here consists exclusively of actions sensing the current time

as mentioned in the beginning of Section 4.4.3. Everything else in Section 4.4.3 also remains

in force. Obviously, given a situation ✕ , any substitution for an existentially quantified variable

✕ ✞ obtained as a solution of the entailment task � ✄ ❃ ✞✟✒✝✕ ✞ ✠ ✤ ☎ ✄ ✁ ✞✆☎ ✆ ✕ ✆ ✕ ✞ ✠ corresponds to an

optimal plan ‘deliver coffee to as many people as possible’. The optimal plan is computed (and

re-computed) on-line taking into account real measurements of time.

4.4.5 An Implementation on a Robot

The interpreter and monitor are being used to control an autonomous robot Golem to perform

temporal scheduling tasks in an office environment (see Section 2.5).

It is important to emphasize that all sensor readings performed by low-level software are

not accessible to the high-level control. The execution monitor described in the section (4.4.3)

uses Unix internal clock as a sole sensor input. This is the limitation of the current experimental

version, not the limitation of our general framework.

The interpreter for temporal Golog based on transitional semantics with an execution mon-

itor has been implemented in Eclipse 3.5.2 Prolog. The ECRC Common Logic Programming

System Eclipse 3.5.2 provides a built-in Simplex algorithm for solving linear equations and in-

equalities over the reals. It provides also a built-in predicate rmax(T) that maximizes the value

that variable T may have with respect to the current set of temporal constraints.

The relations ✤ ☎ ✄ ✁
, ✳ ✬ ☎ ✘ ✕ ✄ ✁

,
✁ ☎★✘ ✞ ✕ ☎✡✬ , ✸ ✦ ✷✫✦ � ☎ ✘ ✕ , ✸ ✦ ✾ ☎☎� ✦ ✬ , lead to a natural imple-

mentation in Prolog of an execution monitor for arbitrary restartable temporal Golog programs.

An implementation of the ✳ ✬ ☎ ✘ ✕ -based interpreter for temporal Golog programs is available

in Appendix B.1. An implementation of the monitor is available in Appendix B.2. The source

code of the example considered later in this section can be found in Appendix B.4.
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In our experiments, we run the following program.

proc ✕ ✦ ✬☎� ✦ ✂ ☎ � � ✦ ✦ ✞✫✕✽✠
✞ ✘☞☎ ✂ ☎ � � ✦ ✦ ✤✧✦ ✷ ✞ � ✦ ✬ ✣ � ✕ ✁ ☎ ✕ ✕ ✞ ✂ ✷✫✦ ✄

if � ☎ ✷ ✄✝✞ ✘ ✪ ✂ ☎ � � ✦ ✦
then ✕ ✦ ✬ � ✦ ✖✙✘ ✦ ✂ ☎ � � ✦ ✦ ✞✯✕✽✠

else ✪✟☎✡✕ ☎✟✞ ✂ ✁ ✆ ✕✽✠☎✁❂✑ ✞ ✾ ✣✟✓●✑ ✂ ☎ � � ✦ ✦ ✞✜✘☞☎✁✞ ✠☎✁
✕ ✦ ✬ � ✦ ✖✙✘ ✦ ✂ ☎ � � ✦ ✦ ✞✜✘✻☎☎✞ ✠☛✠ ✓

endProc

proc ✘☞☎ ✂ ☎ � � ✦ ✦✱✤❀✦ ✷ ✞ � ✦ ✬ ✣ � ✕ ✁ ☎ ✕ ✕ ✞ ✂✼✷✫✦
✍ ✞ ✑ ✒✏✑ ✆ ✕ ☛ ✆ ✕ ☛ ☛ ✆ ✞ ☎ ✞✜✕✽✠ ✓
✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ☛✖✆ ✕ ☛ ☛ ✠ ☛ ✑ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✠ ☛ ✞ ☎ ✞ ✕ ✁ � ☛

✕ ☛ ✡ ✘☞☎✁✞ ✆ ✞ ☎ ✞✜✕ ✆ ✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞✜✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾ ☎ ✕✟✞ ☎✡✘ ✆ ✂ ✁ ✠ ✆ ✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✑ ✠✭✠ ✡ ✕ ☛ ☛ ✎ �
endProc

proc ✕ ✦ ✬ � ✦ ✖ ✘ ✦ ✂ ☎ � � ✦ ✦ ✞✫✕✽✠
✞✄✂✩✑ ✆ ✕ ✍✏✆ ✕ ✑✜✆ ✞ ☎ ✞ ✕✽✠ ✍ ✄✁✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞✒✑ ✆ ✕ ✍✚✆ ✕ ✑ ✠ ☛

✑ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✠ ☛ ✞ ☎ ✞✜✕ ✁ � ☛

✕ ✍ ✡ ✕ ✆ ✞ ☎ ✞ ✕ ✆ ✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞✫✬✿☎ ✂ ☎✡✕✂✁ ☎★✾ ☎ ✕✟✞ ☎★✘ ✆ ☎ � � ✞ ✾ ✦ ✞✒✑ ✠✭✠ ✡ ✕ ✑ ✆ � ✁
✪✟☎ ✕ ☎✩✞✜☎ � � ✞ ✾ ✦ ✞✒✑ ✠ ✆ ✕ ✆ ✞ ☎ ✞ ✕✽✠ ✁

✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✘☞☎✁✞ ✠ ✁
✕ ✦ ✬☎� ✦ ✂ ☎ � � ✦ ✦ ✞✜✘✻☎☎✞ ✠✌✎

endProc
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Figure 4.6: Locations of offices on the map: 1) park, 2) coffee machine, 3) Yves, 4) Ray, 5)

Sam

In our experiments, we used the following data:

✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ✍✟✆ ✕ ✑ ✠ ✒ ✑✴❃❈� ☎ ✲ ☛ ✕ ✍ ❃✝� � � ☛ ✕ ✑ ❃ �
� � ✝

✑✴❃ ✸ ☎ ✣ ☛ ✕ ✍ ❃ ✂ � � ☛ ✕ ✑ ❃ ✄ ✄ � ✝

✑✴❃ ✂
� ✦ ✕ ☛ ✕ ✍ ❃ ❉✁� � ☛ ✕ ✑ ❃ ❋ ✄ � ✓

Robot travel times:

✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✂
� ✦ ✕★✠✽✠❂❃ ✄ ✄ ✆

✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✸ ☎ ✣✩✠✭✠❂❃ ❉ ❋ � ✆
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ � ☎ ✲✺✠✭✠✿❃ �

✄ ✆
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ✁ ☎ ✬❂✣ ✆ ✂ ✁ ✠❂❃ ❉ � � ✆
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ☎ � � ✞ ✾ ✦ ✞ ✂

� ✦ ✕★✠ ✆ ☎ � � ✞ ✾ ✦ ✞ ✸ ☎ ✣✮✠✽✠❂❃ ❉ ❋ � ✆
✕ ✬ ☎ � ✦ ✷ ✳ ✞ ✲ ✦ ✞ ☎ � � ✞ ✾ ✦ ✞ ✸ ☎ ✣✩✠ ✆ ☎ � � ✞ ✾ ✦ ✞ � ☎ ✲✺✠✽✠❂❃ ❉✁✄ � ✓

If we run the program ☎ ❃ ✕ ✦ ✬☎� ✦ ✂ ☎ � � ✦ ✦ ✞ ❋ �●✠ ✁ ✞✫✪✟☎ ☎✆✷ ✠ � off-line (i.e., if we solve the en-

tailment problem � ✄ ❃ ✞✟✒✝✕✡✠ ✤ ☎✩✞✆☎ ✆ �☞✁ ✆ ✕✡✠ to find a substitution for ✕ ) we can find the optimal
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plan

� ❃ ✄✆☎✩✞✯✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ � ☎ ✲ ✆ � � �●✠ ✆ ✄✆☎✩✞ ✦ ✘☞✄✂✁ ☎✟✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ � ☎ ✲✺✠ ✆ � � �●✠ ✆
✄✆☎✩✞ ✕ ✕ ☎ ✬✡✕ ✁ ☎✟✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ � ☎ ✲✺✠ ✆ ✄ ❋ ✄❂✠ ✆ ✄✆☎✩✞✒✑ ✞ ✾ ✣✟✓●✑ ✂ ☎ � � ✦ ✦ ✞ ✄ ✆ �●✠ ✆
✄✝☎✟✞ ✦ ✘✻✄✂✁ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞ ✸ ☎ ✣✩✠ ✆ ✂ ✁ ✆☎✄ ✆ �●✠ ✆ ✄✝☎✟✞ ✕ ✕ ☎ ✬✡✕ ✁ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞ ✸ ☎ ✣✮✠ ✆ ✂ ✁ ✆ ✂ � �●✠ ✆
✄✝☎✟✞✫✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✸ ☎ ✣ ✆ ✂ � �●✠ ✆ ✄✆☎✟✞ ✦ ✘✻✄ ✁✙☎✟✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✸ ☎ ✣✩✠ ✆ ✂ � �●✠ ✆
✄✆☎✟✞ ✕ ✕ ☎ ✬★✕ ✁✙☎✟✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✸ ☎ ✣✮✠ ✆✼❋ ✄ �❂✠ ✆ ✄✆☎✟✞ ✑ ✞ ✾ ✣✟✓●✑ ✂ ☎ � � ✦ ✦ ✞ ❋ ❉ �❂✠ ✆
✄✆☎✟✞ ✦ ✘☞✄✂✁✙☎✩✞✜☎ � � ✞ ✾ ✦ ✞ ✂

� ✦ ✕✡✠ ✆ ✂ ✁ ✆✥❋ ❉ �●✠ ✆ ✄✆☎✩✞ ✕ ✕ ☎ ✬✡✕ ✁ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞ ✂
� ✦ ✕✡✠ ✆ ✂ ✁ ✆ ❉ � ✄❂✠ ✆

✄✆☎✩✞✯✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✂
� ✦ ✕ ✆ ❉✁� ✄❂✠ ✆ ✄✆☎✟✞ ✦ ✘✻✄ ✁✙☎✟✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✂

� ✦ ✕★✠ ✆ ❉✁� ✄✿✠ ✆
✄✆☎✩✞ ✕ ✕ ☎ ✬✡✕ ✁ ☎✟✞ ✂ ✁ ✆ ☎ � � ✞ ✾ ✦ ✞ ✂

� ✦ ✕✡✠ ✆ ❉ ❋ �●✠ ✆ ✄✆☎✟✞ ✑ ✞ ✾ ✣✝✓✆✑ ✂ ☎ � � ✦ ✦ ✞ ❉ ❋ �❂✠ ✆
✄✝☎✟✞ ✦ ✘✻✄✂✁ ☎✟✞ ✁ ☎ ✬❂✣ ✆ ✂ ✁ ✆ ❉ ❋ �●✠ ✆
✄✆☎✟✞ ✕ ✕ ☎ ✬★✕ ✁✙☎✟✞ ✁ ☎ ✬✿✣ ✆ ✂ ✁ ✆✼❋ �●✠ ✆ ✕ �●✠✽✠✭✠✽✠✭✠✭✠✽✠✭✠✽✠✭✠✭✠✽✠✭✠✽✠✭✠✭✠✽✠✭✠ ✆

that has the utility 127.5. According to the optimal plan, the robot has to deliver coffee first

to
✂
� ✦ ✕ (at 165), then to ✸ ☎ ✣ (at 360), and finally to � ☎ ✲ (at 600). Note that the procedure

✕ ✦ ✬ � ✦ ✖✙✘ ✦ ✂ ☎ � � ✦ ✦ is restartable in the computation state when the robot has arrived near the

office (before it gives coffee). To demonstrate that our recovery procedure works as intended

we did the following experiment. When the robot was moving from the coffee machine (the

location 2 on the map) to the office of
✂
� ✦ ✕ (the location 3 on the map), we intentionally de-

layed the robot. As a result, it has arrived at 260, much later than it was supposed to arrive

according to a schedule. At this time, were the robot executed the sequence of actions
✦ ✘☞✄✂✁ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞ ✂

� ✦ ✕★✠ ✆✼❋ � �❂✠ ✁✭✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ ✞ ✂
� ✦ ✕ ✆✼❋ � �●✠ ,

the utility would decrease and as a consequence the post-condition ✞✫✪✟☎ ☎✆✷ ✠ � would be false. The

predicate ✸ ✦ ✷✫✦ � ☎ ✘ ✕ detects this potential violation using an off-line simulation of the remain-

ing program (the predicate ✤ ☎ in the definition of ✸ ✦ ✷✫✦ � ☎ ✘ ✕ evaluates to false if an off-line

execution of ☎ fails). Hence, the monitor attempts to recover from the failure in the optimal

plan. The predicate ✸ ✦ ✾ ☎✁� ✦ ✬ backtracks recursively to a past computation state from which

a new optimal plan can be computed: this state is the top most non-deterministic choice of

person to whom a coffee has to be delivered now (see the procedure ✕ ✦ ✬☎� ✦ ✖ ✘ ✦ ✂ ☎ � � ✦ ✦ ). As

we observed, the robot executed the action ✦ ✘✻✄✂✁ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞ ✂
� ✦ ✕✡✠ ✆✼❋ � �●✠ , and then (after some

waiting) started to move from the office of Yves to the office of Ray without giving coffee to

Yves (because the robot holds coffee it goes straight to Ray’s office without picking up an-

other coffee). In the set of other experiments, we have seen that the closed-loop system (the

incremental interpreter coupled with the monitor) behaved exactly as intended.
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4.5 Correctness Properties for Execution Monitors

With definitions for ✳ ✬ ☎ ✘ ✕ ✄ ✁
and

✁ ☎★✘ ✞ ✕ ☎✡✬ , as in Section 4.2, it becomes possible to for-

mulate, and ultimately prove, various correctness properties for execution monitors. These

properties are intended to capture suitable concepts of controllability following the intuition

behind similar concepts introduced for discrete event systems [Ramadge and Wonham, 1989].

Informally, controllability is the property that characterizes a closed-loop system (a Golog pro-

gram coupled with the execution monitor): this is the ability of a monitored program to behave

correctly even if exogenous actions occur during the robot’s execution of the program. There

are many possible definitions, with varying degrees of generality, of what counts as correct

behavior of a monitored system. We focus here on various correctness properties one might

want to prove of the monitor.

Recall that the general execution monitor, as specified by (4.6), is the 8-argument relation
✁ ☎✡✘ ✞✜✕ ☎★✬✩✞ ✕ ✎ ✆ ✕ ✆ ✆ ☎ ✆ ✕ ✆ � ✆ ☎ ☛ ✆ ✕ ☛ ✆ � ☛ ✠ , meaning that whenever ☎ is the state of monitored program in

situation ✕ with the trace of past program states � , and ✕ ✆ is a situation resulting from an exoge-

nous event occurrence at the current situation ✕ ✎ , then the on-line execution should resume in ✕ ☛
with the new program ☎ ☛ . Then, by analogy with Floyd-Hoare style correctness and termination

properties, we can formulate a variety of verification tasks, some examples of which we now

describe. These are parameterized by two predicates:

1.
✁ ✞ ✕✡✠ , a desirable property that a terminating situation ✕ must satisfy. For example,

✁

might describe a postcondition of the program being monitored.

2. � ✞✝☎ ✆ � ✆ ✕ ✎ ✆ ✕ ✆ ✠ , a relationship between the current program state ☎ , the current trace � , the

current situation ✕ ✎ , and ✕ ✆ , the situation resulting from an exogenous event occurring

in ✕ ✎ . For example, � might express that ☎ terminates off-line both when executed in

✕ ✎ and also when executed in ✕ ✆ . As another example, we can consider the formula
� ✞✝☎ ✆ � ✆ ✕ ✎ ✆ ✕ ✆ ✠ saying that for any pair ✕ ✎ ✆ ✕ ✆ there exists a straight-line program such that

the execution of this program in ✕ ✆ results in some situation ✕ ❁ and the execution of ☎
from ✕ ❁ terminates.

Weak Termination and Correctness

✞✍✌ ☎ ✆ � ✆ ✕ ✎ ✆ ✕ ✆ ✠ ✓ � ✞✝☎ ✆ � ✆ ✕ ✎ ✆ ✕ ✆ ✠✡✠
✁ ☎✡✘ ✞✜✕ ☎★✬✩✞ ✕ ✎ ✆ ✕ ✆ ✆ ☎ ✆ ✕ ✆ � ✆ ☎ ☛ ✆ ✕ ☛✖✆ � ☛ ✠ ✠ ✞✟✒✝✕ ☛ ☛ ✠ ✓ ✤ ☎✟✞✝☎ ☛✖✆ ✕ ☛ ✆ ✕ ☛ ☛ ✠ ☛ ✁ ✞ ✕ ☛ ☛ ✠ ✓

The task here is to verify that, under condition � , whenever
✁ ☎✡✘ ✞✜✕ ☎★✬ determines a new pro-
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gram with which to resume the system computation after an exogenous event occurrence, that

program has a terminating (off-line) computation resulting in a final situation in which
✁

holds.

Strong Termination and Correctness

✞✍✌ ☎ ✆ ✕ ✎ ✆ ✕ ✆ ✠ ✓ � ✞✝☎ ✆ � ✆ ✕ ✎ ✆ ✕ ✆ ✠✡✠❊✞ ✒ ☎ ☛ ✆ ✕ ☛ ✆ � ☛ ✠ ✓ ✁ ☎★✘ ✞ ✕ ☎✡✬✮✞ ✕ ✎ ✆ ✕ ✆ ✆ ☎ ✆ ✕ ✆ � ✆ ☎ ☛ ✆ ✕ ☛ ✆ � ☛ ✠ ☛

✞✟✒✝✕ ☛ ☛ ✠ ✓ ✤ ☎✩✞✆☎ ☛ ✆ ✕ ☛ ✆ ✕ ☛ ☛ ✠ ☛ ✁ ✞ ✕ ☛ ☛ ✠ ✆
Under condition � ,

✁ ☎✡✘ ✞ ✕ ☎✡✬ always determines a new program with which to resume the

system computation after an exogenous event occurrence, and that program has a terminating

(off-line) computation resulting in a final situation in which
✁

holds.

Even Stronger Termination and Correctness

✞✍✌ ☎ ✆ � ✆ ✕ ✎ ✆ ✕ ✆ ✠ ✓ � ✞✝☎ ✆ ✕ ✎ ✆ ✕ ✆ ✠✡✠
✞ ✒ ☎ ☛ ✆ ✕ ☛✌✆ � ☛ ✠ ✓ ✁ ☎✡✘ ✞✜✕ ☎★✬✩✞ ✕ ✎ ✆ ✕ ✆ ✆ ☎ ✆ ✕ ✆ � ✆ ☎ ☛✖✆ ✕ ☛✖✆ � ☛ ✠ ☛ ✞ ✒✝✕ ☛ ☛ ✠ ✓ ✤ ☎✟✞✝☎ ☛✖✆ ✕ ☛✖✆ ✕ ☛ ☛ ✠ ☛

✞✏✌ ✕ ☛ ☛ ✠ ✓ ✤ ☎✟✞✝☎ ☛ ✆ ✕ ☛ ✆ ✕ ☛ ☛ ✠ ✠ ✁ ✞ ✕ ☛ ☛ ✠ ✓
Here, the correctness property is that under condition � ,

✁ ☎★✘ ✞ ✕ ☎✡✬ always determines a new

program that terminates off-line, and all these terminating situations satisfy
✁

.

It is also possible to formulate various correctness properties for the entire monitored sys-

tem (the agent together with its environment), for example, the weak property that provided

the monitored program terminates, then it does so in a desirable situation:

✞✍✌ ☎ ✆ ✕ ✞ ✆✥✦ ✢ ☎✏✠ ✓ ✤ ☎ ✄ ✁ ✞✆☎ ✆✥✦ ✢ ☎ ✆ �✻✁ ✆ ✶ ✁ ✆ ✕ ✞ ✠ ✠ ✁ ✞ ✕ ✞ ✠ ✓

Other variations on the above themes are possible, but our purpose here is not to pursue

these issues in depth, but simply to point out that correctness properties for monitored systems

are easily formulated within our framework. Moreover, because this framework is entirely

within the situation calculus, such correctness proofs can be constructed totally within a clas-

sical predicate logic.

4.6 Discussion

There are several systems designed to interleave monitoring with plan execution, e.g.: FLEA

[Cohen et al., May 1997, Feather et al., April 1998], IPEM [Ambrose-Ingerson and Steel, 1988],

PLANEX [Fikes et al., 1972], PRS [Georgeff and Lansky, 1987, Georgeff and Ingrand, 1989],

ROGUE [Haigh and Veloso, 1996], SIPE [Wilkins, 1988], SOAR [Laird and Rosenbloom, 1990],

SPEEDY [Bastié and Régnier, 1996], XII [Golden et al., February 1996, Golden and Weld, 1996],
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the robot control system described in [Nourbakhsh, 1997]. We differ from these and similar

proposals, first by using the very expressive classical predicate logic language for specifying

application domains with temporal constraints, secondly by the fact that ours is a story for

monitoring arbitrary programs, not simply straight line or partially ordered plans. Moreover,

we do not assume that the monitored plan is generated automatically from scratch, but rather

that it has been computed from a high-level Golog program provided by a programmer.

The idea of developing declarative theories to design controllers for hybrid systems can

be traced back to [Kohn, 1988, Kohn, 1991]; the subsequent developments are described in

[Kohn and Nerode, 1993b, Kohn and Nerode, 1993a].

In a sequence of papers [Schoppers, 1987, Schoppers, 1989, Schoppers, 1992] Schoppers

proposes and defends the idea of “universal plans”, which “address the tension between rea-

soned behavior and timely response by caching reactions for classes of possible situations”.

In particular, in [Schoppers, 1989], he writes that “this technique reduces the average time re-

quired to select a response at the expense of the space required to store the cache – the classic

time-space trade-off” and then argues for an increase in space consumption. From our point of

view, the notion of a universal plan is closely related to the notion of controllable languages de-

veloped for discrete event systems control [Ramadge and Wonham, 1989]. There, a language

(a set of linear plans) is controllable iff the effects of all possible uncontrollable events do not

lead outside the set of plans that this language contains. In other words, just as for Schop-

pers, all required system reactions to possible contingencies are compiled into the controllable

language. Our framework is different, but complementary; it favors the on-line generation of

appropriate reactions to exogenous events, as opposed to precompiling them into the Golog

program.

ConGolog [De Giacomo et al., 1997b, De Giacomo and Levesque, 1999b, De Giacomo et al., 2000]

is a much richer version of Golog that supports concurrency, prioritized interrupts and exoge-

nous actions. Reactive behaviors are easily representable by ConGolog’s interrupt mechanism,

so that a combination of reactive behaviors with “deliberative” execution monitoring is pos-

sible. This would allow one to experiment with different mixtures of execution monitoring

and reactivity, with the advantage of preserving the unifying formal framework of the situa-

tion calculus, but this remains an open research problem. The papers [Lespérance et al., 1998,

Lespérance and Ng, 2000] and [De Giacomo et al., 2002] are important steps in this research

direction. In particular, [Lespérance and Ng, 2000] considers a recovering mechanism based

on backtracking in cases when all branches in a nondeterministic choice operator share the

same initial sequence of robot actions. This has an advantage that if an exogenous action
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happens (e.g., the robot receives a new delivery request) when the robot has already executed

some actions, then a new plan will be computed that will include the same sequence of already

performed actions. This approach is based on execution semantics different from semantics

considered in this chapter. Because in our case a postcondition characterizes what a Golog

program has to achieve, new corrective actions can be inserted to undo effects of previously

performed physical actions (if they are reversible) and/or parts of the program can be aban-

doned as long as the program postcondition will be satisfied when the program completes. But

[Lespérance and Ng, 2000] does not use a postcondition to characterize a Golog program and

considers actions in a Golog program as an “essential advice” that must be followed.

Several researchers have considered a combination of replanning and backtracking to repair

a plan (e.g., see [Golden et al., February 1996, Barruffi et al., 1998, Stone and Veloso, 1999]).

In particular, [Golden et al., February 1996] introduces a term “backtracking over execution”

as a reference to visiting a past plan in a search space after an action was physically executed.

Our approach is different in several aspects. First, we propose a formal logical specification

for monitored execution that has a recovery procedure based on combination of replanning

and backtracking as a one possible implementation. Second, we consider backtracking not in

the plan space, but backtracking to a past state of a nondeterministic Golog program. Third,

we consider an example when actions have explicit temporal arguments; in addition, in our

implementation, no “physical backtracking” (reversing effects of executed actions) is required

because we consider a class of restartable Golog programs.

The theory of embedded planning [Traverso et al., 1992, Giunchiglia et al., 1994, Traverso and Spalazzi, 1995

introduces notions of planning with failure and has motivations very similar to ours. The au-

thors propose several formal languages that, like Golog, include constructs for sequence, con-

ditionals, loops and recursion. The emphasis is on reactive programs, but their proposal does

provide for replanning during execution.

Conformant planning [Goldman and Boddy, 1996, Cimatti and Roveri, 2000] can be de-

scribed as the problem of finding a sequence of actions that is guaranteed to achieve the goal

regardless of the nondeterminism of the domain. That is, for all possible initial states, and

for all uncertain action effects, the execution of the plan must result in a goal state without

gathering any run-time information. Our approach to dealing with uncertainty and incomplete

information is different because we rely on run-time information during the execution of the

Golog program and we do not try to compute in advance a sequence of actions that will achieve

the goal no matter what exogenous actions will happen during the execution. As examples in

this chapter have demonstrated, this allows us to compute on-line plans that lead to a goal state
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even when a conformant plan does not exist.

Several authors rely on formal theories of actions for the purposes of characterizing ap-

propriate notions of action failures [Baral and Son, 1997, Sandewall, 1997], but they do not

consider execution monitoring per se. [Bjäreland, 2001] considers a related (bit different) ap-

proach to execution monitoring when discrepancies can be attributed to incompleteness in the

model, e.g., when the successor state axioms do not characterize all causal dependencies ad-

equately and they have to be modified appropriately. He also describes several applications

to real technical control systems. Control engineers often study the issues related to design

of stable control systems, i.e., systems that will reach one of the desirable states within a fi-

nite number of transitions no matter what exogenous actions may happen and will continue to

visit desirable states infinitely often after that. Using temporal logic, [Nakamura et al., 2000]

introduce and study a related but weaker concept of ‘maintainability’.

Perhaps the most sophisticated existing plan execution monitor is the XFRM system of

Beetz and McDermott [Beetz and McDermott, 1994, Beetz and McDermott, 1997]; XFRM is

an extension of RPL (Reactive Plan Language). This provides for the continual modification

of robot plans (programs) during their execution, using a rich collection of failure models and

domain dependent plan repair strategies. The primary objective of our approach is to pro-

vide compact, declarative representations for the entire process of execution, monitoring and

recovery from failure, and this chapter has presented our framework for this research program.

A domain-specific approach to monitoring, plan modification and rescheduling of autonomous

robot plans is proposed in [Beetz and Bennewitz, 1998]. It is based on the idea of local plan-

ning of ongoing activities proposed in [Beetz and McDermott, 1996] and implemented in XFRM.

Their notion of restartable plan and our notion of restartable program follow common intu-

itions: “we call a plan ✑ restartable if for any task ✕ that has ✑ as its plan, starting the execution

of ✑ , causing its evaporation, and executing ✑ completely afterwards causes a behavior that

satisfies the task ✕ ” (see [Beetz and McDermott, 1996]). In contrast to our example, where the

only exogenous action is sensing time, [Beetz and Bennewitz, 1998] considers sensing of doors

(whether they are closed or not) in an office environment: plans are modified and rescheduled

appropriately if exogenous actions of closing a door (or opening it) occur when the robot ex-

ecutes a plan. It remains to see what connections can be found between procedural approach

advocated in [Beetz and McDermott, 1996, Beetz and Bennewitz, 1998] and our logical frame-

work.
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In the CIRCA18 approach, the planner reasons about a fairly complex model of world dy-

namics and primitive control behaviors. Projecting the world dynamics forward, the plan-

ner synthesizes plans in a form called a Test-Action Pair schedule [Musliner et al., 1995] and

passes them to a real-time subsystem that executes plans reactively and enforces guaranteed

response times. In our approach, instead of relying on plan synthesis methods, we obtain

temporal plans as a result of interpreting a high-level program. An execution monitoring and

recovery technique called purely inserted recovery plans is proposed in [Musliner et al., 1991],

a precursor of CIRCA. As we mentioned earlier in this chapter, it can be advantageous in the

general case to combine purely inserted recovery plans with backtracking to a previous com-

putation state to obtain a more flexible recovery method.

An execution monitoring architecture RAMA19 proposed in [Earl and Firby, 1996] has a

module adapter responsible for retrieving those programs from a library which are relevant

to recovery from the expectation failure and for requesting a human assistance, if necessary.

We take advantage of non-deterministic constructs in Golog and propose backtracking as an-

other useful general recovery technique. The procedure “handle-expectation-failure” described

there relies on a process combinator which is similar to ✞✆☎ ✍ ✄ ☎ ✑ ✠ in Golog, but our back-

tracking technique may recover also in some cases when a Golog program contains another

non-deterministic choice construct ✂ � ✓ ☎ unavailable in the process language of RAMA.

Dynamic programming approaches [Hansen and Cohen, 1992] to execution monitoring (called

recurrent deliberation in [Dean et al., 1995]) will give us an opportunity to improve monitor-

ing strategies. In our case, a monitoring pace is determined by times when primitive actions

are selected for execution, but between action occurrences the monitor does not attempt to

estimate whether the current branch of a high-level program will complete before a deadline.

In [Hansen and Cohen, 1992], monitoring tasks with deadlines is considered as a sequential

decision problem, which makes available a dynamic programming method for constructing a

decision rule for monitoring. However, the authors do not consider any recovery technique

besides the decision to abandon a monitored task (if it is about to miss a deadline).

Rationale-based monitoring [Veloso et al., 1998] and many other plan management issues

[Horty and Pollack, 1998] are important research issues, but it remains to see how these issues

may fit into our declarative approach towards execution monitoring of high-level programs.

In the area of requirements engineering, there are two complimentary approaches to man-

18CIRCA stands for Cooperative Intelligent Real-TIme Control Architecture.
19RAMA stands for Routine Activity Management and Analysis.
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age runtime violations of requirements. First, anticipate as many as possible violations at speci-

fication time; more robust specifications can be derived from obstacles identified in the result of

analysis of first-sketch specifications [Lamsweerde and Letier, 2000, Letier and van Lamsweerde, 2002].

Second, detect and resolve such violations at runtime, where resolution consists in making on-

the-fly, acceptable changes to the requirements [Cohen et al., May 1997, Feather et al., April 1998].

In [Feather et al., April 1998], the authors consider reconciliation tactics used in monitoring of

breakable assertions and identify a few possible tactics: 1) enforce the assertion by introducing

restorative actions on control parameters, 2) find an alternative assertion to achieve the same

parent goal in the refinement graph, and 3) tune a parameter. The framework elaborated in this

chapter is related more to the second approach, but it can be also interesting to make it useable

along the lines of the first approach.

Finally, it is important to take into account how much time the interpreter and recovery

mechanism take before they compute a new program that will be used to recover from a fail-

ure. The current framework assumes that the computation time is negligible. This is a very

interesting direction for future research.

4.7 Conclusion

We provide logical specifications of on-line program executions (with monitoring) formulated

in a version of the sequential situation calculus that includes time. Our account relies on spec-

ification of a single-step interpreter for the logic programming language Golog. This chapter

makes several contributions: 1) it develops the situation calculus based framework for execu-

tion monitoring, 2) it extends our previously developed framework [De Giacomo et al., 1998]

by introducing trace and backtracking into the process of on-line monitoring of Golog pro-

grams, 3) it adapts the interpreter of [De Giacomo et al., 1997b] to the temporal domain, 4)

it develops a particular execution monitor in the case when the high level control module gets

only temporal information as the sole sensory input from the external world. Thus, from the for-

mal point of view, we develop a predicate logic framework for rescheduling and modification

of temporal plans. From the robotics point of view, we develop a general architecture suitable

for monitoring execution of restartable situation-calculus based programs written in Golog. A

set of experiments on a real mobile robot Golem (B21 manufactured by RWI) demonstrated

the usefulness of our architecture.



Chapter 5

Decision-Theoretic, High-level

Programming.

In the preceding chapter, we considered the case when unmodelled uncertainty in an environ-

ment was accounted for by providing a mechanism that recovers from unanticipated contingen-

cies intervening with an intended execution of a Golog program. The approach developed in

that chapter is applicable even if a probabilistic model of exogenous actions (that can interfere

with the agent actions) is not available and cannot be learnt on-line from interaction with an

environment (e.g., if the agent has a very limited time to collect statistically valid experience).

In this chapter, we would like to consider the case when a designer of a robot controller has

both information about probability distributions of exogenous actions and information about

rewards that characterize the quality of actions undertaken by a controller. The availability

of a rich information model allows us to exploit well known techniques of decision-theoretic

planning under an assumption that an interaction of a robot controller with a stochastic envi-

ronment can be characterized in terms of fully observable Markov Decision Processes (MDP).

In this chapter, we consider a framework for robot programming which allows the seamless

integration of explicit agent programming with decision-theoretic planning. Specifically, we

consider a novel decision-theoretic Golog (DTGolog) model that allows one to partially spec-

ify a control program in Golog, and provides an interpreter that, given a situation calculus

axiomatization of a domain, will determine the optimal completion of that program (viewed as

a Markov decision process). We demonstrate the utility of this model with results obtained in

an office delivery robotics domain.

145
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5.1 Introduction

The construction of autonomous agents, such as mobile robots or software agents, is paramount

in artificial intelligence, with considerable research devoted to methods that will ease the bur-

den of designing controllers for such agents. There are two main ways in which the conceptual

complexity of devising controllers can be managed. The traditional approach to the design

of controllers solving decision-theoretic planning task relies on a state-based representation.

The task of a controller is to compute an optimal policy that specifies what primitive action

must be executed in every state. However, this framework has a number of well-known diffi-

culties associated with the size of a state space that grows exponentially with the number of

state features and with the complexity of computing an optimal primitive action for every state.

An alternative approach to designing controllers that must operate efficiently in stochastic en-

vironments is to provide languages with which a programmer can specify a control program

with relative ease, using high-level actions as primitives, and expressing the necessary opera-

tions in a natural way. Unfortunately, this second approach can be conceptually unmanageable

for human programmers who are responsible for solving a non-trivial decision-theoretic task

and implementing the solution. In this chapter, we consider a framework that combines both

perspectives, allowing one to partially specify a controller by writing a program in Golog, yet

allowing an agent some latitude in choosing its actions, thus requiring a modicum of plan-

ning or decision-making ability. Viewed differently, we allow for the seamless integration of

programming and planning. Specifically, we suppose that the agent programmer has enough

knowledge of a given domain to be able to specify some (but not necessarily all) of the struc-

ture and the details of a good (or possibly optimal) controller. Those aspects left unspecified

will be filled in by the agent itself, but must satisfy any constraints imposed by the program (or

partially-specified controller).

There are two main reasons why Golog is a well suited language for specifying efficient

decision-theoretic controllers. First, primitive actions in Golog are axiomatized in terms of

basic action theories which represent an application domain in terms of individual properties

rather than a collection of states. For this reason, the situation calculus based representation of

an application domain is more economical: it grows linearly with the number of new properties

that need to be represented. In addition, because the situation calculus is a predicate logic

language, domains can be represented succinctly by relying on quantified expressions instead

of the propositional representations that are commonly used to deal with factored MDPs (such

as algebraic decision diagrams, dynamic Bayesian networks, PSTRIPS mentioned in the end of
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Section 2.4.1 and extensively discussed in [Boutilier et al., 1999]). Second, Golog has several

nondeterministic choice operators, and a Golog program can be viewed as a partially-specified

controller. The agent (or interpreter) is free to choose any valid execution of the program

consistent with the constraints it imposes. This provides an opportunity to design a Golog

interpreter that considers all non-deterministic choices in a program as alternatives similar to

branches in a decision tree (see Section 2.4.2) and makes a choice of a branch that corresponds

to the highest expected accumulated reward. However, if a Golog program uses an operator

that specifies a unique next action to be executed, then significant computational efforts can be

saved because a controller does not need to deliberate what next action is an optimal action to

do.

In this chapter, we consider DTGolog, which extends Golog (reviewed in Section 2.3) in

two ways. First, we allow actions to be stochastic. Second, we refine the interpreter so that

nondeterministic choices are made using decision-theoretic optimization criteria. The inter-

preter makes choices that maximize expected utility given that the interpreter is committed to

executing the program provided. In this way, we add decision-theoretic planning capability

to the Golog interpreter, allowing it to optimally “complete” the partially-specified controller.

The agent can only adopt policies that are consistent with the execution of the program. The

decision-theoretic Golog interpreter then solves the underlying MDP by making choices re-

garding the execution of the program through expected utility maximization. As such, the

interpreter is solving a constrained MDP: it produces a policy that is optimal subject to the

constraint that the policy implements the given program. The algorithm used by the DTGolog

interpreter is based on standard, forward dynamic programming (or decision tree) models for

solving MDPs.

The field of robotics and autonomous agents, toward which this research is ultimately di-

rected, has been torn between two major programming paradigms: the model-based planning

approach [Arkin, 1989, Nilsson, 1969, Fikes et al., 1972] and the behavior-based or reactive

paradigm [Brooks, 1989]. Both approaches have their advantages (flexibility and generality in

the planning paradigm, performance of reactive controllers) and limitations (e.g., the require-

ment for domain models and the intrinsic complexity of planning approaches, task-specific

design and conceptual complexity for programmers in the reactive model). Contrasting both

methods — control through planning and control through programming controllers — sug-

gests that combining both should be the preferred way to go: when controllers can easily be

designed by hand, planning has no role to play. On the other hand, certain robotics problems

are much easily treated through the specification of a domain theory. The seamless integration
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of programming and planning, thus, has great promise for the field of robotics.

We describe the DTGolog representation of MDPs and programs and the DTGolog inter-

preter in the subsequent sections, and illustrate the functioning of the interpreter by describing

its implementation in a office robot in the last section. The Prolog code of the DTGolog inter-

preter is provided in Appendix C.

5.2 DTGolog: Decision-Theoretic Golog

We now turn our attention to DTGolog, a decision-theoretic extension of the Golog framework

that allows one to specify MDPs in a first-order language, and provide “advice” in the form of

high-level programs that constrain the search for good or optimal policies.

As a planning model, MDPs are quite flexible and robust, dealing with uncertainty, mul-

tiple objectives, and so on, but suffer from several key limitations. First, little work has gone

into the development of first-order languages for specifying MDPs (see [Bacchus et al., 1995,

Poole, 1997, Boutilier et al., 2001] for exceptions). Second, the computational complexity of

optimal policy construction is prohibitive [Littman et al., 1995, Papadimitriou and Tsitsiklis, 1987,

Littman et al., 1998, Mundhenk et al., 2000]. As mentioned, one way to circumvent plan-

ning complexity is to allow explicit agent programming; yet little work has been directed

toward integrating the ability to write programs or otherwise constrain the space of policies

that are searched during planning. What work has been done (e.g., [Parr and Russell, 1998,

Sutton, 1995]) fails to provide a language for imposing such constraints, and certainly offers

no tools for programming agent behavior. We believe that natural, declarative programming

languages and methodologies for (partially) specifying agent behavior are necessary for this

approach to find successful application in real domains. More detailed comparison with the

previous work is provided at the end of this chapter.

5.2.1 DTGolog: Problem Representation

The specification of an MDP requires the provision of a Reiter-style basic action theory—as

in Section 2.1.2—and a background optimization theory—consisting of the specification of

a reward function and some optimality criterion (here we require only a finite horizon ✶ ).

We choose the temporal situation calculus to provide a basic action theory because it has a

richer ontology and more expressive language than the basic situation calculus in Section 2.1.1

and this additional expressivity proves to be useful in specifying Golog controllers for mobile
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robots. The unique names axioms and initial database have the same form as in standard Golog.

To avoid extending the logical language of the temporal situation calculus, we introduce MDP-

related concepts using definitions (we call them also abbreviations). This is important because

we would like all previously proved theorems about the situation calculus continue to apply

to those basic action theories which formalize an MDP. It is a common practice to construct

a logical theory ✳ ✍ from another logical theory ✳☞✁ by adding a new defined function symbol

or a new defined predicate symbol [Enderton, 2001]. The representation considered in this

section is originally proposed in our paper [Boutilier et al., 2000a], but below we use also

representational tricks formulated in [Reiter, 2001a].

A basic action theory for MDPs.

As we know, in Reiter’s basic action theories we have successor state axioms and precondition

axioms for deterministic actions only. Because we would like to specify MDPs that include

stochastic actions, it seems at a first glance that we have to extend the ontology of the situation

calculus and introduce a new sort for stochastic actions. However, if we want to rely on the

usual basic action theories, then we can imagine that whenever an agent initiates a stochastic

action ✕ in ✕ , nature steps in and chooses nondeterministically one of the possible outcomes

✟ ☎ : each of these outcomes is a primitive deterministic action and the situation ✄✆☎✩✞ ✟ ☎ ✆ ✕✡✠ is

considered as one of resulting situations. Nature’s actions cannot be executed by the agent

itself and the agent has no control over which deterministic action nature will do. An outcome

of a stochastic action is not known in advance simply because we do not know which particu-

lar deterministic action nature will choose, but still we can consider outcomes as deterministic

actions that are enabled by the agent. Formally speaking, we follow the representational trick

suggested in [Reiter, 2001a]: stochastic actions are introduced using a new defined symbol

✾✒� ☎ ✞ ✾ ✦ ✞✔✕ ✆ ✘ ✆ ✕★✠ , where ✕ is a stochastic action, ✘ is one of nature’s actions in situation ✕ . We

do this because there is no reason to introduce any modifications (such as stochastic actions)

in the ontology of an underlying temporal basic action theory: it has sorts for situations, deter-

ministic primitive actions, time and objects, and this ontology is sufficient for our needs. As

a consequence, when we consider nature’s actions we can use standard precondition axioms

and standard successor state axioms that mention only deterministic agent actions and nature’s

actions (which are deterministic). In other words, precondition and successor state axioms

never mention stochastic agent actions; but stochastic agent actions can occur in Golog pro-

grams and in policies (which are Golog programs of a special form that will be defined later).

Thus, we would like to inherit as much as possible the usual approach to the axiomatization
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of basic action theories and the usual structure of Golog interpreters, where we always check

preconditions of an action before we determine the transition to the next situation from the

current situation. Note also that this macro approach to stochastic actions is similar to the ap-

proach for complex actions: we never need precondition axioms for procedures, if-then-else,

nondeterministic and other complex actions.

Let us consider the case when all stochastic actions have only a finite number of outcomes

and assume that the stochastic action ✕ has ✲ different available outcomes ✟ ✍✟✆✔✓✔✓✔✓ ✆ ✟ ✆ if a

certain logical condition ✂ ✞ ✕✡✠ holds in ✕ . In general, the number and type of outcomes can

vary from situation to situation. Let ✁ ✍ ✞ ✕✡✠ ✆✔✓✔✓✔✓ ✆ ✁ ✠✿✞ ✕✡✠ be the set of mutually disjoint logical

conditions which are situation calculus formulas uniform in ✕ and such that ✁ ✍ ✞ ✕✡✠ ✝ ✓✔✓✔✓ ✝ ✁ ✠●✞ ✕✡✠
is true for any ✕ . Then, the domain theory includes

✾✁�✔☎ ✞ ✾ ✦ ✞✔✕ ✆✟☎✝✆ ✕✡✠ ☎✝✆✟✞❃ ✁ ✍ ✞ ✕✡✠✡✠❊✞ ☎ ❃ ✟
✍✍ ✝✄�✂�✂� ✝ ☎ ❃ ✟

✍✆ ✠ ☛
�✂�✂� ☛ (5.1)

✁ ✠✿✞ ✕✡✠ ✠ ✞ ☎ ❃ ✟ ✠✍ ✝ �✂�✂� ✝ ☎ ❃ ✟ ✠✆ ✠ ✓

In the sequel, we will consider only the simplest case when every stochastic action has always

the same outcomes available in every situation1:

✾✁�✔☎ ✞ ✾ ✦✜☛ ✞✔✕ ✠ ☎✝✆✟✞❃ ✄ ✟ ✍✚✆✜✓✔✓✔✓✚✆ ✟ ✆ ✆ ✓
Moreover, when a stochastic action ✕ is executed by the agent, nature chooses one of the as-

sociated actions ✟ ☎ with a specified probability, and the resulting situation is determined by

nature’s action so chosen. Let prob ✞✜✘ ✆✟☎✝✆ ✕✡✠ denote the probability with which nature chooses

✘ in ✕ when the agent does stochastic action ☎ . In the simplest case, probabilities of nature’s

choices remain the same in any situation, i.e., for each stochastic action ✕ , the domain axiom-

atization includes the following:

✑✔✬✏☎ ✂ ✞ ✟ ✍✏✆ ✕ ✆ ✕✡✠❂❃✢✑ ✍ ☎✝✆✟✞❃ ✑ ✍ ❃ ✁ ✍ ✆ ✓✔✓✔✓ ✆ ✑✔✬✏☎ ✂ ✞ ✟ ✆ ✆ ✕ ✆ ✕✡✠❂❃✢✑ ✆ ☎✝✆✟✞❃ ✑ ✆ ❃ ✁ ✆ ✆

where
✁ ✍✚✆✔✓✔✓✜✓ ✆ ✁ ✆ are probabilities that sum to 1. In a more general case, right-hand sides of

definitions may include arbitrary formulas uniform in ✕ . It seems reasonable to require a certain

correspondence between probability of an outcome ✘ and logical preconditions for occurrence

of this outcome in situation ✕ . More specifically, if ✘ is not possible in ✕ , then the probability

1In cases, when there are too many independent outcomes, e.g., the
✝

� ✄
✂ ✂✁�✄✂

�
✂

✄ ☞ ✝
stochastic action can spray

paint each of 10 different parts independently with the probability 0.9, one can introduce concurrent actions to

avoid enumerating a large number of nature’s actions [Reiter, 2001a]. One can use also representation transfor-

mation techniques considered in [Dearden and Boutilier, 1997, Littman, 1997].
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of this outcome must be 0 and vice versa. In addition, for a stochastic action ✕ , if none of its

outcomes is physically possible in ✕ , then probabilities of outcomes are defined in ✕ as 0. In

a general case, following [Reiter, 2001a], we require that the probability distributions must be

defined properly when the axiomatizer formalizes a probabilistic domain. One needs to verify

the following two properties: for any stochastic action ✕ and its associated nature’s choices

✟ ✍✚✆✜✓✔✓✔✓✚✆ ✟ ✆
✞ Poss ✞ ✟ ✍✏✆ ✕★✠ ✝ �✂�✂� ✝ Poss ✞ ✟ ✆ ✆ ✕✡✠✔✠ ✠ Poss ✞ ✟ ☎ ✆ ✕✡✠✓✒ ✑✔✬✏☎ ✂ ✞ ✟ ☎ ✆ ✕ ✆ ✕✡✠ ✁ � ✆ ✞✡❃ ✄✆❉ ✆✔✓✔✓✔✓✚✆ ✲ ✆ (5.2)

✞ Poss ✞ ✟ ✍✚✆ ✕✡✠ ✝ �✂�✂� ✝ Poss ✞ ✟ ✆ ✆ ✕✡✠✔✠ ✠
✆✝

☎✂✁ ✍ ✑✔✬✿☎ ✂ ✞ ✟ ☎ ✆ ✕ ✆ ✕✡✠❄❃❊❉ ✓ (5.3)

According to (5.2) and (5.3), if any of nature’s actions is possible, then the sum of the proba-

bilities of all possible actions must be 1. Otherwise, if none of nature’s actions ✟ ☎ is physically

possible in ✕ after an agent executes a stochastic action ✕ , then we do not require that the sum is

equal to 1: all values ✑✔✬✿☎ ✂ ✞ ✟ ☎ ✆ ✕ ✆ ✕★✠ are defined in this situation ✕ as 0. For example, if an agent

holds a coin then after tossing this coin nature can choose one of the two outcomes “heads up”

or “tails up” and probabilities of these outcomes sum to 1, but if both nature’s actions are not

possible (e.g., the agent does not hold the coin anymore because the agent put the coin on a

table and moved to another room), then we no longer require that probabilities must sum to 1.2

We provide detailed examples of axiomatizations of probabilistic domains later in this chapter.

Note that deterministic agent actions can be considered as stochastic agent actions with only

one choice available for nature. However, for implementational reasons, it is convenient to

treat them separately.

The background action theory also includes a new class of definitions, sense conditions

definitions, which assert situation suppressed formulae using an abbreviation senseCond ✞✜✘ ✆ ✁✻✠ :
this holds if ✁ is a situation-suppressed (see Definition 2.2.7) logical expression that an agent

uses to determine if the specific nature’s action ✘ occurred when some stochastic action was

executed. We require such definitions in order to “implement” full observability. While in

the standard fully observable MDP model one simply assumes that the successor state is

known, in practice, one must force agents to disambiguate the state using sensor informa-

tion. Indeed, when the agent does a stochastic action ✕ in situation ✕ the agent does not

know what action ✘ nature will choose in ✕ . Because we assume that each stochastic ac-

tion ✕ has the same outcomes in all situations, it might seem that it should be sufficient for

2This approach of assigning probabilities (with the sum equal to 1) to nature’s actions only in the case when

at least one nature’s action is physically possible seems to be in concordance with notions of randomness and

probability discussed in [Kolmogorov, 1983, Fine, 1973, Li and Vitanyi, 1997].
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the agent to evaluate mutually disjoint conditions ✁ ✍ ✞ ✄✆☎✩✞✫✘ ✆ ✕✡✠✽✠ ✆✔✓✔✓✜✓ ✆ ✁ ✆ ✞ ✄✆☎✩✞✫✘ ✆ ✕✡✠✽✠ mentioned

in senseCond ✞ ✟ ✍✏✆ ✁ ✍ ✠ ✆✔✓✔✓✜✓✜✆ senseCond ✞ ✟ ✆ ✆ ✁ ✆ ✠ to find out nature’s action in ✄✆☎✩✞✫✘ ✆ ✕✡✠ . It is

guaranteed that exactly one of them evaluates to true in any situation ✕ :

✞✍✌ ✞ ✆✁�✆☎ ✄✆❉ ✆✜✓✔✓✔✓✜✆ ✲ ✆✏✠ ✞ ✆❃ � ✠ ✑ ✞ ✁ ☎ ✞ ✕✡✠ ☛ ✁ ✁✏✞ ✕✡✠✽✠ ✆ ✁ ✍ ✞ ✕✡✠ ✝ ✓✔✓✔✓ ✝ ✁ ✆ ✞ ✕✡✠ (5.4)

But these evaluations cannot be directly implemented with respect to ✄✆☎✟✞✜✘ ✆ ✕★✠ because the

agent does not know the value of ✘ . However, if the agent does a sequence of sensing actions

sufficient to determine what unique condition ✁ ☎ holds in the situation resulting from doing

these sensing actions, then the agent learns that ✘ ❃ ✟ ☎ . The sensing actions needed for each

stochastic action ✕ can be determined from axioms that define the procedure senseEffect ✞✔✕ ✠ .
These domain specific axioms define procedures that consist of one or a sequence of prespec-

ified sensing actions that will be executed after a stochastic action ✕ , where sensing actions

are action terms as considered in Chapter 3. The domain axiomatizer is responsible for pro-

viding these senseEffect axioms defining which sensing action(s) the agent has to execute to

gather required information from sensors.3 Note that the form of sense conditions definitions,

senseCond ✞ ✟ ☎ ✆ ✁ ☎ ✠ indicates that we assume that the same condition ✁ ☎ needs to be evaluated

after doing sensing actions specified by senseEffect. In other words, even if a given ✟ ☎ can have

different effects depending on the situation in which it occurs, we assume in the sequel that the

specified sensing actions will provide information sufficient to identify uniquely the outcome

of the last stochastic action by evaluating expressions ✁ ✍ ✞ ✕✡✠ ✆✜✓✔✓✔✓✜✆ ✁ ✆ ✞ ✕✡✠ in the situation ✕ that

results from sensing.

Finally, we would like to note that the standard MDPs have no concept of time associated

with transitions from one state to another. In the temporal situation calculus that we use as the

background action theory in this chapter, actions are instantaneous and they can either initiate

or terminate processes extended over time (these processes are represented by fluents). Lower

bounds on durations of these processes can be specified in the domain axiomatization and

exact values of durations can be determined by a Golog interpreter from constraints provided

together by the domain axiomatization and by a Golog program as we discussed in Sections

2.1.2 and 2.3.1. Note that from the MDP perspective, moments of time when instantaneous

actions are executed can be considered as yet another factor (state variable) in addition to other

state variables (represented by fluents). They should not be confused with moments of time

mentioned often in MDP literature where they are understood as stages or decision epochs. In

3If it is necessary, these senseEffect axioms can be generated automatically.
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the temporal situation calculus, decision epochs correspond to situation terms.4

A background optimization theory.

A decision-theoretic optimization theory contains axioms specifying the reward function.5 In

their simplest form, reward axioms use a new defined function symbol ✬ ✦ ✞ ☎ ✬✿✄ ✞ ✕★✠ and assert

costs and rewards as a function of the action taken, properties of the current situation, or both

(note that the action taken can be recovered from the situation term). For instance, we might

assert

✬ ✦ ✞ ☎ ✬✿✄ ✞✜✄✝☎✟✞✫✪ ✞ � ✦ ✂ ☎ � � ✦ ✦ � ✞ � ✞ ✷✫✷ ✆ ✕✽✠ ✆ ✕✡✠✽✠ ☎ ✆ ✞❃ � ✓ ✂

Because primitive actions have an explicit temporal argument, we can also describe time-

dependent reward functions easily. This often proves useful in practice. Recall that in a given

temporal Golog program, the temporal occurrences of some actions can be uniquely deter-

mined either by temporal constraints or “hard-coded” by the programmer. Other actions may

occur at any time in a certain interval determined by temporal inequalities; for any such ac-

tion ✕ ✞☞✖✢ ✆ ✕✽✠ , we can instantiate the time argument by a value that maximizes the reward for

reaching the situation do ✞✔✕ ✞☞✖✢ ✆ ✕✽✠ ✆ ✕✡✠ . For example, suppose the robot receives a small reward

❉ in the situation do ✞ startGo ✞ ✷ ✍✚✆✥✷✌✑✔✆ ✕ ☎ ✠ ✆ ✕ ☎ ✠ and a reward ✂ ✄✝✆

✝ ✞ ✍ ✁ ✁ ❆ ☞☎ ☎ ✝ ☞ ☛ ❁ ✎ ✆ � ✂ ✁✝✂ ✂✁� ✂ ✠ for doing the action

endGoS ✞ ✷ ✍✚✆✥✷✌✑✔✆ ✕✽✠ in ✕ , where the maximization of the shown linear function of ✕ is taken with

respect to all temporal inequalities constraining time occurrences of actions mentioned in the

situation term ✕ . (See Section 4.4.4 for a more detailed discussion of a similar example.) With

this reward function, the robot is encouraged to arrive at the destination as soon as possible

(the smaller is the value of time ✕ when endGoS is executed, the higher is the reward) and is

also encouraged to go to nearby locations (because the reward is inversely proportional to dis-

tance). Although sensing actions can incur significant costs in a general case, in the examples

considered later in this chapter, the robot receives rewards only for doing physical actions. We

will see later, that taking into account costs of sensing actions can be nontrivial in the current

version of the DTGolog interpreter, because the agent might wish to avoid sensing to get a

higher accumulated expected reward, but this may lead to the partially observable case that we

4In a more general setting, durations of processes can be modeled as random variables and behavior of a

decision-making agent should be modeled by a well known extension of the MDP model – semi-Markov Decision

Processes (SMDP) – that allows one to account for a random time taken by a transition processes [Puterman, 1994,

Çinlar, 1975, Korolyuk and Korolyuk, 1999, Parr, 1998b]. However, in the sequel, to simplify our presentation we

always assume that time taken by transitions between consecutive states does not depend on random factors and

the structure of the overall decision process – a sequence of instantaneous decisions leading to transitions to one

of the successor states – can be approximated as a simple MDP.
5We require an optimality criterion to be specified as well. We assume a finite-horizon

✂
in this chapter.
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do not consider in this thesis.

Given the collection of new macros and axioms introduced in this section we can now define

policies precisely. Our inductive definition will be a predicate logic version of the definition of

policy introduced in Section 2.4. This definition uses auxiliary deterministic action constants

Stop and Nil: both actions are possible to execute in any situation, they have no effects on

any fluent, both actions take the agent into an absorbing state, and the agent incurs zero cost

for doing both actions in any situation and receives a zero reward for being in an absorbing

state. Intuitively, Stop means that execution must be abnormally terminated by an agent6 and

Nil means “do nothing”: the agent can repeat this action and stay idle until horizon reaches 0

(if ever).

Definition 5.2.1: A policy is a Golog program inductively defined by:

1. Any agent deterministic action or auxiliary action Stop or Nil is a policy.7

2. If ✕ is an agent deterministic action and ✂ is a policy, then ✞✔✕ ✁ ✂✂✠ is a policy.

3. If ✞ is an agent stochastic action and ✟ ✍✏✆✔✓✔✓✔✓ ✆ ✟ ✠ is a subset of nature’s choices associ-

ated with ✞ (if it is an empty subset, then ✣❀❃ � ), senseEffect ✞ ✞ ✠ is a procedure specify-

ing sensing actions that the agent does to observe its environment, senseCond ✞ ✟ ✍✏✆ ✁ ✍ ✠ ,
..., senseCond ✞ ✟ ✠ ✆ ✁ ✠ ✠ are expressions specifying situation suppressed mutually disjoint

formulas ✁ ✍✟✆✔✓✔✓✔✓ ✆ ✁ ✠ , and ✂ ✍✚✆✜✓✔✓✔✓✚✆ ✂ ✠ are policies, then each of the following expressions

is a policy:

( ✣ ❃ � ) ✞ ✁ senseEffect ✞ ✞ ✠ ✁❄� ✕ ☎✼✑
( ✣ ❃ ❉ ) ✞ ✁ senseEffect ✞ ✞ ✠ ✁ ✞ ✁ ✍ ✠ � ✁ ✂ ✍
( ✣ ❃ ❋ ) ✞ ✁ senseEffect ✞ ✞ ✠ ✁ if ✁ ✍ then ✂ ✍ else ✞ ✁ ✑ ✠ � ✁ ✂ ✑
( ✣✆✁ ✂ ) ✞ ✁ senseEffect ✞ ✞ ✠ ✁ if ✁ ✍ then ✂ ✍

...

else if ✁ ✠ ❆✝✍ then ✂ ✠ ❆✝✍
else ✞ ✁ ✠ ✠ � ✁ ✂ ✠

Note that our definition deviates from the usual concept of a (nonstationary) Markov policy; in

the MDP literature, a Markov policy is a function mapping each state (and a decision epoch)

6This can be viewed as having an agent simply give up its attempt to execute the policy and await further

instruction.
7Because a policy is a Golog program for the agent who cannot execute nature’s actions, only deterministic

agent actions can occur in a policy.
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to an action. Because we are interested only in policies that the agent can start executing in a

certain initial state (that corresponds to � ✁ ), our policies are conditional Golog programs that

prescribe an action only in states reachable from the initial state. Nevertheless, Definition 5.2.1

seems a natural extension of the conventional definition to a case when a decision maker is

interested only in a certain relevant subset of the state space.

We would like to define also branches of a policy and leaves of branches.

Definition 5.2.2: Let ✂ be a policy. A branch of ✂ is defined inductively as follows.

1. If ✂ is a deterministic agent action or Nil, or Stop, then the only branch of ✂ is this action

(or auxiliary constant).

2. Let ✕ be a deterministic agent action. The sequential composition ✞✔✕ ✁ ✛ ✠ is a branch

of ✂ iff ✂ is a policy ✞✔✕ ✁ ✂ ☛ ✠ , and ✛ is a branch of ✂ ☛ .
3. Let ✞ be a stochastic agent action, ✟ ✍✏✆✔✓✜✓✔✓✜✆ ✟ ✠ be a subset of the set of nature’s choices

associated with ✞ , senseEffect ✞ ✞ ✠ be a sequence of sensing actions, senseCond ✞ ✟ ✍✏✆ ✁ ✍ ✠ ,
..., senseCond ✞ ✟ ✠ ✆ ✁ ✠ ✠ be sense conditions, and ✂ ✍✚✆✔✓✔✓✔✓ ✆ ✂ ✠ be policies. If ✂ is a pol-

icy ✞ ✞ ✁ senseEffect ✞ ✞ ✠ ✁ �✚✕ ☎✥✑ ✠ , then this sequence is the only branch of ✂ . If ✂ is a

policy ✞ ✞ ✁ senseEffect ✞ ✞ ✠ ✁✢✞ ✁ ✍ ✠ � ✁ ✂ ✍ ✠ and ✛ ✍ is a branch of ✂ ✍ , then the sequence

✞ ✞ ✁ senseEffect ✞ ✞ ✠ ✁ ✞ ✁ ✍ ✠ � ✁✚✛ ✍ ✠ is a branch of ✂ . If ✂ is a policy

✞ ✞ ✁ senseEffect ✞ ✞ ✠✂✁ if ✁ ✍ then ✂ ✍ �✂�✂� else if ✁ ✠ ❆✝✍ then ✂ ✠ ❆✝✍ else ✞ ✁ ✠ ✠ � ✁ ✂ ✠ ✠
and ✛ ✍✚✆✔✓✔✓✜✓✜✆ ✛ ✠ are branches of, respectively, ✂ ✍✏✆✔✓✜✓✔✓✜✆ ✂ ✠ , then each of the sequences

✞ ✞ ✁ senseEffect ✞ ✞ ✠✂✁✌✞ ✁ ✍ ✠ � ✁ ✛ ✍ ✠ , ..., ✞ ✞ ✁ senseEffect ✞ ✞ ✠✂✁✂✞ ✁ ✠ ✠ � ✁ ✛ ✠ ✠ is a branch of ✂ .

4. Thus, branches of a policy ✂ are simply sequences of actions and test expressions. The

leaf of a branch ✛ is the last action that occurs in ✛ . Note that for any branch ✛ , the leaf

of ✛ is either a deterministic agent action, or Nil, or Stop.

Finally, we define a value of an initial state with respect to a branch of a policy and define

also a probability associated with a branch that is executed starting in an initial state. In the

sequel, we call the probability associated with a branch simply the probability of a branch (with

respect to an initial state). We skip the phrase ‘with respect to a state
�

’, whenever it is clear

from the context what state is being considered. The probability of a branch will be used later to

characterize policies in terms of their ‘executability’. Later, we define also a value of an initial

state with respect to a policy. This notion parallels a well known definition of value function

for an initial state with respect to a given policy. In the following definition, we assume that



CHAPTER 5. DECISION-THEORETIC, HIGH-LEVEL PROGRAMMING. 156

we are given a basic action theory and optimization theory � that provide axiomatization of an

MDP; truth of formulas is understood as entailment from the conjunction of these two theories.

Definition 5.2.3: Let ✛ be a branch of a policy and � be any ground reachable situation (see

the definition (2.9) and also Corollary 2.2.6). In addition, let ✑✔✬✿☎ ✂ ✞ ☎✝✆ ✘ ✆ ✕✡✠ be probabilities

of nature’s choices ✘ for each stochastic agent action ☎ and ✬ ✦ ✞ ☎ ✬✿✄ ✞✜✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ be a reward

function for doing an action ☎ in ✕ . The probability and value of ✛ with respect to � are

defined inductively as follows.

1. Let ✛ be a deterministic agent action ✕ . If ✕ is possible in � , then the probability of this

branch is 1 and the value with respect to � is ✬ ✦ ✞ ☎ ✬✏✄ ✞ � ✠ ✆ ✬ ✦ ✞ ☎ ✬✏✄ ✞ ✄✆☎✩✞✗✕ ✆ � ✠✽✠ . If ✕ is

not possible in � , then the probability of this branch is 0 and the value is ✬ ✦ ✞ ☎ ✬✿✄ ✞ � ✠ . If

✛ is Stop (or Nil), then the probability of this branch is 0 (1, respectively) and the value

of this branch is ✬ ✦ ✞ ☎ ✬✏✄ ✞ � ✠ , in both cases.

2. Let ✛ be a branch ✞✗✕ ✁ ✛ ☛ ✠ , where ✕ is a deterministic agent action and ✛ ☛ is a branch.

If
✁ ☎ ✕ ✕✆✞✔✕ ✆ � ✠ is true with respect to a background theory, the action ✕ is possible in

� , then the probability of ✛ with respect to � is equal to the probability of the branch

✛ ☛ with respect to ✄✆☎✩✞✗✕ ✆ � ✠ and the value of ✛ with respect to � equals the sum of

✬ ✦ ✞ ☎ ✬✏✄ ✞ � ✠ and the value of ✛ ☛ with respect to ✄✆☎✩✞✗✕ ✆ � ✠ . If the action ✕ is not possible

in � , then the probability of ✛ is 0 and the value of ✛ is equal to ✬ ✦ ✞ ☎ ✬✏✄ ✞ � ✠ .
3. Let ✛ be a branch ✞ ✞ ✁ senseEffect ✞ ✞ ✠✂✁ � ✕ ☎✼✑ ✠ , where ✞ is a stochastic agent action,

then the probability of this branch is 0 and the value of this branch with respect to �
is ✬ ✦ ✞ ☎ ✬✿✄ ✞ � ✠ .

4. Let ✛ be a branch ✞ ✞ ✁ senseEffect ✞ ✞ ✠✂✁ ✁✁� ✁ ✛ ☛ ✠ , where ✛ ☛ is a branch, ✞ is a stochastic

agent action, senseEffect ✞ ✞ ✠ is a sequence of primitive sensing actions ✕ ✍ ✁ ✓✔✓✔✓ ✁ ✕ ✂ , ✁ is a

test expression that occurs in senseCond ✞ ✟ ✆ ✁ ✠ such that ✟ is one of choices available for

nature when the agent executes ✞ . Recall that ✄✆☎✩✞✽✍ ✕ ✍ ✁ ✓✜✓✔✓ ✁ ✕ ✂✒✎ ✆ � ✠ is the compact notation

introduced in Section 2.1.1. If ✁☛✞ ✄✆☎✟✞✭✍ ✕ ✍ ✁ ✓✜✓✔✓ ✁ ✕ ✂ ✎ ✆ ✄✝☎✟✞ ✟ ✆ � ✠✭✠✽✠ is true, then the probability

of ✛ with respect to � is equal to the product ✑✔✬✏☎ ✂ ✞ ✞ ✆ ✟ ✆ � ✠ � ✑ ☛ , and the value of ✛ with

respect to � equals the sum ✬ ✦ ✞ ☎ ✬✏✄ ✞ � ✠ ✆ ✑✔✬✏☎ ✂ ✞ ✞ ✆ ✟ ✆ � ✠ � ✬ ☛ , where ✑ ☛ is the probability

of ✛ ☛ with respect to ✄✝☎✟✞✭✍ ✕ ✍ ✁ ✓✔✓✔✓ ✁ ✕ ✂✒✎ ✆ ✄✆☎✩✞ ✟ ✆ � ✠✽✠ and ✬ ☛ is the value of the branch ✛ ☛ with

respect to ✄✆☎✟✞✭✍ ✕ ✍ ✁ ✓✔✓✔✓ ✁ ✕ ✂✒✎ ✆ ✄✆☎✩✞ ✟ ✆ � ✠✽✠ . If the formula ✁ ✞ ✄✆☎✟✞✭✍ ✕ ✍ ✁ ✓✔✓✔✓ ✁ ✕ ✂✒✎ ✆ ✄✆☎✩✞ ✟ ✆ � ✠✭✠✽✠ is

not true, then the probability of ✛ is 0 and the value of ✛ is equal to ✬ ✦ ✞ ☎ ✬✏✄ ✞ � ✠ . Note

that the value is adjusted by probability of nature’s action.
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Definition 5.2.4: Let ✂ be a policy and � be a reachable ground situation. The success proba-

bility
✁ ✌ ✞ ✂✂✠ of the policy ✂ (with respect to � ) is the total probability (with respect to � ) of all

branches in ✂ that have leaves different from Stop.

Note that each branch with Stop as the leaf has the probability 0; nevertheless, we mention

those branches explicitly in the definition to emphasize that they are associated with ‘abnormal’

termination leading to the absorbing state. It is easy to observe that according to the above

definitions of the probability of a branch with respect to � and abbreviation ✑✔✬✿☎ ✂ ✞ ☎✝✆ ✘ ✆ ✕✡✠ , we

have that � ✡ ✁ ✌ ✞✄✂✂✠ ✡ ❉ for any policy ✂ . In the sequel, we call also
✁ ✌ ✞✄✂✂✠ the probability of

successful execution of ✂ .

Definition 5.2.5: Let ✂ be a policy and � be a reachable ground situation. The value
� ✁✌ of the

policy ✂ (with respect to � ) is the total value (with respect to � ) of all branches in ✂ .

As usual in MDPs, the decision problem faced by an agent is that of computing an optimal

policy that maximizes expected total accumulated reward. In the sequel, we consider only finite

horizon MDPs mentioned in Section 2.4.

Example 5.2.6: Let us consider a simple example to illustrate the representation introduced

in this section (we ignore temporal arguments in action terms to simplify the example). There

is one stochastic action � ✷ ✞ ✑✌✞ ✢ ✠ that flips a coin ✢ :

✾✁�✔☎ ✞ ✾ ✦ ☛ ✞ � ✷ ✞ ✑✂✞ ✢ ✠✽✠ ☎✝✆✟✞❃ ✄ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✢ ✠ ✆ � ✷ ✞ ✑✮✳ ☎ ✞ ✷ ✞ ✢ ✠ ✆ ✓

Nature’s actions are always possible: Poss ✞ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✢ ✠ ✆ ✕✡✠ and Poss ✞ � ✷ ✞ ✑✩✳ ☎ ✞ ✷ ✞ ✢ ✠ ✆ ✕✡✠ . Their

probabilities are ✑✔✬✏☎ ✂ ✞ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✢ ✠ ✆ � ✷ ✞ ✑✂✞ ✢ ✠ ✆ ✕✡✠ ☎✝✆✟✞❃ � ✓ ✄ and ✑✔✬✏☎ ✂ ✞ � ✷ ✞ ✑✮✳ ☎ ✞ ✷ ✞ ✢ ✠ ✆ � ✷ ✞ ✑✂✞ ✢ ✠ ✆ ✕✡✠ ☎✝✆✟✞❃ � ✓ ✄ .

We assume that the procedure senseEffect ✞ � ✷ ✞ ✑✂✞ ✢ ✠✭✠ is defined as

proc senseEffect ✞ � ✷ ✞ ✑✂✞ ✢ ✠✭✠ ✞✄✂ �✟✠ ✓ ✕ ✦ ✘ ✕ ✦ ✞ � ✦✛☎ ✄ ✞ ✢ ✠ ✆ �✟✠ endProc

To find out the outcome of the stochastic action � ✷ ✞ ✑✂✞ ✢ ✠ the agent senses the position of the

coin ✢ : if it is heads up, then the agent’s sensor returns the binary value YES, but if the agent

observes that the coin ✢ is tails up, then the sensor returns the binary value NO. We assume

that both sense outcomes are possible in any situation, but the actual result of sensing will be

determined only at the run time, when the agent executes the policy.

There is one fluent: the predicate � ✦✛☎ ✄ ✞ ✾ ✆ ✕✡✠ is true if the coin ✾ is heads up in ✕ . In �✂✁ , we

have ✑ � ✦✛☎ ✄ ✞ ✢ ✆ �✻✁ ✠ for all coins ✢ . The successor state axiom is the following:

� ✦✛☎ ✄ ✞✜✾ ☎ ✞ ✘ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠ ✒ ☎ ❃ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✾ ☎ ✞ ✘ ✠ ✝ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ � ✦✛☎ ✄ ✞ ✢ ✠ ✆ YES ✠ ✝

� ✦✛☎ ✄ ✞ ✾ ☎ ✞ ✘ ✆ ✕✡✠ ☛ ☎ ✆❃ � ✷ ✞ ✑✮✳ ☎ ✞ ✷ ✞ ✾ ☎ ✞ ✘ ✠ ☛ ☎ ✆❃ ✕ ✦ ✘ ✕ ✦ ✞ � ✦✛☎ ✄ ✞ ✢ ✠ ✆ NO ✠ ✓
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Sense conditions are defined by the following expressions: senseCond ✞ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✢ ✠ ✆ � ✦✛☎ ✄ ✞ ✢ ✠✔✠
and senseCond ✞ � ✷ ✞ ✑✮✳ ☎ ✞ ✷ ✞ ✢ ✠ ✆ ✞ ✑ � ✦✛☎ ✄ ✞ ✢ ✠✭✠✔✠ . Let us assume that the agent has five coins and the

state space in this example are vertices of the 5-dimensional boolean cube, where 1 corre-

sponds to the case when a coin is heads up. The initial state is the node ✞ � ✆ � ✆ � ✆ � ✆ �●✠ . Because

the agent can flip only one coin at a time, the transitions in this state space happen only between

adjacent vertices or from a node to itself. To complete the definition of the MDP, we have to

define a reward function as a function of a previous state and the most recent action.8 In any

state, if flipping a coin yields tail, then the reward is � . In any state where at least one coin is

heads up, if the agent flips the first coin and gets head, then the reward is ✝ ❉ � , but in the state

✞ � ✆ � ✆ � ✆ � ✆ �●✠ if the agent gets head after flipping the first coin, then the reward is ✆✢❉ � � . In the

state ✞ ❉ ✆ � ✆ � ✆ � ✆ �●✠ , if flipping the third coin yields heads, then the reward is ✆ ✂ � � ; in all other

states, this outcome has the reward ✝ ✂ � . In the state ✞ ❉ ✆ � ✆ ❉ ✆ � ✆ �●✠ , if flipping the fifth coin

yields heads, then the reward is ✆ ✄ � � ; in all other states, this outcome has the reward ✝ ✄ � . In

the state ✞ ❉ ✆ � ✆ ❉ ✆ � ✆ ❉✡✠ , flipping the head of the second coin brings the reward ❋ � � , in the state

✞ ❉ ✆ ❉ ✆ ❉ ✆ � ✆ ❉✡✠ , flipping the head of the fourth coin yields the reward ✄ � � , but in all other states

different from ✞ ❉ ✆ � ✆ ❉ ✆ � ✆ ❉✡✠ , or different from ✞ ❉ ✆ ❉ ✆ ❉ ✆ � ✆ ❉ ✠ , respectively, flipping the head of

the second coin (of the fourth coin, respectively), yields the reward ✝ ❋ � ( ✝ ✄ � , respectively).

8We are slightly abusing terminology and talk about rewards (instead of costs) even when they are negative.
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This reward function is defined by the following axiom:

reward ✞✜✄✆☎✩✞ ☎ ✆ ✕★✠✽✠❄❃ �
☎✝✆ ✞❃ ✞✏✌ ✢ ✠ ☎ ❃ � ✷ ✞ ✑✮✳ ☎ ✞ ✷ ✞ ✢ ✠ ☛ �✚❃ � ✝

☎ ❃ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✂ ❉✡✠ ☛
✞✔✞ ✒ ✢ ✠ � ✦✛☎ ✄ ✞ ✢ ✆ ✕✡✠ ☛ � ❃ ✝ ❉ � ✝ ✑ ✞✟✒ ✢ ✠ � ✦✛☎ ✄ ✞ ✢ ✆ ✕✡✠ ☛ �✚❃ ❉ � � ✠ ✝

☎ ❃ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✂ ✂●✠ ☛
✞ � ✦✛☎ ✄ ✞ ✂ ❉ ✆ ✕✡✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ❋ ✆ ✕✡✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ✂ ✆ ✕★✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠ ☛ � ❃✝✂ � � ✝

✞ ✑ � ✦✛☎ ✄ ✞ ✂ ❉ ✆ ✕★✠ ✝ � ✦✛☎ ✄ ✞ ✂ ❋ ✆ ✕★✠ ✝ � ✦✛☎ ✄ ✞ ✂ ✂ ✆ ✕✡✠ ✝ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠ ✝ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠✽✠ ☛ � ❃ ✝ ✂ � ✠ ✝
☎ ❃ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✂ ✄❂✠ ☛

✞ � ✦✛☎ ✄ ✞ ✂ ❉ ✆ ✕✡✠ ☛ � ✦✛☎ ✄ ✞ ✂ ✂ ✆ ✕✡✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ❋ ✆ ✕✡✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕★✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠ ☛ � ❃ ✄ � � ✝

✞ ✑ � ✦✛☎ ✄ ✞ ✂ ❉ ✆ ✕★✠ ✝ ✑ � ✦✛☎ ✄ ✞ ✂ ✂ ✆ ✕✡✠ ✝ � ✦✛☎ ✄ ✞ ✂ ❋ ✆ ✕✡✠ ✝ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕★✠ ✝ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠✭✠ ☛ � ❃ ✝ ✄ � ✠ ✝
☎ ❃ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✂ ❋ ✠ ☛

✞ � ✦✛☎ ✄ ✞ ✂ ❉ ✆ ✕✡✠ ☛ � ✦✛☎ ✄ ✞ ✂ ✂ ✆ ✕✡✠ ☛ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ❋ ✆ ✕✡✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠ ☛ �✚❃ ❋ � � ✝

✞ ✑ � ✦✛☎ ✄ ✞ ✂ ❉ ✆ ✕★✠ ✝ ✑ � ✦✛☎ ✄ ✞ ✂ ✂ ✆ ✕✡✠ ✝ ✑ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠ ✝ � ✦✛☎ ✄ ✞ ✂ ❋ ✆ ✕✡✠ ✝ � ✦✛☎ ✄ ✞ ✂ ✄✎✆ ✕✡✠✭✠ ☛ � ❃ ✝ ❋ � ✠ ✝
☎ ❃ � ✷ ✞ ✑ ✶ ✦✛☎ ✄ ✞ ✂ ✄ ✠ ☛

✞ � ✦✛☎ ✄ ✞ ✂ ❉ ✆ ✕✡✠ ☛ � ✦✛☎ ✄ ✞ ✂ ✂ ✆ ✕✡✠ ☛ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠ ☛ � ✦✛☎ ✄ ✞ ✂ ❋ ✆ ✕✡✠ ☛ ✑ � ✦✛☎ ✄ ✞ ✂ ✄✎✆ ✕✡✠ ☛ �✚❃ ✄ � � ✝

✞ ✑ � ✦✛☎ ✄ ✞ ✂ ❉ ✆ ✕★✠ ✝ ✑ � ✦✛☎ ✄ ✞ ✂ ✂ ✆ ✕✡✠ ✝ ✑ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕✡✠ ✝ ✑ � ✦✛☎ ✄ ✞ ✂ ❋ ✆ ✕✡✠ ✝ � ✦✛☎ ✄ ✞ ✂ ✄ ✆ ✕★✠✽✠ ☛ �✚❃ ✝ ✄ �✴✠

In the initial situation, ✬ ✦ ✞ ☎ ✬✏✄ ✞ �☞✁✥✠ ☎ ✆ ✞❃ � . A Prolog implementation of this coin example and the

optimal policy for horizon 6 are provided in Section C.2 and Section C.3 of Appendix C.

5.2.2 DTGolog: Semantics

In what follows, we assume that we have been provided with a background action theory

and optimization theory. We interpret DTGolog programs relative to this theory. DTGolog

programs are written using the same program operators as Golog programs. The seman-

tics is specified in a similar fashion, with the predicate BestDo (axiomatized below) playing

the role of Do. Specifically, the semantics of a DTGolog program is defined by a predicate

BestDo ✞ ✑ ✆ ✕ ✆ � ☎✡✬ ✆ ✂ ✆ � ✆ ✑✮✬❂✠ , where ✑ is a Golog program, ✕ is a starting situation, ✂ is the op-

timal policy determined by program ✑✔✬✏☎ ✪ beginning in situation ✕ , � is the total accumulated

expected value of that policy, ✑✮✬ is the probability that ✂ will execute successfully, and �✔☎★✬
is a prespecified horizon (the expected values are computed in the usual way by multiplying

rewards by probabilities of outcomes). Generally, an interpreter implementing this definition

will be called with a given program ✑✔✬✏☎✡✪ , situation � ✁ , and a finite horizon �✔☎★✬ , and the argu-

ments ✂ , � and ✑✮✬ will be instantiated by the interpreter. In the sequel, we simply call ✂ the
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optimal policy whenever it is clear from the context that ✂ is a policy optimal with respect to a

given program and a finite horizon.

However, the structure of BestDo (and its Prolog implementation) is rather different than

that of Do. One difference reflects the fact that primitive actions can be stochastic. The inter-

preter computes not just a ground situation term, but a policy. Furthermore, when the stochas-

tic primitive action dictated by a program is considered by the BestDo interpreter, one action

outcome may preclude continuation of the program, while another may lead to successful com-

pletion. If an agent enters a situation where the next step of its program is impossible (because

either a test expression evaluates to false or a precondition of the next action is false), we

indicate this by inserting into the policy a zero-cost Stop action that takes it to an absorbing

state.

A second difference has to do with the optimization theory. In the original Golog frame-

work (see Section 2.3.1), no criteria are used to distinguish one ground situation term computed

by the interpreter from another. In particular, nondeterministic branches chosen by the inter-

preter in a program are not distinguished as long as they allow the interpreter to compute a

ground situation term. In our decision-theoretic setting, we want nondeterministic choices to

be made in a way that maximizes expected accumulated reward. Given a choice between two

actions (or subprograms) at some point in a program, the interpreter chooses the branch with

highest expected value, mirroring the structure of an MDP search tree. Intuitively, then, the se-

mantics of a DTGolog program will be given by the optimal execution of that program, where

optimality is defined in much the same way as for MDPs. Viewing the program as advice —

or a constraint on the set of policies we are allowed to consider — the DTGolog interpreter

provides us with an optimal policy under the constraints specified by the program.

Before discussing the details of the semantics, we note that there is some conflict between

the Golog perspective and the MDP perspective in interpreting a DTGolog program. We can

illustrate this with a very simple example.

First, we start with the MDP perspective. Suppose program ☎☛❃ ✞✝☎ ✍ ✄ ☎ ✑ ), where the subpro-

grams ☎ ✍ and ☎ ✑ each contain stochastic actions, but no nondeterministic choices. Let policy

computed from ☎ ✍ ( ☎ ✑ , respectively) be ✂ ✍ (respectively, ✂ ✑ ) and let it have success probability

✑ ✍ (✑ ✑ , respectively). Let this policy have an expected value � ✍ ( � ✑ , respectively) given by an

accumulated expected reward over the horizon of interest. The standard MDP point of view

requires that the optimal policy ✂ corresponding to ☎ must be chosen between ✂ ✍ and ✂ ✑ based

on their expected values only: the policy with the highest expected value is selected.

On the other hand, from the Golog perspective, if we treat the program as advice, one
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might want an agent to select the course of action that has the highest probability of successful

execution. As an extreme case, suppose the program ☎ above is given to an agent where (given

a specific initial situation) the success probabilities are ✑ ✍ ❃ � , ✑ ✑ ❃ ❉ , and expected values of

policies are � ✍ ❃ ❉ � , and � ✑ ❃ � . While the choice of subprogram ☎ ✑ has lower expected value

than ☎ ✍ , that choice is more “faithful” to the program. An agent that chooses ☎ ✍ is “refusing to

execute” the program ☎ to completion. This may in fact be a good thing: in this situation, the

option ☎ ✑ offered by the programmer is clearly a bad one as it has low expected value. But one

may wish the agent to execute the program given whenever possible, in which case option ☎ ✑
should be chosen.

The issue is more subtle in less extreme cases (e.g., if � ✍ is slightly greater than � ✑ , but ✑ ✍ is

slightly less than ✑ ✑ , what is the optimal execution of ☎ ?). Rather than make a specific design

choice, we view this as a multi-criteria objective function that can be optimized however one

sees fit: specifically, we assume in the semantics of optimal execution (and the implementation

of an interpreter) that a predicate ✡ is available that compares pairs of the form � ✑ ✆ � ✠ , where ✑
is a success probability and � is an expected value. How one defines this predicate will depend

crucially on how one interprets the concept of advice embodied in a program. In our imple-

mentation, we use a lexicographic preference where � ✑ ✍✏✆ � ✍ ✠ ✠ � ✑ ✑✔✆ � ✑ ✠ whenever ✑ ✍ ❃ � and

✑ ✑ ✁ � (so an agent cannot choose a policy that guarantees abnormal termination). If both ✑ ✍
and ✑ ✑ are zero, or both are greater than zero, than the � -terms are used for comparison. It is

important to note that certain multi-attribute preferences could violate the dynamic program-

ming principle, in which case our search procedure would have to be revised. This is not the

case with our lexicographic preference.

Finally, we would like to note that there is yet another subtle conflict between the Golog

perspective and the MDP perspective in interpreting a DTGolog program. In the dynamic

programming, when we choose an optimality criterion, we take a certain horizon of interest;

in particular, we assume here that an optimal policy has a finite number ✶ of actions. Thus,

✶ is simply the number of actions that the agent can execute. But from the Golog perspective,

it is more natural to talk about termination of a Golog program. The program can include not

just sequences of actions, but arbitrary compositions of Golog operators. For this reason, the

concept of termination of a Golog program is more general. If a Golog program does terminate

after a finite number of steps ✟ , then it may happen that the numbers ✟ and ✶ are not equal.

For this reason, in the definition of BestDo we consider several cases that correspond to possible
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differences in the values of ✟ and ✶ .9 More specifically, if ✶ ✠ ✟ , then the interpreter does

not execute the program any longer once it is considered the first ✶ actions. Informally, this

means that ✶ provides a ‘hard upper bound’ on the number of decisions that the agent is

allowed to make. Therefore, even if the program never terminates (e.g., if it is a while-loop

with the termination condition such that its truth value depends on a stochastic action and,

hence, the termination cannot be guaranteed), the finite horizon ✶ stipulates that only a finite

initial execution of this program may determine what is an optimal policy with respect to this

program. In this case, we do not use Stop, because this constant indicates that the interpreter

either cannot execute an action or cannot evaluate a test expression. Instead, we insert Nil

in the policy to indicate that the horizon decreased down to 0, we no longer need constraints

provided by the program and that the construction of a policy was successfully completed. In

the opposite case, if ✟ ✠❊✶ , then again we use constant Nil rather than Stop to indicate that

remaining ✶ ✝ ✟ actions will be idle actions Nil in an absorbing state that will not produce

any effect and will lead to zero reward.

Below we define ✛ ✦ ✕ ✕ ✤ ☎ inductively on the structure of its first argument ☎ , which is

a Golog program. In these definitions, we use an action constant ✟ ✞ ✷ to represent “end-of-

program” marker: once the program is executed to the completion by the interpreter, this

marker indicates that there is nothing else to be done. The notation ✂ will be overloaded:

in most cases, it is used to denote a policy, but it is used also to denote non-deterministic

operators; it will be always possible to disambiguate the meaning of this notation from the

context.

1. Zero horizon.

BestDo ✞✝☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎✝✆✟✞❃ ✂✵❃ ✟ ✞ ✷ ☛ � ❃ ✬ ✦ ✞ ☎ ✬✏✄ ✞ ✕✡✠ ☛ ✑✔✬ ❃ ❉ ✓
Give up on the program ☎ if the horizon reaches 0. Note that we define the success

probability of the policy ✂✵❃ ✟ ✞ ✷ as 1. In other words, we do not care what happens after

�❀❃ � : as far as decision making is concerned, the computation of an optimal policy was

successfully completed.

2. The null program

BestDo ✞ ✟ ✞ ✷ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎✝✆ ✞❃ ✂✵❃ ✟ ✞ ✷ ☛ �✚❃ ✬ ✦ ✞ ☎ ✬✿✄ ✞ ✕✡✠ ☛ ✑✔✬☞❃ ❉ ✓ Nil takes the agent

into an absorbing state where the agent receives zero reward and remains idle until hori-

zon decreases to 0.

9We do not introduce discounting, but this does not mean that the agent can increase accumulated expected

reward by simply choosing longer executions because rewards can be negative (and interpreted as costs).
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3. First program action is deterministic.

BestDo ✞ ☎ ✁ ☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ☎ ✆ ✞❃ � ✁ � ☛
✑ Poss ✞ ☎✝✆ ✕✡✠ ☛ ✂ ❃ Stop ☛ ✑✔✬☞❃✁� ☛ �✚❃ reward ✞ ✕✡✠ ✝

Poss ✞ ☎ ✆ ✕★✠ ☛

✒ ✞✄✂ ☛ ✆ � ☛ ✠ BestDo ✞✝☎ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠ ✆ � – ❉ ✆ ✂ ☛ ✆ � ☛ ✆ ✑✔✬✿✠ ☛

✂✵❃ ☎ ✁ ✂ ☛ ☛ �✚❃ ✬ ✦ ✞ ☎ ✬✿✄ ✞ ✕✡✠ ✆ � ☛ ✓
A program that begins with a deterministic agent action ☎ (if ☎ is possible in situation ✕ )

has its optimal policy ✂ defined as ☎ followed by the optimal policy ✂ ☛ for the remainder

of the program ☎ in situation do ✞ ☎✝✆ ✕✡✠ . Its value is given by the expected value of this con-

tinuation plus the reward in ✕ (action cost for ☎ can be included without difficulty), while

its success probability
✁ ✞✄✂✂✠ is given by the success probability

✁ ✞✄✂ ☛ ✠ of its continuation.

If ☎ is not possible at ✕ , the policy is simply the Stop action, the success probability is

zero, and the value is simply the reward associated with situation ✕ .

4. First program action is stochastic.

When ☎ is a stochastic action for which nature selects one of the actions in ✄✡✘ ✍✚✆✔✓✔✓✔✓ ✆ ✘ ✠ ✆ ,
where all available nature choices are enumerated (i.e., ✾✁�✔☎ ✞ ✾ ✦ ☛ ✞ ☎ ✠ ☎✝✆✟✞❃ ✄✡✘ ✍✏✆✔✓✔✓✔✓ ✆ ✘ ✠ ✆ ), then

BestDo ✞ ☎ ✁ ☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ☎ ✆ ✞❃ � ✁ � ☛

✒ ✞✄✂ ☛✌✆ � ☛ ✠ ✓ BestDoAux ✞✜✾✁�✔☎ ✞ ✾ ✦✔☛ ✞ ☎ ✠ ✆✟☎✝✆ ☎ ✆ ✕ ✆ � ✝ ❉ ✆ ✂ ☛✌✆ � ☛✖✆ ✑✮✬❂✠ ☛

✂✵❃ ☎ ✁ senseEffect ✞ ☎ ✠✂✁ ✂ ☛ ☛ �✚❃ ✬ ✦ ✞ ☎ ✬✿✄ ✞ ✕✡✠ ✆ � ☛✖✓
The resulting policy is ☎ ✁ senseEffect ✞ ☎ ✠ ✁ ✂ ☛ where ✂ ☛ is the policy delivered by BestDoAux.

Intuitively, this policy says that the robot should first perform action ☎ , at which point

nature will select one of ✘ ✍✚✆✔✓✜✓✔✓✜✆ ✘ ✠ to perform (with probabilities ✑✔✬✿☎ ✂ ✞✜✘ ☎ ✆✡☎ ✆ ✕★✠ ), then

the robot should sense the outcome of action ☎ (which will tell it which ✘ ☎ nature actu-

ally did perform), then it should execute the policy delivered by BestDoAux. Recall that

senseEffect ✞ ☎ ✠ is a domain specific procedure that includes one or a sequence of sense

actions. Next, we consider two cases: when ✣ ❃ ❉ and when ✣ ✁ ❋ . Suppose ✣ ❃ ❉ , i.e.

only one nature’s action ✘ ✠ remains to be considered as an outcome of ☎ , then

BestDoAux ✞ ✄✡✘ ✠ ✆ ✆✟☎✝✆ ☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬❂✠ ☎✝✆✟✞❃
✑ Poss ✞✜✘ ✠ ✆ ✕✡✠ ☛ senseCond ✞✜✘ ✠ ✆ ✁ ✠ ✠ ☛ ✂✵❃ ✞ ✁ ✠ ✠ � ✁ Stop ☛ �✚❃ � ☛ ✑✔✬ ❃ � ✝

Poss ✞✫✘ ✠ ✆ ✕✡✠ ☛ senseCond ✞✜✘ ✠ ✆ ✁ ✠ ✠ ☛

✒ ✞✄✂ ☛ ✆ � ☛ ✆ ✑✔✬ ☛ ✠ BestDo ✞✆☎ ✆ ✄✆☎✩✞✫✘ ✠ ✆ ✕✡✠ ✆ � ✆ ✂ ☛ ✆ � ☛ ✆ ✑✔✬ ☛ ✠ ☛

✂✵❃ ✞ ✁ ✠ ✠ � ✁ ✂ ☛ ☛ �✚❃ � ☛ � ✑✔✬✏☎ ✂ ✞✜✘ ✠ ✆✟☎✝✆ ✕✡✠ ☛ ✑✔✬ ❃✢✑✔✬ ☛ � ✑✔✬✿☎ ✂ ✞✜✘ ✠ ✆✟☎✝✆ ✕✡✠ ✓
Let ✁ ✠ be the sense condition for nature’s action ✘ ✠ , meaning that evaluating that ✁ ✠
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is true is necessary and sufficient for the robot to conclude that nature actually per-

formed action ✘ ✠ , among the choices ✄✡✘ ✍✏✆✜✓✔✓✔✓✜✆ ✘ ✠ ✆ available to her by virtue of the robot

having done stochastic action ☎ . When ✘ ✠ is possible in ✕ , then given the probability

✑✔✬✏☎ ✂ ✞✫✘ ✠ ✆✟☎✝✆ ✕✡✠ of this outcome, the optimal policy is the test expression ✞ ✁ ✠ ✠ � followed

by the optimal policy ✂ ☛ for the remaining program ☎ , the value of this policy is the value

� ☛ of ✂ ☛ weighted by the probability ✑✔✬✏☎ ✂ ✞✫✘ ✠ ✆✟☎✝✆ ✕✡✠ (to compute the expected value � ),

and the success probability ✑✔✬ of ✂ is determined by multiplying the success probability

✑✔✬ ☛ of ✂ ☛ by ✑✮✬✿☎ ✂ ✞✜✘ ✠ ✆✟☎✝✆ ✕✡✠ (occurrences of nature’s actions are independent). Otherwise,

if ✘ ✠ is not possible at ✕ , the policy is the Stop action that brings zero reward and the

success probability is zero. Suppose ✣✆✁ ❋ , then

BestDoAux ✞ ✄✡✘ ✍✏✆✔✓✔✓✜✓✜✆ ✘ ✠ ✆ ✆✟☎✝✆ ☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬❂✠ ☎✝✆ ✞❃
✑ Poss ✞✫✘ ✍✏✆ ✕✡✠ ☛ BestDoAux ✞ ✄✡✘ ✑✔✆ ✓✔✓✔✓ ✆ ✘ ✠ ✆ ✆✟☎✝✆ ☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ✝
Poss ✞✜✘ ✍✚✆ ✕✡✠ ☛ ✒ ✞✄✂ ☛✖✆ � ☛✖✆ ✑✔✬ ☛ ✠ ✓ BestDoAux ✞ ✄✡✘ ✑✛✆ ✓✔✓✔✓ ✆ ✘ ✠ ✆ ✆✟☎✝✆ ☎ ✆ ✕ ✆ � ✆ ✂ ☛ ✆ � ☛✖✆ ✑✔✬ ☛ ✠ ☛

✒ ✞✄✂ ✍✚✆ � ✍✏✆ ✑✔✬ ✍ ✠ ✓ BestDo ✞✝☎ ✆ ✄✆☎✩✞✫✘ ✍✏✆ ✕✡✠ ✆ � ✆ ✂ ✍✏✆ � ✍✏✆ ✑✔✬ ✍ ✠ ☛ senseCond ✞✫✘ ✍✚✆ ✁ ✍ ✠ ☛
✂ ❃ if ✁ ✍ then ✂ ✍ else ✂ ☛✆☛

�✚❃ � ✍ � ✑✔✬✏☎ ✂ ✞✫✘ ✍✚✆✟☎✝✆ ✕✡✠ ✆ � ☛✆☛
✑✮✬ ❃✢✑✔✬ ✍ � ✑✔✬✏☎ ✂ ✞✜✘ ✍✚✆✟☎✝✆ ✕✡✠ ✆ ✑✮✬ ☛✌✓

BestDoAux determines a policy in the form of a conditional plan

if ✁ ☎ ✁ then ✑ ☎ ✷ ✍ else if ✁ ☎
� then ✑✔☎ ✷✌✑ �✂�✂�

else if ✁ ☎ ✞
�

✁ then ✑✔☎ ✷ ✆ ❆✝✍ else ✞ ✁ ☎ ✞ ✠ � ✁❂✑ ☎ ✷ ✆ ✓

Here, ✘ ☎ ✁ ✆✔✓✔✓✔✓ ✆ ✘ ☎ ✞
are all of nature’s actions among ✄✡✘ ✍✚✆✔✓✜✓✔✓✜✆ ✘ ✠ ✆ that are possible in ✕ ,

and for each ✘ ☎ � , ✑ ☎ ✷ ✁ is an optimal policy returned by the BestDo interpreter given the

program ☎ , in situation ✄✆☎✟✞✜✘ ☎ � ✆ ✕✡✠ . (We use notation ✑ ☎ ✷ ✁ to avoid confusion with ✂ ✁ that

denotes a policy that will be computed for nature’s action ✘ ✁ .)

5. First program action is a test.

BestDo ✞ ✁ � ✁ ☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎ ✆ ✞❃ � ✁ � ☛

✁ ✍ ✕ ✎ ☛ ✛ ✦ ✕ ✕ ✤ ☎✟✞✝☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬❂✠ ✝ ✑ ✁ ✍ ✕ ✎ ☛ ✂✵❃ Stop ☛ ✑✮✬ ❃ � ☛ �✚❃ ✬ ✦ ✞ ☎ ✬✿✄ ✞ ✕★✠ ✓
6. First program action is the nondeterministic choice of two programs.

BestDo ✞✭✞✝☎ ✍ ✄ ☎ ✑ ✠☎✁ ✌ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ☎✝✆✟✞❃ � ✁ � ☛

✒ ✞✄✂ ✍✚✆ � ✍✏✆ ✑✔✬ ✍ ✠ ✓ BestDo ✞✝☎ ✍ ✁ ✌ ✆ ✕ ✆ � ✆ ✂ ✍✏✆ � ✍✏✆ ✑✔✬ ✍ ✠ ☛
✒ ✞✄✂ ✑✛✆ � ✑✔✆ ✑✔✬ ✑ ✠ ✓ BestDo ✞✝☎ ✑ ✁ ✌ ✆ ✕ ✆ � ✆ ✂ ✑✔✆ � ✑✔✆ ✑✔✬ ✑ ✠ ☛

✞ ✞✒✑✔✬ ✍✏✆ � ✍ ✠ ✡ ✞✒✑✔✬ ✑✔✆ � ✑ ✠ ☛ ✂✵❃ ✂ ✑☞☛ �✚❃ � ✑☞☛ ✑✔✬ ❃✢✑✔✬ ✑ ✝
✞✒✑✔✬ ✍✏✆ � ✍ ✠ ✁ ✞✒✑✔✬ ✑✔✆ � ✑ ✠ ☛ ✂✵❃ ✂ ✍✎☛ � ❃ � ✍ ☛ ✑✔✬ ❃✢✑✔✬ ✍ ✠ ✓
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Given the choice between two subprograms ☎ ✍ and ☎ ✑ , the optimal policy is determined

by that subprogram with optimal execution. Recall that there is some subtlety in the

interpretation of a DTGolog program: on the one hand, we wish the interpreter to choose

a course of action with maximal expected value; on the other, it should follow the advice

provided by the program. Because certain choices may lead to abnormal termination –

the � ✕ ☎✥✑ action corresponding to an incomplete execution of the program – with varying

probabilities, the success probability associated with a policy can be loosely viewed as

the degree to which the interpreter adhered to the program. The predicate ✡ compares

pairs of the form ✞ ✑ ✆ �✟✠ , where ✑ is a success probability and � is an expected value. 10

7. Conditionals.

BestDo ✞✭✞ if ✁ then ☎ ✍ else ☎ ✑ ✠☎✁ ✌ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎✝✆✟✞❃ � ✁ � ☛

✁☛✍ ✕ ✎ ☛ ✛ ✦ ✕ ✕ ✤ ☎✟✞✝☎ ✍ ✁ ✌ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ✝
✑ ✁ ✍ ✕ ✎ ☛ ✛ ✦ ✕ ✕ ✤ ☎✩✞✆☎ ✑ ✁ ✌ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬❂✠ ✓

Let the program start with a conditional if ✁ then ☎ ✍ else ☎ ✑ . If the test expression evalu-

ates to true in ✕ , then the optimal policy must be computed using then-branch, otherwise,

the optimal policy must be computed following else-branch.

8. Nondeterministic finite choice of action arguments.

BestDo ✞✭✞✄✂ ✞ ✢ ☛ ✝ ✠ ☎✏✠ ✁ ✌ ✆ ✕ ✆ � ✆ ✑ ☎ ✷ ✆ � ✆ ✑✮✬❂✠ ☎ ✆ ✞❃ � ✁ � ☛

BestDo ✞✝☎ ✄ ✁
✎ ✁ ✄ �✂�✂� ✄ ☎ ✄ ✁

✎ ✄ ✠☎✁ ✌ ✆ ✕ ✆ � ✆ ✑ ☎ ✷ ✆ � ✆ ✑✔✬❂✠
The programming construct ✂ ✞ ✢ ☛ ✝ ✠ ☎ means nondeterministically choose an element ✢
from the finite set ✝ ❃ ✄★✾ ✍✏✆✔✓✔✓✜✓✜✆ ✾ ❁ ✆ , and for that ✢ , do the program ☎ . It therefore is an

abbreviation for the program ☎ ✄ ✁
✎ ✁ ✄ �✂�✂� ✄ ☎ ✄ ✁

✎ ✄ , where ☎ ✄ ✁
✎ means substitute ✾ for all free

occurrences of ✢ in ☎ .

9. Associate sequential composition to the right.

BestDo ✞✭✞✝☎ ✍ ✁ ☎ ✑ ✠☎✁ ☎ ✁ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎ ✆ ✞❃ � ✁ � ☛ BestDo ✞✝☎ ✍ ✁✡✞✝☎ ✑ ✁ ☎ ✁ ✠ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ✓
This is needed to massage the program to a form in which its first action is one of the

forms suitable for application of rules 2-8.

10. Nondeterministic choice of action arguments.

BestDo ✞✭✞✄✂ ✢ ✠ ☎✩✞ ✢ ✠ ✁ ✌ ✆ ✕ ✆ � ✆ ✑✔☎ ✷ ✆ � ✆ ✑✔✬✿✠ ☎✝✆ ✞❃ � ✁ � ☛

✞✟✒ ✢ ✠ ✓ BestDo ✞✝☎✟✞ ✢ ✠☎✁ ✌ ✆ ✕ ✆ � ✆ ✑ ☎ ✷ ✆ � ✆ ✑✔✬✿✠
10Recall that

✁
� ✔ ☎ ✣ ✔ ☛ � ✁

� ☎
☎ ✣ ☎ ☛ whenever � ✔ ✓ ✂

and � ☎✂✁
✂
. If both � ✔ and � ☎ are zero, or both are greater

than zero, than the values of policies are used for comparison.
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This is a non-decision-theoretic version of nondeterministic choice: pick an argument

and compute an optimal policy given this argument. We need this operator because it

will be used to choose moments of time and values returned from sensors.

11. While-loop is the first program action.

This specification requires second order logic; an implementation is provided in Ap-

pendix C.1.

12. Procedure is the first program action.

There is also a suitable expansion rule when the first program action is a procedure call.

This is similar to the rule for Golog procedures [Levesque et al., 1997, De Giacomo et al., 2000],

and requires second order logic to characterize the standard fixed point definition of re-

cursive procedures. An implementation is provided in Appendix C.1.

Finally, it is instructive to compare the semantics of Golog and DTGolog interpreters in

terms of interaction between operators. More specifically, it is interesting to observe that the

sequential composition and the nondeterministic choice operators are distributive in Golog, but

they are not distributive in DTGolog. We continue with Example 5.2.6 to illustrate this. First,

if the sequential operator occurs before brackets with nondeterministic choice between tests,

� ✷ ✞ ✑✂✞ ❉✡✠ ✁ ✍✝✞ � ✦✛☎ ✄ ✞ ❉✡✠✽✠ � ✄ ✞ ✑ � ✦✛☎ ✄ ✞ ❉✡✠✭✠ � ✎ ,

then this program yields the only one optimal policy

� ✷ ✞ ✑✂✞ ❉✡✠✂✁ senseEffect ✞ � ✷ ✞ ✑✂✞ ❉✡✠✭✠✂✁ if � ✦✛☎ ✄ ✞ ❉✡✠ then ✟ ✞ ✷ else ✞ ✑ � ✦✛☎ ✄ ✞ ❉✡✠✽✠ � ✁ ✟ ✞ ✷ ✓
The value of this optimal policy is 50 and the probability of its successful termination is 1.

Second, if both sides of nondeterministic choice include the sequential composition of the

same stochastic action with two different test expressions,

✍ � ✷ ✞ ✑✌✞ ❉✡✠✂✁✂✞ � ✦✛☎ ✄ ✞ ❉ ✠✭✠ � ✎ ✄ ✍ � ✷ ✞ ✑✂✞ ❉✡✠✂✁✂✞ ✑ � ✦✛☎ ✄ ✞ ❉ ✠✭✠ � ✎
then this program yields two different optimal policies

� ✷ ✞ ✑✂✞ ❉✡✠✂✁ senseEffect ✞ � ✷ ✞ ✑✂✞ ❉✡✠✭✠✂✁ if � ✦✛☎ ✄ ✞ ❉✡✠ then ✟ ✞ ✷ else � ✕ ☎✼✑ and

� ✷ ✞ ✑✂✞ ❉✡✠✂✁ senseEffect ✞ � ✷ ✞ ✑✂✞ ❉✡✠✭✠✂✁ if � ✦✛☎ ✄ ✞ ❉✡✠ then � ✕ ☎✥✑ else ✞ ✑ � ✦✛☎ ✄ ✞ ❉✡✠✽✠ � ✁ ✟ ✞ ✷ ✓
The value of each optimal policy is 50, but the probability of successful termination is 0.5

only. If the DTGolog interpreter selects the left branch in the second program and the coin

falls heads up, then the test expression can be evaluated to true, but if the coin falls tails up,

then the expression evaluates to false and in this case it cannot be executed successfully. Thus,

the interpreter will return the first policy in this case, and it will terminate abnormally in 50% of

trials. If the DTGolog interpreter selects the right branch in the second program, then, similarly
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to the previous case, the interpreter will compute the second policy that also will terminate

abnormally in 50% of cases. Of course, if the programmer writes a deterministic action before

a nondeterministic choice in a program, then it is easy to see that the sequential composition of

this action and the nondeterministic choice operators will be distributive (an optimal policy will

be the same in both cases) In addition, according to the semantics of Golog, a pair of similar

programs will yield identical plans in both cases. This example indicates that in programs

intended for DTGolog, if the same sequence of stochastic actions occurs in each branch of a

nondeterministic choice operator, then one might wish to rewrite such a program and put the

nondeterministic choice after this sequence of stochastic actions.

5.2.3 Computing a Policy and Its Value and Probability

Analogously to the case for Golog, BestDo ✞✒✑✔✬✿☎ ✪ ✆ ✕ ✆ �✔☎★✬ ✞ ✂ ✆ ✑ ☎ ✷ ✆ � ☎✆✷ ✆ ✑✔✬✏☎ ✂ ✠ is an abbreviation for

a situation calculus formula whose intuitive meaning is that ✑ ☎ ✷ is an optimal policy resulting

from evaluating the program ✑✔✬✿☎ ✪ beginning in situation ✕ , that � ☎✆✷ is its value, and ✑✔✬✏☎ ✂
the probability of a successful execution of this policy. Therefore, given a program ☎ , and

horizon H, one proves, using the situation calculus axiomatization of the background domain

described in Section 5.2.1, the formula ✒ ✞ ✑ ☎ ✷ ✆ � ☎✝✷ ✆ ✑✮✬✿☎ ✂ ✠✽✛ ✦ ✕ ✕ ✤ ☎✟✞✝☎ ✁ ✟ ✞ ✷ ✆ �✌✁ ✆ ✶ ✆ ✑ ☎ ✷ ✆ � ☎✆✷ ✆ ✑✔✬✿☎ ✂ ✠ ✓
Any binding for ✑ ☎ ✷ , � ☎✝✷ and ✑✔✬✏☎ ✂ obtained by a constructive proof of this sentence determines

the result of the program computation.

A Prolog implementation of DTGolog interpreter is provided in Appendix C.1. To illus-

trate the functionality of the interpreter, we return to Example 5.2.6 and its implementation in

Section C.2.

Example 5.2.6 (continued).

To demonstrate the computational advantages provided by DTGolog framework over uncon-

strained decision tree search, we consider the following two procedures:

proc search

✞ � ✷ ✞ ✑✂✞ ❉✡✠ ✄✂� ✷ ✞ ✑✌✞ ❋ ✠ ✄ � ✷ ✞ ✑✂✞ ✂❂✠ ✄✂� ✷ ✞ ✑✂✞ ✄ ✠ ✄ � ✷ ✞ ✑✂✞ ✄❂✠✔✠ ✁ ✕ ✦✛☎ ✬✿✾✒�
endProc

proc constr

if � ✦✛☎ ✄ ✞ ❉✡✠ � � ✦✛☎ ✄ ✞ ✂●✠ � � ✦✛☎ ✄ ✞ ✄❂✠
then ✞ � ✷ ✞ ✑✂✞ ❋ ✠ ✄✂� ✷ ✞ ✑✂✞ ✄ ✠✔✠ ✁❄✾ ☎✡✘ ✕ ✕ ✬

else ✞ � ✷ ✞ ✑✂✞ ❉ ✠ ✄✂� ✷ ✞ ✑✌✞ ✂●✠ ✄ � ✷ ✞ ✑✂✞ ✄✿✠✔✠ ✁✚✾ ☎✡✘ ✕ ✕ ✬
endProc
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The first procedure search does not provide any ‘advice’ on how to find an optimal policy. The

second procedure provides constraints on the search tree: the second and forth coins should

be flipped only if the agent is in one of the states where all odd-numbered coins are heads up;

otherwise, one of the odd-numbered coins should be flipped first. Suppose that the horizon is

5. Given the program constr, the computation of an optimal policy takes 1 sec, and given the

program search the computation takes 13 seconds, on a laptop computer with 1Gb of memory

and 1.6Gz processor running Linux (this example can run with any standard implementation

of Prolog). In both cases, the optimal policy is unique, the expected value of the initial state

✞ � ✆ � ✆ � ✆ � ✆ �●✠ with respect to this policy is 640.625 (according to the rewards and probabilities

given in Example 5.2.6) and the probability of successful termination of this policy is 1. To

see why unconstrained search takes so much time, it is sufficient to think about the size of

the search tree. The procedure search commands to execute any of 5 possible actions on each

recursive call, and each action leads equiprobably to 2 different states. Therefore, in the case of

horizon 5, the procedure compares ✖❀✞ ❉ �
� ✠ different branches of the decision tree to compute

an optimal policy. For comparison, the size of the search tree explored by the procedure constr

is determined by actions � ✷ ✞ ✑✂✞ ❉✡✠ ✆ � ✷ ✞ ✑✌✞ ✂●✠ ✆ � ✷ ✞ ✑✂✞ ✄❂✠ (each of them leads to 2 different states) fol-

lowed by remaining two stochastic actions � ✷ ✞ ✑✌✞ ❋ ✠ and � ✷ ✞ ✑✂✞ ✄ ✠ . In total, the procedure constr

compares �
✁

� ✄ branches, this number is much less than ❉ �
�

branches in the unconstrained tree.

Thus, this example confirms our expectations that additional constraints on the number of

policies that need to be considered will significantly decrease the time required by a decision

tree-based search procedure to compute an optimal policy. Note that the state space in this

example has only 32 states and any state-of-the art MDP solver will compute an optimal policy

almost instantly, but this example clearly illustrates the advantages provided by constraints.

In the subsequent sections, we will demonstrate that there are realistic domains (such as of-

fice delivery tasks), where constraints on policies are quite natural and dictated by the structure

of the decision problem that must be solved. In Section 5.4, we consider a detailed example of

a delivery domain and provide some evidence that in this domain DTGolog has computational

advantages over standard dynamic programming algorithms in terms of computation time. In

Section 5.5, we compare performance provided by the DTGolog interpreter to performance

achieved with SPUDD [Hoey et al., 1999, Hoey et al., 2000] using a well known FACTORY

domain as a benchmark for comparison.11 In Section 5.6, we discuss our experience of using

11In [Hoey et al., 1999, Hoey et al., 2000], FACTORY example is represented using an algebraic decision dia-

gram (ADD).
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DTGolog for high-level robot programming and argue that DTGolog provide a flexible tool for

adapting behavior of the robot to changes in realistic environments. Finally, we review briefly

the literature related to macro-actions, and mention several other relevant publications.

However, before we proceed, we would like to consider in the next section an important

side issue of how the full observability assumption can be implemented on real robots. In all

subsequent sections, we assume that we deal with a fully observable MDP. More specifically,

we would like to discuss our representation for sensing actions in robotics context and consider

several examples.

5.3 Sensing actions

In Chapter 3, we developed an approach to reasoning about both sensing and physical actions.

In this section we would like to show how our approach is used in high-level robot program-

ming.

In contrast to physical actions, sensing actions do not change any properties of the exter-

nal world, but return values measured by sensors. Despite this difference between them, it is

convenient to treat both physical and sensing actions the same in successor state axioms. This

approach is justifiable if fluents represent what the robot ‘believes’ about the world (see Figure

5.1). More specifically, let the high-level control module of the robot be provided with the

internal logical model of the world (the set of precondition and successor state axioms) and

the axiomatization of the initial situation. The programmer expresses in this axiomatization

her (incomplete) knowledge of the initial situation and captures certain important effects of the

robot’s actions, but some other effects and actions of other agents may remain unmodelled.

When the robot does an action in the real world (i.e., the high-level control module sends a

command to effectors and effectors execute this command), it does not know directly and im-

mediately what effects in reality this action will produce: the high-level control module may

only compute expected effects using the internal logical model. Similarly, if the robot is in-

formed about actions executed by external agents, the high-level control module may compute

expected effects of those exogenous actions (if axioms account for them). Thus, from the point

of view of the programmer who designed the axioms, the high-level control module maintains

the set of ‘beliefs’ that the robot has about the real world. This set of ‘beliefs’ needs feedback

from the real world because of possible contingencies, incompleteness of the initial informa-

tion and unobserved or unmodelled actions executed by other agents. To gain the feedback, the

high-level control module requests information from sensors and they return requested data.
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We find it convenient to represent the information gathered from sensors by an argument of

the sensing action: the argument will be instantiated to a particular value at run time when the

sensing action is executed. Then, all the high-level control module needs to know is the current

situation (action log); the expected effects of actions on (beliefs about) fluents can be computed

from the given sequence of physical and sensing actions.

�

�

✁ ✁ ✁ ✁ ✁ ✁ ✁✄✂
✁✁✁✁✁✁✁ ☎

✆

Internal logical
model

+ initial data

+ Golog program

Effectors

Sensors

actions

sensing
data

Environment

(includes other agents)

Exogenous
actions

Figure 5.1: A high-level control module and low-level modules interacting with the environ-

ment.

In the sequel, we consider only deterministic sensing actions. We suggest representing

sensing actions by the functional symbol ✕ ✦ ✘ ✕ ✦ ✞✂✁ ✆ � ✆ ✕✽✠ where ✁ is what to sense, � is term

representing a run time value returned by the sensors and ✕ is time. We proceed to consider

several examples of successor state axioms that take advantage of our representation.

Example 5.3.1: Let ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎✏☎✡✬✿✄ ✆✥✷ ✆ ✕✽✠ be the sensing action that returns the pair ✷ ❃ ✞ ✢ ✆ ✣✮✠ of

geometric coordinates of the current robot location on the two-dimensional grid and ✪✝✬ ✞ ✄ ✁ ☎✏✾✏✞ ✢ ✆ ✣ ✆ ✕✡✠
be a relational fluent that is true if ✞ ✢ ✆ ✣✩✠ are the coordinates of the robot’s location in ✕ . In

this example we assume that all actions are deterministic (we do this only to simplify the

exposition of this example). The process of moving (represented by the relational fluent

✝✟✞✡✠☞☛✍✌✏✎✏✑✓✒ ✍✕✔✗✖ ✍✕✔ ✒ ✑✘✔✗✖ ✑✡✔✚✙✘✛ ) from the grid location ✞ ✢ ✍✚✆ ✣ ✍ ✠ to ✞ ✢ ✑✛✆ ✣ ✑ ✠ is initiated by the deter-

ministic instantaneous action ✙✢✜✤✣✦✥✘✜✄✧ ✞✡✠✩★✦✑✓✒ ✍✕✔✗✖ ✍✪✔ ✒ ✑✘✔✗✖ ✑✡✔✗✜✗✛ and is terminated by the deterministic

action ★✫✌✭✬ ✧ ✞✡✠✩★✦✑✓✒ ✍✕✔✗✖ ✍✕✔ ✒ ✑✘✔✗✖ ✑✡✔✗✜✗✛ . These two actions are under the robot control. The robot

may also change its location if it is transported by an external agent from one place to an-

other. The exogenous actions ✕ ☎ ✣ ✦ ✞ ✢ ✍ ✆ ✣ ✍✟✆ ✕✽✠ and ✑✮✓ ✕ ✞ ✢ ✑✛✆ ✣ ✑✔✆ ✕✽✠ account for this and the fluent

✕ ✬ ☎ ✘ ✕✭✑ ☎★✬✡✕ ✦ ✄ ✞ ✕✡✠ represents the process where the robot is transported by an external agent).

Of course, the robot does not know when and whether exogenous actions ✕ ☎ ✣ ✦ ✞ ✢ ✍✜✆ ✣ ✍✟✆ ✕✽✠ and

✑✔✓✔✕ ✞ ✢ ✑✛✆ ✣ ✑✜✆ ✕✽✠ occur, but if they do, then the robot can find this out by sensing coordinates. In
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addition, the robot can use its sensing action to update coordinates when it is in the process

of moving. The following successor state and precondition axioms characterize the aforemen-

tioned fluents and actions.

✪✟✬ ✞ ✄ ✁ ☎★✾✿✞ ✢ ✆ ✣ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠☞✒
✞✟✒✟✕ ✆✥✷ ✠ ✞ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎✏☎✡✬✿✄ ✆✥✷ ✆ ✕✽✠ ☛ ✢ ✂ ✬✏✄ ✞ ✷ ✠❂❃ ✢ ☛ ✣ ✂ ✬✿✄ ✞ ✷ ✠✿❃ ✣✩✠ ✝

✞✟✒✟✕ ✆ ✢ ☛✖✆ ✣ ☛ ✠ ☎ ❃ endMove ✞ ✢ ☛ ✆ ✣ ☛ ✆ ✢ ✆ ✣ ✆ ✕✽✠ ✝ ✞✟✒✟✕✽✠ ☎ ❃✢✑✔✓✔✕ ✞ ✢ ✆ ✣ ✆ ✕✽✠ ✝
✪✝✬ ✞ ✄ ✁ ☎★✾✏✞ ✢ ✆ ✣ ✆ ✕✡✠ ☛ ✑ ✞ ✒✟✕ ✆ ✢ ☛ ✆ ✣ ☛ ✠ ☎ ❃✢✑✔✓✔✕ ✞ ✢ ☛✌✆ ✣ ☛ ✆ ✕✽✠ ☛
✑ ✞✟✒ ✷ ✆ ✕✽✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎★☎★✬✏✄ ✆✥✷ ✆ ✕✽✠ ☛
✑ ✞✟✒ ✢ ✆ ✣ ✆ ✢ ☛✌✆ ✣ ☛ ✆ ✕✽✠ ☎ ❃ endMove ✞ ✢ ✆ ✣ ✆ ✢ ☛✌✆ ✣ ☛ ✆ ✕✽✠ ✆

where ✢ ✂ ✬✿✄ ✞ ✷ ✠ ✆ ✣ ✂ ✬✏✄ ✞ ✷ ✠ denote, respectively, ✢ and ✣ components of the current location ✷ .
This means that the center of the robot is located in ✞ ✢ ✆ ✣✮✠ in the situation that results from

doing ☎ in ✕ iff one of the following conditions holds: (a) the last action ☎ that the robot did

was sensing its location ✷ and according to the data returned by sensors the current coordinates

are ✢ and ✣ ; (b) the robot was moving from a location ✞ ✢ ☛ ✆ ✣ ☛ ✠ to ✞ ✢ ✆ ✣✩✠ , and at time ✕ it stopped

moving, or (c) in the previous situation the robot was being transported by another agent and

at certain time ✕ that agent does the action ☎ of placing the robot at ✞ ✢ ✆ ✣✩✠ , or (d) in the previous

situation the center of the robot was already located in ✞ ✢ ✆ ✣✩✠ and the most recent action ☎ was

neither to put the robot somewhere, nor sense coordinates, nor end moving at a different point.

✲ ☎✁�✂✞ ✘ ✪✻✞ ✢ ✍✚✆ ✣ ✍✏✆ ✢ ✑✔✆ ✣ ✑✜✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠✓✒ ✞✟✒✟✕✽✠ ☎ ❃ startMove ✞ ✢ ✍✚✆ ✣ ✍✏✆ ✢ ✑✔✆ ✣ ✑✜✆ ✕✽✠ ✝
✲ ☎✁�✂✞ ✘ ✪☞✞ ✢ ✍✏✆ ✣ ✍✏✆ ✢ ✑✛✆ ✣ ✑✜✆ ✕✡✠ ☛ ✑ ✞✟✒✟✕✽✠ ☎ ❃ endMove ✞ ✢ ✍✚✆ ✣ ✍✟✆ ✢ ✑✛✆ ✣ ✑✔✆ ✕✽✠ ✓

✕ ✬ ☎ ✘ ✕✭✑ ☎✡✬★✕ ✦ ✄ ✞ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠✓✒ ✞ ✒✟✕ ✆ ✢ ✆ ✣✩✠ ☎ ❃❀✕ ☎ ✣ ✦ ✞ ✢ ✆ ✣ ✆ ✕✽✠ ✝
✕ ✬ ☎ ✘ ✕✭✑ ☎✡✬★✕ ✦ ✄ ✞ ✕★✠ ☛ ✑ ✞✟✒✟✕ ✆ ✢ ☛✖✆ ✣ ☛ ✠ ☎ ❃✢✑✔✓✔✕ ✞ ✢ ☛ ✆ ✣ ☛ ✆ ✕✽✠ ✝

✞✟✒ ✢ ✆ ✣ ✆ ✕ ✆✥✷ ✠ ✍ ✪✝✬ ✞ ✄ ✁ ☎★✾✿✞ ✢ ✆ ✣ ✆ ✕✡✠ ☛ ✑ ✒ ✢ ☛ ✆ ✣ ☛ ✲ ☎☎�✂✞ ✘ ✪✻✞ ✢ ✆ ✣ ✆ ✢ ☛✖✆ ✣ ☛ ✆ ✕✡✠ ☛
☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎★☎★✬✏✄ ✆✥✷ ✆ ✕✽✠ ☛ ✞ ✢ ✂ ✬✏✄ ✞ ✷ ✠ ✆❃ ✢ ✝ ✣ ✂ ✬✿✄ ✞ ✷ ✠ ✆❃ ✣✩✠☞✎ ✓

This says that the robot is transported by an external agent if there exists time ✕ at which the

robot was taken by the agent from certain point ✞ ✢ ✆ ✣✮✠ or the robot was transported by someone

in the previous situation and that agent did not put the robot somewhere at some time ✕ ☛ . In

addition, the last two lines allow the robot to determine from sensing that it is transported by

someone even if there is no occurrence of the ✕ ☎ ✣ ✦ ✞ ✢ ✆ ✣ ✆ ✕✽✠ action in ✕ . In other words, even if

the robot does not know that an external agent took it and started to transport to elsewhere, the

robot can find this out. More specifically, if the current location of the robot is at ✞ ✢ ✆ ✣✮✠ , the

robot is not moving, and the last action is the action of sensing coordinates such that sensors
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tell the robot that its location is different from ✞ ✢ ✆ ✣✩✠ , then the fluent ✕ ✬ ☎ ✘ ✕✭✑ ☎✡✬★✕ ✦ ✄ is true in the

situation resulting from execution of this action in ✕ . According to the next axiom, the robot

can start moving from ✞ ✢ ✍✚✆ ✣ ✍ ✠ to ✞ ✢ ✑✜✆ ✣ ✑ ✠ at the moment of time ✕ in the situation ✕ , if the robot

is not transported by anybody, and in addition, if it not moving between any pair of locations,

and the current location of the center of the robot is the point ✞ ✢ ✍✏✆ ✣ ✍ ✠ .

Poss ✞ startMove ✞ ✢ ✍✚✆ ✣ ✍✏✆ ✢ ✑✜✆ ✣ ✑✔✆ ✕✽✠ ✆ ✕✡✠✓✒ ✑ ✕ ✬ ☎ ✘ ✕✹✑✔☎★✬✡✕ ✦ ✄ ✞ ✕✡✠ ☛
✑ ✞ ✒ ✢ ✆ ✣ ✆ ✢ ☛ ✆ ✣ ☛ ✠✩✲ ☎✁�✂✞ ✘ ✪☞✞ ✢ ✆ ✣ ✆ ✢ ☛ ✆ ✣ ☛ ✆ ✕✡✠ ☛ ✪✝✬ ✞ ✄ ✁ ☎✏✾✏✞ ✢ ✍✟✆ ✣ ✍✏✆ ✕★✠ ✆

Poss ✞ endMove ✞ ✢ ✍✚✆ ✣ ✍✏✆ ✢ ✑✛✆ ✣ ✑✜✆ ✕✽✠ ✆ ✕✡✠✓✒ ✲ ☎☎�✂✞ ✘ ✪✻✞ ✢ ✍✏✆ ✣ ✍✏✆ ✢ ✑✔✆ ✣ ✑✔✆ ✕✡✠ ✆

Poss ✞✯✕ ☎ ✣ ✦ ✞ ✢ ✆ ✣ ✆ ✕✽✠ ✆ ✕★✠✓✒ ✑ ✕ ✬ ☎ ✘ ✕✭✑ ☎★✬✡✕ ✦ ✄ ✞ ✕✡✠ ☛ ✪✝✬ ✞ ✄ ✁ ☎✏✾✏✞ ✢ ✆ ✣ ✆ ✕✡✠
Poss ✞✒✑✔✓✔✕ ✞ ✢ ✆ ✣ ✆ ✕✽✠ ✆ ✕★✠☞✒❅✕ ✬ ☎ ✘ ✕✭✑ ☎✡✬✡✕ ✦ ✄ ✞ ✕✡✠ ✓

Informally speaking, the very last axiom is saying that at the moment ✕ an external agent can

put the robot at a point ✞ ✢ ✆ ✣✮✠ in the situation ✕ if the robot is transported (by that agent) in ✕ .
The previous axiom means that the action ✕ ☎ ✣ ✦ ✞ ✢ ✆ ✣ ✆ ✕✽✠ is possible in ✕ , if in this situation the

robot is not transported by someone, and the center of the robot is located in ✞ ✢ ✆ ✣✩✠ .
As usual, our basic action theory must include the unique name axioms (but we omit them).

Imagine that in the initial situation the robot stays at (0,0). Later, at time 1, it starts moving

from (0,0) to (2,3), but when the robot stops at time 11 and senses its coordinates at time 12,

its sensors tell it that it is located at (4,4). The sensory information is inconsistent with the

expected location of the robot, but this discrepancy can be attributed to unobserved actions of

an external agent who transported the robot. An alternative explanation, that the robot moved

again would not work, because both startMove ✆ endMove actions are under the robot control

and if they occur, then they both will be mentioned in the robot’s situation term. Hence, the

final situation is not

✄✆☎✟✞ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎★☎★✬✏✄ ✆ ✞ ✄✎✆☎✄ ✠ ✆ ❉ ❋ ✠ ✆ ✄✝☎✟✞ endMove ✞ � ✆ � ✆✼❋ ✆ ✂ ✆ ❉❂❉✡✠ ✆ ✄✆☎✩✞ startMove ✞ � ✆ � ✆✼❋ ✆ ✂ ✆ ❉✡✠ ✆ �☞✁✭✠✭✠✭✠ ✆
as we originally expected, but the situation resulting from the execution of exogenous actions

✕ ☎ ✣ ✦ ✞ ❋ ✆ ✂ ✆ ✳ ✍ ✠ and ✑✔✓✔✕ ✞ ✄ ✆☎✄✎✆ ✳ ✑ ✠ , in the situation when the robot ends moving, followed by the

sensing action. The exogenous actions occurred at unknown times ✳ ✍✚✆ ✳ ✑ (we may say about

the actual history only that ❉❂❉ ✡ ✳ ✍ ✠ ✳ ✑ ✡ ❉ ❋ ).12

12In the sequel, we do not consider how the discrepancy between results of a deterministic action and ob-

servations obtained from sensors can be explained by occurrences of unobserved exogenous actions. However,

the inconsistency between physical and sensory actions can be resolved by solving a corresponding diagnostic

problem (e.g., see [McIlraith, 1998]).
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Example 5.3.2: Here we consider a stochastic ✦ ✘✻✄ ✁✙☎ action: when the robot does it, nature

can choose one of the two outcomes: the robot arrives successfully or fails to arrive (gets lost in

transition). The robot can determine its location using data from sonar and laser sensors. But if

the last action was not sensing coordinates ✞ ✢ ✆ ✣✮✠ , then the current location can be determined

from the previous location and the actions that the robot has executed. The process of going

from ✷ to ✷ ☛ is initiated by the deterministic action ✕ ✕ ☎ ✬✡✕ ✁ ☎✟✞ ✷ ✆✥✷ ☛✌✆ ✕✽✠ and is terminated by the

stochastic action ✦ ✘☞✄✂✁✙☎✩✞ ✷ ✆✥✷ ☛ ✆ ✕✽✠ (axiomatized in Section 5.4). The robot is located in ✷ if and

only if (1) sensors determined that coordinates of the robot are ✞ ✢ ✆ ✣✩✠ and the point ✞ ✢ ✆ ✣✮✠ is

inside of the location ✷ , or (2) the last action is arrive at ✷ , or (3) the robot is located in ✷ and the

last action is not such that the robot should be at another location:

✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞ ✷ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠✓✒ ✞ ✒✟✕ ✆ � ✆ ✢ ✆ ✣✩✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎★☎✡✬✿✄ ✆ � ✆ ✕✽✠ ☛
✢ ✂ ☎★☎★✬✏✄ ✞✠�✟✠❂❃ ✢ ☛ ✣ ✂ ☎✏☎✡✬✏✄ ✞ �✟✠❂❃ ✣ ☛ ✞ ✘ ✕ ✞ ✄ ✦ ✞ ✷ ✆ ✢ ✆ ✣✩✠ ✝

✞ ✒✟✕ ✆✥✷ ✍ ✠ ☎ ❃ ✦ ✘✻✄ ✁✙☎✏� ✞ ✷ ✍✏✆✥✷ ✆ ✕✽✠ ✝ ✞✟✒✟✕ ✆✥✷ ✍ ✠ ☎ ❃ ✦ ✘☞✄✂✁✙☎✏✰ ✞ ✷ ✍✟✆✥✷ ✆ ✕✽✠ ✝
✬✏☎ ✂ ☎ ✕✂✁ ☎★✾✏✞ ✷ ✆ ✕✡✠ ☛ ✑ ✞✟✒ ✷✌✑✛✆✹✷ ✁ ✆ ✕✽✠ ☎ ❃ ✦ ✘☞✄✂✁✙☎✿� ✞ ✷ ✑✛✆✥✷ ✁ ✆ ✕✽✠ ☛ ✑ ✞✟✒ ✷✌✑ ✆✥✷ ✁ ✆ ✕✽✠ ✞ ☎ ❃ ✦ ✘☞✄✂✁✙☎✏✰ ✞ ✷✌✑✜✆✥✷ ✁ ✆ ✕✽✠✽✠ ☛

✑ ✞✟✒✟✕ ☛ ✆ � ☛ ✆ ✢ ☛ ✆ ✣ ☛ ✆✥✷ ☛ ✠ ✍ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎✏☎✡✬✏✄ ✆ � ☛ ✆ ✕ ☛ ✠ ☛
✢ ✂ ☎★☎★✬✏✄ ✞✠� ☛ ✠✿❃ ✢ ☛ ☛ ✣ ✂ ☎✏☎✡✬✿✄ ✞ � ☛ ✠❂❃ ✣ ☛ ☛ ✞ ✘ ✕ ✞ ✄ ✦ ✞ ✷ ✆ ✢ ☛ ✆ ✣ ☛ ✠ ☛ ✷ ✆❃ ✷✖☛ ✎ ✆

where the predicate inOffice ✞ ✷ ✆ ✢ ✆ ✣✩✠ is true if the pair ✞ ✢ ✆ ✣✩✠ is inside of the office ✷ of an

employee. We assume that all coordinates ✞ ✢ ☛ ✆ ✣ ☛ ✠ which are not inside offices of employees

are inside the hall, where the robot can get stuck when it is moving between offices.

When the robot stops and senses coordinates, it determines its real location. Subsequently,

the high-level control module can identify the outcome of the stochastic action ✦ ✘✻✄✂✁ ☎✟✞ ✷ ✆✥✷ ☛✖✆ ✕✽✠ :
whether the robot stopped successfully or failed to arrive at the intended destination. This can

be achieved by evaluating appropriate sense conditions defined in

senseCond ✞ ✦ ✘✻✄✂✁ ☎✏� ✞ ✷ ✍✟✆✥✷✌✑✔✆ ✕✽✠ ✆ ✬✏☎ ✂ ☎ ✕✂✁ ☎★✾✏✞ ✷✌✑ ✠✽✠ and

senseCond ✞ ✦ ✘✻✄✂✁ ☎★✰✧✞ ✷ ✍✏✆✹✷✌✑✔✆ ✕✽✠ ✆ ✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞✜✶ ☎✆✷✫✷ ✠✽✠
as we explained in Section 5.2.1, when we discussed the background basic action theory that

represents an MDP. More specifically, in the case if nature chooses ✦ ✘☞✄✂✁ ☎✏� ✞ ✷ ✆✥✷ ☛✌✆ ✕✽✠ , sensors

find that the robot is located in ✷ ☛ , and the expression ✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾✏✞ ✷ ☛ ✠ evaluates to true in the

resulting situation. This tells the robot that it is located in a state where it was expected to

arrive (as a positive side-effect, the robot also learns what action nature selected). In the case,

if nature chooses ✦ ✘☞✄✂✁ ☎★✰ ✞ ✷ ✆ ✶ ☎✆✷✫✷ ✆ ✕✽✠ , when the robot was actually moving to the office ✷ ☛ of

an employee, the expression ✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞✜✶ ☎✆✷✫✷ ✠ evaluates to true in the situation that results from

doing a sense action and the robot learns which action was selected by nature. Of course,
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in a general case, more than one sensing actions can be required and sense conditions can

be arbitrary complex situation-suppressed expressions that needs to be evaluated before the

robot can find which of many available choices was actually executed by nature in a previous

situation.

Example 5.3.3: Let ✪ ✞ � ✦ ✞ ✞✜✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕ ✆ ✕✽✠ be a stochastic action that has two different outcomes:

✪ ✞ � ✦ � ✞ ✞✜✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕ ✆ ✕✽✠ – the robot gives successfully an ✞ ✕ ✦ ✲ to ✑ ✦ ✬ ✕ – and ✪ ✞ � ✦ ✰✧✞ ✞ ✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕ ✆ ✕✽✠
– the action of giving an ✞ ✕ ✦ ✲ to ✑ ✦ ✬ ✕ is unsuccessful. Let ✕ ✦ ✘ ✕ ✦ ✞✗✕ ✾ ✣✟✘❄✞ ✞ ✕ ✦ ✲✺✠ ✆ � ✆ ✕✽✠ be the ac-

tion of sensing whether delivery of the ✞ ✕ ✦ ✲ to ✑ ✦ ✬ ✕ ☎★✘ was successful or not: if it was, then

delivery is acknowledged and � =1, if not – the result of sensing is � =0.13 The following succes-

sor state axiom characterizes how the fluent � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✡✠ changes from situation to

situation: whenever the robot is in the office of ✑ ✦ ✬ ✕ ☎★✘ and it senses that one of its buttons was

pressed, it is assumed that the ✑ ✦ ✬ ✕ ☎★✘ pressed a button to acknowledge that she has a coffee.

From this sensory information, the high-level control module can identify whether the outcome

of ✪ ✞ � ✦ ✞ ✞ ✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✽✠ was successful or not.

� ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠✓✒ ✞✟✒✟✕✽✠ ☎ ❃❀✪ ✞ � ✦ � ✞ Coffee ✆ ✑ ✦ ✬ ✕ ✆ ✕✽✠ ✝
✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞✜☎ � � ✞ ✾ ✦ ✞✒✑ ✦ ✬ ✕★✠ ✆ ✕✡✠ ☛ ✞ ✒✟✕✽✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✗✕ ✾ ✣✟✘❄✞ Coffee ✠ ✆ ❉ ✆ ✕✽✠ ✝
� ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ✆ ✕✡✠ ☛

✍ ✞ ✑ ✒✟✕✽✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✔✕ ✾ ✣✝✘❄✞ Coffee ✠ ✆ � ✆ ✕✽✠ ☛ ✞ ✑ ✒✟✕ ☛ ✠ ☎ ❃❀✪ ✞ � ✦ ✰✧✞ Coffee ✆ ✑ ✦ ✬ ✕ ✆ ✕ ☛ ✠✟✎
A person has coffee in the next situation, if she had a coffee in the previous situation and the

last action executed by the robot was not the action of sensing that returned a signal � from

buttons and not nature’s choice meaning that the stochastic agent action of giving an item

failed. This axiom assumes that the robot can attempt many deliveries to a person (presumably,

because the person requests more coffee), some of them can lead to giving a coffee to the

person successfully, but once the stochastic ✪ ✞ � ✦ ✞ ✞ ✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕ ✆ ✕✽✠ action fails, this results in a

situation where the person has no coffee (independently of the past).

Example 5.3.4: The battery voltage remains constant if the battery is connected to the charger,

otherwise the voltage varies unpredictably and the high-level control module of the robot can

determine it only by doing the measurement ✕ ✦ ✘ ✕ ✦ ✞ ✛ ☎ ✕ ✕ ✦ ✬ ✣ ✆ ✢ ✆ ✕✟✞ ✲ ✦ ✠ : this sensing action re-

turns the real value ✢ of the voltage. We use the relational fluent ✾ ☎★✘ ✘ ✦ ✾✥✕ ✦ ✄ ✞ ✕✡✠ to assert that the

13As we mentioned in Section 2.5, the stochastic action ☎ ✌ ✣ ☎
✁ ✌ ☞ ☎ � ☎

� ☎ ✄
✝ ✖ ✒ ☎ ☞ ☛ can be implemented as a verbal

announcement that the robot arrived with an ✌ ☞ ☎ � addressed to � ☎ ✄
✝ ✖ ✒ . Also, acknowledgment ✣ =1 can be

implemented if a recipient presses one of robot’s buttons during a certain interval of time; if no button was

pressed, then ✣ =0.
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battery is connected to the charger (We omit the successor state axiom for this fluent because

it is not essential for this example.)

�✟☎ ✷ ✕ ☎ ✪ ✦ ✞ ✢ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠ ✒ ✾ ☎✡✘✻✘ ✦ ✾✼✕ ✦ ✄ ✞ ✕✡✠ ☛ ✢ ❃ ❋ ✄ ✝
✑ ✾ ☎✡✘✻✘ ✦ ✾✼✕ ✦ ✄ ✞ ✕✡✠ ☛ ✞ ✒✟✕✽✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✜✛ ☎ ✕ ✕ ✦ ✬ ✣ ✆ ✢ ✆ ✕✽✠ ✓

Example 5.3.5: Assume that the robot has no devices to sense its location directly, but can

measure its velocity (e.g., by counting revolutions of its motors): we model this by the action

✕ ✦ ✘ ✕ ✦ ✞ � ✦ ✷ ✆ � ✆ ✕✽✠ . For simplicity of presentation, we assume that the motion is uniform and the

robot moves along the ✢ axis; we also assume in this example that both startMove and endMove

actions are deterministic (their precondition axioms are similar to axioms in the example 1).

In this example, when the robot starts moving it moves with a certain velocity that remains

constant but unknown, unless the robot measures its velocity.

Given the value returned by the velocity sensor, we are interested in computing the current

location of the robot:14

✲ ☎✁�✂✞ ✘ ✪☞✞✜✄✆☎✩✞ ☎ ✆ ✕★✠✽✠✓✒ ✞✟✒✟✕✽✠ ☎ ❃ startMove ✞✫✕✽✠ ✝ ✲ ☎✁�✂✞ ✘ ✪☞✞ ✕✡✠ ☛ ✑ ✞✟✒✟✕✽✠ ☎ ❃ endMove ✞✯✕✽✠ ✓

� ✦ ✷ ☎★✾ ✞✜✕ ✣☞✞ � ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠ ✒ ✞✟✒✟✕✽✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ � ✦ ✷ ✆ � ✆ ✕✽✠ ✝ ✞✟✒✟✕✽✠ ☎ ❃ endMove ✞✫✕✽✠ ☛ �✚❃ � ✝

� ✦ ✷ ☎★✾ ✞ ✕ ✣✻✞✠� ✆ ✕✡✠ ☛ ✞ ✑ ✒✟✕✽✠ ☎ ❃ endMove ✞✫✕✽✠ ☛ ✞ ✑ ✒✟✕ ✆ �✩✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ � ✦ ✷ ✆ � ✆ ✕✽✠ ✓
Note that according to the last axiom, if the robot ended to move in the past and is not moving

in the current situation ✕ , then its velocity � . In addition, when the robot starts moving, its

velocity remains � because the action startMove ✞✫✕✽✠ has no effect on the velocity, but if the

robot measures velocity in the process of moving soon after starting to move, then it gets to

know the actual velocity.

✷ ☎✏✾ ☎ ✕ ✞ ✢ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒
✞ ✒✟� ✆ ✕ ✍✚✆ ✕ ✑✔✆ ✢ ☛ ✠ ✞ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ � ✦ ✷ ✆ � ✆ ✕ ✍ ✠ ☛✺✷ ☎✏✾ ☎ ✕ ✞ ✢ ☛ ✆ ✕✡✠ ☛

✕ ✕ ☎ ✬✡✕ ✞ ✕✡✠❄❃ ✕ ✑☞☛ ✢ ❃ � � ✞✫✕ ✍✞✝ ✕ ✑ ✠ ✆ ✢ ☛ ✠ ✝
✞ ✒✟� ✆ ✕ ✍✚✆ ✕ ✑✔✆ ✢ ☛ ✠ ✞ ☎ ❃ endMove ✞✯✕ ✍ ✠ ☛ � ✦ ✷ ☎✏✾ ✞ ✕ ✣✻✞✠� ✆ ✕✡✠ ☛

✷ ☎★✾ ☎ ✕ ✞ ✢ ☛ ✆ ✕✡✠ ☛ ✕ ✕ ☎ ✬★✕ ✞ ✕✡✠❂❃ ✕ ✑☞☛ ✢ ❃ � � ✞✫✕ ✍✞✝ ✕ ✑ ✠ ✆ ✢ ☛ ✠ ✝
✞ ✑ ✒✟✕✽✠ ☎ ❃ endMove ✞✫✕✽✠ ☛ ✞ ✑ ✒✟✕ ✆ �✟✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ � ✦ ✷ ✆ � ✆ ✕✽✠ ☛

✍ ✑ ✲ ☎☎�✂✞ ✘ ✪✻✞ ✕✡✠ ☛ ✷ ☎★✾ ☎ ✕ ✞ ✢ ✆ ✕★✠ ✝ ✲ ☎☎�✂✞ ✘ ✪✻✞ ✕✡✠ ☛
✞✟✒✟� ✆ ✕ ✍✚✆ ✕ ✑✔✆ ✢ ☛ ✠ ✞✠� ✦ ✷ ☎✏✾ ✞ ✕ ✣✻✞✠� ✆ ✕✡✠ ☛ ✷ ☎✏✾ ☎ ✕ ✞ ✢ ☛ ✆ ✕✡✠ ☛

✕ ✕ ☎ ✬✡✕ ✞ ✕✡✠❂❃❀✕ ✑ ☛ ✕✟✞ ✲ ✦ ✞ ☎ ✠❂❃❀✕ ✍ ☛ ✢ ❃ � � ✞✯✕ ✍ ✝ ✕ ✑ ✠ ✆ ✢ ☛ ✠✟✎ ✓
14Recall that we use the function symbol

✝ ☞ ✂ ✄ ☞ ✁ ✝ ☛ to denote the starting time of the situation
✝

and the function

symbol ☞✆✌ � ☎
✁✄✂ ☛ to denote the time when the action

✂
occurs, see Section 2.1.2 for details.
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Note that the robot using this axiom may underestimate the change in location, since it is as-

sumed that startMove ✞✯✕✽✠ leaves velocity at � , but the sooner the robot will sense its real velocity

in the process of moving, the smaller will be the error in location. Because the ‘persistence’

part of this last axiom applies to any action different from sensing and stopping, the robot can

update its location after executing any other action by using the time argument when this action

was executed.

This set of examples demonstrates how sense actions can be used together with physical

actions in successor state axioms. As we have mentioned in Chapter 3, with our approach to

representation of sense actions it is surprisingly straightforward to use regression to solve the

forward projection task. Let � be a basic action theory defined in Chapter 2 and let ✁ ✞ ✕✡✠ be an

uniform situation calculus formula. Suppose we are given a ground situational term � that may

mention both physical and sensing actions. Thanks to representation introduced above, we can

use regression to solve the forward projection task also in the case when � mentions sensing

actions explicitly. The remarkable consequence of this fact is that we can use regression to

evaluate tests ✞ ✁ ✠ � in Golog programs with sensing actions: no modifications are required to

solve the entailment problem whether � ✄ ❃ ✁☛✞ � ✠ .

5.4 An Application of DTGolog: A Delivery Example

In this section we describe a simple, but realistic domain where natural constraints on robot

behavior can be conveniently expressed in a Golog program. In domains of this type, we can

use the BestDo interpreter to find an optimal policy for the corresponding MDP.

Imagine a robot that has to deliver coffee and/or mail from the main office where a coffee

machine and mail boxes are located. Mail arrives once in the morning and all employees make

coffee request once in the morning only by specifying intervals of time when they would prefer

coffee be delivered to them. In the main office (abbreviated as MO), a person can put a cup of

coffee or mail packages on the robot and we model this by saying that the robot executes the

deterministic action pickup ✞ ✞ ✕ ✦ ✲ ✆ ✕✽✠ . The process of going from a location ✷ ✍ to ✷✌✑ is initiated

by a deterministic action startGo ✞ ✷ ✍✚✆✥✷✌✑✜✆ ✕✽✠ ; the robot can go only to offices of employees or to

the main office. But the terminating action endGo ✞ ✷ ✍✏✆✥✷ ✑✔✆ ✕✽✠ is stochastic (e.g., the robot may

end up in some location other than an office ✷ ✑ , say, the hallway). We give nature two choices,

endGoS ✞ ✷ ✍✚✆✥✷✌✑✔✆ ✕✽✠ (successful arrival) and endGoF ✞ ✷ ✍✚✆ Hall ✆ ✕✽✠ (end with failure), and include

abbreviations such as
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✾✁�✔☎ ✞ ✾ ✦✜☛ ✞ endGo ✞ ✷ ✍✏✆✥✷✌✑✔✆ ✕✽✠✭✠ ☎✝✆ ✞❃ ✄ endGoS ✞ ✷ ✍✏✆✥✷✌✑✜✆ ✕✽✠ ✆ ✕✡✠ ✆ endGoF ✞ ✷ ✍✏✆ Hall ✆ ✕✽✠☎✆ and

prob ✞ endGoS ✞ ✷ ✍✏✆✥✷✌✑✔✆ ✕✽✠ ✆ endGo ✞ ✷ ✍✚✆✥✷✌✑✔✆ ✕✽✠ ✆ ✕✡✠ ☎✝✆ ✞❃ � ✓ ✆ ✆

(i.e., successful movement occurs with probability 0.99 in any situation). When the robot

arrives at the door of an employee, it asks the employee to take delivered items; we model this

by the stochastic action give ✞ item ✆ person ✆ ✕✽✠ . If the employee is in her office, she takes the

item, and presses one of the buttons on the robot, as we discussed in Example 5.3.3, then this

action has a successful outcome giveS ✞ item
✆
person

✆ ✕✽✠ . But if the employee is not there and

the door is closed, nobody acknowledges delivery of the item, then give ✞ item
✆
person

✆ ✕✽✠ fails,

reflected by outcome giveF ✞ item
✆
person

✆ ✕✽✠ .
This domain is modeled using fluents such as going ✞ ✷ ✍✚✆✥✷ ✑✔✆ ✕✡✠ , robotLoc ✞ ✷ ✆ ✕✡✠ , carrying ✞ item ✆ ✕✡✠ ,

� ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ person ✆ ✕✡✠ , etc., that we have already considered in Example 2.1.2. Several other

predicates such as � ☎ ✕ ✁ ☎ ✞ ✷ ✞ person ✆ ✕✡✠ , ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕ ✍✚✆ ✕ ✑✔✆ ✕★✠ (person wants coffee

at some point in the time period [ ✕ ✍ , ✕ ✑ ]), ✲ ☎ ✞ ✷ ✁ ✬ ✦ ✕ ✦ ✘ ✕ ✞✒✑ ✦ ✬ ✕ ☎✡✘ ✆ ✘ ✆ ✕✡✠ ( ✘ is the number of mail

packages addressed to ✑ ✦ ✬ ✕ ☎✡✘ ), function symbols and constants (e.g., names of people, items

and locations) are also used similarly to that example.

The following precondition and successor state axioms characterize these fluents and the

actions (sensing actions are always possible).

Poss ✞ ✕ ✕ ☎ ✬★✕ ✁✙☎✩✞ ✷ ☎✏✾ ✍✚✆✥✷ ☎✏✾ ✑✔✆ ✕✽✠ ✆ ✕✡✠✓✒ ✑ ✞ ✒ ✷ ✆✥✷ ☛ ✠ ✪✟☎ ✞ ✘ ✪✻✞ ✷ ✆✥✷ ☛ ✆ ✕✡✠ ☛
✬✏☎ ✂ ☎ ✕✂✁ ☎★✾✏✞ ✷ ☎✏✾ ✍✚✆ ✕✡✠ ☛ ✒✏✑✌✞ ✷ ☎✏✾ ❋ ❃❅☎ � � ✞ ✾ ✦ ✞ ✑ ✠✽✠ ✆

Poss ✞ endGoS ✞✽✞ ✷ ☎★✾ ✍✟✆✥✷ ☎✏✾ ✑✔✆ ✕✽✠ ✆ ✕✡✠✓✒ ✪✟☎ ✞ ✘ ✪☞✞ ✷ ☎✏✾ ✍✟✆✥✷ ☎★✾ ✑✜✆ ✕✡✠ ✆
Poss ✞ endGoF ✞ ✷ ☎★✾ ✍✏✆✥✷ ☎★✾ ✑✔✆ ✕✽✠ ✆ ✕✡✠ ✒ ✒ ✷ ☎✏✾ ☛ ✞✏✪✟☎ ✞ ✘ ✪✻✞ ✷ ☎★✾ ✍✟✆✥✷ ☎★✾ ☛ ✆ ✕✡✠ ☛ ✷ ☎✏✾ ☛ ✆❃ ✷ ☎✏✾ ✑ ✠ ✆
Poss ✞ ✑ ✞ ✾ ✣✟✓●✑✂✞ ✞ ✕ ✦ ✲ ✆ ✕✽✠ ✆ ✕✡✠ ✒ ✞ ✕ ✦ ✲ ❃ Coffee ☛ ✑ ✾ ☎ ✬★✬ ✣ ✞ ✘ ✪☞✞ ✞ ✕ ✦ ✲ ✆ ✕✡✠ ☛ ✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞ ✁ ✖ ✆ ✕✡✠ ✆

Poss ✞ ✑ ✞ ✾ ✣✝✓✆✑✌✞ ✞ ✕ ✦ ✲ ✆ ✕✽✠ ✆ ✕✡✠ ✒ ✞ ✕ ✦ ✲ ❃ ✲ ☎ ✞ ✷ ✳ ☎✟✞ ✑ ✦ ✬ ✕✡✠ ☛ ✑ ✾ ☎ ✬★✬ ✣ ✞ ✘ ✪✻✞ ✞ ✕ ✦ ✲ ✆ ✕★✠ ☛ ✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞ ✁ ✖ ✆ ✕★✠ ☛
✒✩✘❄✞✿✲ ☎ ✞ ✷ ✁ ✬ ✦ ✕ ✦ ✘ ✕ ✞ ✑ ✦ ✬ ✕ ✆ ✘ ✆ ✕★✠ ☛ ✘ ✁ �✴✠ ✆

Poss ✞ ✑✔✓✔✕ ✛ ☎ ✾ ✣☞✞ ✞✜✕ ✦ ✲ ✆ ✕✽✠ ✆ ✕★✠ ✒ ✾ ☎ ✬✏✬ ✣ ✞ ✘ ✪✻✞ ✞✜✕ ✦ ✲ ✆ ✕✡✠ ☛ ✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾✏✞ ✁ ✖ ✆ ✕✡✠ ✆
Poss ✞✫✪ ✞ � ✦ � ✞ ✞✜✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕✽✠ ✆ ✕✡✠✓✒ ✾ ☎ ✬✏✬ ✣ ✞ ✘ ✪✻✞ ✞✜✕ ✦ ✲ ✆ ✕✡✠ ☛

✬✏☎ ✂ ☎ ✕✂✁ ☎★✾✏✞ ☎ � � ✞ ✾ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘☞✠ ✆ ✕✡✠ ☛ ✞ ✞ ✕ ✦ ✲ ❃ Coffee
✝ ✞✜✕ ✦ ✲ ❃ ✲ ☎ ✞ ✷ ✳✵☎✩✞✒✑ ✦ ✬ ✕✡☎✡✘ ✠✔✠ ✆

Poss ✞✫✪ ✞ � ✦ ✰ ✞ ✞✜✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕✡☎✡✘ ✆ ✕✽✠ ✆ ✕✡✠✓✒ ✾ ☎ ✬★✬ ✣ ✞ ✘ ✪✻✞ ✞✜✕ ✦ ✲ ✆ ✕✡✠ ☛
✬✏☎ ✂ ☎ ✕✂✁ ☎★✾✏✞ ☎ � � ✞ ✾ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘☞✠ ✆ ✕✡✠ ☛ ✞ ✞ ✕ ✦ ✲ ❃ Coffee

✝ ✞✜✕ ✦ ✲ ❃ ✲ ☎ ✞ ✷ ✳✵☎✩✞✒✑ ✦ ✬ ✕✡☎✡✘ ✠✔✠ ✓
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✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞ ✷ ✆ ✄✆☎✩✞ ☎ ✆ ✕★✠✽✠✓✒ ✞ ✒✟✕ ✆ � ✆ ✢ ✆ ✣✩✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎★☎✡✬✿✄ ✆ � ✆ ✕✽✠ ☛
✢ ✂ ☎★☎★✬✏✄ ✞✠�✟✠❂❃ ✢ ☛ ✣ ✂ ☎✏☎✡✬✏✄ ✞ �✟✠❂❃ ✣ ☛ ✞ ✘ ✕ ✞ ✄ ✦ ✞ ✷ ✆ ✢ ✆ ✣✩✠ ✝

✞ ✒✟✕ ✆✥✷ ✍ ✠ ☎ ❃ ✦ ✘✻✄ ✁✙☎✏� ✞ ✷ ✍✏✆✥✷ ✆ ✕✽✠ ✝ ✞✟✒✟✕ ✆✥✷ ✍ ✠ ☎ ❃ ✦ ✘☞✄✂✁✙☎✏✰ ✞ ✷ ✍✟✆✥✷ ✆ ✕✽✠ ✝
✬✏☎ ✂ ☎ ✕✂✁ ☎★✾✏✞ ✷ ✆ ✕✡✠ ☛ ✑ ✞✟✒ ✷✌✑✛✆✹✷ ✁ ✆ ✕✽✠ ☎ ❃ ✦ ✘☞✄✂✁✙☎✿� ✞ ✷ ✑✛✆✥✷ ✁ ✆ ✕✽✠ ☛ ✑ ✞✟✒ ✷✌✑ ✆✥✷ ✁ ✆ ✕✽✠ ✞ ☎ ❃ ✦ ✘☞✄✂✁✙☎✏✰ ✞ ✷✌✑✜✆✥✷ ✁ ✆ ✕✽✠✽✠ ☛

✑ ✞✟✒✟✕ ☛✖✆ � ☛✖✆ ✢ ☛✌✆ ✣ ☛ ✆✥✷✖☛ ✠ ✍ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎✏☎✡✬✏✄ ✆ � ☛ ✆ ✕ ☛ ✠ ☛
✢ ✂ ☎★☎★✬✏✄ ✞✠� ☛ ✠✿❃ ✢ ☛ ☛ ✣ ✂ ☎✏☎✡✬✿✄ ✞ � ☛ ✠❂❃ ✣ ☛ ☛ ✞ ✘ ✕ ✞ ✄ ✦ ✞ ✷ ✆ ✢ ☛ ✆ ✣ ☛ ✠ ☛ ✷ ✆❃ ✷✖☛ ✎ ✆

Ignoring actions related to sensing (see Example 5.3.2), this axiom is saying that the robot’s

location is ✷ ☎★✾ in the situation that results from doing an action ☎ in the previous situation ✕
if the robot’s location was ✷ ☎★✾ in ✕ and action ☎ did not change it. Otherwise, if ☎ is either

endGoS or endGoF action, then the robot location is where the robot got to go. Note that this

axiom and all remaining axioms do not mention stochastic agent actions: they mention only

the corresponding nature’s deterministic actions and deterministic agent actions.

✪✟☎ ✞ ✘ ✪✻✞ ✷ ✆✥✷✖☛ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠✓✒ ✞✟✒✟✕✽✠ ☎ ❃ ✕ ✕ ☎ ✬★✕ ✁✙☎✟✞ ✷ ✆✥✷✖☛✖✆ ✕✽✠ ✝
✪✩☎ ✞ ✘ ✪✻✞ ✷ ✆✥✷✖☛✌✆ ✕★✠ ☛ ✑ ✞✟✒✟✕✽✠ ☎ ❃ endGoS ✞ ✷ ✆✥✷ ☛✌✆ ✕✽✠ ☛ ✑ ✞✟✒✟✕ ✆✹✷ ☛ ☛ ☛ ✠ ☎ ❃ endGoF ✞ ✷ ✆✥✷ ☛ ☛ ☛ ✆ ✕✽✠ ✆

✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ✍✏✆ ✕ ✑✔✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠✓✒ ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞✒✑ ✆ ✕ ✍✏✆ ✕ ✑✜✆ ✕✡✠ ☛ ✞ ✑ ✒✟✕✽✠ ☎ ❃❀✪ ✞ � ✦ � ✞ Coffee ✆ ✑ ✆ ✕✽✠ ✆
✲ ☎ ✞ ✷ ✁ ✬ ✦ ✕ ✦ ✘ ✕ ✞✒✑ ✦ ✬ ✕✡☎✡✘ ✆ ❉ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠✓✒ ✞✟✒✟✕✽✠ ☎ ❃✢✑✔✓✔✕ ✛ ☎ ✾ ✣☞✞✫✲ ☎ ✞ ✷ ✳✵☎✩✞✒✑ ✦ ✬ ✕ ☎✡✘ ✠ ✆ ✕✽✠ ✝

✒✩✘ ✓ ✲ ☎ ✞ ✷ ✁ ✬ ✦ ✕ ✦ ✘ ✕ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✘ ✆ ✕✡✠ ☛ ✞ ✑ ✒✟✕✽✠ ☎ ❃✢✑ ✞ ✾ ✣✟✓●✑✂✞✫✲ ☎ ✞ ✷ ✳✵☎✩✞✒✑ ✦ ✬ ✕ ☎✡✘ ✠ ✆ ✑ ✦ ✬ ✕✡☎✡✘ ✆ ✕✽✠ ✆

� ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ✆ ✄✆☎✩✞ ☎✝✆ ✕✡✠✭✠✓✒ ✞✟✒✟✕✽✠ ☎ ❃❀✪ ✞ � ✦ � ✞ Coffee
✆ ✑ ✦ ✬ ✕ ✆ ✕✽✠ ✝

✬✏☎ ✂ ☎ ✕✂✁ ☎★✾✏✞ ☎ � � ✞ ✾ ✦ ✞ ✑ ✦ ✬ ✕✡✠ ✆ ✕✡✠ ☛ ✞ ✒✟✕✽✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✗✕ ✾ ✣✟✘ ✆ ❉ ✆ ✕✽✠ ✝ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ✆ ✕✡✠ ✆
� ☎ ✕ ✁ ☎ ✞ ✷ ✞✒✑ ✦ ✬ ✕ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ ✒ ✞✟✒✟✕✽✠ ☎ ❃❀✪ ✞ � ✦ � ✞✜✲ ☎ ✞ ✷ ✳✵☎✟✞ ✑ ✦ ✬ ✕✡✠ ✆ ✑ ✦ ✬ ✕ ✆ ✕✽✠ ✝

✬✏☎ ✂ ☎ ✕✂✁ ☎★✾✏✞ ☎ � � ✞ ✾ ✦ ✞ ✑ ✦ ✬ ✕✡✠ ✆ ✕✡✠ ☛ ✞ ✒✟✕✽✠ ☎ ❃ ✕ ✦ ✘ ✕ ✦ ✞✗✕ ✾ ✣✟✘ ✆ ❉ ✆ ✕✽✠ ✝ � ☎ ✕ ✁ ☎ ✞ ✷ ✞ ✑ ✦ ✬ ✕ ✆ ✕✡✠ ✆
✾ ☎ ✬★✬ ✣ ✞ ✘ ✪✻✞ ✞ ✕ ✦ ✲ ✆ ✄✝☎✟✞ ☎✝✆ ✕✡✠✽✠ ✒ ✞ ✒✟✕✽✠ ☎ ❃ ✑ ✞ ✾ ✣✟✓●✑✂✞ ✞✜✕ ✦ ✲ ✆ ✕✽✠ ✝

✾ ☎ ✬✏✬ ✣ ✞ ✘ ✪✻✞ ✞✜✕ ✦ ✲ ✆ ✕✡✠ ☛ ✑ ✞✟✒✏✑ ✆ ✕✽✠ ☎ ❃❀✪ ✞ � ✦ � ✞ ✞✜✕ ✦ ✲ ✆ ✑ ✆ ✕✽✠ ✓

The last axiom is saying that the robot is carrying an ✞ ✕ ✦ ✲ in the situation ✄✆☎✩✞ ☎ ✆ ✕★✠ that results

from doing an action ☎ in the previous situation ✕ if and only if the robot picked an item at

moment ✕ or if the robot was carrying ✞✜✕ ✦ ✲ in ✕ and it did not give successfully the item to a

person ✑ (e.g., if the door of ✑ ’s office is closed; in this case, the item remains on a tray that

the robot is carrying). Two previous axioms are saying that a person has an item in ✄✆☎✟✞ ☎✝✆ ✕✡✠
if the last action is give this item to the person successfully (this is nature’s action) or if the

sensor returns the signal ❉ (when delivery is acknowledged) or if the person had this item in
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the previous situation ✕ (once delivered, the item remains with the person who requested this

item in the morning).

The following sense conditions distinguish successful from unsuccessful outcomes:

senseCond ✞✜✘ ✆ ✁✻✠ ☎✝✆✟✞❃
✒ ✷ ✍✚✆✥✷✌✑✔✆ ✕ ✞✿✘ ❃ endGoS ✞✭✞ ✷ ✍✚✆✥✷ ✑✔✆ ✕✽✠ ☛ ✁ ❃ ✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾✏✞ ✷✌✑ ✠ ✝

✘ ❃ endGoF ✞ ✷ ✍✏✆✥✷✌✑✔✆ ✕✽✠ ☛ ✁ ❃ ✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞✜✶ ☎✆✷✜✷ ✠✔✠ ✝

✒✏✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕ ✞✿✘ ❃❀✪ ✞ � ✦ � ✞ ✁ ☎ ✞ ✷ ✆ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✽✠ ☛ ✁ ❃ � ☎ ✕ ✁ ☎ ✞ ✷ ✞ ✑ ✦ ✬ ✕ ☎✡✘ ✠ ✝

✘ ❃ ✪ ✞ � ✦ � ✞ Coffee ✆ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✽✠ ☛ ✁ ❃ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘☞✠✭✠ ✝

✒✏✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕ ✞✿✘ ❃❀✪ ✞ � ✦ ✰ ✞ ✁ ☎ ✞ ✷ ✆ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✽✠ ☛ ✁ ❃ ✞ ✑ � ☎ ✕ ✁ ☎ ✞ ✷ ✞ ✑ ✦ ✬ ✕ ☎✡✘ ✠✭✠ ✝

✘ ❃ ✪ ✞ � ✦ ✰ ✞ Coffee ✆ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✽✠ ☛ ✁ ❃ ✞ ✑ � ☎ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘☞✠✭✠✔✠ ✓
Probabilities of outcomes are defined by the following abbreviations:

✑✮✬✿☎ ✂ ✞✜✘ ✆ endGo ✞ ✷ ✍✏✆✥✷ ✑✔✆ ✕✽✠ ✆ ✕★✠❄❃ ✑ ☎✝✆✟✞❃ ✞✿✘ ❃ endGoS ✞ ✷ ✍✚✆✥✷ ✑✔✆ ✕✽✠ ☛ ✑✴❃ � ✓ ✆ ✆ ✝

✘ ❃ endGoF ✞ ✷ ✍✏✆✥✷✌✑✔✆ ✕✽✠ ☛ ✑✴❃✁� ✓ �✩❉☛✠ ✓
✑✮✬✿☎ ✂ ✞✜✘ ✆ ✪ ✞ � ✦ ✞ ✞ ✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕✽✠ ✆ ✕✡✠❄❃ ✑ ☎✝✆✟✞❃ ✞✿✘ ❃❀✪ ✞ � ✦ � ✞ ✞✜✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕✡☎✡✘ ✆ ✕✽✠ ☛ ✑✴❃ � ✓ ✆ ✄ ✝

✘ ❃ ✪ ✞ � ✦ ✰ ✞ ✞✜✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕✽✠ ☛ ✑✴❃ � ✓ � ✄ ✠ ✓

There are two senseEffect ✞✔✕ ✠ procedures in this application domain that correspond to two

stochastic agent actions.

proc senseEffect ✞ ✦ ✘✻✄ ✁✙☎✟✞ ✷ ✍✟✆✥✷✌✑✔✆ ✕✽✠✽✠ ✞ ✂ � ✆ ✕✽✠ ✓ ✕ ✦ ✘ ✕ ✦ ✞ ✂ ☎★☎★✬✏✄ ✆ � ✆ ✕✽✠ endProc

proc senseEffect ✞✫✪ ✞ � ✦ ✞ ✞ ✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕✽✠✭✠ ✞✄✂ � ✆ ✕✽✠ ✓ ✕ ✦ ✘ ✕ ✦ ✞✔✕ ✾ ✣✟✘ ✆ � ✆ ✕✽✠ endProc

Each of these two procedures commands to execute one sensing action with arguments that

gets bound to values returned at run time. The ✛ ✦ ✕ ✕ ✤ ☎ interpreter inserts a senseEffect ✞✔✕ ✠
procedure into a policy after each occurrence of a stochastic action ✕ to implement the full

observability assumption. According to Definitions 5.2.1 and 5.2.2, of a policy and branches

in a policy, and according to the specification of the ✛ ✦ ✕ ✕ ✤ ☎ interpreter, each occurrence of

senseEffect ✞✗✕ ✠ in a policy is followed by if-then-else operator with sense conditions corre-

sponding to all nature choices that are possible in the current situation. Because each sensing

action is added to the current situation with arguments grounded at run time, the robot exe-

cuting the policy can determine the state uniquely (as well as a deterministic action chosen

by nature) by evaluating these sense conditions in the situation that results from executing a

sensing action.

The reward for doing the action ✪ ✞ � ✦ � ✞✜✲ ☎ ✞ ✷ ✆ person ✆ ✕✽✠ to some person who does not have

mail is the maximum (with respect to time constraints) of ✞ ❉ �✿✘ ✝ ☞✍ ✁ ✠ , where ✘ - number of
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mails. Given a situation term corresponding to any branch of the situation tree, it is straightfor-

ward to maximize value with respect to choice of temporal arguments assigned to actions in the

sequence. (This is a standard linear programming problem subject to constraints on how much

time the robot spends on traveling.) The reward for giving a coffee successfully to a person

is also the maximum of a linear function of time. If ✑ wants a coffee from ✕ ✍ to ✕ ✑ , then the

robot gets the highest reward equal to
☞ �
❆ ☞ ✁✑ when it gives coffee at ✕ ✍ . The reward decreases

linearly and equals 0 at moments (
☞ �
❆ ☞ ✁✑ - ✕ ✍ ) and ✕ ✑ ; the reward is negative outside the interval

✞ ☞ �
❆ ☞ ✁✑ ✝ ✕ ✍✏✆ ✕ ✑ ✠ .15 For simplicity, the rewards (costs) for doing all other actions are 0:

reward ✞ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠❄❃ �
☎✝✆✟✞❃ ✒✏✑ ✆ ✕ ✆ ✕ ✍✚✆ ✕ ✑

✞ ☎ ❃ ✪ ✞ � ✦ � ✞ Coffee ✆ ✑ ✆ ✕✽✠ ☛ ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ✍✟✆ ✕ ✑✛✆ ✕✡✠ ☛

� ✡ ☞ �
❆ ☞✑ ☛ � ✡ ✕ ✝ ✁

✁ ☞ ✁ ❆ ☞ �✑ ✠ ✝

✞✟✒✏✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕ ✆ ✘ ✓ ✲ ✂ ✠ ✞ ☎ ❃ ✪ ✞ � ✦ � ✞✫✲ ☎ ✞ ✷ ✞ ✑ ✦ ✬ ✕ ☎★✘☞✠ ✆ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕✽✠ ☛

✲ ☎ ✞ ✷ ✁ ✬ ✦ ✕ ✦ ✘ ✕ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✘✻✓ ✲ ✂✛✆ ✕✡✠ ☛ �✢❃ ✞ ❉ � � ✘ ✓ ✲ ✂ ✝ ☞✍ ✁ ✠ ✓

Suppose that in the initial situation, the robot is located in the main office, one employee Ann

wants coffee at some point in the time period [100,150], there are four mail packages addressed

to Joe, and a third employee Bill has no requests. From the main office, it takes the robot 45

units of time to travel to Ann’s office, 100 units of time to travel to Joe’s office, and 20 units

of time to travel to the hall (where the robot may get stuck); in addition, it takes 55 units of

time to travel from Ann’s office to Joe’s office. If the robot picks up mail, goes to Joe’s office

(the probability of reaching it successfully is 0.99) and successfully gives him mail (with the

probability 0.95) at time 100, then it would receive the reward 28.215. If the robot would

pickup the coffee instead, go to the office of Ann at time 55 and give her the coffee at time

100, then it would receive the reward 23.5125 (the success probabilities for the corresponding

actions are the same). If the horizon is 5, then the optimal policy for the robot is to deliver mail

to Joe.

The following Golog procedures express natural constraints of the robot’s behavior (with

abbreviation MO - main office); in the procedure deliver we use people to denote the finite

range: people ❃ ✄★✛ ✞ ✷✫✷ ✆ ✕ ✘ ✘ ✆ �☞☎ ✦ ✆ .

proc ✄ ✦ ✷ ✞ � ✦ ✬
✂ ✞ ✑ ☛

people ✠ ✂☞✕ ✓ ✍ ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕✽✠ ✎✱✠ ✄ ✂ ✞ ✑ ☛
people ✠ ✂☞✕ ✓ ✍ deliverMail ✞ ✑ ✆ ✕✽✠ ✎✱✠ ✆

endProc

15Of course, any monotone function of time will be as good as the linear function that we use here, but this

linear function leads to a particularly simple implementation.
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where ✂ ✕ is an operator that chooses a moment of time that can be grounded when the policy

will be executed in reality.

proc ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕✽✠
if ✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞ ✁ ✖✢✠ then

if ✾ ☎ ✬★✬ ✣ ✞ ✘ ✪☞✞ Coffee ✠ then ✕ ✦ ✬☎� ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕✽✠
else ✑ ✞ ✾ ✣✟✓●✑✂✞ Coffee

✆ ✕✽✠ ✁ ✕ ✦ ✬☎� ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕✽✠
else if ✞ ✝ ✾ ☎ ✬★✬ ✣ ✞ ✘ ✪✻✞ Coffee ✠✭✠ then goto ✞ ✁ ✖ ✆ ✕✽✠ ✁

✂☞✕ ✍ ✍ �✆✞✫✘☞☎✁✞ ✞✫✕ ✍ ✠✽✠✂✁✿✑ ✞ ✾ ✣✟✓●✑✂✞ Coffee
✆ ✕ ✍ ✠✂✁ ✕ ✦ ✬☎� ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕ ✍ ✠ ✎

else ✕ ✦ ✬☎� ✦ ✂ ☎ � � ✦ ✦ ✞✒✑ ✆ ✕✽✠
endProc

proc ✕ ✦ ✬☎� ✦ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕✽✠
if ✬✿☎ ✂ ☎✡✕✂✁ ☎★✾✿✞✜☎ � � ✞ ✾ ✦ ✞✒✑ ✠✭✠ then ✪ ✞ � ✦ ✞ Coffee ✆ ✑ ✆ ✕✽✠

else ✪✟☎✡✕ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞✒✑ ✠ ✆ ✕✽✠ ✁ ✂☞✕ ✍ ✍ �✆✞✜✘☞☎✁✞ ✞✯✕ ✍ ✠✭✠ ✁☛✪ ✞ � ✦ ✞ Coffee
✆ ✑ ✆ ✕ ✍ ✠ ✎

endProc

The procedures serveMail ✞ ✑ ✆ ✕✽✠ and deliverMail ✞✒✑ ✆ ✕✽✠ have identical control structure:

proc deliverMail ✞ ✑ ✆ ✕✽✠
if ✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾✏✞ ✁ ✖✢✠ then

if ✾ ☎ ✬✏✬ ✣ ✞ ✘ ✪✻✞✫✲ ☎ ✞ ✷ ✳ ☎✟✞ ✑ ✠✭✠ then serveMail ✞ ✑ ✆ ✕✽✠
else ✑ ✞ ✾ ✣✟✓●✑✂✞✫✲ ☎ ✞ ✷ ✳ ☎✟✞ ✑ ✠ ✆ ✕✽✠ ✁ serveMail ✞ ✑ ✆ ✕✽✠

else if ✞ ✝ ✾ ☎ ✬★✬ ✣ ✞ ✘ ✪☞✞✫✲ ☎ ✞ ✷ ✳✵☎✩✞✒✑ ✠✭✠✽✠ then ✪✟☎✡✕ ☎✟✞ ✁ ✖ ✆ ✕✽✠ ✁
✂☞✕ ✍ ✍ �✆✞✁�✄✂✆☎✙✞✯✕ ✍ ✠✭✠✂✁❂✑ ✞ ✾ ✣✝✓✆✑✌✞✜✲ ☎ ✞ ✷ ✳✵☎✩✞✒✑ ✠ ✆ ✕ ✍ ✠✂✁ serveMail ✞✒✑ ✆ ✕ ✍ ✠ ✎

else serveMail ✞ ✑ ✆ ✕✽✠
endProc

proc serveMail ✞✒✑ ✆ ✕✽✠
if ✬✏☎ ✂ ☎ ✕✂✁ ☎✏✾✏✞ ☎ � � ✞ ✾ ✦ ✞ ✑ ✠✭✠ then give ✞✜✲ ☎ ✞ ✷ ✳✵☎✟✞ ✑ ✠ ✆ ✑ ✆ ✕✽✠
else goto ✞ ☎ � � ✞ ✾ ✦ ✞ ✑ ✠ ✆ ✕✽✠ ✁ ✂☞✕ ✍ ✍ �✆✞✁�✄✂✆☎✙✞✯✕ ✍ ✠✭✠ ✁ give ✞✜✲ ☎ ✞ ✷ ✳✵☎✟✞ ✑ ✠ ✆ ✑ ✆ ✕ ✍ ✠ ✎

endProc

The procedures goto ✞ ✷✖✑✛✆ ✕✽✠ and goBetween are the same as in Example 2.1.2.

A Prolog implementation of this delivery domain including all Golog procedures mentioned

above is provided in Appendix C.6. Charged with executing procedure deliver, the BestDo

interpreter returns the following optimal policy (assume that the horizon equals 5):

pickup(mailTo(joe),0) :

startGo(mo,office(joe),0) : endGo(mo,office(joe),100) :

if(robotLoc(office(joe)), /* THEN */ give(mailTo(joe),joe,100) :



CHAPTER 5. DECISION-THEORETIC, HIGH-LEVEL PROGRAMMING. 182

if(hasMail(joe), nil, ?(-(hasMail(joe))) : nil),

/* ELSE */ ?(robotLoc(hall)) : give(mailTo(joe),joe,20) : stop)

The expected utility of this policy is 28.215 and the probability of successful termina-

tion is 0.99. It takes 0.02 seconds to compute this policy.16 Note that the stochastic action

✪ ✞ � ✦ ✞✜✲ ☎ ✞ ✷ ✳✵☎✟✞ �☞☎ ✦ ✠ ✆ � ☎ ✦ ✆✼❋ �●✠ is followed by Stop in this policy, because both outcomes of the

action are not possible in the situation when the robot got stuck in the hall. This conforms with

the specification of BestDo given in the previous section (see also the precondition axioms for

giveS and giveF).

We contrast the optimal policy above with the optimal policy that BestDo interpreter would

compute if it were given the Golog program ✂ ✞ ✑ ☛
people ✠ ✂☞✕ ✓ ✍ ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞✒✑ ✆ ✕✽✠ ✎✯✠ :

pickup(coffee, 55) :

startGo(mo,office(ann),55) : endGo(mo,office(ann),100) :

if(robotLoc(of(ann)), /* THEN */ give(coffee,ann,100) :

if(hasCoffee(ann), nil, ?(-(hasCoffee(ann))) : nil),

/* ELSE */ ?(robotLoc(hall)) : give(coffee,ann,75) : stop)

The expected utility of this policy is 23.5125, the total probability of successful termination

is 0.99. The computation time is 0.02 seconds.

It is important to compare policies computed by the ✛ ✦ ✕ ✕ ✤ ☎ interpreter with optimal poli-

cies that are computed by exact algorithms. The underlying MDP for this relatively sim-

ple domain grows rapidly as the number of people requiring deliveries increases. The state

space is characterized by ground fluents such as mailPresent ✞ person ✆ ✘ ✆ ✕✡✠ , robotLoc ✞ ✷ ☎★✾ ✆ ✕✡✠ ,
� ☎ ✕ ✁ ☎ ✞ ✷ ✞ person ✆ ✕✡✠ , and so on. Even restricting the MDP to one piece (or bundle) of mail

per person, and ignoring the temporal aspect of the problem), in a domain with
✁

people, our

MDP has a state space of size ✖❀✞ ❋ � ✂
�

✁ ✁ ✠ when formulated in the most appropriate way. In-

deed, the robot can be in any of ✞ ✁ ✆ ❋ ✠ locations (
✁

employees, hall and the main office), it

can be going between any pair of locations (these contribute ✖❀✞ ✁ ✁ ✠ different ground instances

of ✬✏☎ ✂ ☎ ✕✂✁ ☎★✾ and ✪✟☎ ✞ ✘ ✪ ), any subset of people can request coffee (giving the factor ❋ ✂
), any

subset of mail packages can be present (giving the factor ❋
✂

), the robot may carry nothing or

carry any subset of packages addressed to any subset of people (this contributes the factor ❋
✂

)

and any subset of
✁

people has or does not have mail and has or does not have coffee (this

contributes the factor ❋ ✂
�●❋ ✂

). The state space complexity, ✂ ❋
✂

�

✁ ✁

, grows exponentially in

16All programs mentioned in this chapter run on the same laptop computer using Linux with 1Gb of RAM and

1.6Gz processor to provide a fair comparison of computation time.
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✁
, and in the case considered above, when

✁ ❃ ✂ we have about ❉ �
�

states. To compute an

exact optimal policy for this MDP we run SPUDD using a straight-forward translation of this

domain into algebraic decision diagrams with the following simplifications. Because Bill has

no requests in our example and our primary interest is an optimal policy that can be executed

from the initial state that corresponds to � ✁ , we consider a subset of the original state space and

restrict our attention to ground instances of fluents and actions only for two people: Joe, Ann.

Instead of two primitive actions ✕ ✕ ☎ ✬✡✕ ✁✙☎ and ✦ ✘☞✄✂✁ ☎ , only one primitive action ✪✟☎✡✕ ☎✟✞ ☎ � � ✞ ✾ ✦ ✞✒✑ ✠✭✠
is considered. These simplifications can only make the task of computing an optimal policy

for SPUDD easier and effectively reduce the number of states down to about ✆ � ❉ �
✁

states and

reduce the number of ground instances of actions for SPUDD. In total, our representation has

11 binary-valued features, 1 multi-valued feature (robot location) and 13 primitive actions (see

Appendix C.4 for a copy of the ADD-based representation of this example.) The computation

of an optimal policy for this MDP with horizon 5 takes 0.1 seconds which is longer in compar-

ison with 0.02 seconds required for ✛ ✦ ✕ ✕ ✤ ☎ to compute a policy optimal with respect to given

constraints expressed by the Golog program considered above. In the case of infinite horizon,

the value of the initial state is 88.1 and an optimal policy commands to load both mail and

coffee, go to Ann, give her coffee, then go to Joe and give him mail.

Notice that the Golog program restricts the policy that the robot can implement, leaving

only one choice (the choice of person to whom to deliver an item) open to the robot and the

rest of the robot’s behavior is fixed by the program. Furthermore, programs of this type are,

arguably, quite natural. However, it is important to note that there is a price to pay if we want to

use this program when we search for an optimal policy in the decision tree. Indeed, structuring

a program this way may, in general, preclude optimal behavior. For instance, by restricting

the robot to serving one person at a time, carrying two items at once won’t be considered. If

Ann and Joe share an office and the horizon is 7, then an obvious optimal policy is pickup

mail (assume that the robot can pick up all packages at once), pickup coffee at 55, go to the

office and give delivered items to Ann and Joe at 100. Hence, the robot loses almost half of its

accumulated expected reward because the program does not allow us to consider more flexible

policies. But in circumstances where carrying several items is impossible, the programmer

allows optimal behavior and describes for the robot how to deliver an item, leaving for the

robot to decide only on the order of deliveries. Even where overlapping deliveries may be

optimal, the “nonoverlapping” program may have sufficiently high utility that restricting the

robot’s choices is acceptable (and allows the MDP to be solved more quickly by eliminating

large parts of the search space).
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In the following section we continue our discussion and numerical comparison of comput-

ing exact optimal policies by SPUDD with computing policies optimal with respect to con-

straints provided by a Golog program. Specifically, we are interested in comparison of time

required for computing policies in both cases and quality of policies computed in both cases

(in terms of values of the initial states delivered by policies). In general case, we can expect

that policies constrained by Golog programs will not be exactly optimal, but we hope that they

will be not too far from optimal policies and they will be computed faster than exact optimal

policies.

5.5 A time and quality comparison of DTGolog with SPUDD

In this section, we consider a well known FACTORY example. This example received signif-

icant attention in [Hoey et al., 1999, Hoey et al., 2000], where it was used to compare com-

putation times required by SPUDD with running times demonstrated by a structural policy

iteration implementation [Boutilier et al., 1995, Dearden and Boutilier, 1997]. We would like

to use the same benchmark domain also because this domain has natural constraints on actions

that can be easily expressed in a Golog program.17

A FACTORY problem can be easily expressed using the situation calculus based repre-

sentation introduced in this chapter. There are six stochastic agent actions that can be applied

to parts that require different types of processing. Five of them have only two outcomes (ac-

tion succeeds or fails): ✕ � ☎ ✑ ✦ ✞ ✢ ✠ , � ☎ ✘☞✄ ✁ ☎ ✞ ✘ ✕ ✞ ✢ ✠ , ✑ ☎ ✷ ✞ ✕ �✌✞ ✢ ✠ , ✄●✬ ✞ ✷✜✷ ✞ ✢ ✠ , ✞ ✦ ✷ ✄ ✞ ✢ ✆ ✣✮✠ , and one

action ✕✭✑✔✬ ☎ ✣ ✁ ☎ ✞ ✘ ✕ ✞ ✢ ✠ has four outcomes available for nature (they represent different quality

of painting). In addition, there are three deterministic agent actions: ✄✝✞ ✑✂✞ ✢ ✠ (paint ✢ by dipping

it), ✂ ☎ ✷ ✕ ✞ ✢ ✆ ✣✩✠ , ✪ ✷ ✓ ✦ ✞ ✢ ✆ ✣✩✠ (connect parts ✢ and ✣ together by bolting them or by gluing them).

To represent state features of this domain, it is sufficient to introduce 23 fluents. The most

important are the following fluents.

✎ ✾ ☎★✘ ✘ ✦ ✾✥✕ ✦ ✄ ✞ ✢ ✆ ✣ ✆ ✕✡✠ , ✾ ☎✡✘✻✘ ✦ ✾✼✕ ✦ ✄ � ✦ ✷✫✷ ✞ ✢ ✆ ✣ ✆ ✕✡✠ : parts ✢ and ✣ can be simply connected in ✕ ,

e.g., by gluing, or well connected, e.g., by welding them. Well connected parts remain

well connected unless the agent shapes one of them.

✎ ✑ ☎ ✞ ✘ ✕ ✦ ✄ ✞ ✢ ✆ ✕✡✠ , ✑ ☎ ✞ ✘ ✕ ✦ ✄ � ✦ ✷✜✷ ✞ ✢ ✆ ✕✡✠ : a part ✢ can be painted well in ✕ or not well. A

painted part remains painted unless it is shaped, polished or drilled.

17Data for all six ADD-based FACTORY problems of increasing complexity are freely available for download

from the Web page at: www.cs.ubc.ca/spider/staubin/Spudd/index.html
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✎ ✕ � ☎ ✑ ✦ ✄ ✞ ✢ ✆ ✕✡✠ , a part ✢ can be shaped if the stochastic agent action ✕ � ☎ ✑ ✦ ✞ ✢ ✠ succeeds. A

shaped part remains shaped unless it is (or a part to which it is connected) is drilled or

shaped.

✎ ✕ ✲ ☎★☎✡✕ � ✦ ✄ ✞ ✢ ✆ ✕✡✠ , a shaped part ✢ becomes smoothed if the stochastic agent action ✑ ☎ ✷ ✞ ✕ �✌✞ ✢ ✠
succeeds. A part remains to be smoothed in the next situation unless it is (or a part to

which it is connected) is shaped or drilled.

✎ ✄●✬ ✞ ✷✫✷✫✦ ✄ ✞ ✢ ✆ ✕✡✠ , a part ✢ can be drilled if the agent has a drill and bits.

All other fluents are predicates with situation ✕ as the only argument and their truth value

remains the same in the successor situation ✄✆☎✩✞ ☎ ✆ ✕★✠ as it was in ✕ , no matter what action

the agent did. For example, there are fluents ✕✡✣ ✞ ✷✫✷✜✦ ✄ ✁ ☎✄✂ ☎★✓ ✬ ✁ ✬ ✦ ✕ ✦ ✘ ✕ ✞ ✕✡✠ , � ☎ ✕✡�✻✑✔✬ ☎ ✣ ✁ ✓ ✘✚✞ ✕✡✠ ,
� ☎ ✕ ✁ ✷ ✓ ✦ ✞ ✕✡✠ , � ☎ ✕ ✛✢☎ ✷ ✕ ✕✝✞ ✕✡✠ , � ☎ ✕ ✤ ✬ ✞ ✷✜✷ ✞ ✕★✠ , � ☎ ✕ ✕✵✬✿✾ � ✦ ✷ ✄ ✦ ✬✩✞ ✕✡✠ , � ☎ ✕✡�✻✑ ☎ ✕ � ✦ ✷ ✄ ✦ ✬✩✞ ✕✡✠ , etc. All

fluents are characterized by the appropriate successor state axioms, possibility of determin-

istic (the agent’s or nature’s actions) is specified by the precondition axioms and probabilities

of nature choices are characterized by definitions. All logical descriptions follow ADD-based

representations of FACTORY problems. Because in the domain of FACTORY problems there

are either two parts or three parts (mentioned in ADD representations of factory5.dat and fac-

tory6.dat problems only), this can be reflected in the predicate logic axiomatization by using

the domain closure axiom:

☎ ✂ �✝✦ ✾✥✕ ✞ ✢ ✠ ✒ ✢ ❃ ✕ ✝ ✢ ❃❅✛ ✝ ✢ ❃ ✂

A Prolog implementation of the situation calculus representation of the factory6.dat (most

complex) problem is attached in Appendix C.5. All other simpler problems are represented

by a simplified subsets of this problem. There are minor differences in the two representa-

tions. More specifically, because the situation calculus representation is using action terms

✞ ✦ ✷ ✄ ✞ ✢ ✆ ✣✮✠ and ✪ ✷ ✓ ✦ ✞ ✢ ✆ ✣✮✠ , where the variables ✢ and ✣ vary over objects ✄ ✕ ✆ ✛ ✆ ✂ ✆ allowed

in the 6th factory domain, the logical representation allows several additional actions (e.g.,

✞ ✦ ✷ ✄ ✞✔✕ ✆ ✂ ✠ , ✞ ✦ ✷ ✄ ✞ ✛ ✆ ✂ ✠ , ✪ ✷ ✓ ✦ ✞✔✕ ✆ ✂ ✠ , ✪ ✷ ✓ ✦ ✞✜✛ ✆ ✂ ✠ ) that are not allowed and not considered in

the factory6.dat example. A reward function in each Prolog implementation is modeled after

the corresponding reward function in an ADD-based problem.

The following Golog program expresses natural constraints in this domain. It consists of

the sequential composition of two different while-loops. The first while-loop makes sure that

parts are shaped and connected. First, we check whether there is a non-shaped part, if yes, it

gets shaped; otherwise, we pick up two parts that are not connected and either drill and bolt
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them or (if a skilled welder is present) weld them (if there is no skilled welder, we glue parts).

The second while-loop commands to polish parts and paint them.

proc ✑✔✬✏☎★✾ ✦ ✕ ✕ ✁ ☎ ✬✡✕ ✕
while ✞ ✒ ✢ ✆ ✣ ✓ ☎ ✂ �✆✦ ✾✥✕ ✞ ✢ ✠ ☛ ☎ ✂ �✝✦ ✾✥✕ ✞ ✣✩✠ ☛ ✢ ✆❃ ✣ ☛ ✑ ✞ ✕ � ☎ ✑ ✦ ✄ ✞ ✢ ✠ ☛ ✾ ☎✡✘✻✘ ✦ ✾✼✕ ✦ ✄ � ✦ ✷✫✷ ✞ ✢ ✆ ✣✩✠✭✠☛✠ do

if ✒ ✂ ✞✜☎ ✂ �✆✦ ✾✼✕ ✞ ✂ ✠ ☛ ✑ ✕ � ☎ ✑ ✦ ✄ ✞ ✂ ✠✭✠
then ✂ ✂✎✓ ✞❂☎ ✂ �✆✦ ✾✥✕ ✞ ✂ ✠ ☛ ✑ ✕ � ☎ ✑ ✦ ✄ ✞ ✂ ✠✭✠ � ✁ ✕ � ☎ ✑ ✦ ✞ ✂ ✠✔✠

else ✂✙✢ ✓ ✞ ✒✟✞ ✓ ☎ ✂ �✆✦ ✾✼✕ ✞ ✢ ✠ ☛ ☎ ✂ �✆✦ ✾✥✕ ✞✠✞ ✠ ☛ ✢ ✆❃ ✞ ☛ ✑ ✾ ☎✡✘✻✘ ✦ ✾✼✕ ✦ ✄ � ✦ ✷✫✷ ✞ ✢ ✆ ✞ ✠✽✠ � ✁
✂ ✣ ✓ ✞✜☎ ✂ �✆✦ ✾✥✕ ✞ ✣✩✠ ☛ ✢ ✆❃ ✣ ☛ ✑ ✾ ☎★✘ ✘ ✦ ✾✥✕ ✦ ✄ � ✦ ✷✫✷ ✞ ✢ ✆ ✣✮✠✽✠ � ✁

✞ ✄●✬ ✞ ✷✫✷ ✞ ✢ ✠ ✁ ✄✆✬ ✞ ✷✫✷ ✞ ✣✩✠ ✁ ✂ ☎ ✷ ✕ ✞ ✢ ✆ ✣✮✠
✄

if � ☎ ✕✡� ✣ ✞ ✷✫✷✫✦ ✄ � ✦ ✷ ✄ ✦ ✬ then ✞ ✦ ✷ ✄ ✞ ✢ ✆ ✣✮✠ else ✪ ✷ ✓ ✦ ✞ ✢ ✆ ✣✩✠✌✠
✠☛✠

endWhile ;

while ✞ ✒ ✢ ✓ ☎ ✂ �✝✦ ✾✥✕ ✞ ✢ ✠ ☛ ✑ ✑ ☎ ✞ ✘ ✕ ✦ ✄ � ✦ ✷✫✷ ✞ ✢ ✠❄✠ do

if ✒ ✂✎✓ ✞ ☎ ✂ �✝✦ ✾✥✕ ✞ ✂ ✠ ☛ ✑ ✕ ✲ ☎★☎✡✕ � ✦ ✄ ✞ ✂ ✠✽✠
then ✂ ✂✎✓ ✞✜☎ ✂ �✆✦ ✾✥✕ ✞ ✂ ✠ ☛ ✑ ✕ ✲ ☎✏☎ ✕ � ✦ ✄ ✞ ✂ ✠✽✠ � ✁ ✑ ☎ ✷ ✞ ✕ �✂✞ ✂ ✠✭✠

else ✂ ✢ ✓ ✞ ☎ ✂ �✆✦ ✾✥✕ ✞ ✢ ✠ ☛ ✑ ✑ ☎ ✞ ✘ ✕ ✦ ✄ � ✦ ✷✫✷ ✞ ✢ ✠✽✠ � ✁
if ✕✡✣ ✞ ✷✫✷✫✦ ✄ ✁ ☎✄✂ ☎✡✓ ✬ ✁ ✬ ✦ ✕ ✦ ✘ ✕ then � ☎ ✘✻✄ ✁ ☎ ✞ ✘ ✕ ✞ ✢ ✠ else ✞ ✕✭✑✔✬ ☎ ✣☞✞ ✢ ✠ ✄ ✄✂✞ ✑✂✞ ✢ ✠✽✠
✠

endWhile

endProc

Results, displayed in Table 5.1, are presented for ✛ ✦ ✕ ✕ ✤ ☎ running on six FACTORY ex-

amples, and for SPUDD running on five. We could not complete computing an optimal policy

using SPUDD for the largest factory6.dat example on our machine after running it continu-

ously for 12 hours. However, [Hoey et al., 2000] reports 3676 seconds running time for this

example on Sun SPARC Ultra 60 running at 300Mhz with 1Gb of RAM (apparently, using a

different implementation of SPUDD; we used the version 3.2.2). For all other examples, in

comparison with running times reported in [Hoey et al., 2000], running SPUDD on our ma-

chine takes less time (by the factor 2 or 3) which is not surprising giving that our machine has

a faster CPU (and the same amount of RAM).

SPUDD was run using binary-valued variables only. Note that both SPUDD and ✛ ✦ ✕ ✕ ✤ ☎
interpreter solve a finite horizon optimization problem. We tried each example with the value

of horizon ✶ ❃ ❉ ❋ (with an exception of the factory6.dat example, where ✶ ❃ ❉✁✄ , because this

example involves more objects and primitive actions and requires a longer horizon to process
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Ex. State space size SPUDD BestDo

vars states time (sec) value ( �☞✁ ) time (sec) value ( �☞✁ ) succ. prob.

f 17 ❉ ✓ ✂✩❉✡✌ ❉ �
�

2 40.05 2 12.48 0.64

f0 19 ✄ ✓ ❋ ✄ ✌ ❉ �
�

3 40.05 2 12.48 0.64

f1 21 ❋ ✓ ❉ � ✌ ❉ �
�

6 40.05 2 12.48 0.64

f2 22 ✄ ✓ ❉ ✆ ✌ ❉ �
�

7 40.05 3 12.48 0.64

f3 25 ✂ ✓ ✂ � ✌ ❉ �
�

21 61.17 17 20.37 1.0

f4 28 ❋ ✓ � ✆ ✌ ❉ �
✁

49 61.17 19 20.37 1.0

f5 31 ❋ ✓ ❉✁✄ ✌ ❉ �
✂

110 20.74 20 11.31 1.0

f6 35 ✂ ✓ ✄ ✄ ✌ ❉ �
✍ ✁

–?– –?– 304 22.98 1.0

Table 5.1: Results for FACTORY examples.

all objects). Running times (rounded to the nearest integer value) are shown both for SPUDD

(version 3.2.2) and ✛ ✦ ✕ ✕ ✤ ☎ .18 Note that implementation details of the SPUDD algorithm

(value iteration with ADDs) and of the ✛ ✦ ✕ ✕ ✤ ☎ interpreter, as well as different programming

languages used in implementations (C++, in the case of SPUDD, and Prolog, in the case of

✛ ✦ ✕ ✕ ✤ ☎ ) somewhat cloud comparisons of running times. Nevertheless, data in the table give

certain indications about efficiencies of these two particular implementations. The table in-

cludes also values of the initial state relative to optimal policies computed by SPUDD and

relative to policies computed by ✛ ✦ ✕ ✕ ✤ ☎ . The last column includes success probabilities for

optimal policies computed by ✛ ✦ ✕ ✕ ✤ ☎ . These probabilities are 0.64 because in the examples

f, f0, f1 and f2 in this domain the primitive action ✞ ✦ ✷ ✄ ✞ ✢ ✆ ✣✮✠ is not available and parts can

be connected only by actions ✪ ✷ ✓ ✦ ✞ ✢ ✆ ✣✩✠ or ✂ ☎ ✷ ✕ ✞ ✢ ✆ ✣✮✠ . The latter assures that parts will be

well connected and for this reason it is better than the former. Because the action ✂ ☎ ✷ ✕ ✞ ✢ ✆ ✣✩✠
is possible only if both parts have been already drilled and the stochastic action ✄●✬ ✞ ✷✫✷ ✞ ✂ ✠ suc-

ceeds only with the probability 0.8, the action ✂ ☎ ✷ ✕ ✞ ✢ ✆ ✣✩✠ achieves a desired result only with

the probability 0.64. (It might happen that the first while-loop, it makes sure that parts are

connected, will be terminated at the decision epoch 12 before it achieves the intended effect.)

In the case of examples, f3, f4, f5 and f6 the success probability is 1.0 because both outcomes

of the stochastic action ✞ ✦ ✷ ✄ ✞ ✢ ✆ ✣✩✠ are always possible (if there is a skilled welder) without

preliminary processing of parts ✢ and ✣ , and this action is included in the computed optimal

18For an infinite horizon optimization problem with the discount factor 0.9 and tolerance 1.8 the running times

for SPUDD are about two times longer; it takes SPUDD 18 iterations to converge in this case.
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policy.

In addition, it is interesting to compare data in our table with data in [Hoey et al., 2000],

where it is reported that flat (unstructured) value iteration took 895 and 4579 seconds when

it was run on factory.dat and factory0.dat examples, respectively. These two examples have

smallest state spaces; memory limitations precluded completion of the flat algorithm for more

complex examples.

Our comparison demonstrates that there is a loss in terms of the value (of an initial state)

delivered by an optimal policy computed by DTGolog in comparison to the value (of the same

initial state) delivered by an optimal policy computed by SPUDD. This loss is what we expected

because our Golog program limits the set of policies that can be compared and ✛ ✦ ✕ ✕ ✤ ☎ finds

a policy that is optimal with respect to the constraints provided by the program, but SPUDD

computes an exact optimal policy (without any constraints). Indeed, as we have mentioned in

Section 2.4.2, the value
� ✞ �☞✁ ✠ of the root �✻✁ of a decision tree is equal to the value

� ❁ ✞ �✻✁✥✠
computed using value iteration (2.25). In an unconstrained search tree, all actions possible in

�✻✁ (and in subsequent reachable states) must be taken into account to compute the value of �☛✁ .
This computation would correspond to using ✛ ✦ ✕ ✕ ✤ ☎ to compute a value of �✂✁ when a Golog

program is simply a nondeterministic choice between all actions available in the application

domain. Because our Golog program limits the number of actions that can be executed in �☛✁
and in subsequent situations, and, as a consequence, fewer states contribute to the value of

each action (given by the expected value of its successor states when averaging operation is

applied), the resulting value of
� ✞ � ✁ ✠ is less than it would be if all branches of the search tree

with all leaves were taken into account (recall that values of leaves are determined by the reward

function). However, as far as the computation of an optimal policy is concerned, this loss in the

absolute value of
� ✞ �☞✁ ✠ is less critical if actions that are optimal in the unconstrained decision

tree remain optimal in the partial tree circumscribed according to the program constraints.

Because an optimal action in each state is determined by the maximization operation (both in

the equation (2.25) and in the semantics of ✛ ✦ ✕ ✕ ✤ ☎ ), absolute values are less important than the

fact that the same action yields the maximum values in both cases (the values themselves are

different for reasons that we just explained). A detailed analysis of an optimal policy computed

by SPUDD (using a provided graphical tool) and a policy computed by ✛ ✦ ✕ ✕ ✤ ☎ reveals that

the policies are identical on the subset of the state space that is reachable from �✂✁ (by using

the actions that agree with constraints imposed by the Golog program). In other words, a

loss in terms of value
� ✞ �☞✁✼✠ does not have dramatic effect on an optimal policy itself. Table

(5.1) demonstrates also that the difference between values in both cases is accompanied by a
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decrease in terms of computation time required to determine an optimal policy. Despite the

drawbacks of an off-line decision tree search, this effect is achieved because the benchmark

domain has natural constraints on actions. These natural constraints are easy to exploit in a

simple Golog program to achieve performance comparable with performance of a state-of-the

art MDP solver.

Our experimental results indicate that further effort in comparison of policies computed by

✛ ✦ ✕ ✕ ✤ ☎ with policies computed by SPUDD would be useful. This effort should concentrate

on those domains with many different stochastic actions which have natural constraints on the

order when these actions can be executed (because the natural structure of these domains can

be exploited in Golog programs). One possible example of an application domain of this type is

the robots with multiple links such that motion of each link can be characterized by a stochastic

action. Direct programming of these robots is difficult because they have a large number of

degrees of freedom and choosing correct numerical values for each individual motion is an

error prone and cumbersome process. Solving an MDP problem for these robots is usually

impossible (or very difficult), because of the size of the state and action spaces. On the other

hand, DTGolog can be useful, because the coordinated motion of all these links usually has

a natural structure that can be easily programmed, but fine tuning of individual motions may

require search in the space of parameters associated with each motion. In the next section, we

describe our experience with robot programming for the case of a mobile robot that has a few

degrees of freedom, but nevertheless, this robot solves an MDP problem with a very large state

space.

5.6 Robot Programming: Our Experience and Advantages

In this section we discuss our implementation of DTGolog on a mobile robot B21 (see Section

2.5 for details). The robot navigates using BeeSoft [Burgard et al., 1998, Thrun et al., 1999], a

software package that includes methods for map acquisition, localization, collision avoidance,

and on-line path planning.

A key advantage of DTGolog as a framework for robot programming and planning is its

ability to allow behavior to be specified at any convenient point along the programming/planning

spectrum. By allowing the specification of stochastic domain models in a declarative language,

DTGolog not only allows the programmer to specify programs naturally (using high-level robot

actions as the base level primitives), but also permits the programmer to leave gaps in the pro-

gram that will be filled in optimally by the robot itself. This functionality can greatly facilitate
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the development of complex robotic software. The planning ability allows for the scheduling

of complex behaviors that are difficult to preprogram. It also obviates the need to reprogram a

robot to adapt its behavior to reflect environmental changes or changes in objective functions.

Programming, in contrast, is crucial in alleviating the computational burden of uninformed

planning.

To illustrate these points, we have developed a program for our mobile delivery robot,

tasked to carry mail and coffee in our office building. The task of DTGolog is to schedule the

individual deliveries in the face of stochastic action effects arising from the fact that people

may or may not be in their office at the time of delivery. It must also contend with different

priorities for different people and balance these against the domain uncertainty.

Suppose that the robot’s objective function is given by a reward function that associates

an independent, additive reward with each person’s successful delivery. The relative prior-

ity associated with different recipients is given by this function. For example, we might use

reward ✞ � ✞ ✕ ✞ ✕ ☎✡✬ ✆ ✕ ✆ ✕✡✠✟❃ ❉☎✄ ✝ ✕ ✂ ❋ � and reward ✞ ✸ ☎ ✣ ✆ ✕ ✆ ✕✡✠✝❃ ✂ � ✝ ✕ ✂✟❉ � , where the initial reward

(30) and rate of decrease (1/10) indicates relative priority.

Our robot is provided with the following simple DTGolog program:

while ✞ ✒✏✑ ✆ ✘ ✓ ✑ ☎ ✕ ✕ ✦ ✲✢✑✮✕ ✦ ✄ ✞ ✑ ✠ ☛ mailPresent(p,n) ✠
✂ ✞ ✑ ☛ ✑ ✦ ☎✼✑ ✷✜✦ ✠

✞ ✑ ☎ ✕ ✕ ✦ ✲✢✑✮✕ ✦ ✄ ✞✒✑ ✠ ☛ ✒✩✘ mailPresent(p,n) ✠ � ✁❄✄ ✦ ✷ ✞ � ✦ ✬✡✳✵☎✩✞✒✑ ✠☛✠
endWhile

Intuitively, this program chooses people from the finite range people for mail delivery and

delivers mail in the order that maximizes expected utility (coffee delivery can be incorporated

readily). The procedure deliverTo is a conditional sequence of actions similar to the procedures

considered in Section 5.4. But this sequence is a very obvious one to hand-code in our domain,

whereas the optimal ordering of delivery is not (and can change, as we’ll see). We have in-

cluded a guard condition ✑ ☎ ✕ ✕ ✦ ✲✢✑✮✕ ✦ ✄ ✞ ✑ ✠ ☛ ✒✩✘ mailPresent(p,n) in the program to prevent the

robot from repeatedly trying to deliver mail to a person who is out of her office. This program

constrains the robot to just one attempted mail delivery per person, and is a nice example of

how the programmer can easily impose domain specific restrictions on the policies returned by

a DTGolog program.

Several things emerged from the development of this code. First, the same program deter-

mines different policies—and very different qualitative behavior—when the model is changed

or the reward function is changed. As a simple example, suppose that it takes 45 units of time

to go from the main office to the visitor’s office and it takes 110 units of time to travel from
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the main office to the office of Ray. If the probability that Ray (high priority) is in his office

is � ✓ ✆ , his delivery is scheduled before visitor’s (low priority) if the visitor is in his office with

the probability 0.6. The robot gets higher reward if it delivers mail first to Ray at 110, returns

to the main office at 220 and delivers mail to the visitor at 265.19 But when the probability that

Ray (high priority) is in his office is lowered to � ✓ � , visitor’s delivery is scheduled beforehand:

the robot delivers mail first to the visitor at 45 and later to Ray at 200.20 Such changes in the

domain would require a change in the control program if not for the planning ability provided

by DTGolog. The computational requirements of this decision making capability are much

less than those should we allow completely arbitrary policies to be searched in the decision

tree.

Full MDP planning can be implemented within DTGolog by running it with the program

that allows any (feasible) action to be chosen at any time. This causes a full decision tree to

be constructed. Given the domain complexity, this unconstrained search tree could only be

completely evaluated for problems with a maximum horizon of seven (in about 1 minute)—

this depth is barely enough to complete the construction of a policy to serve one person. With

the program above, the interpreter finds optimal completions for a 3-person domain in about 1

second (producing a policy with success probability 0.94), a 4-person domain in about 9 sec-

onds (success probability 0.93) and a 5-person domain in about 6 minutes (success probability

0.88). The latter corresponds to a horizon of about 30; clearly the decision tree search would

be infeasible without the program constraints (with size well over ✄
✁ ✁

). We note that the MDP

formulation of this problem, with 5 people and 7 locations, would require more than 4 billion

states (using the formula ✂ ❋ ✂
�

✁ ✁

from Section 5.4). So it would be difficult to use dynamic

programming to solve this MDP without program constraints (or exploiting some other form

of structure).

These experiments illustrate the benefits of integrating programming and planning for mo-

bile robot programming. We conjecture that the advantage of our framework becomes even

more evident as we scale up to more complex tasks. For example, consider a robot that serves

dozens of people, while making decisions as to when to recharge its batteries. Mail and cof-

fee requests might arrive sporadically at random points in time, not just once a day (as is the

case for our current implementation). Even with today’s best planners, the complexity of such

tasks is well beyond what can be tackled in reasonable time. DTGolog is powerful enough

19The accumulated expected reward in this case is 16.1 assuming that the probability of the successful arrival

is 0.99 and
✂✁� �✄✂

.
20The total expected reward for this optimal policy is 13.4 .
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to accommodate such scenarios. If supplied with programs of the type described above, we

expect DTGolog to make the (remaining) planning problem tractable—with minimal effort on

the programmer’s side.

5.7 Discussion

This chapter is partially based on our paper [Boutilier et al., 2000a]. Our representation is re-

lated to the representations proposed in [Bacchus et al., 1995, Bacchus et al., 1999, Poole, 1997].

In particular, our decomposition of stochastic actions into deterministic nature’s choices with

associated probabilities inherits ideas formulated in [Bacchus et al., 1999]. Our definition 5.2.1

of a policy is slightly different from that of (Definition 12.5.3) in [Reiter, 2001a]: we allow in

senseEffect ✞ ☎ ✠ any sequences of sensing actions, not just a single sensing action. In addition,

our sense conditions are arbitrary situation suppressed sentences. Our implementation of the

full observability assumption also has minor differences from [Reiter, 2001a] (see Definition

12.5.4, p. 369), where the agent uses one of the stochastic sense actions to find an outcome of

the most recent stochastic physical action and it is assumed that sensing is accurate: the agent

senses exactly the outcome of its stochastic action. In our case, we assume that sense actions

included in senseEffect ✞ ☎ ✠ procedure return accurate data at the run time, and because sense ac-

tions occur in the successor state axioms (see Chapter 3), the agent can find the actual outcome

by evaluating one or several sense conditions. [Poole, 1997] embeds probability and decision

theory into the situation calculus, but his ontology is substantially different from other pro-

posals introducing stochastic actions into the situation calculus. In particular, the framework

proposed by Poole does not decompose nondeterministic actions into a set of deterministic ac-

tions that nature can perform, rather his primitive actions are typically nondeterministic, and

correspond to those actions that the agent can perform (but with nondeterministic outcomes

chosen by nature). These nondeterministic actions are mentioned in the situation terms and

they also occur in the successor state axioms; for this reason, writing axioms can be somewhat

problematic.

[Grosskreutz, 2000, Grosskreutz and Lakemeyer, 2001] consider probabilistic extensions

to Golog differently from our approach.

There are several proposals on using search to solve MDPs in cases when the state space is

very large, e.g., [Barto et al., 1995, Dearden and Boutilier, 1997, Koenig and Simmons, 1995],

these papers use heuristic value function estimates and others. We reviewed the related liter-

ature in the end of Section 2.4.1. These proposals demonstrate that interleaving decision-
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theoretic planning with execution provides significant computational advantages in comparison

to purely offline planning. However, ✛ ✦ ✕ ✕ ✤ ☎ does offline planning only. In the next chapter,

we consider another interpreter that combines offline planning with online execution.

Recent attempts to deal with the large state space have turned to principled ways of using

temporally extended partial policies, where decisions are not required at each decision epoch,

but rather invoke the execution of activities extended over several decision epochs and these

activities follow their own policies until termination. This leads naturally to hierarchical control

architectures and learning algorithms.

Since early days of AI, the idea of using more abstract actions to facilitate planning has

been in a focus of AI research [Fikes et al., 1972, Sacerdoti, 1974]. The main idea is to aug-

ment the primitive actions available to solve a given planning task with macro-actions, open-

loop sequences of actions that can achieve some subgoal. A related issue is learning useful

macro-operators, which can be subsequently re-used to solve different (but related) planning

problems [Korf, 1985a, Korf, 1985b, Minton, 1988]. In particular, Korf introduced the notion

of independent and serializable subgoals, which provide a decomposition of a planning prob-

lem. Each subgoal can be solved individually, and then the corresponding macro-operators can

be combined by sequencing to solve the larger planning problem. Korf proposed a generate-

and-test approach for constructing the macro-operators.

Inspired by research on hierarchical planning, [Singh, 1992a, Singh, 1992b] consider a

class of sequential decision tasks, called composite sequential decision tasks, in which each

of a sequence of subgoals must be achieved in turn. Compositionally structured tasks provide

the possibility of sharing knowledge across the many tasks that have common subtasks and

lead to a natural abstraction hierarchy consisting of macro operators. This is a special case of

an MDP that may be decomposed into independent subproblems, but it is an interesting class

because planning at higher levels of abstraction does not result in sub-optimal policies.

In a more general setting, [Dean and Lin, 1995a, Dean and Lin, 1995b] investigate methods

that given a partition of the state space into several regions21 can decompose a large decision-

theoretic planning problem into a number of local problems, solve the local problems in each of

these regions, and then combine the local solutions to generate a global solution. The authors

present an algorithm for combining solutions to subproblems in order to generate an optimal so-

lution to the global problem. This algorithm, called iterative approximation approach, relies on

constructing an abstract MDP by considering individual regions as abstract states and their can-

21It is assumed that a domain expert provides a natural partition of the state space.
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didate local policies as abstract actions. Building on the idea of Dantzig-Wolfe decomposition

principle [Dantzig and Wolfe, 1960], the proposed algorithm iteratively discards the old local

policy (that was considered optimal in a region on a previous iteration), and computes a new

policy for each region based upon the abstract problem’s estimates for the values of “impor-

tant” states. As a result, each iteration leads to an improvement of a global abstract MDP. This

algorithm is based on identification of an important set of exit periphery states for each region

(these are states outside the region that can be reached in a single transition from states inside

the region) and on identification of a set of boundary states for each region (these states are on

the boundary of the region, from each of them the agent can move outside the region in a single

transition). The states in the exit periphery of regions from the provided partition are important

because they describe communication links between regions in the partition. Values of states

in the exit periphery can be considered as a summary of interactions between regions. These

values are instrumental to determine local policies (abstract actions) which in turn determine

a global policy on the entire state space. The iterative algorithm successively modifies values

of states from the exit periphery on each iteration and converges to an optimal global policy in

a finite number of iterations. Ideas developed in [Dean and Lin, 1995a, Dean and Lin, 1995b]

influenced several subsequent developments of methods designed to solve large MDPs using

macro-actions [Hauskrecht et al., 1998, Parr, 1998a, Parr, 1998b].

Building on the work of [Sutton, 1995], Sutton and his colleagues introduced models of op-

tions (also known as macro-actions and abstract actions) for MDPs [Precup and Sutton, 1998,

Precup et al., 1998, Sutton et al., 1999, Precup, 2000]. Intuitively, an option is a closed-loop

policy (for a particular region of the state space) that dictates what actions must be taken over

a sequence of decision epochs.22 This policy can be initiated when an agent enters this re-

gion, then the agent uses consecutively this policy to make decisions regarding which actions

to take, and finally, this policy terminates when the agent leaves this region. When an option

terminates, the agent selects another option to be executed. The term “options” (for courses

of actions that can occupy only one or more than one decision epoch) is used to emphasize

that primitive actions are a special case of one-step options and they are treated similarly with

non-primitive actions. [Precup, 2000] considers two kinds of representations for options: a flat

representation, in which an option chooses among primitive actions, and a hierarchical repre-

sentation, in which an option chooses among other options. A very important idea of the option

22The set of primitive actions available to an option is always extended by an auxiliary reset action that repre-

sents the decision to terminate a policy.
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framework is that an option can be treated as if it were a primitive action in the original MDP

once an appropriate reward and transition models are defined for each option. Formally, a set of

options defined over an MDP constitutes a discrete-time SMDP embedded within the original

MDP. As a consequence, the options have internal structure (in terms of the underlying MDP)

that can be exploited to change existing options and to learn new options. Using a grid-world

domain, [Sutton et al., 1999, Precup, 2000] demonstrate that proper options can significantly

speed-up the search for optimal polices. However, in some cases, decision-theoretic planning

with a given set of options can lead to adverse effects. These adverse effects can be allevi-

ated by looking inside options and by altering their internal structure to better fit a planning

problem at hands. In particular, using temporal-difference methods, Sutton and his colleagues

develop intra-option learning methods to learn usefully about options (before they terminate)

from fragments of experience within each of the options.

Developing the option framework, [Hauskrecht et al., 1998] consider a problem of con-

structing an abstract MDP that consists of states on the borders of adjacent regions only, and

its set of actions includes macro-actions only. In some application domains, this hierarchical

MDP has much smaller state space than an initial MDP with options and, as a consequence, it

can be solved more efficiently. In addition, the authors discuss how proper macro-actions can

be generated to ensure approximately optimal performance. They also argue that additional

computational burden associated with computing a set of good macro-actions can be compen-

sated when macro-actions are subsequently re-used when solving multiple related MDPs. In a

special restricted class of MDPs with “weakly coupled” regions (i.e., the number of states con-

necting any two regions is small), [Parr, 1998a] proposes more efficient algorithms (in com-

parison to the algorithm proposed in [Hauskrecht et al., 1998]) for computing sets of useful

macro-actions for each of the regions in the decomposition.

The ✛ ✦ ✕ ✕ ✤ ☎ interpreter specified in this chapter, does not have any programming con-

structs related to decomposition of an MDP. However, these constructs can be easily intro-

duced and the construct ✷ ☎✏✾ ☎✆✷ ✞✝☎ ✍ ✠ ✁ ☎ ✑ defined in the next chapter is motivated by the previous

work mentioned above. Note also that in our approach Golog programs can be constructed

from primitive actions only, and we do not consider macro-actions (options) as new building

blocks for designing Golog programs. However, there are no conceptual limitations on intro-

ducing options in this framework. Indeed, there are several developments related to exploring

macro-actions in the framework of the situation calculus with stochastic actions. For exam-

ple, [Ferrein et al., 2003] extends DTGolog framework with options and provides experimen-

tal evaluation using grid worlds. [Gu, 2002] explores whether macro-actions allow to speedup
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solution of the forward projection task when all actions are stochastic and reports experimental

evaluation demonstrating that macro-actions provide computational savings.

The hierarchies of abstract machines (HAMs) approach is developed in [Parr and Russell, 1998,

Parr, 1998b], where the authors consider specifying partial policies using stochastic finite-state

machines and develop an algorithm to construct a policy that is optimal subject to these con-

straints. [Parr, 1998b] notes that “a cornerstone of the HAM approach is the idea that policies

should be thought of as programs that produce actions as some function of the agent’s sensor

information” (p.89). HAMs implement this idea by allowing policies to be specified in terms of

hierarchies of stochastic finite-state machines. Input sets of all machines are equal to the set of

states ✁ of the given finite MDP. Output sets of all machines are equal to the finite set of actions
✄ ✝ available in the state ✕ ☎ ✁ . For a machine � ✠ with a finite set of states � ✠ , the transition

function ☎ ✠●✞✜✲ ✆ ✢ ✆ ✲ ☛ ✠ is a probability defined on the cross-product of � ✠ and ✁ as follows.

If the current machine state is ✲ ☎ � ✠ and the current state of the MDP is ✢ ☎ ✁ , then the

machine makes a transition to the state ✲ ☛ ☎ � ✠ with the probability ☎ ✠❂✞✜✲ ✆ ✢ ✆ ✲ ☛ ✠ . The states

in each machine can be of five types: ✄ start, stop, action, call, choice ✆ . In particular, each

machine has a single distinguished start state and may have one or more distinguished stop

states. Each machine � ✠ has an associated initialization function ✁ ✠ ☛ ✁ ✌ � ✠✡✏ ✍ � ✆ ❉ ✎ from

environment states and machine states that determines the probability of the initial machine

state that can be an action state, a choice state or a call state. Whenever � ✠ starts executing

in the state ✕ ☎ ✁ of the underlying MDP, control starts at the state ✲ ☎ � ✠ with the prob-

ability ✁ ✠✿✞✜✲ ✆ ✕✡✠ ; stop states return control back to the calling machine. The most interesting

states are action states. An action state of the currently executing machine � ✠ generates an

action ☎ ☎ ✄ ✝ based on the current state ✕ ☎ ✁ of the MDP and the current state ✲ ☎ � ✠
according to the output function ✂ ✠●✞✫✲ ✆ ✕✡✠ of the machine � ✠ . Upon receiving an action ☎ , the

MDP makes a stochastic transition to a next state and provides an immediate reward. A call

state suspends execution of the currently executing machine � ✠ and calls another HAM, say

� ✁ , as a subroutine, where � is a function of the current state ✲ of the machine � ✠ . The HAM

� ✁ starts execution in a state ✘ with the probability determined by the initialization function

✁ ✁✏✞✜✘ ✆ ✕✡✠ , where ✕ is the current state of the controlled MDP. When � ✁ will reach one of its

stop states, the control returns to � ✠ whose execution continues. [Parr, 1998b] requires that

the call graph of each machine must be a tree. A choice state nondeterministically selects a

next machine state from the finite set of available choices. Using choice states, a programmer

can specify a controller for an MDP partially. It is assumed that the top-level machine in the

hierarchy does not have a stop state and, thus, never terminates. It is assumed also there are
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no infinite (probability 1) loops that do not contain action states. A HAM � is defined by

the top-level machine and the closure ✁✁� of all machine states of all machines reachable from

the possible initial states of the initial machine. [Parr and Russell, 1998, Parr, 1998b] state and

prove several important results about MDPs controlled by a HAM. First, it is proved that for

any MDP and any HAM there exists an SMDP the solution of which defines an optimal choice

function that maximizes the expected, discounted sum of rewards received by an agent execut-

ing the HAM. The state space of this SMDP is the cross-product of ✁ , the set of states of an

MDP, and ✁✂� , the set of reachable states in � . All transitions in this SMDP are determined

by transitions in � and in the controlled MDP. The only actions of this SMDP are choices in

the choice states of � . It is assumed that a HAM � generates typically primitive actions more

than once between consecutive choice states to control the underlying MDP. All these primitive

actions are determined by action states of � and they lead to rewards accumulated during these

periods between choice states. Thus, parts of policies are constrained by the programmer who

designs � using a domain specific knowledge about the controlled MDP. Second, [Parr, 1998b]

proves that there exists a reduced SMDP, that is equivalent to a SMDP determined by a given

pair of an MDP and a HAM, but this reduced SMDP contains only states determined by choice

states of the HAM that controls the MDP. As a consequence, the procedural knowledge con-

tained in a HAM is used to produce a reduced problem. The experimental results on solving

an illustrative grid-world navigation problem with almost 3,700 states by using a simple HAM

showed dramatic improvement in terms of the run time over the standard policy iteration al-

gorithm applied to the original MDP without HAM; producing a good policy took less than a

quarter of the time required to compute an optimal policy without HAM. A value of the pol-

icy constrained by the HAM was fairly close to a value of an actual optimal policy. Third,

[Parr, 1998b] proves that a variation of Q-learning can be applied to this reduced SMDP with

standard assumptions on parameters ✞ that guarantee convergence to an optimal policy. Ex-

periments with HAMQ-learning demonstrated even more dramatic speedup in comparison to

traditional Q-learning: Q-learning required 9 million iterations to reach the level achieved by

HAMQ-learning after 270,000 iterations.

Similar to the HAMs approach, the idea of finding an optimal policy consistent with con-

straints is also a key idea in the development of the DTGolog approach, but in the case of

DTGolog constraints can be specified using standard (and less standard) programming con-

structs. The DTGolog framework has a number of advantages over HAMs. Finite-state ma-

chines are less convenient for programming than writing high-level programs in Golog. In

addition, Golog programs can include while-loops and recursive procedures. Finally, primitive
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actions used in Golog programs are declaratively specified in Reiter’s basic actions theories

that provide a solution to the frame problem.

[Andre and Russell, 2001, Andre and Russell, 2002] provide further development of the

HAM approach. In particular, [Andre and Russell, 2001] describes extensions to the HAM

language that substantially increase its expressive power using parameterization (procedures

can take a number of parameters the values of which must be filled in by the calling pro-

cedure), aborts and interrupts as well as memory variables (each of them has a finite do-

main). The authors provide a detailed example in the simulated Deliver-Patrol domain to ar-

gue that an extended language, called PHAM (programmable hierarchic abstract machines),

allows to express the control program much more succinctly (using 9 machines) than HAM

(the HAM program requires 63 machines). They mention also that the provided Deliver-

Patrol program in PHAM induces less than 8,000 choice points in the joint SMDP, compared

with more than 38,000 choice points in the original MDP. [Andre, 2003] proves that theo-

retical results about PHAMs mirror those obtained in [Parr and Russell, 1998, Parr, 1998b]

about HAMs. [Andre and Russell, 2002, Andre, 2003] complement advantages provided by

programming language features. Building on the state abstraction technique developed in

[Dietterich, 2000], they propose a technique that groups certain sets of states together in equiv-

alence classes (abstract states) if they have same values in some state features. They con-

sider several types of equivalence conditions for states so that state abstractions can be ap-

plied safely, meaning that optimal policies in the abstract space are also optimal policies in

the original space.23 [Andre, 2003] proves that the abstracted Bellman equations for the Q-

function describe the same problem as the non-decomposed Bellman equations, and that the

optimal solutions to abstracted equations are the same as solutions to the non-decomposed

Bellman equations. In addition to PHAM, [Andre and Russell, 2002, Andre, 2003] present

ALisp, a Lisp-based high-level programming language with a nondeterministic construct that

allows to specify partial controllers. This language subsumes earlier proposed languages such

as MAXQ [Dietterich, 2000], options [Sutton et al., 1999, Precup, 2000], and the PHAM lan-

guage [Andre and Russell, 2001].

High-level programming languages with probabilistic statements have been in use for a

long time. The most popular probabilistic statement in traditional programming languages is a

random assignment operator. A formal analysis of probabilistic programs can be traced back to

23Optimality is understood as a hierarchic optimality, i.e., a policy is hierarchically optimal if it is optimal

among all policies consistent with the given partial program.
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[Kozen, 1981, Kozen, 1985, Feldman and Harel, 1984]. Other developments in this research

area are summarized and briefly reviewed in [Harel et al., 2000].

[Thrun, 2000] describes a programming language CES (an extension of C++) targeted to-

wards development of robot control software. CES consists of C++ augmented with two ideas:

Computing with probability distributions, and built-in mechanisms for learning from examples

as a new means of programming. DTGolog is motivated by a similar intention of facilitating

the development of robotics software, but it is based on a higher level of abstraction: primi-

tive actions in DTGolog programs are characterized in the predicate logic using Reiter’s basic

action theories.

[McAllester, 2000] gives a model-checking style algorithm for verifying that a given hand-

written controller achieves a desired value of decision-theoretic utility. It is asumed that both

the controller and the model of an environment are written in a special purpose programming

language described in the paper.

[Pfeffer, 2001] introduces a new programming language IBAL for probabilistic and decision-

theoretic agents (IBAL stands for Integrated Bayesian Agent Language). IBAL integrates prob-

abilistic reasoning, Bayesian parameter estimation and decision-theoretic utility maximization

into the unified framework.

5.8 Future work

A number of interesting directions remain to be explored. The decision-tree algorithm used by

the DTGolog interpreter is clearly subject to computational limitations.24 However, the basic

intuitions and foundations of DTGolog are not wedded to this particular computational model.

We are planning to integrate efficient algorithms and other techniques for solving MDPs into

this framework (dynamic programming, abstraction, sampling, etc.). We emphasize that even

with these methods, the ability to naturally constrain the search for good policies with explicit

programs is crucial. Other possible future avenues include: incorporating realistic models

of partial observability (a key to ensuring wider applicability of the model); extending the

expressive power of the language to include other extensions already defined for the classical

Golog model (e.g., concurrency); incorporating declaratively-specified heuristic and search

control information. In addition, it would be important to compare DTGolog with ALisp.

24Note, however, that program constraints often make otherwise intractable MDPs reasonably easy to solve

using search methods.



Chapter 6

An On-line Decision-Theoretic Golog

Interpreter.

6.1 Introduction

The aim of this chapter is to provide an on-line architecture for designing controllers for au-

tonomous agents. Specifically, we explore controllers for mobile robots programmed in DT-

Golog, an extension of the high-level programming language Golog. DTGolog aims to provide

a seamless integration of a decision-theoretic planner based on Markov decision processes with

an expressive set of program control structures available in Golog. The DTGolog interpreter

described in the previous chapter is an off-line interpreter that computes the optimal conditional

policy ✂ , the probability ✑✔✬ that ✂ can be executed successfully and the expected utility ✓ of the

policy. The semantics of DTGolog is defined by the predicate ✛ ✦ ✕ ✕ ✤ ☎✟✞✝☎ ✆ ✕ ✆ � ✆ ✂ ✆ ✓ ✆ ✑✮✬❂✠ , where

✕ is a starting situation and � is a given finite horizon. The policy ✂ returned by the off-line

interpreter is structured as a Golog program consisting of the sequential composition of agent

actions, senseEffect ✞ ☎ ✠ sensing actions (which serve to identify a real outcome of a stochastic

action ☎ ) and conditionals (if ✁ then ✂ ✍ else ✂ ✑ ), where ✁ is a situation calculus formula that

provides a test condition to decide which branch of a policy the agent should take given the

result of sensing. The interpreter looks ahead up to the last choice point in each branch of

the program (say, between alternative primitive actions), makes the choice and then proceeds

backwards recursively, deciding at each choice point what branch is optimal. It is assumed that

once the off-line DTGolog interpreter has computed an optimal policy, the policy is given to

the robotics software to control a real mobile robot.

However this off-line architecture has a number of limitations. Imagine that we are inter-

200
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ested in executing a program ☎ ❃ ✞✝☎ ✍ ✁ ☎ ✑ ) where both sub-programs ☎ ✍ and ☎ ✑ are very large

nondeterministic DTGolog programs designed to solve ‘independent’ decision-theoretic prob-

lems: ☎ ✑ is supposed to start in a state belonging to a certain set, but from the perspective of ☎ ✑
it is not important what policy will be used to reach one of those states. For example, imagine

a cleaning robot that is charged with the task of computing and executing of an optimal policy

of cleaning the first floor of a house and once this task is completed it has to move upstairs and

clean the second floor. Intuitively, we are interested in computing first an optimal policy ✂ ✍
(that corresponds to ☎ ✍ ), executing ✂ ✍ in the real world and then taking the remaining program

☎ ✑ , computing and executing an optimal policy ✂ ✑ from any of the states that will be reached

by ✂ ✍ . But the off-line interpreter can return only the optimal policy ✂✁� that corresponds to the

whole program ( ☎ ✍ ✁ ☎ ✑ ), spending on this computation more time than necessary: decisions that

have to be made during the execution of ✂ ✍ are not relevant to the task of computing and execut-

ing ✂ ✑ . Indeed, the very structure of the ✛ ✦ ✕ ✕ ✤ ☎ interpreter is based on the idea of considering

all nondeterministic choices in ☎ ✍ and looking ahead to the very last nondeterministic choice

in ( ☎ ✍ ✁ ☎ ✑ ) before the policy ✂✂� can be computed. This requires much larger search space to be

considered, but it would be more practical to consider a subspace related to the sub-program

☎ ✍ and save computation time by computing ✂ ✍ first.

The second limitation becomes evident if in addition to senseEffect sensing actions serving

to identify outcomes of stochastic actions, we need to explicitly include sensing actions in the

program. Imagine that we are given a program

✑ ✍ ✁✡✞ ✂ ✢ ✆ ✕✽✠ ✓ ✍ ✞✜✘☞☎✁✞ ✞✯✕✽✠✭✠ � ✁✟✕ ✦ ✘ ✕ ✦ ✞ � ✆ ✢ ✆ ✕✽✠ ✁ if ✁ then ✑ ✑ else ✑ ✁ ✎ ,
where ✕ ✦ ✘ ✕ ✦ ✞ � ✆ ✢ ✆ ✕✽✠ is a sensing action that returns at time ✕ a measurement ✢ of a quantity

� (e.g., the current coordinates, the battery voltage) and the condition ✁ depends on the real

data ✢ that will be returned by sensors (in the program above ✑ ✍✟✆ ✑ ✑✔✆ ✑ ✁ are sub-programs,

the nondeterministic choice operator1 ✂ binds variables ✢ and ✕ and the test ✘☞☎✁✞ ✞✫✕✽✠ � grounds

the current time). Imagine also that sub-programs ✑ ✑ and ✑ ✁ are both very large programs.

Intuitively, we want to compute an optimal policy (corresponding to ✑ ✍ ) off-line, execute this

policy in the real world, sense � , find whether the expression ✁☛✞ ✕✡✠ evaluates to true or to false in

the situation that results from doing this sense action and, finally, choose the corresponding sub-

program (either ✑ ✑ or ✑ ✁ , exclusively) and compute and execute an optimal policy with respect

to this Golog sub-program only without considering the second sub-program that corresponds

1It should be always clear from the context when we use ✄ to denote a policy, and when we use ✄ to denote a

nondeterministic operator in a Golog program.
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to an alternative truth value of ✁ ✞ ✕★✠ . But the off-line interpreter is not able to compute an

optimal policy with respect to a given program without considering both large sub-programs

✑ ✑ and ✑ ✁ in the case that the range of sensing values includes values that can lead to two

different evaluations of ✁ ✞ ✕✡✠ .
We would like to develop an alternative interpreter that allows agents to save time on com-

puting policies in circumstances outlined above. As our examples indicate, this alternative

interpreter should be an on-line interpreter rather than an off-line interpreter because if a pol-

icy computed from an initial segment of a given program can be executed in the real world,

then this execution leads to a specific state and a policy optimal with respect to a remaining

part of the program can be computed from this specific state alone without taking into account

all other alternative states that can be potentially reached by the initial policy. Because a pol-

icy is computed off-line from a given Golog program, an on-line interpreter must employ an

off-line interpreter. At a first glance, we could simply employ the ✛ ✦ ✕ ✕ ✤ ☎ interpreter and in-

troduce new programming operators that a programmer can use to subdivide a whole Golog

program into relatively independent parts. However, we would like to propose another off-line

interpreter that provides same functionality as ✛ ✦ ✕ ✕ ✤ ☎ , by computing a policy ✂ from a given

Golog program ☎ , situation ✕ and horizon � , and in addition computes from the program ☎ its

sub-program ✌ that remains to be executed after actually performing the first action from the

policy ✂ . This new interpreter is called an incremental off-line interpreter and its semantics is

defined in the next section using the predicate
� ✘☞✾✼✬✿✛ ✦ ✕ ✕ ✤ ☎ . There are several reasons why this

incremental off-line interpreter can be more useful than the previously introduced ✛ ✦ ✕ ✕ ✤ ☎ .

First, in many realistic scenarios only an incomplete, partial model is readily available to

a Golog programmer. In particular, probabilities of all or some transitions between states can

be unknown and can be learned only from ongoing interaction with an environment. In this

case, the decision making agent can compute policies given a current estimate of the model, but

once the agent executes actions online it must improve its model by learning about outcomes

of stochastic actions, then compute a new policy optimal with respect to improved model, etc.

More specifically, a partial model of stochastic transitions between states in an environment can

account for none of the exogenous actions. Then, a policy computed by an off-line interpreter is

optimal only relative to this approximate model of the world assuming there are no exogenous

actions.2 However, if the environment is not static, i.e., important exogenous actions do happen

2In other words, due to the lack of statistical data about occurrences of exogenous actions, a programmer

can start with an approximation based either on the assumption that an environment is ‘static’, i.e., only the

agent’s actions can cause a transition from one state in the state space to another, or on the assumption that
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and must be taken into account when the decision maker computes a policy, then to account

for them at run time, the on-line interpreter can sense for them at each step when a first action

from the policy is executed.3 If an exogenous action really does occur, then it is possible that

the policy that was provisionally considered optimal relative to the current model of the world

(before the action occurred) will no longer be optimal. Then, the off-line interpreter has to

re-compute a new policy optimal with respect to an expanded model. As a consequence, in a

general case, the off-line interpreter does not need the remaining part of the policy ✂ besides the

very first action in this policy, but has to keep a ‘remaining program’ to continue the execution.

Second, there are stochastic actions that can lead to a large number of different states and

because ✛ ✦ ✕ ✕ ✤ ☎ does decision tree search, this search becomes time consuming if a branching

factor is high, but if a stochastic action is executed on-line, then only one nature choice that

does occur in reality matters. In the sequel, we use the phrase a quasi-optimal policy and the

phrase an optimal policy instead of ‘a policy optimal with respect to a given program and the

current model of the world’.

In this chapter we introduce a new off-line decision-theoretic interpreter, IncrBestDo. In

comparison with ✛ ✦ ✕ ✕ ✤ ☎ , it has one additional argument which is a remaining program.4

Then, we propose to compute and execute policies on-line using this new incremental off-

line decision theoretic interpreter. More specifically, we define an online interpreter that works

in action-by-action mode as follows. Given a Golog program ☎ and a starting situation ✕ , it

computes a quasi-optimal policy ✂ and the program ✌ , a sub-program of ☎ , that remains when a

first action ☎ in ✂ will be executed. At the next stage, the action ☎ is executed in the real world.

The on-line interpreter gets sensory information to identify which outcome of ☎ has actually

occurred if ☎ is a stochastic action: this may require doing a sequence of sensing actions on-

line. The action ☎ (and sensing actions performed after that) result in a new situation. Then the

cycle of computing a quasi-optimal policy and remaining program, executing the first action

and getting sensory information (if necessary) repeats until the program terminates or execu-

occurrences of exogenous stochastic actions are not ‘folded in’ a domain model of the agent’s stochastic actions.

Both assumptions can be used only temporarily and they will not be needed as soon as sufficient amount of data

about exogenous actions will be collected by the agent.
3If a programmer knows that certain exogenous actions occur with a high probability at certain times – mail

arrives in the main office every day at 10am – then the programmer can write a Golog program that commands to

do appropriate actions. If probabilities of exogenous actions are not known in advance, then they can be accounted

for at run time only.
4This remaining program can be loosely understood as a given program

✠
‘minus’ the first action in a quasi-

optimal policy. Recall that in Section 2.3.2, when we introduced Trans
✁✄✠✛☎✞✝ ✔ ☎✁� ☎✞✝

☎ ☛ –based semantics for Golog

we also considered a given program
✠

and a remaining program
�

.
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tion fails. In the context of this incremental on-line execution, we define a new programming

operator ✷ ✞ ✲ ✞✜✕ ✞✝☎✏✠ that limits the scope of search performed by the off-line interpreter. If ☎ is the

whole program, then no computational efforts are saved when our new off-line interpreter com-

putes a quasi-optimal policy from ☎ : in this case, the operator ✷ ✞ ✲ ✞✜✕ ✞ ✠ makes no difference and

can be simply ignored. But, if the programmer writes ✷ ✞ ✲ ✞ ✕ ✞✝☎ ✍ ✠ ✁ ☎ ✑ , then the on-line interpreter

will compute (using the new incremental off-line interpreter) and execute action-by-action the

Golog program ☎ ✍ without looking ahead to decisions that need to be made in ☎ ✑ . Only when

☎ ✍ has been executed to completion, in other words, only when all actions from a quasi-optimal

policy constrained by ☎ ✍ have been executed in the real world, only at this moment, will the on-

line interpreter start to consider ☎ ✑ for the first time. This can provide significant computational

savings if ☎ ✍ is a large program that includes many stochastic actions with a high branching

factor because they result in a large number of alternative states, but if they are executed in

reality, then only one of these states matters when the off-line interpreter starts to compute a

policy from ☎ ✑ . If ☎ ✑ is a large highly nondeterministic program, then it can be computationally

infeasible to compute an optimal policy from ☎ ✍ ✁ ☎ ✑ without limiting the scope of search.

To provide an additional illustration of decision-theoretic subproblems constrained by ☎ ✑
and ☎ ✍ that are weakly coupled or independent, we continue with the sensing example men-

tioned above. If the programmer knows that the sensing action ✕ ✦ ✘ ✕ ✦ ✞ � ✆ ✢ ✆ ✕✽✠ is necessary to

evaluate the condition ✁ , then using the program

✷ ✞ ✲ ✞ ✕ ✞✒✑ ✍ ✠✂✁✂✞✄✂☞✕ ✆ ✢ ✠ ✓ ✍ ✞✫✘☞☎✁✞ ✞✫✕✽✠✽✠ � ✁ ✷ ✞ ✲ ✞ ✕ ✞ ✕ ✦ ✘ ✕ ✦ ✞ � ✆ ✢ ✆ ✕✽✠✭✠ ✁ if ✁ then ✑ ✑ else ✑ ✁ ✎
the required information about � will be obtained before the incremental interpreter will pro-

ceed to the execution of the conditional; therefore, only one of the two large programs ✑ ✁ or ✑ ✑
will be considered. The following simple scenario provides an illustration. Imagine an agent

that has an airline ticket from Toronto to San Francisco and wants to compute an optimal policy

for traveling from Toronto to a conference venue in Stanford. This computational task consists

of several independent decision theoretic tasks: compute an optimal policy of traveling from

home in Toronto to a local international airport and then execute it, sense the gate from where

the flight will depart, take a plane and fly to an international airport in San Francisco and af-

ter arrival compute an optimal policy for traveling from the airport to the conference venue

in Stanford. A Golog programmer does not need any information about the number of gates

in Toronto and about assignment of flights to gates to write a program providing suitable con-

straints on the search for a globally optimal policy, given that the programmer uses the operator
✷ ✞ ✲ ✞✜✕ ✞ ✕ ✦ ✘ ✕ ✦ ✞ ✰ ✷ ✞ ✪ �✩✕✼❉ ❋ ✂ ✁ ☎ ✕ ✦ ✆ ✢ ✆ ✕✽✠✽✠ . In addition, using this operator, the programmer indicates

that once the agent senses the right gate out of 100 gates available in the international airport
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in Toronto, and takes the flight, only after that the agent can start solving the decision theoretic

planning task of traveling to Stanford.

Our discussions above suggest that the incremental interpretation of decision-theoretic

Golog programs needs an account of sensing (formulated in the situation calculus). We pro-

pose to use the representation of sense actions introduced in Chapter 3. In Section 5.3, we

demonstrated that this account is naturally applicable in the robotics context.

The remaining part of this chapter is structured as follows. In Section 6.2 we consider an

incremental off-line decision-theoretic interpreter and in Section 6.3, an implementation of an

online interpreter. Then, we describe the implementation on the B21 mobile robot. Section 6.5

discusses connections with related work.

6.2 The incremental off-line DTGolog interpreter

An on-line interpreter formulated in the next section uses an incremental off-line DTGolog

interpreter, defined by the predicate IncrBestDo ✞✆☎ ✍✏✆ ✕ ✆ � ✆ ☎ ✑✔✆ ✂ ✆ � ✆ ✑✔✬✿✠ as explained below. This

predicate takes as input the Golog program ☎ ✍ , starting situation ✕ , horizon � and returns a

quasi-optimal conditional policy ✂ , its total expected value � , the probability of success ✑✔✬ ,
and the program ☎ ✑ that remains to be executed after doing the first action from the policy ✂ .

Note that in comparison to BestDo, IncrBestDo has an additional argument ☎ ✑ representing the

program that remains to be executed. The structure of IncrBestDo resembles the structure of

BestDo. Given a Golog program ☎ ✍ , the interpreter looks ahead to the very last nondeterministic

choice in every branch of ☎ ✍ , selects an optimal choice, proceeds backwards recursively to

choose an optimal branch in the very first nondeterministic choice in ☎ ✍ and keeps also the

sub-program ☎ ✑ that is the program mentioned in this first optimal choice in ☎ ✍ .
IncrBestDo ✞✆☎ ✍✏✆ ✕ ✆ � ✆ ☎ ✑✜✆ ✂ ✆ ✓ ✆ ✑✔✬✿✠ is defined inductively on the structure of a Golog program

☎ ✍ . All cases are defined similarly to BestDo, and we give them below with additional com-

ments when necessary to explain differences between the two off-line interpreters.

1. Zero horizon.

IncrBestDo ✞✝☎ ✍✏✆ ✕ ✆ � ✆ ☎ ✑✔✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎✝✆ ✞❃ ✂✵❃ ✟ ✞ ✷ ☛ ☎ ✑ ❃ ✟ ✞ ✷ ☛ � ❃ ✬ ✦ ✞ ☎ ✬✏✄ ✞ ✕✡✠ ☛ ✑✔✬ ❃ ❉ ✓
If the horizon is zero, then we no longer need constraints in the program ☎ ✍ and for this

reason we can set the remaining program ☎ ✑ to Nil.

2. The null program
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IncrBestDo ✞ ✟ ✞ ✷ ✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✂ ✆ � ✆ ✑✔✬❂✠ ☎✝✆✟✞❃ � ✁ � ☛

✂✵❃ ✟ ✞ ✷ ☛ �✚❃ ✬ ✦ ✞ ☎ ✬✿✄ ✞ ✕✡✠ ☛ ✑✔✬☞❃ ❉ ☛ ☎ ✝✟❃ ✟ ✞ ✷ ✓
3. The program ☎ ✍ begins with a deterministic agent action.

IncrBestDo ✞ ☎ ✁ ☎ ✍✚✆ ✕ ✆ � ✆ ☎ ✑ ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ☎ ✆ ✞❃ � ✁ � ☛

✍ ✑ ✁ ☎ ✕ ✕✝✞ ☎✝✆ ✕✡✠ ☛

☎ ✑ ❃ ✟ ✞ ✷ ☛ ✂✵❃ Stop ☛ ✑✔✬ ❃ � ☛ � ❃ reward ✞ ✕✡✠ ✝
✁ ☎ ✕ ✕✆✞ ☎✝✆ ✕✡✠ ☛ ☎ ✑ ❃ ☎ ✍ ☛

✒ ✞ ✌ ✆ ✂ ☛✖✆ � ☛ ✠ IncrBestDo ✞✝☎ ✑✔✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠ ✆ ✌ ✆ � – ❉ ✆ ✂ ☛ ✆ � ☛✖✆ ✑✔✬✿✠ ☛

✂ ❃ ✞ ☎ ✁ ✂ ☛ ✠ ☛ � ❃ ✬ ✦ ✞ ☎ ✬✏✄ ✞ ✕✡✠ ✆ � ☛ ✎ ✓

(6.1)

If a deterministic agent action ☎ is possible in situation ✕ , then we compute the optimal

policy ✂ ☛ of the remaining program ☎ ✍ , its expected utility � ☛ and the probability of suc-

cessful termination ✑✮✬ . Because ☎ is a deterministic action, the probability that the policy

✂ ☛ will complete successfully is the same as for the program itself; the accumulated ex-

pected value � is a sum of a reward for being in ✕ and the expected utility of continuation

� ☛ . If ☎ is not possible, then the remaining program is ✟ ✞ ✷ , and the policy is the Stop

action, the expected utility is the reward in ✕ and the probability of success is 0.

4. First program action is stochastic.

When ☎ is a stochastic action for which nature selects one of the actions in ✄✡✘ ✍✚✆✔✓✔✓✔✓ ✆ ✘ ✠ ✆ ,
there are two cases depending on the policy that is computed using the auxiliary predicate

IncrBestDoAux that takes all available nature’s choices, the given program, the current

situation, the number of stages to go and returns a quasi-optimal policy, its total expected

value and the probability of success. (The definition of IncrBestDoAux is very similar

to the definition of ✛ ✦ ✕ ✕ ✤ ☎ ✕✵✓✝✢ given in the previous chapter.) First, when none of

nature’s actions are possible, as determined by IncrBestDoAux, or if only one of them

is possible, but subsequent execution fails, then it returns the policy Stop, the program

☎ cannot be continued and the remaining program ☎ ✝ is Nil meaning that no constraints

need to be considered any further. Second, when IncrBestDoAux finds that at least one

of nature’s actions is possible, then it returns the policy different from Stop, and the

remaining program ☎ ✝ is simply ☎ .

IncrBestDo ✞ ☎ ✁ ☎ ✆ ✕ ✆ ☎ ✝ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎✝✆ ✞❃ � ✁ � ☛

✒ ✞✄✂ ☛ ✆ � ☛ ✆ ✢ ✠ ✓ IncrBestDoAux ✞ ✾✒� ☎ ✞ ✾ ✦ ☛ ✞ ☎ ✠ ✆✟☎✝✆ ☎ ✆ ✕ ✆ � ✝ ❉ ✆ ✂ ☛ ✆ � ☛ ✆ ✑✮✬❂✠ ☛

✂✵❃ ☎ ✁ senseEffect ✞ ☎ ✠✂✁ ✂ ☛ ☛ �✚❃ ✬ ✦ ✞ ☎ ✬✿✄ ✞ ✕✡✠ ✆ � ☛ ☛

✞ ✂ ☛ ❃ ✞ ✢ ✠ � ✁✼� ✕ ☎✥✑ ☛ ☎ ✝✟❃ ✟ ✞ ✷ ✝ ✂ ☛ ✆❃ ✞ ✢ ✠ � ✁✼� ✕ ☎✼✑ ☛ ☎ ✝✟❃ ☎✚✠
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For IncrBestDoAux, we consider two cases: first, when ✣ ❃ ❉ and then ✣✂✁ ❋ . If ✣ ❃ ❉ ,
then

IncrBestDoAux ✞ ✄✡✘ ✠ ✆ ✆✟☎✝✆ ☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ☎ ✆ ✞❃
✑ Poss ✞✜✘ ✠ ✆ ✕✡✠ ☛ senseCond ✞✜✘ ✠ ✆ ✁ ✠ ✠ ☛ ✂✵❃ ✞ ✁ ✠ ✠ � ✁ Stop ☛ �✚❃ � ☛ ✑✔✬ ❃ � ✝
Poss ✞✫✘ ✠ ✆ ✕✡✠ ☛ senseCond ✞✜✘ ✠ ✆ ✁ ✠ ✠ ☛

✒ ✞ ✌ ✆ ✂ ☛✌✆ � ☛✖✆ ✑✔✬ ☛ ✠ IncrBestDo ✞✆☎ ✆ ✄✆☎✩✞✫✘ ✠ ✆ ✕✡✠ ✆ � ✆ ✌ ✆ ✂ ☛✌✆ � ☛ ✆ ✑✔✬ ☛ ✠ ☛
✂✵❃ ✞ ✁ ✠ ✠ � ✁ ✂ ☛ ☛ �✚❃ � ☛ � ✑✔✬✏☎ ✂ ✞✜✘ ✠ ✆✟☎✝✆ ✕✡✠ ☛ ✑✔✬ ❃✢✑✔✬ ☛ � ✑✔✬✿☎ ✂ ✞✜✘ ✠ ✆✟☎✝✆ ✕✡✠ ✓

If ✣✆✁ ❋ , then

IncrBestDoAux ✞ ✄✡✘ ✍✏✆✜✓✔✓✔✓✜✆ ✘ ✠ ✆ ✆✡☎ ✆ ☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎✝✆✟✞❃
✑ Poss ✞✜✘ ✍✟✆ ✕✡✠ ☛ IncrBestDoAux ✞ ✄✡✘ ✑✔✆ ✓✔✓✔✓ ✆ ✘ ✠ ✆ ✆✟☎✝✆ ☎ ✆ ✕ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ✝
Poss ✞✫✘ ✍✚✆ ✕✡✠ ☛ ✒ ✞✄✂ ☛✌✆ � ☛✖✆ ✑✔✬ ☛ ✠ ✓ IncrBestDoAux ✞ ✄✡✘ ✑✛✆ ✓✔✓✜✓ ✆ ✘ ✠ ✆ ✆✡☎ ✆ ☎ ✆ ✕ ✆ � ✆ ✂ ☛✌✆ � ☛✌✆ ✑✔✬ ☛ ✠ ☛

✒ ✞ ✌ ✆ ✂ ✍✏✆ � ✍✚✆ ✑✔✬ ✍ ✠ ✓ IncrBestDo ✞✆☎ ✆ ✄✝☎✟✞✜✘ ✍✏✆ ✕★✠ ✆ � ✆ ✌ ✆ ✂ ✍✏✆ � ✍✏✆ ✑✮✬ ✍ ✠ ☛ senseCond ✞✜✘ ✍✏✆ ✁ ✍ ✠ ☛
✂ ❃ if ✁ ✍ then ✂ ✍ else ✂ ☛✆☛

� ❃ � ✍ � ✑✔✬✏☎ ✂ ✞✜✘ ✍✚✆✟☎✝✆ ✕✡✠ ✆ � ☛✆☛
✑✔✬☞❃ ✑✔✬ ✍ � ✑✮✬✿☎ ✂ ✞✜✘ ✍✚✆✡☎ ✆ ✕★✠ ✆ ✑✔✬ ☛✖✓

Note that in the two above definitions and in (6.1) we do not use the program ✌ that

remains to be executed after doing the first action in ☎ . The reason is that the interpreter

computes ✌ only when the program starts with a stochastic or deterministic action ☎ and

in both cases we already know the remaining program: it is the program that follows
☎ . We do not use ✌ because, as we will see in the section 6.3, the incremental off-line

interpreter will be used by an on-line interpreter to compute a policy that is optimal

relative to the current model of the world (in a general case, this model can be updated

after doing ☎ in the real world).

5. The program starts with a test.5

IncrBestDo ✞ ✁ � ✁ ☎ ✍✏✆ ✕ ✆ � ✆ ☎ ✑✔✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎✝✆ ✞❃ � ✁ � ☛

✁☛✍ ✕ ✎ ☛ IncrBestDo ✞✆☎ ✍✏✆ ✕ ✆ � ✆ ☎ ✑✜✆ ✂ ✆ � ✆ ✑✔✬✿✠ ✝
✑ ✁ ✍ ✕ ✎ ☛ ✂✵❃✺� ✕ ☎✼✑ ☛ ☎ ✑ ❃ ✟ ✞ ✷ ☛ ✑✔✬☞❃✁� ☛ � ❃ ✬ ✦ ✞ ☎ ✬✏✄ ✞ ✕✡✠ ✓

6. The nondeterministic choice of two programs.

5Note that in the definition of the transition-based semantics for Golog in Section 2.3.2, evaluation of a test

expression is considered as a single transition, but here evaluations of tests don’t count as a transition.
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IncrBestDo ✞✭✞✝☎ ✍ ✄ ☎ ✑ ✠☎✁ ✌ ✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ☎✝✆✟✞❃ � ✁ � ☛

✒ ✞✄✂ ✍✚✆ � ✍✏✆ ✑✔✬ ✍✏✆ ☎ ✍✝ ✆ ✆ ✠ ✓ IncrBestDo ✞✝☎ ✍ ✁ ✌ ✆ ✕ ✆ � ✆ ☎ ✍✝ ✆ ✆ ✆ ✂ ✍✚✆ � ✍✏✆ ✑✮✬ ✍ ✠ ☛
✒ ✞✄✂ ✑✛✆ � ✑✔✆ ✑✔✬ ✑✔✆ ☎ ✑✝ ✆ ✆ ✠ ✓ IncrBestDo ✞✝☎ ✑ ✁ ✌ ✆ ✕ ✆ � ✆ ☎ ✑✝ ✆ ✆ ✆ ✂ ✑✛✆ � ✑✔✆ ✑✮✬ ✑ ✠ ☛

✞ ✞✒✑✔✬ ✍✏✆ � ✍ ✠ ✡ ✞✒✑✔✬ ✑✔✆ � ✑ ✠ ☛ ✂✵❃ ✂ ✑☞☛ ☎ ✝✝❃ ☎
✑

✝ ✆ ✆ ☛ � ❃ � ✑ ☛ ✑✔✬ ❃✢✑✔✬ ✑ ✝
✞✒✑✔✬ ✍✏✆ � ✍ ✠ ✁ ✞✒✑✔✬ ✑✔✆ � ✑ ✠ ☛ ✂✵❃ ✂ ✍✎☛ ☎ ✝✝❃ ☎

✍
✝ ✆ ✆ ☛ � ❃ � ✍ ☛ ✑✔✬ ❃✢✑✔✬ ✍ ✠ ✓

If the program starts with a nondeterministic choice between ☎ ✍ and ☎ ✑ , then we look

ahead up to the end of each of the two branches, and find which branch is optimal. If

the first branch is optimal, then the remaining program ☎ ✝ is the remaining program ☎
✍

✝ ✆ ✆
that was computed in the first branch; otherwise, if the second branch is optimal, then

the remaining program ☎ ✝ is the remaining program computed in the second branch ☎
✑

✝ ✆ ✆ .

7. Conditionals.

IncrBestDo ✞✭✞ if ✁ then ☎ ✍ else ☎ ✑ ✠ ✁ ✌ ✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✆ ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎ ✆ ✞❃ � ✁ � ☛

✁☛✍ ✕ ✎ ☛ IncrBestDo ✞✝☎ ✍ ✁ ✌ ✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✆ ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ✝
✑ ✁ ✍ ✕ ✎ ☛ IncrBestDo ✞✆☎ ✑ ✁ ✌ ✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✆ ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ✓

8. Nondeterministic finite choice of action arguments.

If the program begins with the finite nondeterministic choice ✞ ✂ ✞ ✢ ☛ ✝ ✠ ☎✏✠ ✁ ✌ , where ✝ is

the finite set ✄★✾ ✍✏✆✜✓✔✓✔✓✜✆ ✾ ❁ ✆ and the choice binds all free occurrences of ✢ in ☎ to one of

these elements, then we have:

IncrBestDo ✞✭✞✄✂ ✞ ✢ ☛ ✝ ✠ ☎✏✠ ✁ ✌ ✆ ✕ ✆ ☎ ✝ ✆ ✆ ✆ � ✆ ✂ ✆ � ✆ ✑✮✬❂✠ ☎✝✆✟✞❃ � ✁ � ☛

IncrBestDo ✞✭✞✆☎ ✄ ✁
✎ ✍ ✄ ✓✔✓✔✓ ✄ ☎ ✄ ✁

✎ ❁ ✠ ✁ ✌ ✆ ✕ ✆ ☎ ✝ ✆ ✆ ✆ � ✆ ✂ ✆ � ✆ ✑✔✬✿✠
where ☎ ✄ ✁

✎ means substitution of ✾ for all free occurrences of ✢ in ☎ . Thus, the optimal

policy ✂ corresponds to the element ✾ in ✝ that delivers the best execution. Note that the

remaining program ☎ ✝ ✆ ✆ is the same on the both sides of the definition.

9. Associate sequential composition to the right.

IncrBestDo ✞✭✞✆☎ ✍ ✁ ☎ ✑ ✠☎✁ ☎ ✁ ✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✆ ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ☎ ✆ ✞❃ � ✁ � ☛

IncrBestDo ✞✝☎ ✍ ✁✡✞✆☎ ✑ ✁ ☎ ✁ ✠ ✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✆ ✆ ✂ ✆ � ✆ ✑✔✬✿✠ ✓

10. While-loop is the first program action.

This specification requires second order logic; an implementation is provided in Ap-

pendix D.1.

11. Procedure is the first program action.
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There is also a suitable expansion rule when the first program action is a procedure call.

This is similar to the rule for Golog procedures [Levesque et al., 1997, De Giacomo et al., 2000],

and requires second order logic to characterize the standard fixed point definition of re-

cursive procedures. An implementation is provided in Appendix D.1.

Recall that according to Definition 5.2.1, policies are Golog programs as well. Moreover,

if ✑ is a Golog program that contains many nondeterministic choices, a quasi-optimal policy ✂
computed from ✑ is a conditional program that does not involve any nondeterministic choices.

This observation suggests that programmers may wish to take advantage of the structure in

a decision theoretic problem and use explicit search control operators that bound the search

for an optimal policy. As we discussed in an introduction to this chapter, in many realistic

scenarios, full search in the decision tree is neither feasible nor desirable even if this search

is constrained by a given program ✞✆☎ ✍ ✁ ☎ ✑ ✠ . Instead of doing full search, an off-line interpreter

(given a program ☎ ✍ ) can begin with computing an optimal policy ✂ ✍ corresponding to a smaller

local sub-space of the state space. Then, this policy can be expanded to a larger portion of the

state space by computing a policy ✂ optimal with respect to a large program ✞ ✂ ✍ ✁ ☎ ✑ ✠ . Both these

successive computations can be accomplished solely off-line. Alternatively, we can imagine,

that a policy optimal with respect to ☎ ✍ , and, consecutively, policies, optimal with respect to

remaining sub-programs of ☎ ✍ , are repeatedly computed off-line without consulting ☎ ✑ , but each

off-line computation is followed by on-line execution of the first action from consecutively

shorter policies. Once these on-line executions are completed in a particular state in the state

space, search continues using another given program ☎ ✑ .

To implement these bounds on search, we introduce two new operators: ✷ ☎✏✾ ☎✆✷ ✞✒✑ ✠ and
✷ ✞ ✲ ✞✜✕ ✞ ✑ ✠ , in addition to the standard set of Golog programming constructs. The former corre-

sponds to bounds on search done purely off-line, the latter corresponds to bounds on off-line

search that is augmented with on-line executions. Intuitively, the program ✷ ☎★✾ ☎✆✷ ✞ ✑ ✍ ✠ ✁ ✑ ✑ means

the following. First, compute the optimal policy ✂ ✍ corresponding to the sub-program ✑ ✍ , then

compute the optimal policy ✂ corresponding to the program ✞ ✂ ✍ ✁ ✑ ✑ ✠ . If both sub-programs ✑ ✍
and ✑ ✑ are highly nondeterministic, then using the operator ✷ ☎★✾ ☎✝✷ ✞✒✑ ✍ ✠ the programmer indicates

where the computational efforts can be saved: there is no need in looking ahead further than

✑ ✍ to compute ✂ ✍ . As an example, consider ✷ ☎✏✾ ☎✆✷ ✞ ✌ ✍ ✄ ✌ ✑ ✠ ✁ ☎ . In this program, the programmer

means that an off-line interpreter must find an optimal policy ✂ ✆ that is constrained either by

the sub-program ✌ ✍ or by the sub-program ✌ ✑ without taking into account ☎ , but once ✂ ✆ has

been computed, a policy optimal with respect to ✷ ☎✏✾ ☎✆✷ ✞ ✌ ✍ ✄ ✌ ✑ ✠ ✁ ☎ can be computed off-line
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from the program ✂ ✆ ✁ ☎ . Formally, when a Golog program begins with ✷ ☎★✾ ☎✆✷ ✞✝☎ ✍ ✠ we have:

IncrBestDo ✞ ✷ ☎★✾ ☎✆✷ ✞✝☎ ✍ ✠ ✁ ☎ ✑✔✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✆ ✆ ✂ ✆ ✓ ✆ ✑✔✬✿✠ ☎✝✆ ✞❃ � ✁ � ☛

✞ ✒ ✌ ✆ ✂ ✍✚✆ ✓ ✍✏✆ ✑✔✬ ✍ ✠ IncrBestDo ✞✝☎ ✍ ✁ ✟ ✞ ✷ ✆ ✕ ✆ � ✆ ✌ ✆ ✂ ✍✚✆ ✓ ✍✡✆ ✑✔✬ ✍ ✠ ☛

IncrBestDo ✞ ✂ ✍ ✁ ☎ ✑✔✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✆ ✆ ✂ ✆ ✓ ✆ ✑✔✬✿✠ ✓
(6.2)

In this definition, we compute a program ✌ , a sub-program of ☎ ✍ , that remains to be executed

after actually performing the first action from ✂ ✍ , but it cannot be used in the next compu-

tation to determine ☎ ✝ ✆ ✆ because ☎ ✍ can include several nested nondeterministic choices and

the construct ✷ ☎★✾ ☎✆✷ ✞✝☎ ✍ ✠ ✁ ☎ ✑ indicates that all nondeterministic choices in ☎ ✍ must be resolved

before considering ☎ ✑ . Therefore, the program ☎ ✝ ✆ ✆ must be computed from the sequential

composition ✞✄✂ ✍ ✁ ☎ ✑ ✠ in which ✂ ✍ is a policy (i.e., it is a conditional Golog program without

nondeterministic choices but possibly with occurrences of stochastic actions); in addition, this

sequential composition takes into account ☎ ✑ as well.

Note that according to this definition, ☎ ✝ ✆ ✆ , the program that remains to be executed, is

computed off-line from a program that does not start with the ✷ ☎✏✾ ☎✆✷ operator, because by the

definition of the policy, ✂ ✍ has no occurrences of ✷ ☎✏✾ ☎✆✷ . Therefore, ☎ ✝ ✆ ✆ can have occurrences of
✷ ☎✏✾ ☎✆✷ only if ☎ ✑ has occurrences of ✷ ☎✏✾ ☎✆✷ . Consequently, when a Golog program is ✷ ☎★✾ ☎✆✷ ✞✝☎ ✍ ✠ ✁ ☎ ✑
the operator ✷ ☎✏✾ ☎✆✷ ✞✆☎ ✍ ✠ can provide computational savings for an off-line interpreter only once

by saying that ☎ ✑ need not be considered to compute ✂ ✍ . In other words, the construct ✷ ☎✏✾ ☎✆✷ ✞✝☎ ✍ ✠
provides bounds on the search performed by an off-line interpreter, but once the policy ✂ ✍ was

computed and the first action in ✂ ✍ was executed on-line, the remaining part of the program has

no indication where the search efforts can be saved, unless ☎ ✑ has other occurrences of search

control operators. For this reason, the programmer may find it convenient to use another search

control operator that once used persists in the remaining part of the program until the program

inside the scopes of that operator terminates on-line. This operator is called ✷ ✞ ✲ ✞ ✕ ✞✒✑ ✠ and is

specified by the following abbreviation.

IncrBestDo ✞ ✷ ✞ ✲ ✞✜✕ ✞✝☎ ✍ ✠ ✁ ☎ ✑✔✆ ✕ ✆ � ✆ ☎ ✝ ✆ ✆ ✆ ✂ ✆ ✓ ✆ ✑✔✬❂✠ ☎✝✆✟✞❃ � ✁ � ☛

✞ ✒✏✑ ☛ ✠ IncrBestDo ✞✆☎ ✍ ✁ ✟ ✞ ✷ ✆ ✕ ✆ � ✆ ✑ ☛ ✆ ✂ ✆ ✓ ✆ ✑✔✬❂✠ ☛

✞ ✑ ☛ ✆❃ ✟ ✞ ✷ ☛ ☎ ✝ ✆ ✆ ❃ ✞ ✷ ✞ ✲ ✞✜✕ ✞ ✑ ☛ ✠☎✁ ☎ ✑ ✠ ✝

✑ ☛ ❃ ✟ ✞ ✷ ☛ ☎ ✝ ✆ ✆ ❃ ☎ ✑ ✠ ✓
(6.3)

According to this specification, an optimal policy ✂ can be computed without looking ahead to

the program ☎ ✑ ; hence, using ✷ ✞ ✲ ✞ ✕ ✞✝☎ ✍ ✠ a programmer can express a domain specific procedural

knowledge to save computational efforts. Informally, ✷ ✞ ✲ ✞✜✕ ✞✝☎ ✍ ✠ ✁ ☎ ✑ is saying that an optimal

policy can be determined solely with respect to ☎ ✍ and nothing in ☎ ✑ matters as long as a policy
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optimal with respect to ☎ ✍ contains more than one action. Note that when ✑ ☛ is Nil, i.e. there

will be nothing in ☎ ✍ to execute after doing the only action in ✂ , the remaining program ☎ ✝ ✆ ✆
contains only ☎ ✑ . In addition, note that in comparison with ✷ ☎✏✾ ☎✆✷ , ☎ ✝ ✆ ✆ , the program that remains

to be executed also starts with the operator ✷ ✞ ✲ ✞✜✕ as long as the program inside the scope of

this operator is not completed.

To provide a better comparison of these recently introduced operators, let us discuss three

different programs: ☎ ✍ ✁ ☎ ✑ and programs with heuristics ✷ ☎★✾ ☎✆✷ ✞✝☎ ✍ ✠✂✁ ☎ ✑ and ✷ ✞ ✲ ✞ ✕ ✞✆☎ ✍ ✠✂✁ ☎ ✑ . We

need several new definitions before we can state formally the relation between policies com-

puted using the last two programs.

Recall that according to Definition 5.2.2, a branch ✛ of a policy ✂ is a sequence of ac-

tions and test expressions. If an action ✕ in this sequence is stochastic, then it is followed by

a sequence of sensing actions defined in senseEffect ✞✔✕ ✠ , followed by a test expression corre-

sponding to one of nature’s choices. In the following definition, we assume that we are given

a basic action theory and optimization theory � that provide axiomatization of an MDP; truth

of formulas is understood as entailment from the conjunction of these two theories.

Definition 6.2.1: Let � ✍ be a ground reachable situation, ✛ be a branch of a policy ✂ that has a

leaf different from Stop and � be a background axiomatization. Then, � ✑ , a situation resulting

from execution of ✛ starting from � ✍ is defined inductively as follows.

1. If ✛ is a deterministic agent action A and
✁ ☎ ✕ ✕✆✞✔✕ ✆ � ✍ ✠ is true, then � ✑ ❃ ✄✆☎✩✞✗✕ ✆ � ✍ ✠ . If ✛

is Nil, then � ✑ ❃✺� ✍

2. Let ✛ be a branch ✞✗✕ ✁ ✛ ☛ ✠ , where ✕ is a deterministic agent action and ✛ ☛ is a branch.

If
✁ ☎ ✕ ✕✆✞✗✕ ✆ � ✍ ✠ is true and � ✑ is a situation resulting from execution of ✛ ☛ starting from

✄✆☎✟✞✔✕ ✆ � ✍ ✠ , then � ✑ is a situation resulting from execution of ✛ starting from � ✍ .
3. Let ✛ be a branch ✞ ✞ ✁ senseEffect ✞ ✞ ✠✂✁ ✁✁� ✁ ✛ ☛ ✠ , where ✛ ☛ is a branch, ✞ is a stochastic

agent action, senseEffect ✞ ✞ ✠ is a sequence of primitive sensing actions ✕ ✍ ✁ ✓✔✓✔✓ ✁ ✕ ✂ , ✁ is

a test expression that occurs in senseCond ✞ ✟ ✆ ✁ ✠ such that ✟ is one of choices available

for nature when the agent executes ✞ . If ✁ ✞✜✄✝☎✟✞✭✍ ✕ ✍ ✁ ✓✔✓✔✓ ✁ ✕ ✂✒✎ ✆ ✄✆☎✩✞ ✟ ✆ � ✍ ✠✽✠✭✠ is true, and � ✑
is a situation resulting from execution of ✛ ☛ starting from ✄✆☎✟✞✭✍ ✕ ✍ ✁ ✓✔✓✔✓ ✁ ✕ ✂✒✎ ✆ ✄✆☎✩✞ ✟ ✆ � ✍ ✠✭✠✽✠ ,
then � ✑ is a situation resulting from execution of ✛ starting from � ✍ .

4. We say that � ✑ is a situation resulting from execution of a policy ✂ starting in � ✍ , if there

is a branch of ✂ such that � ✑ results from execution of this branch starting from � ✍ .
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We define also when a policy ✂ ✑ is a sub-policy of a policy ✂ . Informally speaking, policies

are conditional Golog programs of a certain form and one policy is a sub-policy of another,

larger policy, if it is a sub-program of this larger program.

Definition 6.2.2: A policy ✂ ✑ is a sub-policy of ✂ , if any branch of ✂ ✑ is a sub-sequence of a

corresponding branch in ✂ . In this case, we say also that ✂ is an expansion of ✂ ✑ .

Note that ✂ may have branches that do not intersect any of the branches in ✂ ✑ , but if they do

intersect, then a branch from ✂ is longer than a corresponding branch from ✂ ✑ .
The relation between the programs ✷ ☎★✾ ☎✆✷ ✞✝☎ ✍ ✠✂✁ ☎ ✑ and ✷ ✞ ✲ ✞✜✕ ✞✝☎ ✍ ✠✂✁ ☎ ✑ can be characterized by

the following simple observation about policies computed using these two constructs as defined

in (6.2) and (6.3), respectively.

Theorem 6.2.3: Let � be a ground reachable situation, ✂ ✍ be a policy computed from ☎ ✍ in �
by IncrBestDo ✞✆☎ ✍ ✁ ✟ ✞ ✷ ✆ � ✆ � ✆ ✌ ✆ ✂ ✍✚✆ ✓ ✍✟✆ ✑✔✬ ✍ ✠ , ✂ be a policy that IncrBestDo ✞✄✂ ✍ ✁ ☎ ✑✛✆ � ✆ � ✆ ☎ ✝ ✆ ✆ ✆ ✂ ✆ ✓ ✆ ✑✔✬✿✠
computes from ✞ ✂ ✍ ✁ ☎ ✑ ✠ also in � , � ✍ be any situation resulting from execution of ✂ ✍ starting

from � , as defined in (6.2.1), and ✂ ✑ be a policy computed by IncrBestDo ✞✆☎ ✑ ✁ ✟ ✞ ✷ ✆ � ✍✚✆ � ✆ ✌ ✆ ✂ ✍✏✆ ✓ ✍✟✆ ✑✔✬ ✍ ✠
from ☎ ✑ given the situation � ✍ . Then, ✂ ✑ is a sub-policy of ✂ .

The proof follows immediately from the above definitions and from an observation that ✂ ✍ is a

deterministic (conditional) Golog program and for this reason it is a sub-policy of ✂ expanded

by policies that will be computed from ☎ ✑ in every situation that results from execution of ✂ ✍
starting in � . Because � ✍ is just one of the situations that can result from execution of ✂ ✍ , the

policy ✂ ✑ is just one of those policies that expand ✂ ✍ to ✂ .

Because � ✍ is one of (potentially many) situations that can result from on-line execution of

the policy ✂ ✍ , and ✂ ✑ , according to the definition (6.3) of the ✷ ✞ ✲ ✞ ✕ operator is computed only

once in � ✍ when execution of ✂ ✍ is completed, this theorem indicates that finding out the policy

✂ from ✷ ☎★✾ ☎✝✷ ✞✆☎ ✍ ✠ ✁ ☎ ✑ by the off-line interpreter
� ✘☞✾✼✬✏✛ ✦ ✕ ✕ ✤ ☎ may require a significant amount

of potentially futile computations.

This theorem has an important consequence that we can gain considerable computational

savings in cases when ✂ ✍ has many leaves and ☎ ✑ is a large non-deterministic program. Indeed,

instead of computing off-line all possible continuations from ✂ ✍ to ✂ in every situation that may

result from execution of ✂ ✍ in � , we can simply execute on-line actions dictated by ✂ ✍ , and once

we get to the only situation � ✍ that will be the result of this on-line execution, we can compute

off-line the policy constrained by ☎ ✑ only once. All other (potential) situations � ☛ that might be

the result of executing ✂ ✍ in � are no longer relevant and it does not make sense to spend time
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on computing policies from them. Note also that this successive on-line execution of policies

recomputed from ✷ ✞ ✲ ✞ ✕ ✞✒✑ ☎ ✠✂✁ ☎ ✑ requires a sequence of computations that takes time depending

only on the program ☎ ✍ . As an example, assume that a given program ☎ ✍ has occurrences of ✲
nondeterministic choice operators and assume that a policy ✂ ✍ computed from ☎ ✍ in � includes

✘ different stochastic actions with 2 possible outcomes (and has no occurrences of deterministic

actions). Then, there are ❋ ❁ different situations that can be reached by executing the policy ✂ ✍
from �✻✁ . An off-line interpreter given ✷ ☎✏✾ ☎✆✷ ✞✝☎ ✍ ✠ ✁ ☎ ✑ must consider all these ❋ ❁ situations when

it computes off-line a policy ✂ from ✞ ✂ ✍ ✁ ☎ ✑ ✠ . Even in a simple case, when the given program

☎ ✑ mentions only deterministic agent actions, but has ✣ nondeterministic choice operators, then

the off-line interpreter has to compare, in total, ❋ ✆
�✔❋ ❁ ✆ ❋ ❁ � ❋ ✠

different branches of the

decision tree to determine an optimal policy ✂ . This provides significant computational savings

in comparison to ❋ ✆ �✿❋ ❁ �✿❋ ✠
branches that would be compared if the interpreter were given a

program ✞✆☎ ✍ ✁ ☎ ✑ ✠ without any bounds on search. However, if given a program ☎ ✍ , one computes

off-line and executes on-line repeatedly a policy determined by ☎ ✍ and its sub-programs6, and

after completing ☎ ✍ , one computes an optimal policy from ☎ ✑ , then only ❋ ✆ ✎
✍

� ✞ ❋ ❁ ✝ ❉✡✠ ✆ ❋ ✠
comparisons will be required. This demonstrates significant computational savings provided

by combination of off-line search with on-line execution in comparison to pure off-line search.

To provide a simple illustration of relative differences between ☎ ✍ ✁ ☎ ✑ vs. ✷ ☎★✾ ☎✝✷ ✞✆☎ ✍ ✠✂✁ ☎ ✑ we

continue with a delivery example.7 In particular, we continue with the example considered in

Section 5.6, where we assume that there are several people in an office environment, there is

mail addressed to each of them and we use the program

while ✞✟✒✏✑ ✦ ✬ ✕ ☎★✘ ✓ ✑ ☎ ✕ ✕ ✦ ✲✢✑✮✕ ✦ ✄ ✞ ✑ ✦ ✬ ✕ ☎★✘☞✠ ☛ ✒✩✘ mailPresent(person,n) ✠
✷ ☎★✾ ☎✆✷ ✞ ✂ ✞ ✑ ☛ ✑ ✦ ☎✥✑ ✷✫✦ ✠

✞ ✑ ☎ ✕ ✕ ✦ ✲✢✑✩✕ ✦ ✄ ✞✒✑ ✠ ☛ ✒✩✘ mailPresent(p,n) ✠ � ✁✚✄ ✦ ✷ ✞ � ✦ ✬★✳✵☎✟✞ ✑ ✠✔✠
✠

endWhile

Because this program implements a greedy-like algorithm that chooses a person without look-

ing ahead what deliveries can be made on subsequent iterations, this program yields a pol-

icy that has an accumulated expected reward less than an optimal policy in associated MDP.

However, in cases where it is important to make decisions quickly, the loss in reward can be

6Note that these consecutive computations require in total less than
✂ ✁✁�✄✂✆☎✞✝ ✔✟✡✠☞☛ ✂ ☎✌✝ ✟ ✓ ✂ ✁✎✍ ✔ � ✁ ✂ ☎✑✏ � ☛

comparisons.
7It is more convenient to use programs with local than programs with limit for comparison with programs

without these operators, because former can be used for purely off-line computations and as we just observed the

difference between local and limit becomes important only in the context of on-line executions.
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compensated by the decrease in the computation time provided by the local operator.

6.3 An on-line interpreter and its implementation

Given the definitions of IncrBestDo mentioned in the previous section, we can consider now

the on-line interpretation coupled with execution of Golog programs. The definitions translate

directly into Prolog clauses. In this section we propose one possible architecture for an on-

line interpreter, mention briefly possible variations, but postpone discussion of alternatives to

Section 6.5. The following on-line interpreter calls the incrBestDo(E,S,ER,H,Pol1,U1,Prob1)

interpreter to compute off-line an optimal policy from the given program expression ✄ , gets

the first action of the optimal policy, commits to it, executes it in the physical world, and

then repeats with the rest ✄ ✸ of the program expression. The following is such an interpreter

implemented in Prolog:8

online(E,S,H,Pol,U) :- incrBestDo(E,S,H,ER,Pol1,U1,Prob1),

( final(ER,S,H,Pol1,U1), Pol=Pol1, U=U1 ;

reward(V,S),

( ER \== nil, Pol1 = (A : Rest) ; ER == nil, Pol1 = A ),

(

(agentAction(A), deterministic(A,S),

doReally(A), /* execute A in reality */

senseExo(do(A,S),Sg), decrement(H , Hor),

!, /* commit to the result */

online(ER,Sg,Hor,PolRem,URem),

Pol=(A : PolRem), U $= V + URem

) ;

(

(senseAction(A),

doReally(A), /* do sensing */

senseExo(do(A,S),Sg), decrement(H , Hor),

!, /* commit to results of sensing */

online(ER,Sg,Hor,PolRem,URem),

Pol=(A : PolRem), U $= V + URem

) ;

(agentAction(A), nondetActions(A,S,NatOutcomes),

8We switch to Prolog because the interpreter uses cuts ‘!’ symbols that are required to prevent backtracking.
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doReally(A), /* execute A in reality */

senseOutcome(A,S,NatOutcomes,SEff),

/* SEff results from real sensing */

senseExo(SEff,Sg), decrement(H , Hor),

!, /* commit to the result */

online(ER,Sg,Hor,PolRem,URem),

Pol=(A : PolRem), U $= V + URem

)

)

)

).

% final(Program,Situation,Horizon,Pol,Val) is true iff Program

% cannot be continued because Horizon is zero or if the computed policy

% Pol cannot be executed. Returns value Val.

final(E,S,H,Pol,V) :- H==0, Pol=nil, reward(V,S), VL $<= V, rmax(VL).

final(nil,S,H,Pol,V) :- Pol=nil, reward(V,S), VL $<= V, rmax(VL).

final(stop : E,H,S,Pol,V) :- Pol=stop, reward(V,S), VL $<= V, rmax(VL).

final(E,S,H,Pol,U) :- (Pol == stop ; Pol == nil),

reward(V,S), VL $<= U, rmax(VL).

A complete Prolog code of the implementation is attached in Appendix D.1.9 Note that in

cases when there are no exogenous actions and when there is no need to learn a better proba-

bilistic model of transitions between states, this implementation can be improved by caching

the computed policy and reusing it.

The on-line interpreter uses the Prolog cut (!) to prevent backtracking to the predicate

✄✆☎ ✸ ✦✛☎✆✷✫✷ ✣ : we need this because once actions have been actually performed in the physical

world, the robot cannot return to the situation that existed before actions were executed.

The on-line interpreter uses the predicate senseOutcome ✞✗✕ ✆ � ❉ ✆ ✁ ✞ ✕ ✕ ✆ � ❋ ✠ , and the two

auxiliary predicates diffSequence ✞✔✕ ✆ � ✦ ✁❂✠ and diagnose ✞ � ❉ ✆ � ❋ ✆ ✁ ✞ ✕ ✕ ✆ ✟ ✠ . We describe

below their meaning and show their implementation in Prolog.

The predicates senseOutcome ✞✔✕ ✆ � ❉ ✆ ✁ ✞ ✕ ✕ ✆ � ❋ ✠ and diagnose ✞ � ❉ ✆ � ❋ ✆ ✁ ✆ ✟ ✠ play the

role of combination of senseEffect ✞✔✕ ✠ with conditionals that we discussed in the previous chap-

9The predicate rmax(V) is a built-in predicate in Eclipse Prolog 3.5.2 that maximizes the value of � with

respect to the set of linear temporal constraints; operators $
� ✓ define some of these linear constraints.



CHAPTER 6. AN ON-LINE DECISION-THEORETIC GOLOG INTERPRETER. 216

ter. We need them here because a proposed on-line interpreter never gets to execute senseEffect

from policies computed by the off-line interpreter. This happens simply because the on-line in-

terpreter always takes the very first action from the most recently computed policy and executes

it on-line, on the next iteration, it takes again the first action from a new policy, etc.10 Our on-

line interpreter cannot execute the senseEffect procedures because on each iteration it computes

a new policy from the remaining Golog program that may have no occurrences of senseEffect

procedures. (Recall that these procedures are inserted only in policies which are a very spe-

cial case of a general Golog program.) Given the stochastic action ✕ , the list of available

outcomes ✁ ✞ ✕ ✕ and the current situation � ❉ , the predicate senseOutcome ✞✗✕ ✆ � ❉ ✆ ✁ ✞ ✕ ✕ ✆ � ❋ ✠
holds if � ❋ is the situation that results from doing a number of sensing actions necessary to

differentiate between all those actions in ✁ ✞ ✕ ✕ that nature can choose to execute. The predi-

cate diffSequence ✞✔✕ ✆ � ✦ ✁❂✠ holds if � ✦ ✁ is the sequence of sensing actions ( ☎ ✍ ✁ ☎☞✑ ✁ ✓✔✓✜✓ ✁ ☎❂❁ )

specified by the programmer in the domain problem representation. This sequence is differen-

tiating if after doing all actions in the sequence, the action chosen by ‘nature’ as the outcome

of stochastic action ✕ can be uniquely identified. Because each sensing action has as an argu-

ment a variable bound to a value provided by a particular sensor, a differentiating sequence of

sensing actions results in the situation that can be used by diagnose.

senseOutcome(A,S,NatureActions,SE) :- differentiatingSeq(A,Seq),

getSensorInput(do(X,S),Seq, SE),

/* find X: an unknown outcome of the stochastic action A */

diagnose(S,SE,NatureActions,X).

getSensorInput(S,A, do(A,S)) :- senseAction(A),

doReally(A). /* connect to sensors and get data for */

/* a free variable V in A=sense(f,V,Time)*/

getSensorInput(S,(A : Tail),SE) :- senseAction(A),

doReally(A), /* connect to sensors and get data */

getSensorInput(do(A,S),Tail, SE).

The predicate diagnose ✞ � ❉ ✆ � ❋ ✆ ✁ ✆ ✟ ✠ takes as its first argument the situation before

stochastic action was executed, as its second argument the situation resulting from getting a

10Note that we could discard senseEffect constructs when we defined the � ✒ ☎ ✄✂✁ ☎
✝ ☞ ✞ ✖ interpreter, but we

decided to keep them to conform with the definition of policy and because alternative architectures of on-line

interpreters might wish to use them.
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sensory input: it contains ‘enough’ information to disambiguate between different possible

outcomes of the last stochastic action ✕ . The third argument is the list ✁ of all outcomes that

nature may choose if the agent executes the stochastic action ✕ in � ❉ and the last argument is

the action that nature actually performed. This is the action that we would like to determine:

once we know this nature’s action, we know the situation that resulted when the agent per-

formed actually the stochastic action ✕ . We can identify which action nature has chosen using

the set of mutually exclusive test conditions senseCond ✞✜✘ ☎ ✆ ✁ ☎ ✠ , where ✁ ☎ is a term representing

a situation calculus formula: if ✁ ☎ holds in the current situation, then we know that nature has

chosen the action ✘ ☎ ( ✘ ☎ belongs to the list ✁ ).

diagnose(S,SEff,[N],X) :- senseCond(N,C), X=N, holds(C,SEff).

diagnose(S,SEff,[N, NN | Outcomes],X) :-

senseCondition(N,C), /* assume that the outcome N happened */

( X=N, holds(C,SEff) /* verified that nature did action N */ ;

diagnose(S,SEff,[NN | Outcomes],X) /* if not, consider other outcomes */

).

Our on-line interpreter includes several auxiliary predicates like senseExo, decrement,

but names of these predicates are self-explanatory and additional details of their implementa-

tions can be found in Appendix D.1. In the following section we consider an example that

illustrates how the new construct ✷ ✞ ✲ ✞ ✕ works in the context of the on-line interpreter.

6.4 An Example

In this section we continue to discuss delivery domains where natural constraints on robot

behavior can be conveniently expressed in a Golog program (see examples in Section 5.4,

Section 5.3 and Example 3.2.1). When the robot is in the main office, it can sense the battery

voltage by doing the action ✕ ✦ ✘ ✕ ✦ ✞✜✛ ☎ ✕ ✕ ✦ ✬ ✣ ✆ � ✆ ✕✽✠ and, if necessary, connect to the charger. In

domains of this type, we can use the on-line interpreter to find and execute incrementally a

quasi-optimal policy. In addition to the predicates, function symbols and constants mentioned

in the examples above, we use the relational fluent ✕ ✕ ☎ ✕ ✓ ✕✆✞ ✑ ✆ ✕ ✕ ✆ ✕★✠ : a person ✑ can be in or out

of his/her office and the robot can determine the current status ✕ ✕ when it tries to give an item
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to the person. The successor state axiom for this fluent:

✕ ✕ ☎ ✕ ✓ ✕✆✞ ✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕ ✕ ✆ ✄✆☎✟✞ ☎✝✆ ✕✡✠✭✠ ✒
✞✟✒✟✕✽✠ ☎ ❃❀✪ ✞ � ✦ � ✞ ✞✜✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕✡☎✡✘ ✆ ✕✽✠ ☛ ✕ ✕❂❃ � ✘ ✝

✞✟✒✟✕✽✠ ☎ ❃ ✪ ✞ � ✦ ✰ ✞ ✞✜✕ ✦ ✲ ✆ ✑ ✦ ✬ ✕✡☎✡✘ ✆ ✕✽✠ ☛ ✕ ✕✿❃✺✖✙✓ ✕ ✝

✕ ✕ ☎ ✕ ✓✙✕✆✞✒✑ ✦ ✬ ✕ ☎✡✘ ✆ ✕ ✕ ✆ ✕✡✠ ☛ ✑ ✞ ✒ ✞ ✆ ✑ ✆ ✕✽✠ ☎ ❃ ✪ ✞ � ✦ � ✞ ✞ ✆ ✑ ✆ ✕✽✠ ☛ ✑ ✞✟✒ ✞ ✆ ✑ ✆ ✕✽✠ ☎ ❃❀✪ ✞ � ✦ ✰ ✞ ✞ ✆ ✑ ✆ ✕✽✠ ✓
In the initial situation, the robot is located in the main office and there are several requests

for coffee; the status of all people can be unknown. The MDP problem is to find an optimal

policy that corresponds to delivering coffee in the optimal way.

The following compact Golog procedures express natural constraints of the robot’s be-

havior (with abbreviations MO (main office), C (coffee) ). The argument ✬ of the procedure

deliver ✞✜✬✿✠ denotes the finite range of offices and each office is the finite range of people who

occupy it; for example, the argument of this procedure can be the finite set of offices:

✄ ✁ ✁ ❋ � ❉ ✆ ✁ ✁ ❋ �
� ✆ ✁ ✁ ❋ ✆ � ✂ ✆ ✁ ✁ ❋ � ✆ ✆ ,

where the office ✁ ✁ ❋ � ❉ is the finite set of names ✄✏� ✕ ✦ � ✦ ✆ ✁ ☎ ✓ ✬ ✞ ✾ ✦ ✆ ✂
� ✦ ✕✝✆ .

proc ✄ ✦ ✷ ✞ � ✦ ✬✮✞✫✬❂✠
while ✞✟✒ ✢ ✠ ✞ ✘❄✞ ✢ ✆ ✬❂✠ ☛ ✞✟✒✏✑ ✦ ✬ ✕ ☎★✘☞✠ ✞ ✘❄✞✒✑ ✦ ✬ ✕✡☎✡✘ ✆ ✢ ✠ ☛

✞ ✒✟✕ ✍✚✆ ✕ ✑ ✠ ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞✒✑ ✦ ✬ ✕✡☎✡✘ ✆ ✕ ✍✏✆ ✕ ✑ ✠ ☛ ✑ ✕ ✕ ☎ ✕ ✓ ✕✝✞✒✑ ✦ ✬ ✕✡☎✡✘ ✆ ✖ ✓✔✕✽✠ do

✂ ✞✜☎ � � ✞ ✾ ✦ ☛ ✬✿✠
✞ ✷ ✞ ✲ ✞✜✕ ✞ ✂ ✞✒✑ ✦ ✬ ✕ ☎✡✘ ☛ ☎ � � ✞ ✾ ✦ ✠

✞ ✒✟✕ ✍✚✆ ✕ ✑ ✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕ ✍✏✆ ✕ ✑ ✠ ☛ ✑ ✕ ✕ ☎ ✕ ✓ ✕✆✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✖ ✓✔✕✽✠✽✠ � ✁
✂✻✕ ✓ ✍ ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕✽✠ ✎ ✁

✂☞✕ ✓ ✍ ✞✜✘✻☎☎✞✢✞✫✕✽✠✽✠ � ✁ ✪✟☎✡✕ ☎✟✞ ✁ ✖ ✆ ✕✽✠ ✎ ✁ ✷✫✦✛☎ � ✦ � ✕ ✦ ✲ ✕ ✠✭✠ ✁ /*end of “limit”*/
✷ ✞ ✲ ✞✜✕ ✞ ✂ ✞✠� ✆ ✕✽✠ ✓ ✍ ✞✜✘☞☎✁✞ ✞✯✕✽✠✭✠ � ✁✟✕ ✦ ✘ ✕ ✦ ✞ ✛ ☎ ✕ ✕ ✦ ✬ ✣ ✆ � ✆ ✕✽✠☎✁

if � ✠ ❋ ✄ then ✾✒� ☎ ✬✡✪ ✦ ✛ ☎ ✕ ✕ ✦ ✬ ✣✻✞✫✕✽✠ else ✟ ✞ ✷ ✎✡✠ /*end of “limit”*/

endWhile

endProc

According with the semantics of ✂ ✞ ✢ ☛ ✝ ✠✫✑ given in Section 6.2, the first occurrence of

this construct in the procedure ✄ ✦ ✷ ✞ � ✦ ✬✮✞✫✬❂✠ represents the nondeterministic choice between of-

fices given as the argument to the procedure, the second occurrence of this construct repre-

sents the nondeterministic choice between people occupying each office. We use the guard

✞✟✒✟✕ ✍✚✆ ✕ ✑ ✠✟✞ ☎ ✘ ✕ ✕ ✂ ☎ � � ✦ ✦ ✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✕ ✍✏✆ ✕ ✑ ✠ ☛ ✑ ✕ ✕ ☎ ✕ ✓ ✕✆✞ ✑ ✦ ✬ ✕ ☎★✘ ✆ ✖ ✓✔✕✽✠✽✠ � to consider only those peo-

ple who want coffee and who are not out of their offices (we assume that initially all people
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are in their offices, but people may leave and come back at any time, and we do not model this

behavior). Note that we use the operator ✷ ✞ ✲ ✞ ✕ to limit the scope of how far the incremental

interpreter has to search to find the first person ✑ to serve. Given the program ✄ ✦ ✷ ✞ � ✦ ✬✩✞✜✬✿✠ , the

interpreter considers all offices in ✬ as alternative choices, makes a choice, chooses nondeter-

ministically a person in that office and if the choice satisfies the guard, computes the optimal

policy of delivering coffee to a chosen person. Because this last computation occurs inside the

scope of the operator ✷ ✞ ✲ ✞✜✕ , the interpreter does not look beyond. According to the given re-

ward function and to the given probabilities that people are in their offices, the interpreter will

decide who is the optimal person to serve first (it is the person with an early unfulfilled request

and who is in her office with a high enough probability). Once this decision has been made,

the robot can start executing the procedure ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕✽✠ at some moment of time ✕ (this

moment of time will be determined by product of computing the reward for giving coffee to ✑ ).

The procedures ✄ ✦ ✷ ✞ � ✦ ✬ ✂ ☎ � � ✦ ✦ ✞ ✑ ✆ ✕✽✠ and goto ✞ ✷ ☎✏✾ ✆ ✕✽✠ have been considered previously in Sec-

tion 5.4. Then, the procedure ✄ ✦ ✷ ✞ � ✦ ✬✮✞✫✬❂✠ specifies to sense the voltage of the robot’s battery: if

the voltage is low, then the battery needs to be charged; otherwise, the computation continues

until all requests are served. Finally, the procedure ✷✫✦✛☎ � ✦ � ✕ ✦ ✲ ✕ is designed to return undeliv-

ered items to the main office. If a person was not in his/her office at the time when the robot

arrived, then upon the return to the main office the robot carries some items and this procedure

commands to put them back:

proc ✷✜✦✛☎ � ✦ � ✕ ✦ ✲ ✕
while ✞✟✒ ✞ ✕ ✦ ✲✺✠☛✾ ☎ ✬★✬ ✣ ✞ ✘ ✪☞✞ ✞ ✕ ✦ ✲✺✠ do

✂ ✞ ✕ ✦ ✲ ✓ ✍ ✞✜✾ ☎ ✬★✬ ✣ ✞ ✘ ✪☞✞ ✞ ✕ ✦ ✲✺✠✽✠ � ✁
✂☞✕ ✆ ✞ ✞✜✘✻☎☎✞✢✞✫✕ ✆ ✠✭✠ � ✁✻✑✔✓✔✕ ✛ ☎ ✾ ✣✻✞ ✞ ✕ ✦ ✲ ✆ ✕ ✆ ✠ ✠✟✎ ✓

endProc

To compare the computation time, we ran both the procedure ✄ ✦ ✷ ✞ � ✦ ✬✩✞✜✬✿✠ and its modifi-

cation that does not include the construct ✷ ✞ ✲ ✞✜✕ (all runs were done on a computer with two

Pentium II 300 Mz processors and 128Mb of RAM). More search is required if ✄ ✦ ✷ ✞ � ✦ ✬ does

not include the ✷ ✞ ✲ ✞✜✕ construct: it takes the incremental interpreter about 1 sec to compute

the optimal policy for 2 people, about 12 sec to compute the optimal policy for 3 people and

about 2 min to compute the optimal policy for 4 people (note that the decision tree grows ex-

ponentially with the number of people). But when we run the procedure ✄ ✦ ✷ ✞ � ✦ ✬ with the ✷ ✞ ✲ ✞✜✕
construct, then the computation time remains less than 3 sec even if the argument of ✄ ✦ ✷ ✞ � ✦ ✬ is

a list of 4 or 5 offices with 7 or 8 people in them in total.

Notice that the program restricts the policy that the robot can implement, leaving only one
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choice (the choice of person to whom to deliver an item) open to the robot and the rest of

the robot’s behavior is fixed by the program. However, structuring a program this way may,

in general, preclude optimal behavior. For instance, the outer most limit construct restricts

the search to find ‘the best’ person to serve at the current time without looking ahead what

consequences this choice will have in the future. In circumstances when the robot lingered this

may lead the program to skip a next request in favor of a later request. But if the program

inside the scope of the outer most limit construct would consider all sequences of the next two

requests (or the next three requests), then the choice of ’the best’ person to serve now would

take into account also a next one (or next two, respectively) request(s) to be served in the future

and still the computation of the optimal policy would require an acceptable time. In addition,

the program can be improved by allowing the robot to carry more than one item at a time:

this may lead to better behavior (for instance, in cases when two people from the same office

requested different items).

Successful tests of the implementation described here were conducted on the mobile robot

B21 in a real office environment. They demonstrated that using the expressive set of Golog

operators it is straightforward to encode domain knowledge as constraints on the given large

MDP problem. The operator ✷ ✞ ✲ ✞ ✕ ✞ ✑ ✠ proved to be useful in providing heuristics which allowed

to compute sub-policies in real time.

6.5 Discussion

An incremental Golog interpreter based on the single-step ✳ ✬ ☎ ✘ ✕ -semantics is introduced in

[De Giacomo and Levesque, 1999b]. The Golog programs considered there may include bi-

nary sensing actions. The interpreter considered in this chapter is motivated by similar intu-

itions, but it is based on a different decision-theoretic semantics and employs more expressive

representation of sensing.

An approach to integrating planning and execution in stochastic domains [Dearden and Boutilier, 1994]

is an interesting alternative to the approach proposed here. The authors suggest to compute a

policy close to optimal by searching to a fixed depth of a decision tree and using a heuristic

function to estimate the value of states; once a certain probabilistic action is deemed best, it is

executed and its actual outcome is observed, then the algorithm repeats.

The online interpreter developed in this chapter allows to consider Golog programs with

sensing actions. However, it is based on the assumptions that an MDP describing the planning

agent in an environment is fully observable and that probabilities of transitions between states
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are stationary and do not change with time. If the agent participates in a dynamic game like

soccer where individual players do not have a complete probabilistic information about each

state of the game, the players may need to constantly monitor their environments by performing

frequent sensing actions to check whether previously computed policies should be executed or

recomputed. [Ferrein et al., submitted] develops of an alternative on-line DTGolog interpreter

suitable for highly dynamic and fast paced environments and reports about successful testing of

this interpreter on mobile robots playing soccer. A detailed discussion of this work is available

in [Fritz, 2003].

DYNA architectures combine reinforcement learning and execution time planning into an

integral computational process that operates alternately on the world and on a learned model

of the world [Sutton, 1990, Sutton and Barto, 1998b]. Informally, DYNA architectures learn a

world model online (e.g., they can learn transition probabilities) while using approximations to

dynamic programming to plan optimal behavior. Our online interpreter can be developed into

a DYNA-style architecture by supplementing the incremental interpreter that is responsible

for planning with an additional component that gradually builds a more accurate model from

interaction with the real world.

The idea of integration of adaptation, responsible for learning a better model of the envi-

ronment, with control, responsible for computing the best action given the current estimate of

the model, is one of the corner stones in the control theory and there are many monographs on

adaptive control that explore this idea, e.g. see [Fel’dbaum, 1965, Tsypkin, 1971].

Our on-line interpreter is somewhat related to the idea of model predictive control (MPC) or

receding horizon control (RHC) that received significant attention in the engineering literature.

As characterized in the review [Mayne et al., 2000], MPC is “a form of control in which the

current control action is obtained by solving on-line, at each sampling instant, a finite horizon

open-loop optimal control problem, using the current state of the plant as the initial state; the

optimization yields an optimal control sequence and the first control in this sequence is applied

to the plant.” The authors of this review note that MPC is not a new method of control design,

but it is different from other controllers (both for non-linear and linear dynamical systems with

constraints) because “it solves the optimal control problem on-line for the current state of the

plant, rather than determining off-line a feedback policy (that provides the optimal control for

all states)”. The main difference between our proposal and the extensive MPC literature is that

we are interested here in fully observable MDPs with (potentially very large) finite state and

action spaces, but in the majority of engineering systems state and action spaces are subsets of

�
❁
.



CHAPTER 6. AN ON-LINE DECISION-THEORETIC GOLOG INTERPRETER. 222

In Section 2.4.2, we extensively discussed heuristic search methods (RTA ✁ and LRTA ✁ ) and

real-time dynamic programming methods (an envelope-based approach of [Dean et al., 1995]

and RTDP). Our on-line interpreter is motivated by a similar intention of using heuristic search

techniques. More specifically, our on-line DTGolog interpreter is motivated by the idea that

planning must be interleaved with execution [Barto et al., 1995, Dearden and Boutilier, 1997].

However, there are significant differences between our approach and the previous ones. The

main algorithmic difference is that the previous approaches incrementally improve an estimate

of a value function for visited states starting from an heuristic value function because they rely

on an asynchronous value iteration algorithm. In [Dearden and Boutilier, 1997], an heuristic

function is computed by solving an abstracted MDP with a considerably smaller state space.

In addition, off-line decision-tree search is facilitated by several pruning strategies in decision

tree construction (e.g., utility pruning and expectation pruning) that provide significant com-

putational savings. In the on-line interpreter proposed in this chapter, values of the current

state and of the successor states that can be reached from the current state are discarded once

they are computed using the IncrBestDo interpreter and these values are not reused in subse-

quent computations. One of the possible directions for future work is to cache both the poli-

cies and values of visited states computed by the IncrBestDo interpreter with an eye towards

reusing them later. Because our representation of an MDP relies on the situation calculus

(i.e., we use a predicate logic based representation in contrast to a state based representation

considered in [Barto et al., 1995, Dearden and Boutilier, 1997]), caching may require repre-

senting value functions by logical rules. The existing work on asynchronous policy iteration

[Sutton, 1990, Williams and Baird, 1993a, Bertsekas and Tsitsiklis, 1996] can also be useful

for designing a more elaborate version of an on-line DTGolog interpreter. These further devel-

opments will be particularly useful in the adaptive case, when an agent must learn a model of

an environment simultaneously with acting in this environment.

There is in depth investigation of on-line algorithms in [Borodin and El-Yaniv, 1998]. The

question of which optimization problems can be optimally or approximately solved by “greedy-

like” algorithms is studied in [Borodin et al., 2002] where the authors proposed a framework

for proving lower bounds on the approximability of a problem by “greedy-like” algorithms.

There is a considerable literature on macro-actions and options: [Parr and Russell, 1998,

Hauskrecht et al., 1998, Parr, 1998b, Parr, 1998a, Sutton et al., 1999, Precup, 2000]; we dis-

cussed these papers in the previous chapter. Our approach is different because we consider a

high level programming language and domain specification approach: they together provide a

convenient tool for computing approximately optimal policies in large-scale MDPs that arise
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naturally in robotics context. In [Andre and Russell, 2002] and [Pfeffer, 2001], high-level pro-

gramming languages ALisp and IBAL, respectively, are proposed for similar problems, but they

are not based on a principled framework for reasoning about actions with a solution to the

frame problem. For this reason, it can be problematic to integrate them into a larger system

that requires logical reasoning about actions.

6.6 Future work

Several important issues are not covered in this chapter. One of them is integration of the on-

line interpreter proposed in this chapter with a learning algorithm that gradually improves the

model. Another issue is monitoring and rescheduling of policies.

We included in this chapter a discussion of the computational savings that can be achieved

by using the constructs ✷ ☎✏✾ ☎✆✷ and ✷ ✞ ✲ ✞✜✕ in Golog programs. Our robotics implementation also

demonstrates that the ✷ ✞ ✲ ✞✜✕ construct is useful in providing heuristics which allowed us to

compute sub-policies in real time (without this construct search would be computationally in-

feasible in the office delivery application). This preliminary evidence indicates that it would

be interesting in the future to do more experimental work on the evaluation of the online in-

terpreter and the specific constructs ✷ ✞ ✲ ✞✜✕ and ✷ ☎✏✾ ☎✆✷ . This work can be conducted on MDP

problems of a moderate size where an optimal policy can be computed by standard dynamic

programming algorithms and, as a consequence, both values of optimal policies (for selected

states) and computation time (required to compute an optimal policy) can be recorded for com-

parison. In addition, this work should be done on benchmark domains where an MDP can

be decomposed into several independent sub-problems such that a Golog programmer can take

advantage of this additional structure by using constructs ✷ ✞ ✲ ✞✜✕ or ✷ ☎★✾ ☎✆✷ to indicate which prob-

lems can be solved independently and how their solutions can be combined. Furthermore, the

on-line interpreter can be used to compute optimal policies in the set of policies constrained by

a Golog program that uses either ✷ ☎✏✾ ☎✆✷ or ✷ ✞ ✲ ✞✜✕ operator. Again, values of computed polices

for an initial state and computation time can be recorded for comparison. We hope that in some

realistic domains there will be natural constraints on an MDP such that even if there will be

a moderate loss in the expected values of policies computed using our on-line interpreter, this

loss will be compensated by significant savings in the time required to compute policies with

respect to the time required to compute them using exact algorithms. Because in the case of
✷ ✞ ✲ ✞✜✕ , off-line computations must be interleaved with on-line executions, it will be necessary

to factor out the time required to execute actions (in reality or on simulator) to account for
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computation time only (this is especially important if rewards depend on the time when the last

action is executed).

A very interesting direction for future work is designing a more sophisticated on-line DT-

Golog interpreter that employs sampling, learning and pruning [Kearns et al., 1999, Ballard, 1983,

Sutton, 1990, Dearden and Boutilier, 1997]. Another direction is caching expected values and

policies computed by the interpreter with intention to reuse them in subsequent computations.

The diagnostic task that the current version of the on-line interpreter solves is admittedly

oversimplified. We expect that additional research on integrating the on-line incremental inter-

preter with the diagnosis approach proposed in [McIlraith, 1998] will allow us to formulate a

more comprehensive version.



Chapter 7

Conclusion

In this chapter we provide a brief summary of the predicate logic-based frameworks developed

in this thesis in the context of research conducted in Cognitive Robotics and mention the main

contributions of our thesis.

7.1 Summary

In the last 25 years, many researchers working in AI have raised serious concerns about fea-

sibility of using logic-based approaches for the purposes of designing controllers for robots.

Existing approaches were criticized for a lack of computational efficiency, a lack of real-time

performance in realistic domains and for not taking seriously the complexity of the real world

environments, including exogenous actions and events, and uncertainty in sensor information

and in robot’s actions. However, with the advent of the Cognitive Robotics approach some

of these concerns have been successfully addressed. In particular, the researchers working at

the University of Toronto, York University (Toronto, Canada), the University of Rome ”La

Sapienza” the University of Aachen (Germany) and other universities have developed several

versions of the predicate logic-based high level programming language Golog. These devel-

opments are based on encoding a large amount of declarative information about the world in

terms of Reiter’s basic action theories and on providing the robot (or a software agent) with

procedural knowledge in terms of a high level program written in a Golog family programming

language. There are also a number of alternative approaches that have been developed using

different logical frameworks, e.g., see [Sandewall, 1995, Sandewall, 1998, Shanahan, 1997,

Shanahan, 1998, Poole, 1998, Doherty, 1999, Baral and Gelfond, 2000, Baral and Son, 2001,

Thielscher, 2000b, Thielscher, 2000a, Amir, 2001, Grosskreutz, 2002].

225
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The work reported in this thesis builds on the conceptual framework developed by the Cog-

nitive Robotics group in the University of Toronto. Our thesis demonstrates that reliable and

flexible controllers for mobile robots can be successfully and conveniently designed using sit-

uation calculus-based logical theories augmented with procedural knowledge represented in a

Golog program. In particular, our work addresses issues related to taking into account uncer-

tainty and incomplete information about an environment. We proposed and explored two dif-

ferent perspectives to dealing with uncertain and complex environments. First, we developed a

logical framework that can (under certain conditions) provide reliable functioning of a robotics

system without using probabilistic information about the environment. Second, we developed

a situation calculus based approach to designing reliable and conveniently programmable con-

trollers in the case when there is probabilistic information about the environment and func-

tioning of the robot can be characterized as a fully observable MDP. Because in both cases the

robot must get a feedback from the environment, we proposed and explored a computationally

efficient approach to reasoning about sensory information.

7.2 Contributions

The main contributions of this thesis are the following.

✎ We developed logical representations and frameworks that allow the robot to perform

reasoning fast in realistic scenarios. This is achieved by approximating a general logic

reasoning task by a more specialized reasoning task. More specifically, in reasoning

about sensing, we proposed an approach that is sound with respect to a more general � -

based one, but our approach sacrifices completeness to gain a computational efficiency.

In the context of the decision-theoretic planning, we also proposed and explored an ap-

proach that sacrifices optimality of a policy to gain a better computational performance.

✎ We proposed a general Golog-based framework for execution monitoring, and explored

two different realizations of this framework that guarantee a successful recovery of Golog

programs from unexpected failures. In the case when the high level control module gets

only temporal information as the sole sensory input from the external world, we de-

veloped a particular execution monitor that was successfully tested using the mobile

robot B21 on the realistic scenarios. Our logical framework turned out to be useful for

rescheduling and modification of temporal plans in the presence of unpredictable dis-

turbances in the environment. From the robotics point of view, we developed a general
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architecture suitable for monitoring execution of restartable situation-calculus based pro-

grams written in Golog.

✎ We have provided a general first-order language for specifying MDPs and imposing con-

straints on the space of allowable policies by writing a program. In this way we have

provided a natural framework for combining decision-theoretic planning and agent pro-

gramming with an intuitive semantics. We have found this framework to be very flexible

as a robot programming tool, integrating programming and planning seamlessly, and

permitting the developer to choose the point on this spectrum best-suited to the task at

hand.

✎ We proposed and explored an on-line decision-theoretic interpreter that combines off-

line computation of policies optimal with respect to a current model of the world with

online execution of initial actions from these policies. We argued that the proposed

interpreter can lead to significant computational savings in comparison to a purely off-

line decision-theoretic interpreter.

Our thesis is mainly concerned with developing efficient controllers for mobile robots, but

we conjecture that potential areas of applicability are much larger.

7.3 Future work

In this section we would like to summarize future work from previous chapters.

The work on execution monitoring considered in Chapter 4, can be continued in several

possible directions. First, it would be interesting to overcome some limiting assumptions like

the assumption that all exogenous actions are malicious and design a recovery procedure that

can take advantage of serendipitous events. Second, in cases when the goal of a program can be

analysed into more fine-grained sub-goals, it would be interesting to see how this analysis can

contribute to managing runtime violations of requirements. Finally, it is important to take into

account temporal constraints on computations performed by the recovery mechanism on-line

and do these computations in any-time mode (the more time is available, the better recovery

program can be computed).

The work on DTGolog (Chapter 5 and Chapter 6) can also be extended in many possible

directions. We are planning to integrate efficient algorithms and other techniques for solving

MDPs into this framework (dynamic programming, pruning, sampling, etc.) Other possible
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future avenues include: incorporating realistic models of partial observability (a key to ensuring

wider applicability of the model); extending the expressive power of the language to include

concurrency and other advanced features; incorporating declaratively-specified heuristic and

search control information. It would be interesting to do more extensive experimental analysis

of the DTGolog approach using different realistic domains both in the context of robotics

and other applications. It would be very interesting to integrate the on-line interpreter with a

learning component to extend this approach to cases when a model of the environment must be

learned concurrently with acting in the environment.



Appendix A

An Execution Monitor with A Planner As

A Recovery Mechanism

A.1 An Interpreter

An implementation of � ✞✂✁ ✧
considered below is simpler than the relation DoEM ✑☎✄ ✔ ★✫✒ ✞ ✔✚✙☞✔✝✆ ✔✚✙ ✞ ✛

specified in Section 4.2 because this implementation does not uses traces.

/************************************************************************/
/* Golog Interpreter With A Simple Execution Monitor. */
/* This version does not keep trace of program states. */
/* Based on Trans-interpreter by DeGiacomo, Lesprance, Levesque. */
/************************************************************************/
:- set_flag(print_depth,100).
:- pragma(debug).
:- set_flag(all_dynamic, on).

:- op(800, xfy, [&]). /* Conjunction */
:- op(850, xfy, [v]). /* Disjunction */
:- op(870, xfy, [=>]). /* Implication */
:- op(880,xfy, [<=>]). /* Equivalence */
:- op(950, xfy, [:]). /* Action sequence.*/
:- op(960, xfy, [#]). /* Nondeterministic action choice.*/

/* trans(Prog,Sit,Prog_r,Sit_r) */

trans(A,S,nil,do(A,S)) :- primitive_action(A), poss(A,S).

trans(?(C),S,nil,S) :- holds(C,S).

trans(P1 : P2,S,P2r,Sr) :- final(P1,S),trans(P2,S,P2r,Sr).
trans(P1 : P2,S, P1r : P2,Sr) :- trans(P1,S,P1r,Sr).

trans(P1 # P2,S,Pr,Sr) :- trans(P1,S,Pr,Sr) ; trans(P2,S,Pr,Sr).

229
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trans(pi(V,P),S,Pr,Sr) :- sub(V,_,P,PP), trans(PP,S,Pr,Sr).

trans(star(P),S,PP : star(P),Sr) :- trans(P,S,PP,Sr).

trans(if(C,P1,P2),S,Pr,Sr) :-
trans(((?(C) : P1) # (?(-C) : P2)),S,Pr,Sr).

trans(while(C,P),S,Pr,Sr) :-
trans(star(?(C) : P) : ?(-C), S,Pr,Sr).

trans(P,S,Pr,Sr) :- proc(P,Pbody), trans(Pbody,S,Pr,Sr).

/* final(Prog,Sit) */

final(nil,S).

final(P1 : P2,S) :- final(P1,S),final(P2,S).

final(P1 # P2,S) :- final(P1,S) ; final(P2,S).

final(pi(V,P),S) :- final(P,S).

final(star(P),S).

final(if(C,P1,P2),S) :-
final(( (?(C) : P1) # (?(-C) : P2) ), S).

final(while(C,P),S) :-
final( star(?(C) : P) : ?(-C) ,S).

final(pcall(P_Args),S) :- proc(P_Args,P),final(P,S).

/* transCL(Prog,S,Prog_r,S_r) is the transitive closure
of trans(Prog,S,Prog_r,S_r) */

transCL(P,S,P,S).
transCL(P,S,Pr,Sr) :- trans(P,S,PP,SS), transCL(PP,SS,Pr,Sr).

/* offline(Prog,S,Sr): Sr is the situation resulting after doing Prog */
offline(Prog,S0,Sf) :- final(Prog,S0), S0=Sf;

trans(Prog,S0,Prog1,S1),
offline(Prog1,S1,Sf).

doEM(Prog,S0,Sf) :- final(Prog,S0), S0=Sf;
trans(Prog,S0,Prog1,S1),
offline(Prog1,S1,Sg), /* Prog1 leads to the goal */
!,
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monitor(Prog1,S1,Prog2,S2), !,
doEM(Prog2,S2,Sf).

/* sub(Name,New,Term1,Term2): Term2 is Term1 with Name replaced by New. */

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.
sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.
sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),

T2 =..[F|L2].
sub_list(X1,X2,[],[]).
sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

/* The holds predicate implements the revised Lloyd-Topor
transformations on test conditions. */

holds(P & Q,S) :- holds(P,S), holds(Q,S).
holds(P v Q,S) :- holds(P,S); holds(Q,S).
holds(P => Q,S) :- holds(-P v Q,S).
holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).
holds(-(-P),S) :- holds(P,S).
holds(-(P & Q),S) :- holds(-P v -Q,S).
holds(-(P v Q),S) :- holds(-P & -Q,S).
holds(-(P => Q),S) :- holds(-(-P v Q),S).
holds(-(P <=> Q),S) :- holds(-((P => Q) & (Q => P)),S).
holds(-all(V,P),S) :- holds(some(V,-P),S).
holds(-some(V,P),S) :- not holds(some(V,P),S). /* Negation */
holds(-P,S) :- isAtom(P), not holds(P,S). /* by failure */
holds(all(V,P),S) :- holds(-some(V,-P),S).
holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

/* The following clause treats the holds predicate for non fluents, including
Prolog system predicates. For this to work properly, the GOLOG programmer
must provide, for all fluents, a clause giving the result of restoring
situation arguments to situation-suppressed terms, for example:

restoreSitArg(ontable(X),S,ontable(X,S)). */

holds(A,S) :- restoreSitArg(A,S,F), F ;
not restoreSitArg(A,S,F), isAtom(A), A.

isAtom(A) :- not (A = -W ; A = (W1 & W2) ; A = (W1 => W2) ;
A = (W1 <=> W2) ; A = (W1 v W2) ; A = some(X,W) ; A = all(X,W)).

restoreSitArg(poss(A),S,poss(A,S)).
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A.2 An Execution Monitor

An implementation of
✧ ✞✡✌ ☛ ✜ ✞ ✥ , and implementations of � ★✂✁ ★✕✠ ✣ ✌ ✜ and � ★☎✄✪✞✡✠✩★ ✥ considered below

have been simplified with respect to the formal specifications in Section 4.3 because this implementation

does not use traces and exogenous actions are typed in by an user.

/***********************************************************************/
/* The execution monitor calls a recovering procedure */
/* to counter-balance external disturbances. */
/* The recovery procedure uses a simple planner. */
/***********************************************************************/
/* :- nodbgcomp. */
:- pragma(debug).

/* We allow EXOs be arbitrary Golog programs; hence, if Exo happens
in S, then S1 is the situation resulting after termination of Exo */

monitor(DeltaOld,S,DeltaNew,S1) :- printMessages(DeltaOld,S),
sense(Exo,S),
( Exo=noOp -> (S1=S, DeltaNew=DeltaOld); /*No exogenous disturbances */

/* Otherwise, simulate execution of exogenous */
offline(Exo,S,S1),

/* Exogenous program cannot be redone */
!,
( relevant(DeltaOld,S,S1) ->

( write(’Start recovering...’), nl,
recover(1,4,DeltaOld,S1,DeltaNew)
);

/* otherwise, continue */
nl, write(’ No recovery is necessary. ’),
write(’Proceeding with the next step of program. ’), nl,
DeltaNew=DeltaOld
)

).

/* Determine whether the remainder of the program will
terminate in the goal situation */

relevant(DeltaOld,S,S1) :-
not offline(DeltaOld,S1,Sg).

printMessages(Delta,S) :- nl, write(’ Program state = ’), write(Delta), nl,
write(’ Current situation: ’), write(S), nl.

sense(E,S):-
nl, write(’>Enter: an exogenous program or noOp if none occurs.’),
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nl, read(E1),

/* IF an exogenous is noOp, or a terminating (hence, legal) Golog program
THEN this simulator will consider it as just happened. */

( (E1 = noOp; offline(E1,S,Sres)) -> E=E1 ;

/* ELSE print error message, and try again. */

write(">> Your program is not possible. Try again."), nl, sense(E,S)).

recover(M,N,PrOld,S,PrNew) :- M =< N, straightLineProgram(Plan,S,M),
offline(Plan : PrOld, S, Sg), /* Can we recover using Plan? */
PrNew=(Plan : PrOld), /* Yes: prefix old program by Plan */
nl,
write(’ New program = ’), write(PrNew),
nl;
/* Otherwise, try to find a longer sequence of actions */
M < N,
/* Complexity bound is not exceeded yet */
M_inc is M+1,
recover(M_inc,N,PrOld,S,PrNew).

recover(M,N,PrOld,S,PrNew) :- M > N, nl,
write(’-------------------------’),
write(’| Recovery procedure FAILED |’),
write(’-------------------------’),nl,
PrNew=nil.

straightLineProgram(Plan,S,K) :- K >= 1,
primitive_action(A), poss(A,S),

goodAction(Plan,A),
( K =:= 1 -> Plan=A ;
K_dec is K -1,
straightLineProgram(TailPlan,do(A,S),K_dec),
Plan=(A : TailPlan)

).

/* Elaborate in the future:
A is a good action to perform after Plan if A does not undo
the results of the last action in Plan. Otherwise, A is futile.
*/
goodAction(Plan,A).

/*--------------------- An execution example ----------------------
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Example below demonstrates that exos can be counterbalanced up to
the moment when ?(goal) was not yet performed.

>Enter: an exogenous program or noOp if none occurs.
move(s7,r1).
Start recovering...

New program = moveToTable(s7) : nil : ?(goal)

Program state = nil : nil : ?(goal)
Current situation: do(moveToTable(s7), do(move(s7, r1), do(move(r1, o1),

do(moveToTable(r1), do(move(r1, o1), do(move(o1, m1), do(move(m1, e1),
do(move(f, r2), do(move(r2, n), do(moveToTable(n), do(moveToTable(s7),
do(moveToTable(r2), do(move(r2, s7), do(move(s7, n), do(move(n, e1),
s0)))))))))))))))

>Enter: an exogenous program or noOp if none occurs.
noOp.

Program state = nil
Current situation: do(moveToTable(s7), do(move(s7, r1), do(move(r1, o1),

do(moveToTable(r1), do(move(r1, o1), do(move(o1, m1), do(move(m1, e1),
do(move(f, r2), do(move(r2, n), do(moveToTable(n), do(moveToTable(s7),
do(moveToTable(r2), do(move(r2, s7), do(move(s7, n), do(move(n, e1),
s0)))))))))))))))

>Enter: an exogenous program or noOp if none occurs.
moveToTable(r1).

No recovery is necessary. Proceeding with the next step of program.

yes.
*/
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A.3 A Blocks World Example

:- set_flag(print_depth,100).
:- pragma(debug).
/* :- nodbgcomp. */
:- set_flag(all_dynamic, on).
:- dynamic(p/1).

/* This program has to build (non-deterministically) one of the two towers
r p
o a
m or r
e i

s
given several blocks with letters r, o, m, e, p, a, r, i.
There is no block with ‘‘p’’.
Final positions of other blocks can be arbitrary. */

/* Primitive Action Declarations */

primitive_action(moveToTable(X)).
primitive_action(move(X,Y)).

/* Action Precondition Axioms */

poss(move(X,Y),S) :- clear(X,S), clear(Y,S), not X = Y.
poss(moveToTable(X),S) :- clear(X,S), not ontable(X,S).

/* Successor State Axioms */

on(X,Y,do(A,S)) :- A = move(X,Y) ;
on(X,Y,S), A \= moveToTable(X), A \= move(X,Z).

ontable(X,do(A,S)) :- A = moveToTable(X) ;
ontable(X,S), A \= move(X,Y).

clear(X,do(A,S)) :- (A = move(Y,Z) ; A = moveToTable(Y)), on(Y,X,S) ;
clear(X,S), A \= move(Y,X).

/* Initial Situation: everything is on table and clear. */
r(r1). r(r2). o(o1). o(o2). o(o3).
m(m1). m(m2). e(e1). e(e2).

/* There is no block with the letter "p" */
a(a1). i(i1). i(i2). s(s7).

ontable(r1,s0). ontable(r2,s0).
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ontable(o1,s0). ontable(o2,s0). ontable(o3,s0).
ontable(m1,s0). ontable(m2,s0).
ontable(e1,s0). ontable(e2,s0).
ontable(s7,s0).
ontable(a1,s0).
ontable(i1,s0). ontable(i2,s0).
ontable(n,s0). ontable(f,s0).

clear(r1,s0). clear(r2,s0).
clear(o1,s0). clear(o2,s0). clear(o3,s0).
clear(m1,s0). clear(m2,s0).
clear(e1,s0). clear(e2,s0).
clear(s7,s0).
clear(a1,s0).
clear(i1,s0). clear(i2,s0).
clear(n,s0).
clear(f,s0).

build :- doEM((tower : ?(goal)), s0, S).

proc(tower,
makeParis # makeRome).

proc(makeParis,
pi(b0, ?(s(b0) & ontable(b0) & clear(b0)) :

pi(b1, ?(i(b1)) : move(b1,b0) :
pi(b2, ?(r(b2)) : move(b2,b1) :

pi(b3, ?(a(b3)) : move(b3,b2) :
pi(b4, ?(p(b4)) : move(b4,b3))))))).

proc(makeRome,
pi(b0, ?(e(b0) & ontable(b0) & clear(b0)) :

pi(b1, ?(m(b1)) : move(b1,b0) :
pi(b2, ?(o(b2)) : move(b2,b1) :

pi(b3, ?(r(b3)) : move(b3,b2)))))).

goal(S) :- p(Y1), a(Y2), r(Y3), i(Y4), s(Y5), ontable(Y5,S),
on(Y4,Y5,S), on(Y3,Y4,S), on(Y2,Y3,S), on(Y1,Y2,S), clear(Y1,S);
r(X1), o(X2), m(X3), e(X4),
ontable(X4,S), on(X3,X4,S), on(X2,X3,S), on(X1,X2,S), clear(X1,S).

restoreSitArg(ontable(X),S,ontable(X,S)).
restoreSitArg(on(X,Y),S,on(X,Y,S)).
restoreSitArg(clear(X),S,clear(X,S)).
restoreSitArg(goal,S,goal(S)).
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An Execution Monitor with Backtracking

As A Recovery Mechanism

B.1 An Interpreter for Temporal Golog Programs

/***********************************************************************
A Golog interpreter with preferences, rewards and utilities based on
Trans-interpreter by DeGiacomo, Lesprance, Levesque, IJCAI-1997
and the idea of sequential, temporal Golog by Reiter, KR-1998

***********************************************************************/
:- lib(r).
:- lib(fromonto).
:- set_flag(print_depth,300).
:- pragma(debug).
/* :- nodbgcomp. */
:- set_flag(all_dynamic, on).
:- dynamic(proc/2).
:- set_flag(all_dynamic, on).

:- op(800, xfy, [&]). /* Conjunction */
:- op(850, xfy, [v]). /* Disjunction */
:- op(870, xfy, [=>]). /* Implication */
:- op(880,xfy, [<=>]). /* Equivalence */
:- op(950, xfy, [:]). /* Action sequence.*/
:- op(960, xfy, [#]). /* Nondeterministic action choice.*/

/* GOLOG clauses. */

/* trans(Prog,Sit,Prog_r,Sit_r) */

trans(P1 : P2,S,P2r,Sr) :- final(P1,S),trans(P2,S,P2r,Sr).
trans(P1 : P2,S, P1r : P2,Sr) :- trans(P1,S,P1r,Sr).
trans(?(C),S,nil,S) :- holds(C,S).

237
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trans(P1 # P2,S,Pr,Sr) :- trans(P1,S,Pr,Sr) ; trans(P2,S,Pr,Sr).

trans(pi(V,P),S,Pr,Sr) :- sub(V,_,P,PP), trans(PP,S,Pr,Sr).

trans(star(P),S,PP : star(P),Sr) :- trans(P,S,PP,Sr).

trans(if(C,P1,P2),S, Pr,Sr) :-
holds(C,S), trans(P1,S,Pr,Sr) ;
holds(-C,S), trans(P2,S,Pr,Sr ).

trans(while(C,P),S,Pr,Sr) :- holds(-C,S), Pr=nil, Sr=S;
holds(C,S),
trans(P : while(C,P),S, Pr,Sr).

trans(P,S,Pr,Sr) :- proc(P,Pbody), trans(Pbody,S,Pr,Sr).

trans(A,S,nil,do(A,S)) :- primitive_action(A), deterministic(A), poss(A,S),
start(S,T1), time(A,T2), T1 $<= T2.

/* NEW GOLOG CONSTRUCT: pick the best value for a variable.
Beware that be(V,E) fails if there is no execution of E1
(E with an instantiated V) leading to a situation S1 such
that pref(S1,S,S) (i.e., S1 better than the current situation S).
But if an execution of be(V,E) terminates it results in a
better situation than the current situation S. */

trans(be(V,E),S,Pr,Sr) :- sub(V,_,E,E1), trans(E1,S, Pr,Sr),
bestSit(Pr,Sr, Sbest),
not dominated(be(V,E),S,E1,Sbest).

bestSit(E,S,Best) :- offline(E,S,Best),
not ( offline(E,S,Sf), pref(Sf,Best,S) ),
pref(Best,S,S).

dominated(be(V,E),S,E1,S1) :- sub(V,_,E,E2),
bestSit(E2,S,S2),
E2 \= E1,
pref(S2,S1,S).

/* NEW GOLOG CONSTRUCT: pick a good value for a variable.
Beware that an execution of good(V,E) may result in a
situation S1 such that pref(S1,S,S) is false (i.e., S1
is not better than the current situation S). But if
there is a terminating execution of E1 (E with an
instantiated V), then good(V,E) terminates too. */

trans(good(V,E),S, Pr,Sr) :- sub(V,_,E,E1),
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trans(E1,S, Pr,Sr),
offline(Pr,Sr, Sgood ),
not ( offline(E1,S,S12), pref(S12,Sgood,S) ),
not better(good(V,E),S,E1,Sgood).

better(good(V,E),S,E1,S1) :- sub(V,_,E,E2),
offline(E2,S,S2), E2 \= E1,
not ( offline(E2,S,S21), pref(S21,S2,S) ),
pref(S2,S1,S).

/* final(Prog,Sit) */

final(nil,S).
final(fail,S).
final(P1 : P2,S) :- final(P1,S),final(P2,S).
final(P1 # P2,S) :- final(P1,S) ; final(P2,S).
final(pi(V,P),S) :- final(P,S).
final(star(P),S).
final(P_Args,S) :- proc(P_Args,Pbody), final(Pbody,S).

/* transCL(Pr,S,Pr_r,S_r) is the transitive closure of trans(Pr,S,Pr_r,S_r) */

transCL(P,S,P,S).
transCL(P,S,Pr,Sr) :- trans(P,S,PP,SS), transCL(PP,SS,Pr,Sr).

/* offline(Pr,S,Sr): Sr is the situation resulting after doing Pr in S */

offline(Prog,S0,Sf) :- final(Prog,S0), Sf=S0;
trans(Prog,S0,Prog1,S1),
offline(Prog1,S1,Sf).

bestTrans(Delta,S,Delta2,S2) :-
trans(Delta,S,Delta2,S2),
offline(Delta2,S2,Best),
not ( offline(Delta,S,Sf), pref(Sf,Best,S) ),
% pref(Best,S,S),
util(Ut, Best), U $=< Ut, rmax(U),
current_stream(reports, X, Stream),
printf(Stream, "\n

>> Current program = %w\n
>> Next Program = %w\n
>> BestPlan = %w \n
>> Utility = %w \n", [Delta,Delta2,Best,U]).
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/* Preferences and rewards */

/* pref(S1,S2,S): the situation S1 is better than S2 wrt S.
On the situation tree, S is a predecessor of both S1 and S2 */

/* A simple implementation of preferance relation by means of utilities */

pref(S1, S2, S) :- util(Val1,S1), V1 $=< Val1,
util(Val2,S2), V2 $=< Val2,
rmax(V1), rmax(V2),
!, /* no backtracking */
V1 > V2.

% util(V,S) is a fluent: V is a total utility in situation S.
% See an example of utility function in the file "coffee"

/* Time specific clauses. */

start(do(A,S),T) :- time(A,T).
/* start( s0, 0 ). Say this in the file coffee */

/* "now" is a synonym for "start". */
now(S,T) :- start(S,T).

/* schedMin(S1, Sg) determines a schedule such that
times of occurrences are minimized. */

schedMin(S1,S1).
schedMin(S1,do(A,S2)) :-

S1==S2,
time(A,T), (nonground(T) -> rmin(T); true).

schedMin(S1,do(A,S2)) :-
S1\==S2, schedMin(S1,S2),
time(A,T), (nonground(T) -> rmin(T); true).

/* sub(Name,New,Term1,Term2): Term2 is Term1 with Name replaced by New. */

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.
sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.
sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),

T2 =..[F|L2].
sub_list(X1,X2,[],[]).
sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

/* The holds predicate implements the revised Lloyd-Topor
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transformations on test conditions. */

holds(P & Q,S) :- holds(P,S), holds(Q,S).
holds(P v Q,S) :- holds(P,S); holds(Q,S).
holds(P => Q,S) :- holds(-P v Q,S).
holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).
holds(-(-P),S) :- holds(P,S).
holds(-(P & Q),S) :- holds(-P v -Q,S).
holds(-(P v Q),S) :- holds(-P & -Q,S).
holds(-(P => Q),S) :- holds(-(-P v Q),S).
holds(-(P <=> Q),S) :- holds(-((P => Q) & (Q => P)),S).
holds(-all(V,P),S) :- holds(some(V,-P),S).
holds(-some(V,P),S) :- not holds(some(V,P),S). /* Negation */
holds(-P,S) :- isAtom(P), not holds(P,S). /* by failure */
holds(all(V,P),S) :- holds(-some(V,-P),S).
holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

/* The following clause treats the holds predicate for non fluents, including
Prolog system predicates. For this to work properly, the GOLOG programmer
must provide, for all fluents, a clause giving the result of restoring
situation arguments to situation-suppressed terms, for example:

restoreSitArg(ontable(X),S,ontable(X,S)). */

holds(A,S) :- restoreSitArg(A,S,F), F ;
not restoreSitArg(A,S,F), isAtom(A), A.

isAtom(A) :- not (A = -W ; A = (W1 & W2) ; A = (W1 => W2) ;
A = (W1 <=> W2) ; A = (W1 v W2) ; A = some(X,W) ; A = all(X,W)).

restoreSitArg(poss(A),S,poss(A,S)).
restoreSitArg(start(T),S,start(S,T)).
restoreSitArg(now(T),S,now(S,T)).
restoreSitArg(currentSit(Sc), S, currentSit(Sc,S)).
restoreSitArg(util(V), S, util(V,S)).
restoreSitArg(pref(S1,S2), S, pref(S1,S2,S)).

currentSit(S1,S2) :- S1=S2.
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B.2 An Execution Monitor

/*******************************************************************
Monitor of Temporal Sequential Golog Programs with Rewards.

This requires a Golog interpreter with preferences and rewards.
******************************************************************/

/* online(Prog,Trace,S0,Sf): Sf is the final situation after doing Prog starting
from S0 where Trace is the sequence of states the program already passed by
(e.g., when it did non-deterministic branching). */

online(Delta,H,S,Sf) :-
final(Delta,S), Sf=S;
bestTrans(Delta,S,Delta1,S1),

% trans(Delta,S,Delta1,S1), offline(Delta1,S1,Sgoal),
H1 = trace(Delta,H),

% (S1\==S -> offline(Delta1,S1,Sgoal); S1==S),
% nl, write(">> Delta1= "), write(Delta1), nl,
% write(">> BestPlan= "), write(Sgoal), nl,
% write(">> Utility= "), util(V,Sgoal), write(V), nl,

schedMin(S,S1), /* Schedule the next action */
!, /* do not allow backtracking */

monitor(S,Delta1,S1,H1,Delta2,S2,H2),
!, /* do not allow backtracking */

online(Delta2,H2,S2,Sf).

/* So far, no recovery if initial situation is bad */

goalAchievable(Program, S1, Sg) :-
offline(Program, S1, Sg), /* Program leads to a goal situation.*/
schedMin(S1, Sg). /* and there is a schedule */

/*
schedMin(S1,S1).
schedMin(S1,do(A,S2)) :-

S1==S2,
time(A,T), (nonground(T) -> rmin(T); true).

schedMin(S1,do(A,S2)) :-
S1\==S2, schedMin(S1,S2),
time(A,T), (nonground(T) -> rmin(T); true).

*/

monitor(S,Delta1,S1,Trace1,Delta2,S2,Trace2) :-
S == S1, /* skip tests: they do not have temporal arg*/
Delta2 = Delta1,
S2 = S1,
Trace2 = Trace1.
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monitor(S,Delta1,S1,Trace1,Delta2,S2,Trace2) :-
S1=do(A, S), /* find what action is selected for execution */
nl,
write(">> action "), write(A), write(" is planned for execution"),
nl,
sense(RealTime, S), /* watch the current time */
write(">> The current time is "), write(RealTime),
Se=do(watch_time(RealTime),S),
time(A, ScheduledTime),
replaceTime(ScheduledTime, RealTime, Delta1, NewDelta1),
( relevant(NewDelta1,S1,Se) ->

recover(S1,NewDelta1,Trace1,Se,Delta2,Trace2,S2);
runAction(A,Se,S2), Delta2=NewDelta1, Trace2 = Trace1

).

/* If action is belated, it should be rescheduled according to a time clock
because actions cannot be executed in the past. Note that sensed time
may be relevant wrt execution of Delta1 _only if_ action is belated.
Otherwise, it is sufficient to wait until the time when the action
was scheduled originally and then do the action in reality. */

relevant(NewDelta,S1,Se) :-
S1= do(Action, S), /* what action has to be done? */
start(Se, RealTime),
time(Action, ScheduledTime),
ScheduledTime < RealTime,
/* Yes, the action is belated */
nl, write(">> RELEVANT is working ..."), nl,
replaceTime(ScheduledTime, RealTime, Action, A),
!,
not offline(A : NewDelta, Se, Sg).

replaceTime(OldTime, NewTime, OldPr, NewPr) :-
sub(OldTime, NewTime, OldPr, Prog) -> NewPr= Prog;
NewPr= OldPr. /* If OldPr does not mention OldTime */

recover(S1,Delta1,History1,Se1,Delta2,History2,S2) :-
sense(RealTime, Se1), /* watch the current time */
write(">> The current time is "), write(RealTime),
Se2=do(watch_time(RealTime),Se1),

recover1(S1,Delta1,History1,Se2,Delta2,History2,S2) ;
sense(RealTime, Se1), /* watch the current time */
write(">> The current time is "), write(RealTime),
Se2=do(watch_time(RealTime),Se1),
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recover2(S1,Delta1,History1,Se2,Delta2,History2,S2).

recover1(S1,Delta1,History1,Se1,Delta2,History2,S2) :-
nl, write(">> RECOVER1 is working..."), nl,
sense(RealTime, Se1), /* watch the current time */
write(">> The current time is "), write(RealTime),
Se2=do(watch_time(RealTime),Se1),

History1 \== empty,
History1 = trace(Delta, OldHistory),
( S1= do(Action, S),
time(Action, ScheduledT),
replaceTime(ScheduledT, RealTime, Delta, NewDelta),

/* Can we skip Action and the subsequent actions
and start anew ? */

offline(NewDelta, Se2, Sg), nl,
printf(">> Skip %w and subsequent actions\n", [Action]),
Delta2 = NewDelta, History2= OldHistory, S2=Se2,
current_stream(reports, X, Stream),
printf(Stream, ">> Skip %w and subsequent actions\n", [Action]),
printf(Stream, "\n >> Recovered program = %w\n

>> New Situation = %w \n", [Delta2,S2]) ;
recover1(S1,Delta1,OldHistory,Se2,Delta2,H2,S2) ).

recover2(S1,Delta1,History1,Se1,Delta2,History2,S2) :-
nl, write(">> RECOVER2 is working..."), nl,
sense(RealTime, Se1), /* watch the current time */
write(">> The current time is "), write(RealTime),
Se2=do(watch_time(RealTime),Se1),

History1 \== empty,
History1 = trace(Delta, OldHistory),
( S1= do(Action, S),
time(Action, ScheduledT),
replaceTime(ScheduledT, RealTime, Delta, NewDelta),
replaceTime(ScheduledT, RealTime, Action, NewAction),

/* Can we do NewAction, skip the subsequent actions and start anew ? */
offline(NewAction : NewDelta, Se2, Sg), nl,

printf(">> Do %w , but skip subsequent actions\n", [NewAction]),
runAction(NewAction, Se2, S2),
Delta2 = NewDelta, History2= OldHistory,
current_stream(reports, X, Stream),
printf(Stream, ">> Skip %w and subsequent actions\n", [Action]),
printf(Stream, "\n >> Recovered program = %w\n

>> New Situation = %w \n", [Delta2,S2]) ;
recover2(S1,Delta1,OldHistory,Se2,Delta2,H2,S2) ).
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recover(S1,Delta1,History1,Se,Delta2,History2,S2) :-
Delta2=fail, History2 = empty, S2=Se,
nl,
write(" Program cannot be recovered. "),
write(" Monitor terminates its execution."), nl.

/* The following clause of "runAction" respects the schedule selected by
the program: ScheduledTime is the earliest time the action A
can start in the current situation Se under the condition that
the remaining program Delta1 will lead to a successful termination.
If the current time Time is less than ScheduledTime, wait until
ScheduledTime, and then start executing. */

runAction(A,Se,S2) :-
time(A, ScheduledTime), /* the time to start A */
start(Se, Time),

Time =< ScheduledTime,
nl, write(" runAction is working"), nl,
PassTime is ScheduledTime - Time,
( PassTime > 0 -> myWait(PassTime,Se); true),
execute(A, ScheduledTime), /* do action now in reality ! */
S2 = do(A, Se),
current_stream(reports, X, Stream),
printf(Stream, "\n>> New situation = %w\n", [S2]),
printf("\n >> New Situation = %w\n", [S2]).

/*
util(V,S2), rmax(V),
printf("\n>> Situation = %w\n>> Utility = %w\n", [S2,V]),
current_stream(reports, X, Stream),
printf(Stream, "\n>> Situation = %w\n>> Utility = %w\n", [S2,V]).

*/

/* The following clause of "runAction" reschedules the action A
if it is belated, but the delay is NOT relevant with respect
to the execution of remaining program.

*/

runAction(A,Se,S2) :-
time(A, ScheduledT), /* the time to start A */
start(Se, RealTime),

RealTime > ScheduledT,
nl, write(" runAction is working"), nl,
replaceTime(ScheduledT,RealTime, A, Act), /* reschedule action */
execute(Act, RealTime), /* do A now in reality ! */
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S2=do(Act, Se),
current_stream(reports, X, Stream),
printf(Stream, "\n>> New situation = %w\n", [S2]),
printf("\n >> New Situation = %w\n", [S2]).

/*
util(V,S2), rmax(V),
printf("\n>> Situation = %w\n>> Utility = %w\n", [S2,V]),
current_stream(reports, X, Stream),
printf(Stream, "\n>> Situation = %w\n>> Utility = %w\n", [S2,V]).

*/

/* time sensing on robot */
sense(Time, S):-

get_flag(unix_time, UnixTime),
read(UnixStart) from_file scratch,
Time is UnixTime - UnixStart.

/* time sensing in simulation
sense(Time, S):-

nl, write(’>> Enter: current time.’), nl,
read(NewTime),

start(S, OldTime),
( OldTime > NewTime -> sense(Time, S);
Time = NewTime ).

*/

/*-----------------------------------------------------*
* Tools *
*------------------------------------------------------*/

setTime(A) :- time(A, Var), (nonground(Var) -> rmin(Var); true).

primitive_action(watch_time(RealTime)).
time(watch_time(RealTime), RealTime).

/* RUN STUFF */

coffee(S) :- online(deliverOneCoffee(3),empty, s0, S).
visit(S) :- online(serve,empty,s0,S).
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B.3 Motivating Examples

This section includes examples that we use to motivate backtracking as a recovery procedure. We run

all examples using the following wrapper file:

:- [ ’golog’ ].
:- [ ’moni’ ].
:- [ ’axioms’ ].
% :- [ ’coffee’ ]. % calls hli_go_path()
% :- [ ’˜mes/bee/bin_solaris/hli-eclipse.pl’ ]. % interface to BeeSoft
:- [ ’exec’ ].

run :-
open( reports, append, Stream),
get_flag(unix_time, StartT), % Unix time (in seconds)
write(StartT) onto_file scratch, % store start time
printf(Stream, "\n\n This report is started at time %w\n", [StartT]),

/* IF */ ( online( serveNew(20) : ?(goal), empty, s0, LastSit ) ->
/* THEN */ ( nl, write(">> The last situation is "),

write(LastSit) ), nl ;
/* ELSE */ printf( "Sorry, something is wrong...\n", [] ),

flush( output )
),

get_flag(unix_time, EndT),
Elapsed is EndT - StartT,
printf(" Time elapsed is %w seconds\n", [Elapsed]),
printf(Stream, "Time elapsed is %w seconds\n", [Elapsed]),
flush( output ),
write(LastSit) onto_file history,
printf(Stream, "The last situation is \n %w \n", [LastSit]),
close(Stream),
wait( 10 ),
hli_go( 160, 2530).

wait( Time ) :-
nl, printf( "*-> wait for %w seconds\n", [ Time ] ), nl,
flush(output),
doWait( Time ).

vis1 :- online( visit1, empty, s0, Sfin).
vis2 :- online( visit2, empty, s0, Sfin).

The file “axioms” includes all precondition and successor state axioms. The file “exec” includes

auxiliary (execution related) predicates. In addition, running examples requires Golog code of one of

the examples together with the desription of the initial situation. The next two files include Golog code

of examples: the file “visit1” includes the Golog code of the first example, and the file “visit2” includes

the Golog code of the second example.



APPENDIX B. AN EXECUTION MONITOR WITH BACKTRACKING AS A RECOVERY MECHANISM 248

B.3.1 Axioms for examples that illustrate backtracking.

:- set_flag(all_dynamic, on).
:- dynamic(proc/2).

/* GOLOG Procedures */

proc(goto(L,T),
pi(rloc,?(robotLocation(rloc)) : pi(deltat,?(travelTime(rloc,L,deltat)) :

goBetween(rloc,L,deltat,T)))).

proc(goBetween(Loc1,Loc2,Delta,T),
?(Loc1=Loc2 & Delta=0) #

?(-(Loc1=Loc2) & Delta > 0) : startGo(Loc1,Loc2,T) :
pi(t, ?(t $= T + Delta) : endGo(Loc1,Loc2,t)) ).

/* Preconditions for Primitive Actions */

poss(pickupCoffee(T),S) :- not holdingCoffee(S), robotLocation(cm,S),
start(S,TS), TS $<= T.

poss(giveCoffee(Person,T),S) :- holdingCoffee(S),
robotLocation(office(Person),S),
start(S,TS), TS $<= T.

poss(startGo(Loc1,Loc2,T),S) :- not going(L,LL,S),
robotLocation(Loc1,S),
start(S,TS), TS $<= T.

poss(endGo(Loc1,Loc2,T),S) :- going(Loc1,Loc2,S),
start(S,TS), TS $<= T.

/* Successor State Axioms */

hasCoffee(Person,do(A,S)) :- A = giveCoffee(Person,T) ;
hasCoffee(Person,S).

robotLocation(Loc,do(A,S)) :- A = endGo(Loc1,Loc,T) ;
( robotLocation(Loc,S),
not A = endGo(Loc2,Loc3,T) ).

going(Loc1,Loc2,do(A,S)) :- A = startGo(Loc1,Loc2,T) ;
(going(Loc1,Loc2,S),
not A = endGo(Loc1,Loc2,T)).

holdingCoffee(do(A,S)) :- A = pickupCoffee(T) ;
(holdingCoffee(S),
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not A = giveCoffee(Person,T)).

util(0, s0).
util(V2, do(giveCoffee(Person,T),S)) :- util(V, S),

wantsCoffee(Person,T1,T2), not hasCoffee(Person,S),
V1 $<= (T2 - T)/2,
V1 $<= T - (3*T1 - T2)/2 ,
V2 $= 700 - T + V + V1*11/10.

util(V, do(A,S)) :- A \=giveCoffee(P,T), util(V, S).

/* The time of an action occurrence is its last argument. */

time(pickupCoffee(T),T).
time(giveCoffee(Person,T),T).
time(startGo(Loc1,Loc2,T),T).
time(endGo(Loc1,Loc2,T),T).

/* Restore situation arguments to fluents. */

restoreSitArg(robotLocation(Rloc),S,robotLocation(Rloc,S)).
restoreSitArg(hasCoffee(Person),S,hasCoffee(Person,S)).
restoreSitArg(going(Loc1,Loc2),S,going(Loc1,Loc2,S)).
restoreSitArg(holdingCoffee,S,holdingCoffee(S)).

/* Primitive Action Declarations */

primitive_action(pickupCoffee(T)).
primitive_action(giveCoffee(Person,T)).
primitive_action(startGo(Loc1,Loc2,T)).
primitive_action(endGo(Loc1,Loc2,T)).

travelTime(L,L,0).
travelTime(L1,L2,T) :- travelTime0(L1,L2,T) ;

travelTime0(L2,L1,T).

travelTime0(cm,office(sue),15).
travelTime0(cm,office(mary),10).
travelTime0(cm,office(bill),8).
travelTime0(cm,office(joe),10).
travelTime0(office(bill),office(sue),18).
travelTime0(office(bill),office(mary),15).
travelTime0(office(sue),office(mary),5).

drive( StartPos, EndPos ) :- nl, write("drive, drive, drive from "),
write(StartPos), write(" to "), write(EndPos), nl.
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/*
The file ‘‘simul’’ is the wrapper that calls the golog interpreter,
the monitor of temporal programs, the file ‘‘coffee’’ that defines
the application and the file ‘‘exec’’ that includes auxilary predicates.

:- [ ’golog’ ].
:- [ ’moni’ ].
:- [ ’coffee’ ]. % calls hli_go_path()
:- [ ’exec’ ].
:- set_flag(recover/7, spy, on).
:- set_flag(recover/7, leash, stop).

run :- online( deliverCoffee(2), empty, s0, LastSit ),
schedMin(s0, LastSit),
nl, write(">> The last situation is "),

write(LastSit), !, nl.

run :- printf( "Sorry, something is wrong...\n", [] ),
flush( output ).

visit1 :- online( visit1, empty, s0, Sfin).
visit2 :- online( visit2, empty, s0, Sfin).
visit3 :- online( visit3, empty, s0, Sfin).
*/
/*
dvp.cs> eclipse -b simul
structures.pl compiled traceable 3764 bytes in 0.03 seconds
suspend.pl compiled traceable 8012 bytes in 0.13 seconds
r.sd loaded traceable 61220 bytes in 0.48 seconds
fromonto.pl compiled traceable 3304 bytes in 0.01 seconds
golog compiled traceable 19856 bytes in 0.62 seconds
moni compiled traceable 13668 bytes in 0.06 seconds
coffee compiled traceable 45472 bytes in 0.13 seconds
exec compiled traceable 5000 bytes in 0.04 seconds
simul compiled traceable 980 bytes in 0.88 seconds
ECRC Common Logic Programming System [sepia opium megalog parallel]
Version 3.5.2, Copyright ECRC GmbH, Wed Jan 3 12:54 1996
[eclipse 1]: visit2.
lists.pl compiled traceable 8200 bytes in 0.04 seconds

>> action startGo(office(joe), cm, 91) is planned for execution

>> Enter: current time.
91.
>> The current time is 91
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runAction is working

>> Im doing the action startGo(office(joe), cm, 91) at time 91
*-> start going from office(joe) to cm

drive, drive, drive from office(joe) to cm

>> action endGo(office(joe), cm, 101) is planned for execution

>> Enter: current time.
120.
>> The current time is 120
>> RELEVANT is working ...

>> RECOVER1 is working...

>> RECOVER1 is working...

>> RECOVER1 is working...

>> RECOVER1 is working...

>> RECOVER1 is working...

>> RECOVER1 is working...

>> RECOVER1 is working...

>> RECOVER1 is working...

>> RECOVER2 is working...

>> RECOVER2 is working...

>> RECOVER2 is working...

>> RECOVER2 is working...

>> RECOVER2 is working...

>> RECOVER2 is working...

>> RECOVER2 is working...

>> Do endGo(office(joe), cm, 120) , but skip subsequent actions
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runAction is working

>> Im doing the action endGo(office(joe), cm, 120) at time 120
*-> end going from office(joe) to cm

>> action pickupCoffee(120) is planned for execution

>> Enter: current time.
121.
>> The current time is 121
>> RELEVANT is working ...

runAction is working

>> Im doing the action pickupCoffee(121) at time 121
*-> give some coffee please

>> action startGo(cm, office(mary), 121) is planned for execution

>> Enter: current time.
122.
>> The current time is 122
>> RELEVANT is working ...

runAction is working

>> Im doing the action startGo(cm, office(mary), 122) at time 122
*-> start going from cm to office(mary)

drive, drive, drive from cm to office(mary)

>> action endGo(cm, office(mary), 132) is planned for execution

>> Enter: current time.
133.
>> The current time is 133
>> RELEVANT is working ...

runAction is working

>> Im doing the action endGo(cm, office(mary), 133) at time 133
*-> end going from cm to office(mary)

yes.
*/
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B.3.2 Execution related predicates.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EXECUTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

/* Use this version to run examples and simulation */
/*
execute(A,T) :-

nl, write(’>> Im doing the action ’), write(A),
write(’ at time ’), write(T), nl,
doReally(A).

wait( Time ) :-
nl, printf( "*-> wait for %w seconds\n", [ Time ] ), nl,
flush(output).

*/

/* Use this version to run the robot in the real corridor */

execute(A,T) :-
nl, write(’>> Im doing the action ’), write(A),
write(’ at time ’), write(T), nl,

doReally(A),
current_stream(reports, X, Stream),
printf(Stream, "\n >> Im doing the action %w at time %w\n", [A,T]).

myWait( Time, S ) :-
Time > 10,
sense(BeginTime, S), /* watch the time before waiting */
current_stream(reports, X, Stream),
printf(Stream, " *-> Time before waiting = %w \n", [ BeginTime ] ),
nl, printf( "*-> start waiting for %w seconds...\n", [ Time ] ), nl,
flush(output),
printf(Stream, " *-> start waiting for %w seconds... \n", [ Time ]
doWait( Time ),
sense(EndTime, S), /* watch the time after waiting */
DiffTime is EndTime - BeginTime,
( DiffTime < Time -> myWait(DiffTime, S) ; true).

/*
We do not wait for less than 10 seconds. However, waiting for

small amounts of time can be included, see the next clause below. */

myWait( Time, S ) :-
nl,

printf( "*-> I’m too busy: no time to wait for %w seconds\n", [ Time ] ), nl,
flush(output),
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sense(EndTime, S), /* watch the time after waiting */
current_stream(reports, X, Stream),
printf(Stream, " *-> Time after waiting = %w \n", [ EndTime ] ).

myWait( Time, S ) :- Time < 0,
/* remove Time < 0, to allow waiting for small amount of time */

sense(BeginTime, S), /* watch the time before waiting */
nl, printf( "*-> ok, wait for %w seconds ?\n", [ Time ] ), nl,
flush(output),
doWait( Time ),
sense(EndTime, S), /* watch the time after waiting */
DiffTime is EndTime - BeginTime,
nl, printf( "*-> I waited for %w seconds, indeed\n", [ DiffTime ] ), nl,
flush(output).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

doReally( pickupCoffee( T ) ) :-
printf( " *-> give some coffee please at time %w\n", [T] ),

flush(output).

doReally( giveCoffee( Person, T ) ) :-
printf( " *-> %w, take your coffee please at time %w\n", [Person,T] ),

flush(output),
takeYourCoffee.

doReally( startGo( From, To, T ) ) :-
printf( " *-> start going from %w to %w at time %w\n", [From, To, T] ),

flush(output),
driveReal( From, To ).

doReally( endGo( From, To, T) ) :-
printf( " *-> end going from %w to %w at time %w\n", [From, To, T] ),

flush(output).

doReally( Action ) :-
printf( " *-> error of action %w\n", [ Action ] ),

flush(output).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

/* askForCoffee :-
hli_sound_stop,
% hli_show_picture("give"),
hli_sound("some_coffee"),
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hli_buttons( 3, 3, 3, 3, 20, Answer ),
( Answer=0 ->

askForCoffee
;

hli_show_picture("thanks"),
hli_sound("thank_you")

).
*/
askForCoffee.

/* takeYourCoffee :-
hli_sound_stop,
% hli_show_picture("take"),
hli_sound("take_coffee"),
hli_buttons( 3, 3, 3, 3, 20, Answer ),
( Answer=0 ->

takeYourCoffee
;

hli_show_picture("thanks"),
hli_sound("thank_you")

).
*/
takeYourCoffee.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TOOLS: hacks to fight with bugs in Eclipse Prolog.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

doWait( Time ) :-
Wait is Time*2 +1,
doWait2( Wait ).

doWait2( Time ) :-
Time =< 0.

doWait2( Time ) :-
Time2 is Time-1,
sleep( 0.5 ),
doWait2( Time2 ).
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proc(visit1,
goto(office(mary),1) :
pi(t1, ?(now(t1)) :

( (goto(cm,t1) : pi(t2, ?(now(t2)) : goto(office(sue),t2)))
#
(goto(cm,t1) : pi(t2, ?(now(t2)) : goto(office(bill),t2)))

)
) :
pi(t, ?(now(t)) : ?(t $< 40)) ).

/* Initial Situation (visit1) */
robotLocation(cm,s0).
start(s0, 0).

wantsCoffee(sue,140,160).
wantsCoffee(joe,90,100).
wantsCoffee(bill,100,110).
wantsCoffee(mary,130,170).

travelTime0(cm,office(sue),15).
travelTime0(cm,office(mary),10).
travelTime0(cm,office(bill),8).
travelTime0(cm,office(joe),10).
travelTime0(office(bill),office(sue),18).
travelTime0(office(bill),office(mary),15).
travelTime0(office(sue),office(mary),5).

drive( StartPos, EndPos ) :- nl, write("drive, drive, drive from "),
write(StartPos), write(" to "), write(EndPos), nl.
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proc(visit2,
pi(p, pi(t1, pi(t2, ?(-hasCoffee(p) & wantsCoffee(p,t1,t2)) :

goto(cm,91) : pi(t, ?(now(t)) : pickupCoffee(t)) :
pi(t, ?(now(t)) : goto(office(p),t)) :
pi(t, ?(now(t)) : ?(t $<= t2) )

)))
).

/* Initial situation (visit2) */
robotLocation(office(joe),s0).
start(s0, 91).

wantsCoffee(bill,100,110).
wantsCoffee(mary,130,170).
wantsCoffee(sue,140,160).
wantsCoffee(joe,90,100).

travelTime0(cm,office(sue),15).
travelTime0(cm,office(mary),10).
travelTime0(cm,office(bill),8).
travelTime0(cm,office(joe),10).
travelTime0(office(bill),office(sue),18).
travelTime0(office(bill),office(mary),15).
travelTime0(office(sue),office(mary),5).

drive( StartPos, EndPos ) :- nl, write("drive, drive, drive from "),
write(StartPos), write(" to "), write(EndPos), nl.
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B.4 A Coffee Delivery Robot.

:- set_flag(all_dynamic, on).
:- dynamic(proc/2).

/* A Coffee Delivery Robot */
/* GOLOG Procedures */

/* The coffee serving procedures serve(T) and serveOneCoffee(T)
(written in regular Golog) below deliver coffee to all people
who can be served in time. serve(T) terminates when there
does NOT exist a person who can be served in his/her
preferable time. The termination is conditioned only upon
temporal inequalities. The procedure timeGoal expresses this
termination condition in regular Golog. */

proc(timeGoal,
pi(t, ?(now(t)) :
pi(rloc, ?(robotLocation(rloc)) :
?(-some(p, some(t1, some(t2,
some(travTime1, some(travTime2, some(wait,
wantsCoffee(p,t1,t2) & -hasCoffee(p) &
wait $>= 0 & travelTime(rloc,cm,travTime1) &
travelTime(cm,office(p),travTime2) &
t1 $<= t + wait + travTime1 + travTime2 &
t + wait + travTime1 + travTime2 $<= t2

)))))))))
).

proc(serve(T),
timeGoal

#
if( holdingCoffee,

serveOneCoffeeNew(T),
goto(cm,T) : pi(t, ?(now(t)) : pickupCoffee(t) : serveOneCoffee(t) )

)
).

proc(serveOneCoffee(T),
pi(p, pi(wait, pi(t1, pi(t2, pi(travTime, pi(rloc, pi(currTime,
?(wantsCoffee(p,t1,t2) & -hasCoffee(p) & (wait $>= 0) & now(currTime) &

robotLocation(rloc) & travelTime(rloc,office(p),travTime) &
t1 $<= T + wait + travTime & T + wait + travTime $<= t2) ))))) :

pi(t, ?(t $= T + wait) : goto(office(p),t)) ) :
pi(t, ?(now(t)) : giveCoffee(p,t) )
) :
pi(t, ?(now(t)) : serve(t))

).
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goal(s0).
goal(do(A,S)) :- A \= giveCoffee(P,T), goal(S).
goal(do(A,S)) :- A = giveCoffee(P,T), pref(do(A,S),S,s0), goal(S).

proc(visit1,
goto(office(mary),1) :
pi(t1, ?(now(t1)) :

( (goto(cm,t1) : pi(t2, ?(now(t2)) : goto(office(sue),t2)))
#
(goto(cm,t1) : pi(t2, ?(now(t2)) : goto(office(bill),t2)))

)
) :
pi(t, ?(now(t)) : ?(t $< 40)) ).

proc(visit2,
pi(p, pi(t1, pi(t2, ?(-hasCoffee(p) & wantsCoffee(p,t1,t2)) :

goto(cm,91) : pi(t, ?(now(t)) : pickupCoffee(t)) :
pi(t, ?(now(t)) : goto(office(p),t)) :
pi(t, ?(now(t)) : ?(t $<= t2) )

)))
).

proc(goto(L,T),
pi(rloc,?(robotLocation(rloc)) : pi(deltat,?(travelTime(rloc,L,deltat)) :

goBetween(rloc,L,deltat,T)))).

proc(goBetween(Loc1,Loc2,Delta,T),
?(Loc1=Loc2 & Delta=0) #

?(-(Loc1=Loc2) & Delta > 0) : startGo(Loc1,Loc2,T) :
pi(t, ?(t $= T + Delta) : endGo(Loc1,Loc2,t)) ).

/* Preconditions for Primitive Actions */

poss(pickupCoffee(T),S) :- not holdingCoffee(S), robotLocation(cm,S),
start(S,TS), TS $<= T.

poss(giveCoffee(Person,T),S) :- holdingCoffee(S),
robotLocation(office(Person),S),
start(S,TS), TS $<= T.

poss(startGo(Loc1,Loc2,T),S) :- not going(L,LL,S),
robotLocation(Loc1,S),
start(S,TS), TS $<= T.

poss(endGo(Loc1,Loc2,T),S) :- going(Loc1,Loc2,S),
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start(S,TS), TS $<= T.

/* Successor State Axioms */

hasCoffee(Person,do(A,S)) :- A = giveCoffee(Person,T) ;
hasCoffee(Person,S).

robotLocation(Loc,do(A,S)) :- A = endGo(Loc1,Loc,T) ;
( robotLocation(Loc,S),
not A = endGo(Loc2,Loc3,T) ).

going(Loc1,Loc2,do(A,S)) :- A = startGo(Loc1,Loc2,T) ;
(going(Loc1,Loc2,S),
not A = endGo(Loc1,Loc2,T)).

holdingCoffee(do(A,S)) :- A = pickupCoffee(T) ;
(holdingCoffee(S),
not A = giveCoffee(Person,T)).

util(0, s0).
util(V2, do(giveCoffee(Person,T),S)) :- util(V, S),

wantsCoffee(Person,T1,T2), not hasCoffee(Person,S),
V1 $<= (T2 - T)/2,
V1 $<= T - (3*T1 - T2)/2,
V2 $= V + V1.

util(V, do(A,S)) :- A \=giveCoffee(P,T), util(V, S).

/* The time of an action occurrence is its last argument. */
time(pickupCoffee(T),T).
time(giveCoffee(Person,T),T).
time(startGo(Loc1,Loc2,T),T).
time(endGo(Loc1,Loc2,T),T).

/* Restore situation arguments to fluents. */
restoreSitArg(robotLocation(Rloc),S,robotLocation(Rloc,S)).
restoreSitArg(hasCoffee(Person),S,hasCoffee(Person,S)).
restoreSitArg(going(Loc1,Loc2),S,going(Loc1,Loc2,S)).
restoreSitArg(holdingCoffee,S,holdingCoffee(S)).
restoreSitArg(goal,S,goal(S)).

/* Primitive Action Declarations */
primitive_action(pickupCoffee(T)).
primitive_action(giveCoffee(Person,T)).
primitive_action(startGo(Loc1,Loc2,T)).
primitive_action(endGo(Loc1,Loc2,T)).
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/* Initial Situation. */

robotLocation(park,s0).
start(s0, 0).

wantsCoffee( lounge, 600, 700 ). % (3*660 - 740)/2 = 620
wantsCoffee( ray, 360, 440 ). % (3*460 - 540/2 = 420
wantsCoffee( yves, 160, 240 ). % (3*220 - 320)/2 = 170

travelTime(L,L,0).
travelTime(L1,L2,T) :- travelTime0(L1,L2,T) ;

travelTime0(L2,L1,T).

/*
--- TABLE OF AVERAGE TRAVEL TIME FROM cm ---

-----------RAY 75 (51, 72 cm->ray; 56, 55 ray->cm)
|
+--------------
|
|
+--ITRC 24

CM--+
|
|
|
+--VISITOR 40
|

LOUNGE-+ 58 (cm->lounge), 63 (lounge->cm)
|

------+--------------------
*/

travelTime0( park, cm, 100 ). /* 73, 82 on simulator */
travelTime0( cm, office(ray), 120 ). /* 51,72,56,55 on simulator*/
travelTime0( cm, office(itrc), 30 ). /* 24 on simulator */
travelTime0( cm, office(yves), 45 ). /* 29 on simulator */
travelTime0( cm, office(lounge), 75 ). /* 58, 63 on simulator */

/* Other travel times (measured on simulator): */

travelTime0( office(ray), office(itrc), 70 ).
travelTime0( office(ray), office(yves), 120 ).
travelTime0( office(ray), office(lounge), 120 ).
travelTime0( office(lounge), office(itrc), 70 ).
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travelTime0( office(lounge), office(yves), 60 ).
travelTime0( office(yves), office(itrc), 50 ).
travelTime0( park, office(yves), 60 ).

/* Geometric coordinates on the real office map. */
/* office(ray)= (3753.4, 1800) cm= (2675, 2555) park= (118, 2487) */

drivePath( cm, office(lounge), [ ( 840, 2560 ), ( 770, 2530 ) ] ).
drivePath( cm, office(yves), [ ( 1620, 2500 ) ] ).
drivePath( cm, office(ray),

[ (3535, 2490 ), (3760, 2480), ( 3770, 1770 ) ] ).

drivePath( office(ray), cm,
[ ( 3760, 2420 ), (3560, 2500 ), ( 2820, 2560 ), ( 2690, 2550 ) ] ).

drivePath( park, cm, [ ( 2685, 2500 ), ( 2700, 2550 ) ] ).
drivePath( office(yves), cm,

[ ( 3120, 2450 ), ( 2700, 2550 ) ] ).
drivePath( _, cm, [ ( 2700, 2550 ) ] ).
drivePath( office(yves), office(ray),

[ ( 3120, 2450 ), (3535, 2490 ), (3760, 2480), ( 3770, 1770 ) ] ).
drivePath( office(ray), office(lounge),

[ ( 3760, 2420 ), (3560, 2480 ), ( 840, 2560 ), ( 770, 2530 ) ] ).

drivePath( X, Z, BigList) :- drivePath( X, Y, List1),
drivePath( Y, Z, List2),
append(List1, List2, BigList).

driveSim( StartPos, EndPos ) :- nl, write("drive, drive, drive from "),
write(StartPos), write(" to "), write(EndPos), nl.

/* Drive in the corridor and turn to the goal location */
driveReal( StartPos, EndPos ) :-
drivePath( StartPos, EndPos, Path ), % get path

hli_go_path( Path ), % drive, drive...
look( EndPos, X, Y ), % get aim point for turning
hli_turn_to_point( X, Y ). % and turn the robot

look( office(lounge), 640, 2670 ).
look( office(yves), 1600, 2180 ).
look( cm, 2720, 2720 ).
look( office(itrc), 2872, 2200 ).
look( office(ray), 3728, 1650 ).
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An Offline Decision-Theoretic Golog

C.1 An Interpreter

/********************************************************************
An Offline Decision Theoretic Golog Interpreter (non-temporal version)

October, 1999.

Do not distribute without permission.
Include this notice in any copy made.

Permission to use, copy, and modify this software and its documentation
for non-commercial research purpose is hereby granted without fee,
provided that this permission notice appears in all copies. This
software cannot be used for commercial purposes without written permission.
This software is provided "as is" without express or implied warranty
(including all implied warranties of merchantability and fitness).
No liability is implied for any damages resulting from
or in connection with the use or performance of this software.

The following paper provides the technical background:
@inproceedings{AAAI,

author = {Boutilier, C. and Reiter, R. and
Soutchanski, M. and Thrun, S.},

title={Decision-Theoretic, High-level Robot Programming in
the Situation Calculus},

booktitle = {Proc. of the 17th National Conference on
Artificial Intelligence (AAAI’00)},

address={Austin, Texas},
publisher = {Available at: http://www.cs.toronto.edu/˜cogrobo },
year= 2000

}

E-mail questions about the interpreter to Mikhail Soutchanski:

263
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mes [at] cs [dot] toronto [dot] edu

NOTICE: this software works on Unix/Linux machines with Eclipse Prolog that is
available from IC-PARK (Imperial College, London, UK). It is easy to
modify this interpreter to work with any other version of Prolog.

**********************************************************************/

:- dynamic(proc/2). /* Compiler directives. Be sure */
:- set_flag(all_dynamic, on). /* that you load this file first! */
:- set_flag(print_depth,500).
:- pragma(debug).

:- op(800, xfy, [&]). /* Conjunction */
:- op(850, xfy, [v]). /* Disjunction */
:- op(870, xfy, [=>]). /* Implication */
:- op(880,xfy, [<=>]). /* Equivalence */
:- op(950, xfy, [:]). /* Action sequence */
:- op(960, xfy, [#]). /* Nondeterministic action choice */

/* The predicate bp() is the top level call. Add an end-of-program
marker "nil" to the tail of program expression E , then compute
the best policy that succeeds with probability Prob. The horizon
H must be a non-negative integer number.

*/

bp(E,H,Pol,Util,Prob,File) :- integer(H), H >= 0,
cputime(StartT),
bestDo(E : nil,s0,H,Pol,Val,Prob),
cputime(EndT), Elapsed is EndT - StartT,
Util is float(Val),
open( File, append, Stream),
date(Date),
printf(Stream, "\n\n This report is started at time %w\n", [Date]),
( proc(E,Body) ->
printf(Stream, "The Golog program is\n proc(%w,\n %w)\n",[E,Body]) ;
printf(Stream, "The Golog program is\n %w\n",[E])
),

printf("\nThe computation took %w seconds",[Elapsed]),
printf(Stream, "\nTime elapsed is %w seconds\n", [Elapsed]),
printf(Stream, "The optimal policy is \n %w \n", [Pol]),
printf(Stream, "The value of the optimal policy is %w\n",[Util]),

printf(Stream, "The probability of successful termination is %w\n",[Prob]),
close(Stream).
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/* bestDo(E,S,H,Pol,V,Prob)
Given a Golog program E and situation S find a policy Pol of the highest
expected utility Val. The optimal policy covers a set of alternative histories
with the total probability Prob. H is a given finite horizon.

*/

bestDo((E1 : E2) : E,S,H,Pol,V,Prob) :- H >= 0,
bestDo(E1 : (E2 : E),S,H,Pol,V,Prob).

bestDo(?(C) : E,S,H,Pol,V,Prob) :- H >= 0,
holds(C,S) -> bestDo(E,S,H,Pol,V,Prob) ;

( (Prob is 0.0) , Pol = stop, reward(V,S) ).

bestDo((E1 # E2) : E,S,H,Pol,V,Prob) :- H >= 0,
bestDo(E1 : E,S,H,Pol1,V1,Prob1),
bestDo(E2 : E,S,H,Pol2,V2,Prob2),
( lesseq(V1,Prob1,V2,Prob2), Pol=Pol2, Prob=Prob2, V=V2 ;
greatereq(V1,Prob1,V2,Prob2), Pol=Pol1, Prob=Prob1, V=V1).

bestDo(if(C,E1,E2) : E,S,H,Pol,V,Prob) :- H >= 0,
holds(C,S) -> bestDo(E1 : E,S,H,Pol,V,Prob) ;

bestDo(E2 : E,S,H,Pol,V,Prob).

bestDo(while(C,E1) : E,S,H,Pol,V,Prob) :- H >= 0,
holds(-C,S) -> bestDo(E,S,H,Pol,V,Prob) ;

bestDo(E1 : while(C,E1) : E,S,H,Pol,V,Prob).

bestDo(ProcName : E,S,H,Pol,V,Prob) :- H >= 0,
proc(ProcName,Body),
bestDo(Body : E,S,H,Pol,V,Prob).

/* Non-decision theoretic version of pi: pick a fresh value of X
and for this value do the complex action E1 followed by E.

*/
bestDo(pi(X,E1) : E,S,H,Pol,V,Prob) :- H >= 0,

sub(X,_,E1,E1_X), bestDo(E1_X : E,S,H,Pol,V,Prob).

/*
Discrete version of pi. pickBest(x,f,e) means: choose the best value
of x from the finite non-empty range of values f, and for this x,
do the complex action expression e.

*/
bestDo(pickBest(X,F,E) : EF,S,H,Pol,V,Prob) :- H >= 0,

range(F,R),
( R=[D], sub(X,D,E,E_D),

bestDo(E_D : EF,S,H,Pol,V,Prob) ;
R=[D1,D2], sub(X,D1,E,E_D1), sub(X,D2,E,E_D2),
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bestDo((E_D1 # E_D2) : EF,S,H,Pol,V,Prob) ;
R=[D1,D2 | Tail], Tail = [D3 | Rest],

sub(X,D1,E,E_D1), sub(X,D2,E,E_D2),
bestDo((E_D1 # E_D2 # pickBest(X,Tail,E)) : EF,S,H,Pol,V,Prob)
).

bestDo(A : E,S,H,Pol,V,Prob) :- H > 0,
agentAction(A), deterministic(A,S),
( not poss(A,S), Pol = stop, (Prob is 0.0) , reward(V,S) ;
poss(A,S), Hor is H - 1,
bestDo(E,do(A,S),Hor,RestPol,VF,Prob),
reward(R,S),
V is R + VF,
( RestPol = nil, Pol = A ;
not RestPol=nil, Pol = (A : RestPol)
)

).

bestDo(A : E,S,H,Pol,V,Prob) :- H > 0,
agentAction(A), nondetActions(A,S,NatOutcomesList),
Hor is H -1,
bestDoAux(NatOutcomesList,E,S,Hor,RestPol,VF,Prob),
reward(R,S),
V is R + VF,
Pol=(A : senseEffect(A) : (RestPol)).

bestDoAux([N1],E,S,H,Pol,V,Prob) :- H >= 0, senseCondition(N1,Phi1),
( not poss(N1,S), ( Pol= ?(Phi1) : stop, (Prob is 0.0) , V is 0 ) ;
poss(N1,S),
prob(N1,Pr1,S),
bestDo(E,do(N1,S),H,Pol1,V1,Prob1), !,
Pol = ( ?(Phi1) : Pol1 ),
V is Pr1*V1,
Prob is Pr1*Prob1 ).

bestDoAux([N1 | OtherOutcomes],E,S,H,Pol,V,Prob) :- H >= 0,
OtherOutcomes = [Head | Tail], % there is at least one other outcome
( not poss(N1,S) -> bestDoAux(OtherOutcomes,E,S,H,Pol,V,Prob) ;
poss(N1,S),
bestDoAux(OtherOutcomes,E,S,H,PolT,VT,ProbT),
senseCondition(N1,Phi1),
prob(N1,Pr1,S),
bestDo(E,do(N1,S),H,Pol1,V1,Prob1), !,
Pol = if(Phi1, % then

Pol1, % else
PolT),

V is VT + Pr1*V1,
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Prob is ProbT + Pr1*Prob1 ).

bestDo(nil,S,H,Pol,V,Prob) :-
Pol=nil, reward(V,S), (Prob is 1.0) .

bestDo(nil : E,S,H,Pol,V,Prob) :- H > 0, bestDo(E,S,H,Pol,V,Prob).

bestDo(stop : E,S,H,Pol,V,Prob) :-
Pol=stop, reward(V,S), (Prob is 0.0) .

bestDo(E,S,H,Pol,V,Prob) :- H =:= 0,
/* E=(A : Tail), agentAction(A), */

Pol=nil, reward(V,S), (Prob is 1.0) .

/* ---- Some useful predicates mentioned in the interpreter ----- */

lesseq(V1,Prob1,V2,Prob2) :- Pr1 is float(Prob1), (Pr1 = 0.0) ,
Pr2 is float(Prob2),
( (Pr2 \= 0.0) ;
(Pr2 = 0.0) , V1 =< V2

).

lesseq(V1,Prob1,V2,Prob2) :-
(Prob1 \= 0.0) , (Prob2 \= 0.0) , V1 =< V2.

greatereq(V1,Prob1,V2,Prob2) :- (Prob1 \= 0.0) , (Prob2 = 0.0) .

greatereq(V1,Prob1,V2,Prob2) :-
(Prob1 \= 0.0) , (Prob2 \= 0.0) , V2 =< V1.

deterministic(A,S) :- not nondetActions(A,S,OutcomesList).

range([D | Tail],[D | Tail]). % Tail can be []

/* sub(Name,New,Term1,Term2): Term2 is Term1 with Name
replaced by New. */

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.
sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.
sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),

T2 =..[F|L2].
sub_list(X1,X2,[],[]).
sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2),
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sub_list(X1,X2,L1,L2).

/* The holds predicate implements the revised Lloyd-Topor
transformations on test conditions. */

holds(P & Q,S) :- holds(P,S), holds(Q,S).
holds(P v Q,S) :- holds(P,S); holds(Q,S).
holds(P => Q,S) :- holds(-P v Q,S).
holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).
holds(-(-P),S) :- holds(P,S).
holds(-(P & Q),S) :- holds(-P v -Q,S).
holds(-(P v Q),S) :- holds(-P & -Q,S).
holds(-(P => Q),S) :- holds(-(-P v Q),S).
holds(-(P <=> Q),S) :- holds(-((P => Q) & (Q => P)),S).
holds(-all(V,P),S) :- holds(some(V,-P),S).
holds(-some(V,P),S) :- not holds(some(V,P),S). /* Negation */
holds(-P,S) :- isAtom(P), not holds(P,S). /* by failure */
holds(all(V,P),S) :- holds(-some(V,-P),S).
holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

/* The following clause treats the holds predicate for all atoms,
including Prolog system predicates. For this to work properly,
the GOLOG programmer must provide, for all atoms taking a
situation argument, a clause giving the result of restoring
its suppressed situation argument, for example:

restoreSitArg(ontable(X),S,ontable(X,S)). */

holds(A,S) :- restoreSitArg(A,S,F), F ;
not restoreSitArg(A,S,F), isAtom(A), A.

isAtom(A) :- not (A = -W ; A = (W1 & W2) ; A = (W1 => W2) ;
A = (W1 <=> W2) ; A = (W1 v W2) ; A = some(X,W) ; A = all(X,W)).
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C.2 An Example: Coins

/* Coins */

/* The predicate range(F,List) defines the finite range of values.
This predicate occurs in the definition of finite version of "pi".

*/
range(coins2,[1,3]).
range(coins5,[1,2,3,4,5]).
range(oddCoins,[1,3,5]).
range(evenCoins,[2,4]).

/* Call
bp(prog1, 1, Pol, U, Prob, outputFile).
bp(prog2, 1, Pol, U, Prob, outputFile).

where prog is a Golog program, 1 is the horizon, Pol is an optimal
policy, U is its expected utility, Prob is its probability of
success. The computed policy will be printed into outputFile.

Programs (prog1) and (prog2) illustrate some tricky interactions
between nondeterminism in the program and stochastic actions.
Note that prog1 and prog2 lead to different policies.

*/
proc(prog1, flip(1) : (?(head(1)) # ?(-head(1))) ).

proc(prog2, (flip(1) : ?(head(1)) ) # (flip(1) : ?(-head(1)) ) ).

/* Call
bp(search,5,Pol,U,Prob,outputFile).
bp(constr,5,Pol,U,Prob,outputFile).
bp(best,5,Pol,U,Prob,outputFile).

Choose the best policy of flipping given the horizon 5. According to
the reward function, the optimal policy follows this sequence:

coin 1, coin 3, coin 5, coin 2, coin 4.
The programs ‘search’ and ‘best’ do not provide any constraints, but
the program ‘constr’ indicates that coins 2 and 4 must be attempted
only after coins 1,3,5. Given the program ‘constr’, the computation of
an optimal policy takes 1 sec, and given the program ‘search’
(the program ‘best’, respectively), the computation takes 27sec (39sec),
on computer with two 300Mhz processors and 128Mb of RAM.

Calls
bp(search,6,Pol,U,Prob,outputFile).
bp(search,7,Pol,U,Prob,outputFile).
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compute policies for longer horizons.
*/

proc(search,
(flip(1) # flip(2) # flip(3) # flip(4) # flip(5)) : search

).

proc(best,
pickBest(acoin,coins5,flip(acoin)) : best

).

proc(constr,
if( head(1) & head(3) & head(5),

(flip(2) # flip(4)) : constr,
(flip(1) # flip(3) # flip(5)) : constr)

).

proc(odd,
pickBest(acoin,oddCoins,flip(acoin)) : odd

).

/* Stochastic actions have a finite number of outcomes:
we list all of them

*/

nondetActions(flip(Coin),S,[flipHead(Coin),flipTail(Coin)]).

/* Using predicate prob(Outcome,Probability,Situation)
we specify numerical values of probabilities for each outcome

*/

prob(flipHead(X), 0.5, S). prob(flipTail(X), 0.5, S).

/* We formulate precondition axioms using the predicate
poss(Outcome, Situation)
The right-hand side of precondition axioms provides conditions
under which Outcome is possible in Situation
*/

poss(flipHead(X),S). poss(flipTail(X),S).

/* head(C,S) is true if the coin C is heads up in S */

head(C,do(A,S)) :- A=flipHead(C) ;
head(C,S), A \= flipTail(C).
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reward(0,s0).
reward(R,do(A,S)) :- A=flipTail(X), R is 0.

reward(R,do(A,S)) :- A = flipHead(1),
( head(C,S), R is -10 ; not head(C,S), R is 100 ).

reward(R,do(A,S)) :- A = flipHead(3),
(head(1,S), not head(2,S), not head(3,S), not head(4,S), not head(5,S),

R is 300 ; R is -30 ).

reward(R,do(A,S)) :- A = flipHead(5),
(head(1,S), head(3,S), not head(2,S), not head(4,S), not head(5,S),

R is 500 ; R is -50 ).

reward(R,do(A,S)) :- A = flipHead(2),
(head(1,S), head(3,S), head(5,S), not head(2,S), not head(4,S),

R is 200 ; R is -20 ).

reward(R,do(A,S)) :- A = flipHead(4),
(head(1,S), head(3,S), head(5,S), head(2,S), not head(4,S),

R is 400 ; R is -40 ).

/* The predicate senseCondition(Outcome,Psi) describes what logical
formula Psi should be evaluated to determine Outcome uniquely

*/

senseCondition(flipHead(X),head(X)).
senseCondition(flipTail(X),(-head(X))).

/* Agent actions vs nature’s actions: the former are those which can be
executed by agents, the latter (outcomes) can be executed only by nature

*/

agentAction(flip(C)).

restoreSitArg(head(Coin),S,head(Coin,S)).
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C.3 An Optimal Policy for Tossing Coins

This report is started at time Thu Apr 4 18:02:13 2002

The Golog program is
proc(search,
(flip(1) # flip(2) # flip(3) # flip(4) # flip(5)) : search)

The call
bp(search,6,Pol,U,Prob,outputFile).

leads to the following computation.

Time elapsed is 383 seconds
The optimal policy is
flip(1) : senseEffect(flip(1)) :
if(head(1), flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :
if(head(2), flip(4) : senseEffect(flip(4)) :
if(head(4), flip(1) : senseEffect(flip(1)) :

if(head(1), nil, ?(-(head(1))) : nil),
?(-(head(4))) : flip(4) : senseEffect(flip(4)) :

if(head(4), nil, ?(-(head(4))) : nil)),
?(-(head(2))) : flip(2) : senseEffect(flip(2)) :
if(head(2), flip(4) : senseEffect(flip(4)) :

if(head(4), nil, ?(-(head(4))) : nil),
?(-(head(2))) : flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil))),
?(-(head(5))) : flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :
if(head(2), flip(4) : senseEffect(flip(4)) :

if(head(4), nil, ?(-(head(4))) : nil),
?(-(head(2))) : flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil)),
?(-(head(5))) : flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil),
?(-(head(5))) : flip(5) : senseEffect(flip(5)) :

if(head(5), nil, ?(-(head(5))) : nil)))),
?(-(head(3))) : flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :
if(head(2), flip(4) : senseEffect(flip(4)) :

if(head(4), nil, ?(-(head(4))) : nil),
?(-(head(2))) : flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil)),
?(-(head(5))) : flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil),
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?(-(head(5))) : flip(5) : senseEffect(flip(5)) :
if(head(5), nil, ?(-(head(5))) : nil))),

?(-(head(3))) : flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil),
?(-(head(5))) : flip(5) : senseEffect(flip(5)) :

if(head(5), nil, ?(-(head(5))) : nil)),
?(-(head(3))) : flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :

if(head(5), nil, ?(-(head(5))) : nil),
?(-(head(3))) : flip(3) : senseEffect(flip(3)) :
if(head(3), nil, ?(-(head(3))) : nil))))),

?(-(head(1))) : flip(1) : senseEffect(flip(1)) :
if(head(1), flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :
if(head(2), flip(4) : senseEffect(flip(4)) :

if(head(4), nil, ?(-(head(4))) : nil),
?(-(head(2))) : flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil)),
?(-(head(5))) : flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil),
?(-(head(5))) : flip(5) : senseEffect(flip(5)) :

if(head(5), nil, ?(-(head(5))) : nil))),
?(-(head(3))) : flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil),
?(-(head(5))) : flip(5) : senseEffect(flip(5)) :

if(head(5), nil, ?(-(head(5))) : nil)),
?(-(head(3))) : flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :

if(head(5), nil, ?(-(head(5))) : nil),
?(-(head(3))) : flip(3) : senseEffect(flip(3)) :
if(head(3), nil, ?(-(head(3))) : nil)))),

?(-(head(1))) : flip(1) : senseEffect(flip(1)) :
if(head(1), flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :
if(head(5), flip(2) : senseEffect(flip(2)) :

if(head(2), nil, ?(-(head(2))) : nil),
?(-(head(5))) : flip(5) : senseEffect(flip(5)) :

if(head(5), nil, ?(-(head(5))) : nil)),
?(-(head(3))) : flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :

if(head(5), nil, ?(-(head(5))) : nil),
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?(-(head(3))) : flip(3) : senseEffect(flip(3)) :
if(head(3), nil, ?(-(head(3))) : nil))),

?(-(head(1))) : flip(1) : senseEffect(flip(1)) :
if(head(1), flip(3) : senseEffect(flip(3)) :
if(head(3), flip(5) : senseEffect(flip(5)) :

if(head(5), nil, ?(-(head(5))) : nil),
?(-(head(3))) : flip(3) : senseEffect(flip(3)) :

if(head(3), nil, ?(-(head(3))) : nil)),
?(-(head(1))) : flip(1) : senseEffect(flip(1)) :
if(head(1), flip(3) : senseEffect(flip(3)) :

if(head(3), nil, ?(-(head(3))) : nil),
?(-(head(1))) : flip(1) : senseEffect(flip(1)) :

if(head(1), nil, ?(-(head(1))) : nil))))))
The value of the optimal policy is 806.094
The probability of successful termination is 1.0
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C.4 ADD-based Representation of a Delivery Example

Fluents:
hcX - a person X has coffee
hmX - a person X has mail
rl - the robot location
g - going /* not considered, we can abstract it away */
cf - the robot is carrying coffee
cmX - the robot is carrying mail for a person X
wcX - wantsCoffee (one of people)
mpX - mailPresent (for one of people)
Actions:
pc - pickup coffee
pmAn - pickup mail for Ann
pmJo - pickup mail for Joe
gcAn - give coffee to Ann
gcJo - give coffee to Joe
gmAn - give mail to Ann
gmJo - give mail to Joe
gotoMO - go to the main office from the current location
gotoAn - go to Ann’s office from the current location
gotoJo - go to Joe’s office from the current location
pbc - put back coffee
pbmAn - put Ann’s mail back into his mailbox
pbmJo - put Joe’s mail back into his mailbox
--------------------------------------------------------------------
(variables (hcAn yes no) (hcJo yes no) (hmAn yes no) (hmJo yes no)
(rl mo hl an jo) (cf yes no) (cmAn yes no) (cmJo yes no)
(wcAn yes no) (wcJo yes no) (mpAn yes no) (mpJo yes no))
action pc

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (0.0 1.0)))

hmJo (hmJo (yes (1.0 0.0))
(no (0.0 1.0)))

rl (rl (mo (1.0 0.0 0.0 0.0))
(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))

cf (cf (yes (1.0 0.0))
(no (rl (mo (1.0 0.0))

(hl (0.0 1.0))
(an (0.0 1.0))
(jo (0.0 1.0)))))



APPENDIX C. AN OFFLINE DECISION-THEORETIC GOLOG 276

cmAn (cmAn (yes (1.0 0.0))
(no (0.0 1.0)))

cmJo (cmJo (yes (1.0 0.0))
(no (0.0 1.0)))

wcAn (wcAn (yes (1.0 0.0))
(no (0.0 1.0)))

wcJo (wcJo (yes (1.0 0.0))
(no (0.0 1.0)))

mpAn (mpAn (yes (1.0 0.0))
(no (0.0 1.0)))

mpJo (mpJo (yes (1.0 0.0))
(no (0.0 1.0)))

endaction
action pmAn

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (0.0 1.0)))

hmJo (hmJo (yes (1.0 0.0))
(no (0.0 1.0)))

rl (rl (mo (1.0 0.0 0.0 0.0))
(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))

cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (1.0 0.0))
(no (mpAn (yes (rl (mo (1.0 0.0))

(hl (0.0 1.0))
(an (0.0 1.0))
(jo (0.0 1.0))))

(no (0.0 1.0)))))
cmJo (cmJo (yes (1.0 0.0))

(no (0.0 1.0)))
wcAn (wcAn (yes (1.0 0.0))

(no (0.0 1.0)))
wcJo (wcJo (yes (1.0 0.0))

(no (0.0 1.0)))
mpAn (mpAn (yes (0.0 1.0))

(no (0.0 1.0)))
mpJo (mpJo (yes (1.0 0.0))

(no (0.0 1.0)))
endaction
action pmJo

hcAn (hcAn (yes (1.0 0.0))
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(no (0.0 1.0)))
hcJo (hcJo (yes (1.0 0.0))

(no (0.0 1.0)))
hmAn (hmAn (yes (1.0 0.0))

(no (0.0 1.0)))
hmJo (hmJo (yes (1.0 0.0))

(no (0.0 1.0)))
rl (rl (mo (1.0 0.0 0.0 0.0))

(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))

cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (1.0 0.0))
(no (0.0 1.0)))

cmJo (cmJo (yes (1.0 0.0))
(no (mpJo (yes (rl (mo (1.0 0.0))

(hl (0.0 1.0))
(an (0.0 1.0))
(jo (0.0 1.0))))

(no (0.0 1.0)))))
wcAn (wcAn (yes (1.0 0.0))

(no (0.0 1.0)))
wcJo (wcJo (yes (1.0 0.0))

(no (0.0 1.0)))
mpAn (mpAn (yes (1.0 0.0))

(no (0.0 1.0)))
mpJo (mpJo (yes (0.0 1.0))

(no (0.0 1.0)))
endaction
action gcAn

hcAn (hcAn (yes (1.0 0.0))
(no (cf (yes (rl (mo (0.0 1.0))

(hl (0.0 1.0))
(an (0.95 0.05))
(jo (0.0 1.0))))

(no (0.0 1.0)))))
hcJo (hcJo (yes (1.0 0.0))

(no (0.0 1.0)))
hmAn (hmAn (yes (1.0 0.0))

(no (0.0 1.0)))
hmJo (hmJo (yes (1.0 0.0))

(no (0.0 1.0)))
rl (rl (mo (1.0 0.0 0.0 0.0))

(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))
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cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (1.0 0.0))
(no (0.0 1.0)))

cmJo (cmJo (yes (1.0 0.0))
(no (0.0 1.0)))

wcAn (wcAn (yes (cf (yes (rl (mo (1.0 0.0))
(hl (1.0 0.0))
(an (0.05 0.95))
(jo (1.0 0.0))))

(no (1.0 0.0))))
(no (0.0 1.0)))

wcJo (wcJo (yes (1.0 0.0))
(no (0.0 1.0)))

mpAn (mpAn (yes (1.0 0.0))
(no (0.0 1.0)))

mpJo (mpJo (yes (1.0 0.0))
(no (0.0 1.0)))

endaction
action gcJo

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (cf (yes (rl (mo (0.0 1.0))

(hl (0.0 1.0))
(an (0.0 1.0))
(jo (0.95 0.05))))

(no (0.0 1.0)))))
hmAn (hmAn (yes (1.0 0.0))

(no (0.0 1.0)))
hmJo (hmJo (yes (1.0 0.0))

(no (0.0 1.0)))
rl (rl (mo (1.0 0.0 0.0 0.0))

(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))

cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (1.0 0.0))
(no (0.0 1.0)))

cmJo (cmJo (yes (1.0 0.0))
(no (0.0 1.0)))

wcAn (wcAn (yes (1.0 0.0))
(no (0.0 1.0)))

wcJo (wcJo (yes (cf (yes (rl (mo (1.0 0.0))
(hl (1.0 0.0))
(an (1.0 0.0))
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(jo (0.05 0.95))))
(no (1.0 0.0))))

(no (0.0 1.0)))
mpAn (mpAn (yes (1.0 0.0))

(no (0.0 1.0)))
mpJo (mpJo (yes (1.0 0.0))

(no (0.0 1.0)))
endaction
action gmAn

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (cmAn (yes (rl (mo (0.0 1.0))

(hl (0.0 1.0))
(an (0.95 0.05))
(jo (0.0 1.0))))

(no (0.0 1.0)))))
hmJo (hmJo (yes (1.0 0.0))

(no (0.0 1.0)))
rl (rl (mo (1.0 0.0 0.0 0.0))

(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))

cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (1.0 0.0))
(no (0.0 1.0)))

cmJo (cmJo (yes (1.0 0.0))
(no (0.0 1.0)))

wcAn (wcAn (yes (1.0 0.0))
(no (0.0 1.0)))

wcJo (wcJo (yes (1.0 0.0))
(no (0.0 1.0)))

mpAn (mpAn (yes (1.0 0.0))
(no (0.0 1.0)))

mpJo (mpJo (yes (1.0 0.0))
(no (0.0 1.0)))

endaction
action gmJo

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (0.0 1.0)))
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hmJo (hmJo (yes (1.0 0.0))
(no (cmJo (yes (rl (mo (0.0 1.0))

(hl (0.0 1.0))
(an (0.0 1.0))
(jo (0.95 0.05))))

(no (0.0 1.0)))))
rl (rl (mo (1.0 0.0 0.0 0.0))

(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))

cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (1.0 0.0))
(no (0.0 1.0)))

cmJo (cmJo (yes (1.0 0.0))
(no (0.0 1.0)))

wcAn (wcAn (yes (1.0 0.0))
(no (0.0 1.0)))

wcJo (wcJo (yes (1.0 0.0))
(no (0.0 1.0)))

mpAn (mpAn (yes (1.0 0.0))
(no (0.0 1.0)))

mpJo (mpJo (yes (1.0 0.0))
(no (0.0 1.0)))

endaction
action gotoMO

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (0.0 1.0)))

hmJo (hmJo (yes (1.0 0.0))
(no (0.0 1.0)))

rl (rl (mo (0.99 0.01 0.0 0.0))
(hl (0.99 0.01 0.0 0.0))
(an (0.99 0.01 0.0 0.0))
(jo (0.99 0.01 0.0 0.0)))

cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (1.0 0.0))
(no (0.0 1.0)))

cmJo (cmJo (yes (1.0 0.0))
(no (0.0 1.0)))

wcAn (wcAn (yes (1.0 0.0))
(no (0.0 1.0)))

wcJo (wcJo (yes (1.0 0.0))
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(no (0.0 1.0)))
mpAn (mpAn (yes (1.0 0.0))

(no (0.0 1.0)))
mpJo (mpJo (yes (1.0 0.0))

(no (0.0 1.0)))
endaction
action gotoAn

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (0.0 1.0)))

hmJo (hmJo (yes (1.0 0.0))
(no (0.0 1.0)))

rl (rl (mo (0.0 0.01 0.99 0.0))
(hl (0.0 0.01 0.99 0.0))
(an (0.0 0.01 0.99 0.0))
(jo (0.0 0.01 0.99 0.0)))

cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (1.0 0.0))
(no (0.0 1.0)))

cmJo (cmJo (yes (1.0 0.0))
(no (0.0 1.0)))

wcAn (wcAn (yes (1.0 0.0))
(no (0.0 1.0)))

wcJo (wcJo (yes (1.0 0.0))
(no (0.0 1.0)))

mpAn (mpAn (yes (1.0 0.0))
(no (0.0 1.0)))

mpJo (mpJo (yes (1.0 0.0))
(no (0.0 1.0)))

endaction
action gotoJo

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (0.0 1.0)))

hmJo (hmJo (yes (1.0 0.0))
(no (0.0 1.0)))

rl (rl (mo (0.0 0.01 0.0 0.99))
(hl (0.0 0.01 0.0 0.99))
(an (0.0 0.01 0.0 0.99))
(jo (0.0 0.01 0.0 0.99)))
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cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (1.0 0.0))
(no (0.0 1.0)))

cmJo (cmJo (yes (1.0 0.0))
(no (0.0 1.0)))

wcAn (wcAn (yes (1.0 0.0))
(no (0.0 1.0)))

wcJo (wcJo (yes (1.0 0.0))
(no (0.0 1.0)))

mpAn (mpAn (yes (1.0 0.0))
(no (0.0 1.0)))

mpJo (mpJo (yes (1.0 0.0))
(no (0.0 1.0)))

endaction
action pbc

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (0.0 1.0)))

hmJo (hmJo (yes (1.0 0.0))
(no (0.0 1.0)))

rl (rl (mo (1.0 0.0 0.0 0.0))
(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))

cf (cf (yes (rl (mo (0.0 1.0))
(hl (1.0 0.0))
(an (1.0 0.0))
(jo (1.0 0.0))))

(no (0.0 1.0)))
cmAn (cmAn (yes (1.0 0.0))

(no (0.0 1.0)))
cmJo (cmJo (yes (1.0 0.0))

(no (0.0 1.0)))
wcAn (wcAn (yes (1.0 0.0))

(no (0.0 1.0)))
wcJo (wcJo (yes (1.0 0.0))

(no (0.0 1.0)))
mpAn (mpAn (yes (1.0 0.0))

(no (0.0 1.0)))
mpJo (mpJo (yes (1.0 0.0))

(no (0.0 1.0)))
endaction
action pbmAn
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hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (0.0 1.0)))

hmJo (hmJo (yes (1.0 0.0))
(no (0.0 1.0)))

rl (rl (mo (1.0 0.0 0.0 0.0))
(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))

cf (cf (yes (1.0 0.0))
(no (0.0 1.0)))

cmAn (cmAn (yes (rl (mo (0.0 1.0))
(hl (1.0 0.0))
(an (1.0 0.0))
(jo (1.0 0.0))))

(no (0.0 1.0)))
cmJo (cmJo (yes (1.0 0.0))

(no (0.0 1.0)))
wcAn (wcAn (yes (1.0 0.0))

(no (0.0 1.0)))
wcJo (wcJo (yes (1.0 0.0))

(no (0.0 1.0)))
mpAn (mpAn (yes (1.0 0.0))

(no (rl (mo (1.0 0.0))
(hl (0.0 1.0))
(an (0.0 1.0))
(jo (0.0 1.0)))))

mpJo (mpJo (yes (1.0 0.0))
(no (0.0 1.0)))

endaction
action pbmJo

hcAn (hcAn (yes (1.0 0.0))
(no (0.0 1.0)))

hcJo (hcJo (yes (1.0 0.0))
(no (0.0 1.0)))

hmAn (hmAn (yes (1.0 0.0))
(no (0.0 1.0)))

hmJo (hmJo (yes (1.0 0.0))
(no (0.0 1.0)))

rl (rl (mo (1.0 0.0 0.0 0.0))
(hl (0.0 1.0 0.0 0.0))
(an (0.0 0.0 1.0 0.0))
(jo (0.0 0.0 0.0 1.0)))

cf (cf (yes (1.0 0.0))
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(no (0.0 1.0)))
cmAn (cmAn (yes (1.0 0.0))

(no (0.0 1.0)))
cmJo (cmJo (yes (rl (mo (0.0 1.0))

(hl (1.0 0.0))
(an (1.0 0.0))
(jo (1.0 0.0))))

(no (0.0 1.0)))
wcAn (wcAn (yes (1.0 0.0))

(no (0.0 1.0)))
wcJo (wcJo (yes (1.0 0.0))

(no (0.0 1.0)))
mpAn (mpAn (yes (1.0 0.0))

(no (1.0 0.0)))
mpJo (mpJo (yes (1.0 0.0))

(no (rl (mo (1.0 0.0))
(hl (0.0 1.0))
(an (0.0 1.0))
(jo (0.0 1.0)))))

endaction
reward (hcAn (yes (hmAn (yes (hcJo (yes (hmJo (yes (55.0))

(no (25.0))))
(no (hmJo (yes (55.0))

(no (55.0))))))
(no (hcJo (yes (hmJo (yes (55.0))

(no (25.0))))
(no (hmJo (yes (55.0))
(no (25.0))))))))

(no (hmAn (yes (hcJo (yes (hmJo (yes (30.0))
(no (0.0))))

(no (hmJo (yes (30.0))
(no (30.0))))))

(no (hcJo (yes (hmJo (yes (30.0))
(no (0.0))))

(no (hmJo (yes (30.0))
(no (0.0)))))))))

discount 1.000000
horizon 5.000000
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C.5 A Situation Calculus Representation of a FACTORY Ex-

ample

:- set_flag(all_dynamic, on).
:- dynamic(proc/2).
:- dynamic(skilledLabourPresent/1).
:- dynamic(hasSprayGun/1).
:- dynamic(hasGlue/1).
:- dynamic(hasBolts/1).
:- pragma(debug).

/* This file is "myfactory6"; version 6 of SPUDD test factory examples.
35 FLUENTS (grounded)

% The first 17 variables are mentioned in factory.dat example
t : Type_Needed A high (true) or low (false) quality job is required
c : Connected Objects a and b are connected
cw : Connected_Well Objects a and b are well connnected
ap : A_painted Object a is painted
apw : A_painted_well Object a is well painted
bp : B_painted Object b is painted
bpw : B_painted Object b is well painted
ash : A_shaped Object a is shaped
bsh : B_shaped Object b is shaped
asm : A_smoothed Object a is smoothed
bsm : B_smoothed Object b is smoothed
adr : A_drilled Object a is drilled
bdr : B_drilled Object b is drilled
bo : Bolts The robot has bolts
gl : Glue The robot has glue
sg : Spray_Gun The robot has a spray gun
sl : Skilled_Labour There is skilled labour present

% The following 2 variables are mentioned in factory0.dat and
% all subsequent examples
cl : Clamps The robot has clamps
dr : Drill The robot has a drill

% The following 2 variables are mentioned in factory1.dat and
% all subsequent examples. Thus, factory1.dat has 21 boolean variables
mo : Mounting The robot has a mounting device
br : Brushes The robot has brushes

% The following 7 variables are mentioned in factory4.dat and
% all subsequent examples. Thus, factory4.dat has 28 boolean variables
la : Laquer Laquer is available
aw : arc-welder The robot has an arc-welder
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sw : spot welder The robot has a spot-welder
swl : arc-welder labour Skilled labour for the arc-welder is available
bit : bit The robot has bits for the drill
awe : arc-welds The robot has welding materials for the arc-welder
swe : spot-welds The robot has welding materials for the spot-welder

% The following 7 variables are mentioned in factory6.dat example. The first
% two variables "cac" and "cbc" occur in factory5.dat and all
% remaining 5 variables occur only in the last example factory6.dat
% Thus, factory6.dat has 35 boolean variables and the size of
% the state space is 2ˆ35 (i.e., approximately 3.4x10ˆ10) states.
cac : CA_Connected Objects C and A are connected
cbc : CB_Connected Objects C and B are connected
cp : C_painted Object c is painted
cpw : C_painted_well Object c is well painted
csh : C_shaped Object c is shaped
csm : C_smoothed Object c is smoothed
cdr : C_drilled Object c is drilled

14 ACTIONS (grounded)
% These 14 actions are used in all factory related examples
Shape object a
Shape object b
Drill object a
Drill object b
Dip (paint) object a
Dip (paint) object b
Spray (paint) object a
Spray (paint) object b
Hand-paint object a
Hand-paint object b
Bolt two objects A and B together
Glue two objects together
Polish object a
Polish object b

% The following action is used in all examples starting from factory3.dat
Weld objects A and B

% factory6.dat example has additional 8 actions (23 actions in total)
% The first two actions occur in factory5.dat example and all remaining
% 7 actions are allowed only in the factory6.dat example.
% Because the situation calculus representation is using action terms
% weld(x,y) and glue(x,y), where the variables x and y vary over objects
% {a,b,c} allowed in the factory domain, the axiomatization allows
% several additional actions (e.g., weld(a,c), weld(b,c), glue(a,c),
% glue(b,c)) that are not allowed in the factory6.dat example.
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Bolt objects A and C together
Bolt objects B and C together
Shape object c
Drill object c
Dip (paint) object c
Spray (paint) object c
Hand-paint object c
Polish object c
*/
/* Nondeterministic actions */

/* The action "spray(X)" might have four different outcomes:
a part becomes painted and well painted - nature’s action is "spraySW",

a part becomes painted but not well painted - nature’s action is "spraySnW",
a part remains unpainted, but is well painted - nature’s action is "sprayFW",
a part remains unpainted and not well painted - nature’s action is "sprayFnW".

According to the probabilities of transitions between states choosen for
the factory0 example in the SPUDD demo version, the probability of becoming

painted is 0.9 (a part remains unpainted with 0.1 probability). The probability
of becoming well painted is 0.44 (a part will not be well painted with
the probability 0.56)

*/
nondetActions(spray(X), S, [spraySW(X), spraySnW(X), sprayFW(X), sprayFnW(X)]).

nondetActions(shape(X), S, [shapeS(X), shapeF(X)]).

nondetActions(handPaint(X), S, [handPaintS(X), handPaintF(X)]).

nondetActions(polish(X), S, [polishS(X), polishF(X)]).

nondetActions(drill(X), S, [drillS(X), drillF(X)]).

nondetActions(weld(X,Y), S, [weldS(X,Y), weldF(X,Y)]).

/* Identification conditions for stochastic actions */

senseCondition(spraySW(Obj), Phi) :- Phi=( painted(Obj) & paintedWell(Obj) ).
senseCondition(spraySnW(Obj), Phi) :- Phi=( painted(Obj) & (-paintedWell(Obj)) ).
senseCondition(sprayFW(Obj), Phi) :- Phi=( (-painted(Obj)) & paintedWell(Obj) ).
senseCondition(sprayFnW(Obj),Phi) :- Phi=((-painted(Obj)) & (-paintedWell(Obj))).

senseCondition(shapeS(Obj), Phi) :- Phi=shaped(Obj) .
senseCondition(shapeF(Obj), Phi) :- Phi=(-shaped(Obj)) .

senseCondition(handPaintS(X), Phi) :- Phi=paintedWell(X).
senseCondition(handPaintF(X), Phi) :- Phi=(-paintedWell(X)).
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senseCondition(polishS(Obj), Phi) :- Phi=smoothed(Obj) .
senseCondition(polishF(Obj), Phi) :- Phi=(-smoothed(Obj)) .

senseCondition(drillS(Obj), Phi) :- Phi=drilled(Obj) .
senseCondition(drillF(Obj), Phi) :- Phi=(-drilled(Obj)) .

senseCondition(weldS(Obj1,Obj2), Phi) :- Phi=connectedWell(Obj1,Obj2) .
senseCondition(weldF(Obj1,Obj2), Phi) :- Phi=(-connectedWell(Obj1,Obj2)) .

/* Probabilities */

prob(spraySW(X),Pr,S) :- hasMountingDevice(S), ( Pr is 0.9*0.44 ) .
prob(spraySnW(X),Pr,S) :- hasMountingDevice(S), ( Pr is 0.9*0.56 ) .
prob(sprayFW(X),Pr,S) :- hasMountingDevice(S), ( Pr is 0.1*0.44 ) .
prob(sprayFnW(X),Pr,S) :- hasMountingDevice(S), ( Pr is 0.1*0.56 ) .

prob(spraySW(X),0,S) :- not hasMountingDevice(S).
prob(spraySnW(X),1,S) :- not hasMountingDevice(S).
prob(sprayFW(X),0,S) :- not hasMountingDevice(S).
prob(sprayFnW(X),0,S) :- not hasMountingDevice(S).

prob(shapeS(X),Pr,S) :- ( Pr is 0.8 ) .
prob(shapeF(X),PrF,S) :- prob(shapeS(X),PrS, S), (PrF is 1.0 - PrS ) .

prob(handPaintS(X),Pr,S) :- ( Pr is 0.8 ) .
prob(handPaintF(X),PrF,S) :- prob(handPaintS(X),PrS, S), (PrF is 1.0 - PrS ) .

prob(polishS(X),Pr,S) :- ( Pr is 0.8 ) .
prob(polishF(X),PrF,S) :- prob(polishS(X),PrS, S), (PrF is 1.0 - PrS ) .

prob(drillS(X),Pr,S) :- ( Pr is 0.8 ) .
prob(drillF(X),PrF,S) :- prob(drillS(X),PrS, S), (PrF is 1.0 - PrS ) .

prob(weldS(X,Y),Pr,S) :- ( Pr is 0.9 ) .
prob(weldF(X,Y),PrF,S) :- prob(weldS(X,Y),PrS, S), (PrF is 1.0 - PrS ) .

/* Precondition axioms */

poss(spraySW(X),S) :- object(X), hasSprayGun(S).
poss(spraySnW(X),S) :- object(X), hasSprayGun(S).
poss(sprayFW(X),S) :- object(X), hasSprayGun(S).
poss(sprayFnW(X),S) :- object(X), hasSprayGun(S).

poss(shapeS(X),S) :- object(X), not (object(Y), not X=Y, connected(X,Y,S)),
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not (object(Y), not X=Y, connectedWell(X,Y,S)).

poss(shapeF(X),S) :- object(X), not (object(Y), not X=Y, connected(X,Y,S)),
not (object(Y), not X=Y, connectedWell(X,Y,S)).

poss(handPaintS(X),S) :- object(X), hasBrushes(S).
poss(handPaintF(X),S) :- object(X), hasBrushes(S).

poss(polishS(X),S) :- object(X).
poss(polishF(X),S) :- object(X).

poss(drillS(X),S) :- object(X).
poss(drillF(X),S) :- object(X).

poss(weldS(X,Y),S) :- object(X), object(Y), hasSkilledWelder(S).
poss(weldF(X,Y),S) :- object(X), object(Y), hasSkilledWelder(S).

poss(dip(X),S) :- object(X).

poss(bolt(X,Y),S) :- drilled(X,S), drilled(Y,S), not X=Y, hasBolts(S).

poss(glue(X,Y),S) :- object(X), object(Y), not X=Y, hasGlue(S), hasClamps(S).

/* Successor state axioms */

typeNeeded(JobQuality,do(A,S)) :- typeNeeded(JobQuality,S).
/* In the initial situation s0, arguments can be typeNeeded(highQuality,s0)

or typeNeeded(lowQuality,s0) */

skilledLabourPresent(do(A,S)) :- skilledLabourPresent(S).
hasSprayGun(do(A,S)) :- hasSprayGun(S).
hasGlue(do(A,S)) :- hasGlue(S).
hasBolts(do(A,S)) :- hasBolts(S).

/* hasClamps(S) and hasDrill(S) are introduced in factory0.dat */
hasClamps(do(A,S)) :- hasClamps(S).
hasDrill(do(A,S)) :- hasDrill(S).

/* hasMountingDevice(S) and hasBrushes(S) are introduced in factory1.dat */
hasMountingDevice(do(A,S)) :- hasMountingDevice(S).
hasBrushes(do(A,S)) :- hasBrushes(S).

/* hasLaquer(S) is the only one new fluent in factory2.dat: this fluent is
not mentioned in any other s.-s. or precondition axiom */

hasLaquer(do(A,S)) :- hasLaquer(S).
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/*
hasSkilledWelder(S),hasArcWelder(S), hasSpotWelder(S) introduced in factory3.dat
hasArcWelder(do(A,S)) :- hasArcWelder(S).
hasSpotWelder(do(A,S)) :- hasSpotWelder(S).
hasSkilledWelder(do(A,S)) :- hasSkilledWelder(S).

/*hasBits(S), hasArcMaterials(S), hasSpotMaterials(S) introduced in factory4.dat*/
hasArcMaterials(do(A,S)) :- hasArcMaterials(S).
hasSpotMaterials(do(A,S)) :- hasSpotMaterials(S).
hasBits(do(A,S)) :- hasBits(S).

connected(X,Y,do(A,S)) :- A=bolt(X,Y).
connected(X,Y,do(A,S)) :- A=glue(X,Y).

connected(X,Y,do(A,S)) :- A=bolt(Y,X).
connected(X,Y,do(A,S)) :- A=glue(Y,X).

connected(X,Y,do(A,S)) :-
(A=weldS(X,Y) ; (A=weldS(Y,X) ; (A=weldF(X,Y) ; A=weldF(Y,X)))) ,

hasArcWelder(S), hasArcMaterials(S).

connected(X,Y,do(A,S)) :-
not hasArcWelder(S), hasSpotWelder(S), hasSpotMaterials(S),
( A=weldS(X,Y) ; A=weldS(Y,X) ).

connected(X,Y,do(A,S)) :- connected(X,Y,S),
not A=shapeS(X), not A=shapeF(X), not A=shapeS(Y), not A=shapeF(Y).

connectedWell(X,Y,do(A,S)) :- A=bolt(X,Y).
connectedWell(X,Y,do(A,S)) :- A=bolt(Y,X).

connectedWell(X,Y,do(A,S)) :-
(A=weldS(X,Y) ; (A=weldS(Y,X) ; (A=weldF(X,Y) ; A=weldF(Y,X)))) ,

( connected(X,Y,S) -> hasArcMaterials(S) ;
hasArcWelder(S), hasArcMaterials(S) ).

/*
connectedWell(X,Y,do(A,S)) :-

(A=weldS(X,Y) ; (A=weldS(Y,X) ; (A=weldF(X,Y) ; A=weldF(Y,X)))) ,
hasArcWelder(S), hasArcMaterials(S), not connected(X,Y,S).

*/
connectedWell(X,Y,do(A,S)) :- connectedWell(X,Y,S),

not A=shapeS(X), not A=shapeF(X), not A=shapeS(Y), not A=shapeF(Y),
not (A=weldS(X,Y), connected(X,Y,S)),
not (A=weldF(X,Y), connected(X,Y,S)),
not (A=weldS(Y,X), connected(X,Y,S)),
not (A=weldF(Y,X), connected(X,Y,S)).
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painted(X,do(A,S)) :- A=dip(X), smoothed(X,S).
painted(X,do(A,S)) :- A=spraySW(X), smoothed(X,S).
painted(X,do(A,S)) :- A=spraySnW(X), smoothed(X,S).
painted(X,do(A,S)) :- A=handPaintS(X), smoothed(X,S).
painted(X,do(A,S)) :- A=handPaintF(X), smoothed(X,S).

painted(X,do(A,S)) :- painted(X,S),
not A=shapeS(X), not A=shapeF(X),
not A=polishS(X), not A=polishF(X),
not A=drillS(X), not A=drillF(X),
not (object(Y), not X=Y, A=shapeS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=shapeF(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillF(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=polishS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=polishF(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=dip(Y), connected(X,Y,S)),

not sprayConnected(X,A,S).

sprayConnected(X,A,S) :- object(Y), not X=Y, connected(X,Y,S),
( A=spraySW(Y) ; ( A=spraySnW(Y) ; ( A=sprayFW(Y) ; A=sprayFnW(Y)) ) ).

paintedWell(X,do(A,S)) :- A=spraySW(X), smoothed(X,S).
paintedWell(X,do(A,S)) :- A=sprayFW(X), smoothed(X,S).
paintedWell(X,do(A,S)) :- A=handPaintS(X),

skilledLabourPresent(S), smoothed(X,S).

paintedWell(X,do(A,S)) :- paintedWell(X,S),
not A=shapeS(X), not A=shapeF(X),
not A=polishS(X), not A=polishF(X),
not A=drillS(X), not A=drillF(X),
not A=dip(X),
not (object(Y), not X=Y, A=shapeS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=shapeF(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillF(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=polishS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=polishF(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=dip(Y), connected(X,Y,S) ),
not sprayConnected(X,A,S).

shaped(X,do(A,S)) :- A=shapeS(X), not (object(Y), not X=Y, connected(X,Y,S)).

shaped(X,do(A,S)) :- shaped(X,S),
not (object(Y), not X=Y, A=drillS(X), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillF(X), connected(X,Y,S)),
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not (object(Y), not X=Y, A=drillS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillF(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=shapeS(X), connected(X,Y,S)),
not (object(Y), not X=Y, A=shapeF(X), connected(X,Y,S)),
not (object(Y), not X=Y, A=shapeS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=shapeF(Y), connected(X,Y,S)).

smoothed(X,do(A,S)) :- A=polishS(X), shaped(X,S).

smoothed(X,do(A,S)) :- smoothed(X,S), not A=shapeS(X), not A=shapeF(X),
not A=drillS(X), not A=drillF(X),
not (object(Y), not X=Y, A=shapeS(Y), connected(X,Y,S)),

not (object(Y), not X=Y, A=shapeF(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillF(Y), connected(X,Y,S)).

drilled(X,do(A,S)) :- A=drillS(X), hasDrill(S), hasBits(S),
not (object(Y), not X=Y, connected(X,Y,S)).

drilled(X,do(A,S)) :- drilled(X,S),
not (object(Y), not X=Y, A=drillS(X), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillF(X), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillS(Y), connected(X,Y,S)),
not (object(Y), not X=Y, A=drillF(Y), connected(X,Y,S)).

/* Reward function */

reward(R, s0) :- R is 0.

/* high quality */

reward(R,S) :- typeNeeded(highQuality,S),
not connected(a,b,S), R is 0.

reward(R,S) :- typeNeeded(highQuality,S),
connected(a,b,S), not connected(a,c,S), R is 0.

reward(R,S) :- typeNeeded(highQuality,S),
connected(a,b,S), connected(a,c,S),
not (connected(b,c,S), connectedWell(a,b,S)),
R is 0.

reward(R,S) :- typeNeeded(highQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
(not painted(a,S), R is 1 ;
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painted(a,S),
( not paintedWell(a,S), R is 1 ;
paintedWell(a,S),
( not painted(b,S), R is 2 ;
painted(b,S),

( not paintedWell(b,S), R is 4 ;
paintedWell(b,S),

( not painted(c,S), R is 6 ;
painted(c,S),

(not paintedWell(c,S), R is 8 ;
paintedWell(c,S), R is 10
)

)
)

)
)

).
/*
reward(R,S) :- typeNeeded(highQuality,S),

connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
not painted(a,S), R is 1.

reward(R,S) :- typeNeeded(highQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), not paintedWell(a,S), R is 1.

reward(R,S) :- typeNeeded(highQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S),
not painted(b,S), R is 2.

reward(R,S) :- typeNeeded(highQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S),
painted(b,S), not paintedWell(b,S), R is 4.

reward(R,S) :- typeNeeded(highQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S),
painted(b,S), paintedWell(b,S), not painted(c,S), R is 6.

reward(R,S) :- typeNeeded(highQuality,S),
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connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S),
painted(b,S), paintedWell(b,S),
painted(c,S), not paintedWell(c,S), R is 8.

reward(R,S) :- typeNeeded(highQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S),
painted(b,S), paintedWell(b,S),
painted(c,S), paintedWell(c,S), R is 10.

*/
/* low quality */
reward(R,S) :- typeNeeded(lowQuality,S),

not connected(a,b,S), R is 0.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connected(a,c,S), R is 0.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connected(a,c,S),
not connected(b,c,S), R is 0.

%---------------------------------------------------------
reward(R,S) :- typeNeeded(lowQuality,S),

connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

not painted(a,S), % Part "a" is not painted
not painted(b,S), R is 2.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

not painted(a,S), % Part "a" is not painted
painted(b,S), not paintedWell(b,S), R is 3.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

not painted(a,S), % Part "a" is not painted
painted(b,S), paintedWell(b,S), % "b" is painted and well
not painted(c,S), R is 3.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
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not painted(a,S), % Part "a" is not painted
painted(b,S), paintedWell(b,S), % "b" is painted and well
painted(c,S), not paintedWell(c,S), R is 4.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

not painted(a,S), % Part "a" is not painted
painted(b,S), paintedWell(b,S), % "b" is painted and well
painted(c,S), paintedWell(c,S), R is 3.

%---------------------------------------------------------
reward(R,S) :- typeNeeded(lowQuality,S),

connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), not paintedWell(a,S), %"a" is painted, but not well

not painted(b,S), R is 4.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), not paintedWell(a,S), %"a" is painted, but not well

painted(b,S), not paintedWell(b,S), R is 5.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), not paintedWell(a,S), % "a" is painted, but not well
painted(b,S), paintedWell(b,S), % "b" is painted and well
not painted(c,S), R is 4.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), not paintedWell(a,S), % "a" is painted, but not well
painted(b,S), paintedWell(b,S), % "b" is painted and well
painted(c,S), not paintedWell(c,S),
R is 5.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), not paintedWell(a,S), % "a" is painted, but not well
painted(b,S), paintedWell(b,S), % "b" is painted and well
painted(c,S), paintedWell(c,S),
R is 4.

%---------------------------------------------------------
reward(R,S) :- typeNeeded(lowQuality,S),
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connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), % Part "a" is painted and well
not painted(b,S), % "b" is not painted
R is 3.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), % Part "a" is painted and well
painted(b,S), not paintedWell(b,S), % "b" is painted, but not well
R is 4.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), % Part "a" is painted and well
painted(b,S), paintedWell(b,S), % "b" is painted and well
not painted(c,S), R is 3. % "c" is not painted

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), % Part "a" is painted and well
painted(b,S), paintedWell(b,S), % "b" is painted and well
painted(c,S), not paintedWell(c,S), % "c" is painted, but not well
R is 4.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), not connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), % Part "a" is painted and well
painted(b,S), paintedWell(b,S), % "b" is painted and well
painted(c,S), paintedWell(c,S), % "c" is painted and well
R is 3.

%---------------------------------------------------------

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

not painted(a,S), % Part "a" is not painted
not painted(b,S), R is 1.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
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not painted(a,S), % Part "a" is not painted
painted(b,S), not paintedWell(b,S), R is 2.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

not painted(a,S), % Part "a" is not painted
painted(b,S), paintedWell(b,S),
not painted(c,S), R is 2.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

not painted(a,S), % Part "a" is not painted
painted(b,S), paintedWell(b,S),
painted(c,S), not paintedWell(c,S), R is 3.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

not painted(a,S), % Part "a" is not painted
painted(b,S), paintedWell(b,S),
painted(c,S), paintedWell(c,S), R is 2.

%-------------------------------------------------------------------
reward(R,S) :- typeNeeded(lowQuality,S),

connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

painted(a,S), not paintedWell(a,S), % Part "a" is painted, but not well
not painted(b,S), R is 2.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

painted(a,S), not paintedWell(a,S), % Part "a" is painted, but not well
painted(b,S), not paintedWell(b,S), R is 3.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

painted(a,S), not paintedWell(a,S), % Part "a" is painted, but not well
painted(b,S), paintedWell(b,S),
not painted(c,S), R is 2.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
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painted(a,S), not paintedWell(a,S), % Part "a" is painted, but not well
painted(b,S), paintedWell(b,S),
painted(c,S), not paintedWell(c,S), R is 3.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),

painted(a,S), not paintedWell(a,S), % Part "a" is painted, but not well
painted(b,S), paintedWell(b,S),
painted(c,S), paintedWell(c,S), R is 2.

%-------------------------------------------------------------------

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), %Part "a" is painted and well
not painted(b,S), %Part "b" is not painted
R is 1.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), %Part "a" is painted and well

painted(b,S), not paintedWell(b,S), %Part "b" is painted, but not well
R is 1.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), %Part "a" is painted and well
painted(b,S), paintedWell(b,S), %Part "b" is painted and well
not painted(c,S), %Part "c" is not painted
R is 1.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), %Part "a" is painted and well
painted(b,S), paintedWell(b,S), %Part "b" is painted and well

painted(c,S), not paintedWell(c,S), %Part "c" is painted, but not well
R is 2.

reward(R,S) :- typeNeeded(lowQuality,S),
connected(a,b,S), connectedWell(a,b,S),
connected(a,c,S), connected(b,c,S),
painted(a,S), paintedWell(a,S), % Part "a" is painted and well
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painted(b,S), paintedWell(b,S), % Part "b" is painted and well
painted(c,S), paintedWell(c,S), % Part "c" is painted and well
R is 1.

%--------------------------------------------------------------------

/* Golog procedures */

proc(new,
while( some(x, object(x) &

some(y, object(y) & -(x=y) &
-(shaped(x) & connectedWell(x,y))) ),

if(some(ob, object(ob) & -shaped(ob)), /* THEN shape it */
pi(ob, ?(object(ob) & -shaped(ob)) : shape(ob)), /* ELSE connect it */
pi(x, ?(some(ob, object(x) & object(ob) & -(x=ob) & -connectedWell(x,ob)

pi(y, ?(object(y) & -(x=y) & -connectedWell(x,y)) :
( drill(y) : drill(x) : bolt(x,y)
#
if(hasSkilledWelder, weld(x,y), glue(x,y))
)

)
)

)
) :

while( some(x, object(x) & -paintedWell(x)),
if( some(x, object(x) & -smoothed(x)),

/* then polish it*/
pi(x, ?(object(x) & -smoothed(x)) : polish(x)),
/* else paint it*/

pi(x, ?(object(x) & -paintedWell(x)) :
if( skilledLabourPresent,
/* THEN */

handPaint(x),
/* ELSE */

(spray(x) # dip(x) )
)

)
)

)
).

proc(old,
while( some(x, object(x) &

some(y, object(y) & -(x=y) &
-(shaped(x) & connectedWell(x,y))) ),

if(some(ob, object(ob) & -shaped(ob)), /* THEN shape it */
pi(ob, ?(object(ob) & -shaped(ob)) : shape(ob)), /* ELSE connect it */
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pi(x, ?(some(ob, object(x) & object(ob) & -(x=ob) & -connectedWell(x,ob))) :
pi(y, ?(object(y) & -(x=y) & -connectedWell(x,y)) :

( if(hasBolts & -(drilled(x) & drilled(y)),
/* then */

if( drilled(x) & -drilled(y), drill(y), drill(x) ),
/* else */

bolt(x,y)
)

#
if(hasSkilledWelder, weld(x,y), glue(x,y))
)

)
)

)
) :

while( some(x, object(x) & -paintedWell(x)),
if( some(x, object(x) & -smoothed(x)),

/* then polish it*/
pi(x, ?(object(x) & -smoothed(x)) : polish(x)),
/* else paint it*/

pi(x, ?(object(x) & -paintedWell(x)) :
if( skilledLabourPresent,
/* THEN */

handPaint(x),
/* ELSE */ (spray(x) # dip(x) )

% if( hasSprayGun, spray(x), dip(x) )
)

)
)

)
).

/* Restore situation arguments to fluents. */

restoreSitArg(typeNeeded(JobQuality),S,typeNeeded(JobQuality,S)).
restoreSitArg(connected(X,Y),S,connected(X,Y,S)).
restoreSitArg(connectedWell(X,Y),S,connectedWell(X,Y,S)).
restoreSitArg(painted(X),S,painted(X,S)).
restoreSitArg(paintedWell(X),S,paintedWell(X,S)).
restoreSitArg(shaped(X),S,shaped(X,S)).
restoreSitArg(smoothed(X),S,smoothed(X,S)).
restoreSitArg(drilled(X),S,drilled(X,S)).
restoreSitArg(skilledLabourPresent,S,skilledLabourPresent(S)).
restoreSitArg(hasSprayGun,S,hasSprayGun(S)).
restoreSitArg(hasGlue,S,hasGlue(S)).
restoreSitArg(hasBolts,S,hasBolts(S)).



APPENDIX C. AN OFFLINE DECISION-THEORETIC GOLOG 301

restoreSitArg(hasClamps,S,hasClamps(S)). /* factory0.dat */
restoreSitArg(hasDrill,S,hasDrill(S)).

restoreSitArg(hasMountingDevice,S,hasMountingDevice(S)). /* factory1.dat */
restoreSitArg(hasBrushes,S,hasBrushes(S)).

restoreSitArg(hasLaquer,S,hasLaquer(S)). /* factory2.dat */

restoreSitArg(hasSkilledWelder,S,hasSkilledWelder(S)). /* factory3.dat */
restoreSitArg(hasArcWelder,S,hasArcWelder(S)).
restoreSitArg(hasSpotWelder,S,hasSpotWelder(S)).

restoreSitArg(hasArcMaterials,S,hasArcMaterials(S)). /* factory4.dat */
restoreSitArg(hasSpotMaterials,S,hasSpotMaterials(S)).
restoreSitArg(hasBits,S,hasBits(S)).

/* Primitive Action Declarations */

agentAction(spray(Item)).
agentAction(handPaint(Item)).
agentAction(dip(Item)).
agentAction(shape(Item)).
agentAction(drill(Item)).
agentAction(polish(Item)).
agentAction(glue(Obj1,Obj2)).
agentAction(bolt(Obj1,Obj2)).
agentAction(weld(Obj1,Obj2)).

/* Initial Situation */

object(a).
object(b).
object(c).

typeNeeded(highQuality,s0).

skilledLabourPresent(s0).

hasSprayGun(s0).

hasGlue(s0).

hasBolts(s0).

/* hasClamps(S) and hasDrill(S) fluents are introduced in factory0.dat */
hasClamps(s0).
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hasDrill(s0).

hasMountingDevice(s0).
hasBrushes(s0).
hasLaquer(s0).

/* hasSkilledWelder(S), hasArcWelder(S), hasSpotWelder(S) are introduced in
factory3.dat */

hasSkilledWelder(s0).
hasArcWelder(s0).
hasSpotWelder(s0).

/*hasBits(S), hasArcMaterials(S), hasSpotMaterials(S) introduced in factory4.dat*/
hasArcMaterials(s0).
hasSpotMaterials(s0).
hasBits(s0).
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C.6 A Delivery Example in Golog

To run a program mentioned in Section 5.6 do the following. First, load the online interpreter. Second,

load this file and call the offline interpreter with arguments:

bp(mail1,12,Pol,Val,Prob,myresults).
bp(mail2,12,Pol,Val,Prob,myresults).

Horizons longer than 12 are ok, but horizons less than 12 are too short to complete both deliveries

mentioned in the example.

/* Note that Golog programs formulated in this file cannot be run
with an off-line BestDo interpreter because a delivery domain
is represented here using actions with temporal arguments and
BestDo works only with actions without temporal argument.
To run Golog programs given in this file, first, you need
to load the online interpreter. It supports actions that have
temporal argument and provides compatibility with an offline
interpreter. Then load this file and call the offline interpreter
with the following arguments:

bp(gologProgram,Horizon,Pol,Val,Prob,myresults).
*/

:- set_flag(all_dynamic, on).
:- dynamic(proc/2).
:- pragma(debug).
:- dynamic(stophere/1). % useful for debugging
:- set_flag(stophere/1, spy, on). % type debug to turn debugger on and use "l"
:- set_flag(stophere/1, leash, stop).%to leap from one break-point to another
/*
:- set_flag(reward/2, spy, on). % useful for debugging of rewards
:- set_flag(reward/2, leash, stop). % to enable debugging remove comments
*/

stophere(yes).

/* A Coffee and Mail Delivery Robot Based on Decision Theoretic Golog. */
/* Common abbreviations:

wC - wantsCoffee
tT - travelTime
of - office
cr - Craig
fa - Fahiem
lg - lounge
yv - Yves
vi - visitor
st - Steven
ma - Maurice
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*/
/* GOLOG Procedures */

range(people3, [cr,fa,lg]).
range(people4, [cr,fa,ma,lg]).
range(people41, [cr,fa,st,lg]).
range(people5, [cr,fa,st,ma,lg]).
range(people51, [cr,fa,st,ma,yv]).
range(people6, [cr,vi,fa,st,ma,yv]).
range(people7, [cr,vi,lg,fa,st,ma,yv]).
range(people, [ann,bill,joe]).
range(profs,[cr,fa]).
range(long, [itrc,ray,cr,vi,fa,lg,st,ma,yv]).
range(lp271, [st,ma,yv]).
range(lp276, [fa,vi]).
range(lp290b, [cr]).
range(lp269, [lg]).
range(offices3, [lp271,lp276,lp290b]).
range(offices4, [lp271,lp276,lp290b,lp269]).

inRange(P,R) :- range(R,L), member(P,L).

/* For example, call deliver(people) */
proc(deliver(List),

pickBest(p, List, pi(t, deliverCoffee(p,t)))
#

pickBest(p, List, pi(t, deliverMail(p,t)))
).

proc(mc1,
while( some(person, some(t1, some(t2, some(number,

(wantsCoffee(person,t1,t2)
v mailPresent(person,number)) & -status(person,out) )))),

(
pickBest(p, people3,
?(some(t1, some(t2, wantsCoffee(p,t1,t2))) & -status(p,out)) :

pi(t, ?(now(t)): deliverCoffee(p,t)) )
#
pickBest(p, people3, ?(some(n, mailPresent(p,n)) & -status(p,out)) :

pi(t, ?(now(t)): deliverMail(p,t)) )
) : pi(t, ?(now(t)) : goto(mo,t)) : leaveItems

)
).

/* In the following procedure R can be people3, people4, etc */
proc(cof(R),
while( some(person, inRange(person,R) &
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some(t1, some(t2, wantsCoffee(person,t1,t2) &
-status(person,out) ))),

loc(pickBest(p, R,
?(some(t1, some(t2, wantsCoffee(p,t1,t2))) & -status(p,out)) :

pi(t, ?(now(t)): deliverCoffee(p,t)) ) :
pi(t, ?(now(t)) : goto(mo,t)) : leaveItems

)
)

).

/* In the following procedure R can be offices3 or offices4. */
proc(coffee(R),

while( some(office, inRange(office, R) &
some(person, inRange(person,office) &
some(t1, some(t2, wantsCoffee(person,t1,t2) &
-status(person,out) )))),

pickBest(room, R,
limit(pickBest(p,room,

?(some(t1, some(t2, wantsCoffee(p,t1,t2))) &
-status(p,out)) :
pi(t, ?(now(t)): deliverCoffee(p,t))

) /*endPickBest*/ :
/* pi(t, ?(now(t)) : goto(mo,t)) : leaveItems*/
pi(t, ?(now(t)) :

if( -carrying(coffee),
/* THEN */ goto(mo,t),
/* ELSE */ nil % door closed or give failed

/* or "noOp(tt)" - needs time argument */
) /*endIF*/

)
) /*endLimit*/

) /*endPickBest*/
) : if(robotLoc(mo), nil, pi(t,?(now(t)) : goto(mo,t)))

).

proc(deliverTo(P,T),
if( robotLoc(mo) & -some(item,carrying(item)),

/* THEN */ pickItems(P,T) : deliverTo(P,T),
/* ELSE */

if( some(item,(carrying(item))),
/* THEN */

goto(of(P),T) : pi(tN, ?(now(tN)) :
/* pi(wait, ?(wait $>=0) : pi(time, ?(time $= tN+wait) : */

giveItems(P,tN) : goto(mo,tN) : leaveItems ),
/* ELSE */

goto(mo,T) : pi(tN, ?(now(tN)) : deliverTo(P,tN))
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)
)

).

proc(pickItems(P,T),
if( some(n,some(t1,some(t2, mailPresent(P,n) & wantsCoffee(P,t1,t2) ))),

/* THEN pickup both mail and cofee */
pickup(coffee,T) : pickup(mailTo(P),T),

/* ELSE pickup only one item */
if( some(n,mailPresent(P,n)),

/* THEN take only mail */
pickup(mailTo(P),T),
/* ELSE take just coffee */

pickup(coffee,T)
)

)
).

proc(giveItems(P,T),
if( carrying(coffee) & carrying(mailTo(P)),

/* Give both items */
give(coffee,P,T) : give(mailTo(P),P,T),

/* otherwise give just one of items */
if( carrying(mailTo(P)),

give(mailTo(P),P,T),
give(coffee,P,T)

)
)

).

proc(leaveItems,
while(some(item, carrying(item)),

pi(item, ?(carrying(item)) :
pi(tN, ?(now(tN)) : putBack(item,tN) ))

)
).

proc(deliverCoffee(P,T),
if(robotLoc(mo),
/* THEN */ if( carrying(coffee), serveCoffee(P,T),

pickup(coffee,T) : serveCoffee(P,T) ),
/* ELSE */
if(-carrying(coffee),

goto(mo,T) :
pi(t, ?(now(t)) : pickup(coffee,t) : serveCoffee(P,t)),

serveCoffee(P,T)
)
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)
).

/* Serve immediately on arrival */

proc(serveCoffee(P,T),
if(robotLoc(of(P)),

/* THEN */ give(coffee,P,T),
/* ELSE */ goto(of(P),T) : pi(t, ?(now(t)) : give(coffee,P,t))

)
).

/* Wait before serving */

proc(serveCW(P,T),
if(robotLoc(of(P)),

/* THEN */ pi(wait, ?(0 $<= wait) :
pi(t, ?(t $= T+wait) : give(coffee,P,t))),

/* ELSE */ goto(of(P),T) :
pi(time, ?(0 $<= time) : pi(wait, ?(0 $<= wait) :

pi(t, ?(now(t)) : ?(time $= t+wait) :
give(coffee,P,time) )))

)
).

proc(deliverMail(P,T),
if(robotLoc(mo),
/* THEN */ if( carrying(mailTo(P)), serveMail(P,T),

pickup(mailTo(P),T) : serveMail(P,T) ),
/* ELSE */

if(-carrying(mailTo(P)),
goto(mo,T) :
pi(t, ?(now(t)) : pickup(mailTo(P),t) : serveMail(P,t)),

serveMail(P,T)
)

)
).

proc(serveMail(P,T),
if(robotLoc(of(P)),

/* THEN */ give(mailTo(P),P,T),
/* ELSE */ goto(of(P),T) : pi(t, ?(now(t)) : give(mailTo(P),P,t))
)

).
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/*
This procedure is designed to test the mail delivery example from Section 5.6.
It does the same as the following procedure mail2 iff in the initial situation
only mailPresent(cr,1,s0) and mailPresent(fa,1,s0) are true
(i.e., cr and fa do NOT want any coffee).

*/
proc(mail1,
while( some(p, some(n, mailPresent(p,n) & -hasMail(p) & -status(p,out) )),

pickBest(p, profs,
?( some(n, mailPresent(p,n)) & -status(p,out) & -hasMail(p) ) :

pi(t, deliverMail(p,t) ) :
pi(t, ?(now(t)) : goto(mo,t)) : leaveItems

)
)

).

/* The procedure mail2 is supposed to find which sequence
(mcr : mfa) vs. (mfa : mcr)

of deliveries yields the highest total expected value.
Note that the first literal in the termination condition of
the while-loop in mail2 (or mail1) must be positive
(to ground variables before negation-as-failure will be applied to them).
The procedure mail2 delivers both mail and coffee (if requested);
to test the mail delivery example from Section 5.6 make sure that
in the initial situation only mailPresent(cr,1,s0) and mailPresent(fa,1,s0)
are true (i.e., cr and fa do NOT want any coffee).

*/
proc(mail2,
while( some(p, some(n, mailPresent(p,n) & -status(p,out) & -hasMail(p) )),

pickBest(p, profs,
?(some(n, mailPresent(p,n) & -status(p,out) & -hasMail(p) )) :

pi(t, deliverTo(p,t) )
)

)
).

proc(mcr, pi(t, deliverTo(cr,t) )
).

proc(mfa, pi(t, deliverTo(fa,t) )
).

proc(goto(L,T),
pi(rloc,?(robotLoc(rloc)) : pi(deltat,?(tT(rloc,L,deltat)) :

goBetween(rloc,L,deltat,T)))).
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/* Going from a location to the same location may take non-zero time if
the location is a hallway. But normally, if a source and a destination are
the same and the travel time between them is 0, then goBetween does nothing.

*/
proc(goBetween(Loc1,Loc2,Delta,T),

if( Loc1=Loc2 & Delta=0, nil,
startGo(Loc1,Loc2,T) :
pi( time, ?(now(time)) :

if( time=T,
% THEN (offline)

pi(t, ?(t $= T + Delta) : endGo(Loc1,Loc2,t) ) ,
% ELSE (online)

endGo(Loc1,Loc2,time)
)

)
)

).
/*
proc(goBetween(Loc1,Loc2,Delta,T),

if( Loc1=Loc2 & Delta=0, nil,
startGo(Loc1,Loc2,T) :
pi(time, ?(time $= T + Delta) : endGo(Loc1,Loc2,time) )

)
).
*/

/* Nondeterministic Actions */

/* Robot’s actions */

nondetActions(endGo(L1,L2,T),S,[endGoS(L1,L2,T),endGoF(L1,hall,TF)]) :-
L1 \== hall,
tT(L1, hall, Delta),
start(S,TS), TF $= TS + Delta ;

/* OR */
L1 == hall,
start(S,TS), TF $= TS + 20.

/* A failed endGo action takes some time even if we started in the hall.
This is not a very smart guess, though.*/

nondetActions(give(Item,Pers,T),S,[giveS(Item,Pers,T),giveF(Item,Pers,T)]).

/* Because a person loads things on robot, in this version the action
‘pickup’ is deterministic.

*/

/* Exogenous actions: the robot has no control over them */
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nondetAction(cfRequest(P,T1,T2,T),S,
[cfRequest(P,T1,T2,T),noRequest(P,T)]).

nondetActions(mailArrives(Person,T),S,
[mailArrives(Person,T),noMail(Person,T)]).

/* Later : connect to the robot */

doSimul(A) :- agentAction(A), not senseAction(A), deterministic(A,S),
printf("I’m doing the deterministic action %w\n",[A]).

doSimul(A) :- agentAction(A), nondetActions(A,S,NatOutcomesList),
printf("I’m doing the stochastic action %w\n",[A]).

doSimul(A) :- senseAction(A), printf("Im doing the sensing action %w\n",[A]),
printf("Type the value returned by the sensor\n",[]),
stophere(yes),
A =.. [ActionName,SensorName,Value,Time],
read(Value).

/* Alternative implementation: introduce the predicate
value(SenseAction,Value) and for each sense action senseAct
include in the domain axiomatization an axiom similar to

value( senseAct(X,Val,Time), Val ).
Then we can simply call this predicate "value" in the clause above.
*/

/* Identification conditions for robot’s stochastic actions */

senseCondition(endGoS(Loc1,Loc2,T), robotLoc(Loc2) ).
senseCondition(endGoF(Loc1,Loc2,T), robotLoc(hall) ).
senseCondition(giveS(Item,Pers,T),W) :-

Item=mailTo(Pers), W = hasMail(Pers);
Item=coffee, W = hasCoffee(Pers).

senseCondition(giveF(Item,Pers,T),W) :-
Item=mailTo(Pers), W = (-hasMail(Pers));
Item=coffee, W = (-hasCoffee(Pers)).

/* Identification conditions for exogenous actions: not implemented */
/*
senseCondition(cfRequest(P,T1,T2,T),wantsCoffee(P,T1,T2)).
senseCondition(mailArrives(Person,T),

some(now, some(prev, some(act, curentSit(now) & now=do(act,prev) &
some(mNow, mailPresent(Person,mNow) &
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some(mPrev, mailPresent(Person,mPrev,prev) & mNow > mPrev )))))
).

% What do we sense if nothing happened?
senseCondition(noRequest(P,T),

-some(t1,some(t2,wantsCoffee(P,t1,t2))) ).

senseCondition(noMail(Person,T),
some(now, some(prev, some(act, curentSit(now) & now=do(act,prev) &
some(mNow, mailPresent(Person,mNow) &
some(mPrev, mailPresent(Person,mPrev,prev) & mNow = mPrev )))))

).
*/
senseExo(S1,S2) :- S2=S1.

/* Probabilities */

/* Robot’s actions */
prob(endGoS(Loc1,Loc2,T), PS, S) :- (PS is 0.99) .
prob(endGoF(Loc1,Loc2,T), PF, S) :- (PF is 0.01) .

prob(giveF(Item,Pers,T), Pr2, S) :-
prob(giveS(Item,Pers,T), Pr1, S), Pr2 is (1 - Pr1).

/* If Ray/Craig is in his office with probability _0.6_ and
Visitor/Fahiem is in with probability 0.6, then given
our reward functions it is better to
give(mailTo(fa),fa,45) and later give(mailTo(cr),cr,200)

prob(giveS(Item,Pers,T), Pr, S) :-
( Pers=cr, (Pr is 0.6 ) ;

Pers=fa, (Pr is 0.6 ) ;
not Pers=cr, not Pers=fa, (Pr is 0.95)

).
*/

/* If Ray/Craig is in his office with probability _0.8_ but
Visitor/Fahiem is in his office with probability 0.6, then
given our reward functions it is better
to give(mailTo(cr),cr,110) and later give(mailTo(fa),fa,265)

*/
prob(giveS(Item,Pers,T), Pr, S) :-

( Pers=cr, (Pr is 0.8 ) ;
Pers=fa, (Pr is 0.6 ) ;
not Pers=cr, not Pers=fa, (Pr is 0.95) ).
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/* Exogenous actions. */

/* The probabilistic model of how employees request coffee assumes that
requests can occur in any situation (time of the request is tied up
to the start time of the situation) and more often people ask
for coffee if they did not have coffee yet.
Variations: Prob depends on T that is not tied up to start time of S;

some individuals more probably request coffee in certain
time intervals (e.g., at the morning) than at other time,
some employees request coffee more often than others, etc.

prob(cfRequest(Pers,T1,T2,T), Pro, S) :- person(Pers), start(S,T),
frandom(Rand1), N is 100*Rand1,
round(N, Bottom), T1 is 100 + T + Bottom,
random(Rand2), M is 100*Rand2,
round(M, Top), T2 is T1 + Top,

( hasCoffee(Pers,S), Pro is (0.1) ;
not hasCoffee(Pers,S), Pro is (0.9) ).

prob(noRequest(Pers,T),P1,S) :- prob(cfRequest(Pers,T1,T2,T), P2, S),
P1 is 1 - P2.

prob(mailArrives(Pers,T), Pro, S) :- person(Pers),
start(S,TS), % Assume that TS is a fixed time %
Lambda is (T - TS)/10, exp(Lambda,Res),
Pro is 1 - (1/Res).

prob(noMail(Pers,T),P1,S) :-
prob(mailArrives(Pers,T), P2, S), P1 is 1 - P2.

*/

/* Preconditions for Primitive Actions */

/* Robot’s actions */

poss(pickup(Item,T),S) :- Item = coffee,
not carrying(Item,S), robotLoc(mo,S).

poss(pickup(Item,T),S) :- Item = mailTo(P),
not carrying(Item,S), robotLoc(mo,S), mailPresent(P,N,S), N > 0.

poss(giveS(Item,Person,T),S) :- Item=coffee,
carrying(Item,S), robotLoc(of(Person),S).

/* The robot is permitted to give mail only to the addressee */
poss(giveS(Item,Person,T),S) :- Item=mailTo(Person),

carrying(Item,S), robotLoc(of(Person),S).
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poss(giveF(Item,Person,T),S) :- Item=coffee,
carrying(Item,S), robotLoc(of(Person),S).

poss(giveF(Item,Person,T),S) :- Item=mailTo(Person),
carrying(Item,S), robotLoc(of(Person),S).

poss(startGo(Loc1,Loc2,T),S) :- robotLoc(Loc1,S), not going(L,LL,S).

poss(endGoS(Loc1,Loc2,T),S) :- going(Loc1,Loc2,S).
poss(endGoF(Loc1,Loc2,T),S) :- going(Loc1,Loc3,S), not (Loc2=Loc3).

poss(putBack(Item,T),S) :- robotLoc(mo,S), carrying(Item,S).

/* Exogenous actions */
/*
poss(mailArrives(Person,T),S).
poss(noMail(P,T),S).

poss(cfRequest(Person,T1,T2,T),S) :- T $<= T1, T1 $< T2.
poss(noRequest(P,T),S).
*/

/* Successor State Axioms */

hasCoffee(Person,do(A,S)) :- A = giveS(coffee,Person,T).

hasCoffee(Person,do(A,S)) :- A = sense(buttons,Answer,T), Answer==1,
robotLoc(of(Person),S).

hasCoffee(Person,do(A,S)) :- hasCoffee(Person,S),
not A = giveS(coffee,Person,T),
not A = sense(buttons,1,T).

hasMail(Person, do(A,S)) :- A = giveS(mailTo(Person),Person,T).

hasMail(Person, do(A,S)) :- A = sense(buttons,Answer,T), Answer==1,
robotLoc(of(Person),S).

hasMail(Person, do(A,S)) :- hasMail(Person,S),
not A = sense(buttons,1,T),
not A = giveS(mailTo(Person),Person,T).

robotLoc(L,do(A,S)) :- A = endGoS(LocStart,L,T).

robotLoc(L,do(A,S)) :- A = endGoF(LocStart,L,T).
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robotLoc(L,do(A,S)) :- A = sense(coordinates,V,Time),
xCoord(V,X), yCoord(V,Y), inside(L,X,Y).

robotLoc(L,do(A,S)) :- robotLoc(L,S),
not A = endGoS(Loc2,Loc3,T),
not A = endGoF(Loc2,Loc3,T),
not ( A = sense(coordinates,V,T),

xCoord(V,X), yCoord(V,Y), inside(Loc,X,Y), L \== Loc ).

inside(mo,X,Y) :-
bottomY(mo,Yb), Yb =< Y,
topY(mo,Yt), Y =< Yt,
leftX(mo,Xl), Xl =< X,
rightX(mo,Xr), X =< Xr.

inside(of(Person),X,Y) :-
bottomY(of(Person),Yb), Yb =< Y,
topY(of(Person),Yt), Y =< Yt,
leftX(of(Person),Xl), Xl =< X,
rightX(of(Person),Xr), X =< Xr.

inside(hall,X,Y) :- not inside(mo,X,Y), not inside(of(P),X,Y).

going(Origin,Destination,do(A,S)) :- A = startGo(Origin,Destination,T).

going(Origin,Destination,do(A,S)) :- going(Origin,Destination,S),
not A = endGoS(Origin,Destination,T),
not A = endGoF(Origin,Elsewhere,T).

carrying(Item,do(A,S)) :- A = pickup(Item,T).

carrying(Item,do(A,S)) :- carrying(Item,S),
not A = giveS(Item,Person,T),
not A = putBack(Item,T).

/* status(Person,DoorPersonOfficeStatus, Sit) means whether the door of
Person’s office is open (and then Person is in), closed (Person is out)
or unknown (if the office of Person has never been visited before).
*/
status(Person,Stat,do(A,S)) :-

A = giveS(Item,Person,T), Stat=in. % Person is in

status(Person,Stat,do(A,S)) :-
A = giveF(Item,Person,T), Stat=out. % Person is out
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status(Person,Stat,do(A,S)) :- status(Person,Stat,S),
not A=giveS(Item,Person,T),
not A=giveF(Item,Person,T).

/* wantsCoffee(P,T1,T2,do(A,S)) :- A = cfRequest(P,T1,T2,T). */

wantsCoffee(P,T1,T2,do(A,S)) :- wantsCoffee(P,T1,T2,S),
not A=giveS(coffee,P,T).

/* The following axiom assumes that if initially a person P does not
have mail in the mailbox, this is represented by leaving out
mailPresent(P,X,s0); it is also assumed that mail arrives one by one.

mailPresent(Person,N,do(A,S)) :-
A=mailArrives(Person,T), mailPresent(Person,M,S), M > 0, N is M+1.

mailPresent(Person,N,do(A,S)) :-
A=mailArrives(Person,T), not mailPresent(Person,M,S), N is 1.

*/

mailPresent(Person,N,do(A,S)) :- A = putBack(mailTo(Person),T), N is 1 .
% not mailPresent(Person,X,S), N is 1.

% mailPresent(Person,N,do(A,S)) :- A = putBack(mailTo(Person),T),
% mailPresent(Person,M,S), N is M + 1.

mailPresent(Person,N,do(A,S)) :- mailPresent(Person,N,S),
not A = pickup(mailTo(Person),T).

/* Reward function */

reward(R, s0) :- R $= 0.
/* A simpler version might also be sufficient in most cases:

reward(0, s0).
*/

reward(V, do(A,S)) :- A = giveS(coffee,Person,T),
wantsCoffee(Person,T1,T2,S),
V $<= (T2 - T)/2,
V $<= T - (3*T1 - T2)/2,
VL $<= V, rmax(VL).

reward(V, do(A,S)) :- A = giveS(coffee,Person,T),
not wantsCoffee(Person,T1,T2,S),
T $<= TM, rmin(TM),



APPENDIX C. AN OFFLINE DECISION-THEORETIC GOLOG 316

V $= 0.

/* Just to give an idea what rewards the robot may get for serving coffee:

wantsCoffee(ray,340,380). V $<= (380 - T)/2 & V $<= T - 320. rmax(V)=20
wantsCoffee(vi,150,200). V $<= (200 - T)/2 & V $<= T - 125. rmax(V)=25
*/

/* We use a declining linear function of time as a reward function
to encourage earlier mail delivery. */

reward(V, do(A,S)) :- A = giveS(mailTo(P),P,T1),
% whenMailArrived(P,S,N,T2),
( P=cr, V $<= 30 - T1/10 ;
P=fa, V $<= 15 - T1/20 ;
P\==cr, P\==fa, V $<= 10 - T1/10

),
rmax(V).

/* When the robot gets stuck in the hall, it costs 5 points ;
other actions bring 0 costs/rewards.

reward(V, do(A,S)) :-
A = startGo(Loc1,Loc2,T), V $= 0 ;
A = endGoS(Loc1,Loc2,T),
tT(Loc1,Loc2,T12), V $= 0 ; % (1000 - T)/ T12 % ;

A = endGoF(Loc1,Loc2,T),
V $= -5.

reward(V, do(A,S)) :- not (A=giveS(Item,P,T), A=startGo(L1,L2,T),
A=endGoS(L1,L2,T), A=endGoF(L1,L2,T) ),

V $= 0.
*/

reward(V, do(A,S)) :- not A=giveS(Item,P,T), V $= 0.

whenMailArrived(P,s0,N,Time) :- mailPresent(P,N,s0), N > 0, Time $= 0.
whenMailArrived(P,S2,N,Time) :- S2=do(A,S1),

( A=mailArrives(P,T), Time $= T,
( mailPresent(P,M,S1) -> N is M+1 ; N=1) ;

not A=mailArrives(P,T), whenMailArrived(P,S1,N,Time)
).

/* The time of an action occurrence is its last argument. */
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time(pickup(Item,T),T).
time(giveS(Item,Person,T),T).
time(giveF(Item,Person,T),T).
time(startGo(Loc1,Loc2,T),T).
time(endGoS(Loc1,Loc2,T),T).
time(endGoF(Loc1,Loc2,T),T).
time(putBack(Item,T),T).
time(sense(buttons,Answer,Time),Time).
time(sense(coordinates,V,Time),Time).
% time(cfCancel(P,T1,T2,T),T).
% time(cfRequest(Pers,T1,T2,T),T).
% time(noRequest(P,T), T).
% time(mailArrives(P,T),T).
% time(noMail(P,T), T).

/* Restore situation arguments to fluents. */

restoreSitArg(robotLoc(Rloc),S,robotLoc(Rloc,S)).
restoreSitArg(hasCoffee(Person),S,hasCoffee(Person,S)).
restoreSitArg(hasMail(Person),S,hasMail(Person,S)).
restoreSitArg(going(Loc1,Loc2),S,going(Loc1,Loc2,S)).
restoreSitArg(carrying(Item),S,carrying(Item,S)).
restoreSitArg(status(Pers,Office),S,status(Pers,Office,S)).
restoreSitArg(wantsCoffee(Person,T1,T2),S,wantsCoffee(Person,T1,T2,S)).
restoreSitArg(mailPresent(Person,N),S,mailPresent(Person,N,S)).
restoreSitArg(currentSit(X),S,currentSit(X,S)).
/* This is a handy expression */
currentSit(X,S) :- X = S.

/* Primitive Action Declarations */

agentAction(pickup(Item,T)).
agentAction(give(Item,Person,T)).
agentAction(startGo(Loc1,Loc2,T)).
agentAction(endGo(Loc1,Loc2,T)).
agentAction(putBack(Item,T)).
% agentAction(cfRequest(Pers,T1,T2,T)).
% agentAction(mailArrives(Pers,T)).
% agentAction(cfCancel(P,T1,T2,T)).

/* All sensing actions have 3 arguments:
- the 1st argument is property/quantity that we would like to measure
- the 2nd argument is the value returned by sensor at the run-time
- the last 3rd argument is time

*/
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senseAction(sense(buttons,Answer,Time)). /* Answer can be 1 or 0 */
senseAction(sense(coordinates,V,Time)).

differentiatingSeq(endGo(Loc1,Loc2,T), sense(coordinates,V,T)).
differentiatingSeq(give(Item,Person,T), sense(buttons,Answer,T)).

/* Initial Situation. */

% robotLoc(park,s0).
robotLoc(mo,s0).
status(ray,unknown,s0).
status(itrc,unknown,s0).
% office lp269
status(lg,unknown,s0).
% office lp271
status(ma,unknown,s0).
status(st,unknown,s0).
status(yv,unknown,s0).
% office lp276
status(fa,unknown,s0).
status(vi,unknown,s0).
% office lp290b
status(cr,unknown,s0).

% wantsCoffee(ray,340,380,s0).
/*
wantsCoffee(yv,800,850,s0).
wantsCoffee(fa,500,550,s0).
wantsCoffee(lg,150,200,s0).
wantsCoffee(vi,1100,1150,s0).
wantsCoffee(cr,310,400,s0).
wantsCoffee(st,600,650,s0).
wantsCoffee(ma,1000,1050,s0).
*/

/* times for video: */
/*
wantsCoffee(fa,150,200,s0).
wantsCoffee(yv,320,400,s0).
wantsCoffee(ma,320,400,s0).
wantsCoffee(lg,230,300,s0).
wantsCoffee(cr,310,400,s0).
*/
% mailPresent(lg, 1,s0).
% mailPresent(ray,1,s0).
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% mailPresent(vi,1,s0).
mailPresent(cr,1,s0).
mailPresent(fa,1,s0).

/* A simple example from Section 5.3: run the procedure deliver */
% wantsCoffee(ann,100,150,s0).
% mailPresent(joe,4,s0).
%
% tT0( mo, of(ann), 45 ).
% tT0( mo, of(joe), 100 ).
% tT0( mo, of(bill), 50 ).

tT(L,L,0) :- L \== hall.
tT(L1,L2,T) :- tT0(L1,L2,T) ;

tT0(L2,L1,T).

/*
--- TABLE OF AVERAGE TRAVEL TIME FROM cm ---

-----------RAY 75 (51, 72 cm->ray; 56, 55 ray->cm)
|
+--------------
|
|
+--ITRC 24

CM--+
|
|
|
+--VISITOR 40
|

LOUNGE-+ 58 (cm->lg), 63 (lg->cm)
|

------+--------------------
*/

tT0( park, mo, 100 ). /* 73, 82 on simulator */
tT0( park, hall, 80 ).
tT0( hall, mo, 20 ).
tT0( hall, hall, 10 ).

tT0( mo, of(ray), 110 ). /* 51,72,56,55 on simulator*/
tT0( mo, of(cr), 110 ). /* 51,72,56,55 on simulator*/
tT0( mo, of(itrc), 30 ). /* 24 on simulator */
tT0( mo, of(vi), 45 ). /* 29 on simulator */
tT0( mo, of(fa), 45 ). /* 29 on simulator */
tT0( mo, of(lg), 75 ). /* 58, 63 on simulator */



APPENDIX C. AN OFFLINE DECISION-THEORETIC GOLOG 320

tT0( mo, lp271, 70 ).
tT0( mo, lp276, 45 ).
tT0( mo, of(st), 70 ).
tT0( mo, of(yv), 70 ).
tT0( mo, of(ma), 70 ).

tT0( hall, of(ray), 40 ).
tT0( hall, of(cr), 60 ). /* 51,72,56,55 on simulator*/
tT0( hall, of(itrc), 20 ). /* 24 on simulator */
tT0( hall, of(vi), 20 ). /* 29 on simulator */
tT0( hall, of(fa), 20 ). /* 45 on simulator */
tT0( hall, of(lg), 35 ). /* 58, 63 on simulator */
tT0( hall, of(st), 30 ).
tT0( hall, of(yv), 30 ).
tT0( hall, of(ma), 30 ).
tT0( hall, lp271, 30 ).
tT0( hall, lp276, 20 ).

/* Other travel times (measured on simulator): */

tT0( of(cr), of(itrc), 70 ).
tT0( of(cr), of(vi), 120 ).
tT0( of(cr), of(fa), 120 ).
tT0( of(cr), of(lg), 130 ).
tT0( of(lg), of(itrc), 70 ).
tT0( of(lg), of(vi), 60 ).
tT0( of(lg), of(fa), 60 ).
tT0( of(vi), of(itrc), 50 ).
tT0( of(fa), of(itrc), 120 ).
tT0( park, of(vi), 60 ).

/* Geometric coordinates on the real of map. */
/* New coordinates shifted by -800 in the first coordinate:
of(ray) = (3753.4, 1800) cm = (2675, 2555) park = (118, 2487)

OLD= (4530, 1750) OLD= (3465, 2600) OLD= (930, 2530)
*/

xCoord([X,Y],R) :- R=X.
yCoord([X,Y],R) :- R=Y.

xCoord(V,X) :- V=[X,Y,Angle].
yCoord(V,Y) :- V=[X,Y,Angle].

/* X Y X Y
left_bottom(mo) = (2400,2550) right_top(mo) = (2780,2900)
left_bottom(fa) = (1600,2300) right_top(fa) = (1800,2520).
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left_bottom(cr) = (3700,1600) right_top(cr) = (3850,1800)
left_bottom(lg) = (550,2600) right_top(lg) = (800,2800)
left_bottom(itrc) = (3100,2300) right_top(itrc) = (3250,2500)
left_bottom(lp271) = (900,2550) right_top(lp271)= (1200,2800)
left_bottom(elevator)=(3250,1600) right_top(elevator) = (3440,1650)

*/

bottomY(mo, 2520).
% bottomY(lp271, 2600). % bottomY(lp276, 2300).
bottomY(of(st), 2550).
bottomY(of(yv), 2550).
bottomY(of(ma), 2550).
bottomY(of(cr), 1600).
bottomY(of(fa), 2300).
bottomY(of(vi), 2300).
bottomY(of(lg), 2600).
bottomY(of(itrc), 2300).

topY(mo, 2900).
% topY(lp271, 2800). % topY(lp276, 2500).
topY(of(st), 2800).
topY(of(yv), 2800).
topY(of(ma), 2800).
topY(of(cr), 1800).
topY(of(fa), 2520).
topY(of(vi), 2520).
topY(of(lg), 2800).
topY(of(itrc), 2500).

leftX(mo, 2400).
% leftX(lp271, 900). % leftX(lp276, 1600).
leftX(of(st), 900).
leftX(of(yv), 900).
leftX(of(ma), 900).
leftX(of(cr), 3700).
leftX(of(fa), 1600).
leftX(of(vi), 1600).
leftX(of(lg), 550).
leftX(of(itrc), 3100).

rightX(mo, 2780).
% rightX(lp271, 1200). % rightX(lp276, 1800).
rightX(of(st), 1200).
rightX(of(yv), 1200).
rightX(of(ma), 1200).
rightX(of(cr), 3850).
rightX(of(fa), 1800).
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rightX(of(vi), 1800).
rightX(of(lg), 800).
rightX(of(itrc), 3250).

drivePath( _, of(lg), [ ( 840, 2560 ), ( 770, 2530 ) ] ).
drivePath( _, of(vi), [ ( 1670, 2450 ) ] ).
drivePath( _, of(fa), [ ( 1670, 2450 ) ] ).
drivePath( of(itrc), mo, [ ( 3120, 2450 ), ( 2700, 2550 ) ] ).
drivePath( mo, of(itrc), [ ( 2665, 2620 ), ( 3120, 2450 ) ] ).
drivePath( of(cr), mo,

[ ( 3760, 2420 ), (3560, 2480 ), ( 2820, 2560 ), ( 2690, 2550 ) ] ).
drivePath( _, of(st), [(1500,2500), (1030,2600), (1010,2625)] ).
drivePath( _, of(ma), [(1500,2500), (1030,2600), (1010,2625)] ).
drivePath( _, of(yv), [(1500,2500), (1030,2600), (1010,2625)] ).

drivePath( _, mo, [ (2685, 2500), (2700, 2630) ] ).
drivePath( _, of(itrc), [ ( 3120, 2450 ) ] ).
drivePath( _, of(cr), [ (3535, 2490 ), (3760, 2480), ( 3760, 1720 ) ] ).
drivePath(_, park, [(200, 2500)] ).

driveSim( StartPos, EndPos ) :- nl, write("drive, drive, drive from "),
write(StartPos), write(" to "), write(EndPos), nl.

/* Drive in the corridor and turn to the goal location */

driveReal( StartPos, EndPos ) :-
drivePath( StartPos, EndPos, Path ), % get path

hli_go_path( Path ), % drive, drive...
look( EndPos, X, Y ), % get aim point for turning
hli_turn_to_point( X, Y ). % and turn the robot

look( of(lg), 640, 2670 ).
look( of(vi), 1600, 2180 ).
look( of(fa), 1600, 2180 ).
look( mo, 2700, 2800 ).
look( of(itrc), 2872, 2200 ).
look( of(cr), 3728, 1650 ).
look( of(st), 1030, 2750 ).
look( of(ma), 1030, 2750 ).
look( of(yv), 1030, 2750 ).



Appendix D

An Online Decision-Theoretic Golog

An interpreter enclosed in this section works with actions that have temporal arguments. Be-

cause it includes off-line interpreter, this off-line interpreter can be used to run all examples

that include actions with time.

D.1 An On-Line Interpreter

/********************************************************************
An On-line Decision Theoretic Golog Interpreter based on
An Incremental Decision Theoretic Golog Interpreter

May, 2000.

Do not distribute without permission.
Include this notice in any copy made.

Permission to use, copy, and modify this software and its documentation
for non-commercial research purpose is hereby granted without fee,
provided that this permission notice appears in all copies. This
software cannot be used for commercial purposes without written permission.
This software is provided "as is" without express or implied warranty
(including all implied warranties of merchantability and fitness).
No liability is implied for any damages resulting from
or in connection with the use or performance of this software.

E-mail questions/comments about the interpreter to Mikhail Soutchanski:
mes [at] cs [dot] toronto [dot] edu

NOTICE: this software works only with Eclipse Prolog 3.5.2 available from
IC-PARK (Imperial College, London, UK) because this interpreter
relies on a linear programming solver built in Eclipse Prolog 3.5.2.
The solver finds solutions for a system of linear inequalities
and for linear programming problems only if all coefficents
are *rational* numbers. Contact http://www.icparc.ic.ac.uk/eclipse/

323
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for a licence (free to academic and research institutions).
More recent versions of Eclipse Prolog use different set of predicates.

**********************************************************************/

:- lib(r).
:- dynamic(proc/2). /* Compiler directives. Be sure */
:- set_flag(all_dynamic, on). /* that you load this file first! */
:- set_flag(print_depth,500).
/* a toolbox of debugging tricks: put stophere(yes) where necessary. */
:- pragma(debug).
:- dynamic(stophere/1).
:- set_flag(stophere/1, spy, on). % type debug and hit "l" to leap
:- set_flag(stophere/1, leash, stop). % from one break-point to another

:- op(800, xfy, [&]). /* Conjunction */
:- op(850, xfy, [v]). /* Disjunction */
:- op(870, xfy, [=>]). /* Implication */
:- op(880,xfy, [<=>]). /* Equivalence */
:- op(950, xfy, [:]). /* Action sequence */
:- op(970, xfy, [#]). /* Nondeterministic action choice */

/* The predicate best() is the top level call.
Add an end-of-program marker "nil" to the tail of program expression E ,
compute the best policy starting from s0. Call this predicate to start

online execution of a Golog program.
*/

best(E,H,Pol,V,File) :- get_flag(unix_time, StartT),
online(E : nil,s0,H,Pol,V),
Val is float(V),
open( File, append, Stream),
date(Date),
printf(Stream, "\n\n This report is started at time %w\n", [Date]),
( proc(E,Body) ->
printf(Stream, "The Golog program is\n proc(%w,\n %w)\n",[E,Body]) ;
printf(Stream, "The Golog program is\n %w\n",[E])

),
get_flag(unix_time, EndT), Elapsed is EndT - StartT,
printf("\nThe computation took %w seconds of unix time",[Elapsed]),
printf(Stream, "\nTime elapsed is %w seconds\n", [Elapsed]),

% printf(Stream, "The optimal policy is \n %w \n", [Pol]),
printf(Stream, "The value of the optimal policy is %w\n",[Val]),
close(Stream).
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/*
This predicate is useful only for testing the offline incrBestDo interpreter.
*/
bp(E,H,Pol,Val,Prob,File) :-

cputime(StartT), %%%get_flag(unix_time, StartT),
incrBestDo(E : nil,s0,H,ER,Pol,V,Prob),
Val is float(V),
open( File, append, Stream),
date(Date),
printf(Stream, "\n\n This report is started at time %w\n", [Date]),
( proc(E,Body) ->
printf(Stream, "The Golog program is\n proc(%w,\n %w)\n",[E,Body]) ;
printf(Stream, "The Golog program is\n %w\n",[E])

),
cputime(EndT), %%%get_flag(unix_time, EndT),
Elapsed is 1.0*(EndT - StartT),

printf("\nThe computation took %w seconds of unix time",[Elapsed]),
printf(Stream, "\nTime elapsed is %8.4g seconds\n", [Elapsed]),
printf(Stream, "The optimal policy is \n %w \n", [Pol]),
printf(Stream, "The value of the optimal policy is %w\n",[Val]),

printf(Stream,"The probability of successful termination of this policy is %w\n",
close(Stream).

/* online(Expr,S,H,Pol,V) means the following.
Given a Golog program Expr, a situation S and horizon H find an
optimal sequence of actions Pol with an accumulated expected value V.
In logical terms, the problem is

DomainAxioms \=?= (\exists p,v) online(Expr : Nil, S0,H,p,v)

and any binding for existentially quantified variables "p","v"
obtained as a side-effect of solving this entailment task constitues
a solution of a decision theoretical problem.

incrBestDo(E,S,H,ER,Pol,V,Prob) means the following.
Given a Golog program expression E, situation S and horizon H find
a policy Pol of the highest expected value V and find the sub-program ER
of E that remains after executing the first action from the optimal
policy Pol. The probability Prob is the total probability of all those
alternative branches in Pol which have leaves different from Stop, where
Stop is a zero-cost action marking a prematurely terminated program E.
The program ER is the result of a one-step transition from E along the
optimal policy Pol. The horizon H must be a non-negative integer number.

*/
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online(E,S,H,Pol,U) :- incrBestDo(E,S,H,ER,Pol1,U1,Prob1),
% stophere(yes),
( final(ER,S,H,Pol1,U1), Pol=Pol1, U=U1 ;
reward(V,S),
( ER \== nil, Pol1 = (A : Rest) ; ER == nil, Pol1 = A ),
(
(agentAction(A), deterministic(A,S),

doReally(A), /* do A in reality or doSimul(A) - ask user*/
senseExo(do(A,S),Sg),
decrement(H , Hor),
!,
online(ER,Sg,Hor,PolRem,URem),
Pol=(A : PolRem), U $= V + URem

) ;
(
(senseAction(A),

doReally(A), /* do sensing in reality or in simulation */
senseExo(do(A,S),Sg),
decrement(H , Hor),
!,
online(ER,Sg,Hor,PolRem,URem),
Pol=(A : PolRem), U $= V + URem

) ;
(agentAction(A), nondetActions(A,S,NatOutcomes),

doReally(A), /* do A in reality or doSimul(A) - ask user*/
senseEffect(A,S,NatOutcomes,SEff),

/* SEff results from real sensing */
senseExo(SEff,Sg),
decrement(H , Hor),
!,
online(ER,Sg,Hor,PolRem,URem),
Pol=(A : PolRem), U $= V + URem

)
)

)
).

doReally(A) :- doSimul(A).

/* Later : connect to the robot */

doSimul(A) :- agentAction(A), not senseAction(A), deterministic(A,S),
printf("I’m doing the deterministic action %w\n",[A]).

doSimul(A) :- agentAction(A), nondetActions(A,S,NatOutcomesList),
printf("I’m doing the stochastic action %w\n",[A]).
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doSimul(A) :- senseAction(A), printf("Im doing the sensing action %w\n",[A]),
printf("Type the value returned by the sensor\n",[]),

% stophere(yes),
A =.. [ActionName,SensorName,Value,Time],
read(Value).

/* Alternative implementation: introduce the predicate
value(SenseAction,Value) and for each sense action senseAct
include in the domain axiomatization an axiom similar to

value( senseAct(X,Val,Time), Val ).
Then we can simply call this predicate "value" in the clause above.
*/

/* In the simplest case, there are no exogenous actions. */

senseExo(S1,S2) :- S2=S1.

/* Domain model includes a pre-determined sequence Seq of sensing actions
that have to be executed after stochastic action A. The syntax is
the following (in the case when 3 sensing actions must be executed):

differentiatingSeq(A, SenseAction1 : (SenseAction2 : SenseAction3)).
Each sensing action has 3 arguments: the 1st argument is the constant
representing what has to be sensed, the 2nd argument represents
a term (variable) that gets bounded to a certain value returned
from a sensor at the run-time, the 3rd argument represents the moment
of time when the sensing action is performed.

*/

senseEffect(A,S,NatOutcomes,SE) :-
differentiatingSeq(A,Seq),
getSensorInput(do(X,S),Seq, SE),

/* find X: an unknown outcome of the stochastic action A */
diagnose(S,SE,NatOutcomes,X).

getSensorInput(S,A, SE) :- senseAction(A),
doReally(A), /* connect to sensors and get data */
% doSimul(A) /* ask user for a sensor value when A is simulated*/
SE=do(A,S).

getSensorInput(S,Seq, SE) :- Seq = (A : Tail), senseAction(A),
doReally(A), /* connect to sensors and get data */
% doSimul(A) /* ask user */
getSensorInput(do(A,S),Tail, SE).
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/*
diagnose(S,SE,OutcomesList,N) is true iff N is Natura’s action that
actually happened in S and this action belongs to the list of outcomes
which might occur in S. It is assumed that the situation SE contains
all sensing information required to disambiguate between different
possible outcomes.
Domain model includes a set of statements that characterize mutually
exclusive conditions that need to be evaluated to determine which
outcome occurred in reality. These statements have the following syntax:

senseCondition(N, phi).
where phi is an arbitrary pseudo-fluent expression.

*/

diagnose(S,SEff,[N],X) :- senseCondition(N,C),
( X=N, holds(C,SEff) /* nature did the action N */;
write("Failed to identify an outcome")
).

diagnose(S,SEff,[N, NN | Outcomes],X) :-
senseCondition(N,C), /* assume that N happened */
( X=N, holds(C,SEff) /* verified that nature did action N */ ;
diagnose(S,SEff,[NN | Outcomes],X) /*if not, consider other outcomes*/
).

incrBestDo((E1 : E2) : E,S,H,ER,Pol,V,Prob) :- positive(H),
incrBestDo(E1 : (E2 : E),S,H,ER,Pol,V,Prob).

incrBestDo(?(C) : E,S,H,ER,Pol,V,Prob) :- positive(H),
holds(C,S) -> incrBestDo(E,S,H,ER,Pol,V,Prob) ;
(ER=nil, (Prob is 0.0) , Pol = stop, reward(V,S)).

incrBestDo(pi(X,E1) : E,S,H,ER,Pol,V,Prob) :- positive(H),
sub(X,_,E1,E1_X),
incrBestDo(E1_X : E,S,H,ER,Pol,V,Prob).

incrBestDo((E1 # E2) : E,S,H,ER,Pol,V,Prob) :- positive(H),
incrBestDo(E1 : E,S,H,ER1,Pol1,V1,Prob1),
incrBestDo(E2 : E,S,H,ER2,Pol2,V2,Prob2),
( lesseq(V1,Prob1,V2,Prob2) ->

(ER=ER2, Pol=Pol2, Prob=Prob2, V $= V2) ;
(ER=ER1, Pol=Pol1, Prob=Prob1, V $= V1)

).
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incrBestDo(if(C,E1,E2) : E,S,H,ER,Pol,V,Prob) :- positive(H),
holds(C,S) -> incrBestDo(E1 : E,S,H,ER,Pol,V,Prob) ;

incrBestDo(E2 : E,S,H,ER,Pol,V,Prob).

incrBestDo(while(C,E1) : E,S,H,ER,Pol,V,Prob) :- positive(H),
holds(-C,S) -> incrBestDo(E,S,H,ER,Pol,V,Prob) ;

incrBestDo(E1 : while(C,E1) : E,S,H,ER,Pol,V,Prob).

incrBestDo(ProcName : E,S,H,ER,Pol,V,Prob) :- positive(H),
proc(ProcName,Body),
incrBestDo(Body : E,S,H,ER,Pol,V,Prob).

/*
Discrete version of pi. pickBest(x,f,e) means: choose the best value
of x from the finite range of values f, and for this x,
do the complex action e.

*/
incrBestDo(pickBest(X,F,E) : Tail,S,H,ER,Pol,V,Prob) :- positive(H),

range(F,R),
( R=[D], sub(X,D,E,E_D),

incrBestDo(E_D : Tail,S,H,ER,Pol,V,Prob) ;
R=[D1,D2], sub(X,D1,E,E_D1), sub(X,D2,E,E_D2),

incrBestDo((E_D1 # E_D2) : Tail,S,H,ER,Pol,V,Prob) ;
R=[D1,D2 | List], List=[D3 | Rest],

sub(X,D1,E,E_D1), sub(X,D2,E,E_D2),
incrBestDo((E_D1 # E_D2 # pickBest(X,List,E)) : Tail,S,H,ER,Pol,V,Prob)
).

incrBestDo(A : E,S,H,ER,Pol,V,Prob) :- positive(H),
agentAction(A), deterministic(A,S),
( not poss(A,S), ER=nil, Pol=stop, (Prob is 0.0) ,

reward(V,S);
poss(A,S),
decrement(H , Hor),
start(S,T1), time(A,T2), T1 $<= T2,
ER = E,
incrBestDo(E,do(A,S),Hor,_,RestPol,VF,Prob),
reward(R,S),
V $= R + VF, %%% if discount is 0.9: V $= R + (9/10)*VF
( RestPol == nil, Pol = A ;
RestPol \== nil, Pol = (A : RestPol)
)

).

incrBestDo(A : E,S,H,ER,Pol,V,Prob) :- positive(H),
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agentAction(A), nondetActions(A,S,NatOutcomesList),
decrement(H , Hor),
bestDoAux(NatOutcomesList,E,S,Hor,RestPol,VF,Prob),
/* RestPol can be stop or a conditional policy */
reward(R,S),

( RestPol = ( ?(_) : stop ), ER=nil, Pol=(A : stop), V $= R ;
RestPol \= ( ?(_) : stop ), ER=E, Pol=(A : RestPol),

V $= R + VF %%% if discount is 0.9: V $= R + (9/10)*VF
).

/* Because the decision tree built by this interpreter grows quickly
with increase in horizon, it is computationally advantageous
to compute optimal policies from sub-parts of a large Golog program
and then piece computed sub-policies together into a policy
for a whole program. To accomplish this, the programmer can
use constructs which allow to indicate which sub-parts of
the program can be used individually for computing sub-policies.
The following construct loc(Prog1) : Prog2 means that a policy Pol1
can be computed offline given Prog1 and used later to compute offline
an optimal policy Pol from the program (Pol1 : Prog2). Note that
Pol1 is a conditional Golog program without nondeterministic choices.
Once the policy Pol1 is computed, the construct loc() will not be
applied later to compute policies from the program that remains
after executing on-line the first action in the policy Pol.
Note that Pol1 may have several occurrences of "nil" and "stop".

*/
incrBestDo(loc(E1) : E,S,H,ER,Pol,V,Prob) :- positive(H),

incrBestDo(E1 : nil,S,H,_,Pol1,V1,Prob1),
incrBestDo(Pol1 : E,S,H,ER,Pol,V,Prob).

/* In the next version the locality operation persists
until the locally optimized program does not finish on-line.
The second difference from the previous operator is that
a policy for on-line execution is computed without taking
into account the program expression E that follows after
a locally optimized expression E1.

*/

/* Insert once the end-of-program marker "nil" after
the program expression E1 and use "optimize" instead of "limit"
to indicate that "nil" has beed already added after E1.

*/

incrBestDo(limit(E1) : E,S,H,ER,Pol,V,Prob) :- positive(H),
incrBestDo(optimize(E1 : nil) : E,S,H,ER,Pol,V,Prob).
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incrBestDo(optimize(Expr1) : E,S,H,ER,Pol,V,Prob) :- positive(H),
incrBestDo(Expr1,S,H,ERem1,Pol1,V1,Prob1),
( ERem1 \== nil,
ER = (optimize(ERem1) : E),
Pol = Pol1, % a policy for on-line execution
V $= V1, Prob=Prob1 ;
ERem1 == nil,
( Pol1 \== stop -> incrBestDo(Pol1 : E,S,H,ER,Pol,V,Prob) ;

( ER = nil, (Prob is 0.0) , Pol = stop, reward(V,S) )
)

).

incrBestDo(nil : E,S,H,ER,Pol,V,Prob) :- positive(H),
incrBestDo(E,S,H,ER,Pol,V,Prob).

/* If the program starts with the "stop" action that is not
possible to execute, then given the reward V in the current
situation S we solve a linear programming problem VL-> max
with respect to a system of linear inequalities between temporal
variables that occur in V. Solving this linear programming problem
grounds some temporal variables to values of time that provide
the highest reward with respect to the temporal constraints.
We seek solutions of similar linear programming problems
in other branches of the situation tree whenever the directed
forward search performed by this interpreter gets to a leaf node
(a final situation).

*/
incrBestDo(stop : E,S,H,ER,Pol,V,Prob) :- positive(H),

ER=nil, Pol=stop,
reward(V,S), VL $<= V, rmax(VL),
(Prob is 0.0) .

/* The program is done, but the horizon is still greater than 0. */
incrBestDo(nil,S,H,ER,Pol,V,Prob) :- positive(H),

ER=nil, Pol=nil,
reward(V,S), VL $<= V, rmax(VL),
(Prob is 1.0 ) .

/* There is still something to do, but horizon is already 0. */
incrBestDo(E,S,H,ER,Pol,V,Prob) :- H = 0,

ER=nil, Pol=nil,
reward(V,S), VL $<= V, rmax(VL),
(Prob is 1.0 ) .
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bestDoAux([N1],E,S,H,Pol,V,Prob) :- poss(N1,S),
start(S,T1), time(N1,T2), T1 $<= T2,
prob(N1,Pr1,S),
incrBestDo(E,do(N1,S),H,_,Pol1,V1,Prob1),
senseCondition(N1,Phi1),
Pol = ( ?(Phi1) : Pol1 ),
rational(Pr1, P_rat), /* converts Pr1 into the rational number */
V $= P_rat * V1, /*V1 is linear function with rational coefficients*/
Prob is Pr1*Prob1.

bestDoAux([N1],E,S,H,Pol,V,Prob) :- not poss(N1,S),
senseCondition(N1,Phi1),
Pol = ( ?(Phi1) : stop ), (Prob is 0.0) , V $= 0 .

bestDoAux([N1 | OtherOutcomes],E,S,H,Pol,V,Prob) :- not OtherOutcomes= [],
poss(N1,S),
start(S,T1), time(N1,T2), T1 $<= T2,
bestDoAux(OtherOutcomes,E,S,H,PolTree,VTree,ProbTree),
incrBestDo(E,do(N1,S),H,_,Pol1,V1,Prob1),
senseCondition(N1,Phi1),
Pol = if(Phi1, % then

Pol1, % else
PolTree),

prob(N1,Pr1,S),
rational(Pr1, P_rat), /* converts Pr1 into the rational number */
V $= VTree + P_rat*V1,
Prob is ProbTree + Pr1*Prob1.

bestDoAux([N1 | OtherOutcomes],E,S,H,Pol,V,Prob) :- not OtherOutcomes= [],
not poss(N1,S), bestDoAux(OtherOutcomes,E,S,H,Pol,V,Prob).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% final(Program,Sit,Hor,Pol,Val) is true iff
% Program cannot be continued or if the computed policy Pol
% cannot be executed.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

final(E,S,H,Pol,V) :- H==0, Pol=nil,
reward(V,S), VL $<= V, rmax(VL) .

final(nil,S,H,Pol,V) :- Pol=nil,
reward(V,S), VL $<= V, rmax(VL) .

final(stop : E,H,S,Pol,V) :- Pol=stop,
reward(V,S), VL $<= V, rmax(VL).
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final(E,S,H,Pol,U) :- (Pol == stop ; Pol == nil),
reward(V,S), VL $<= U, rmax(VL).

/* ---- Some useful predicates mentioned in the interpreter ----- */

/* Note that evaluation of the predicates "lesseq" and "greatereq"
can require solving a system of linear inequalities about
temporal variables.

*/

lesseq(V1,Prob1,V2,Prob2) :- Pr1 is float(Prob1), Pr2 is float(Prob2),
(Pr1 \= 0.0 ) , (Pr2 \= 0.0 ) , V1 $<= V2.

lesseq(V1,Prob1,V2,Prob2) :- Pr1 is float(Prob1), (Pr1 = 0.0 ) ,
Pr2 is float(Prob2), (Pr2 \= 0.0 ) .

lesseq(V1,Prob1,V2,Prob2) :- Pr1 is float(Prob1), (Pr1 = 0.0 ) ,
Pr2 is float(Prob2), (Pr2 = 0.0 ) , V1 $<= V2 .

greatereq(V1,Prob1,V2,Prob2) :- Pr1 is float(Prob1), Pr2 is float(Prob2),
(Pr1 \= 0.0 ) , (Pr2 \= 0.0 ) , V2 $<= V1.

greatereq(V1,Prob1,V2,Prob2) :- Pr1 is float(Prob1), Pr2 is float(Prob2),
(Pr1 \= 0.0 ) , (Pr2 = 0.0 ) .

greatereq(V1,Prob1,V2,Prob2) :- Pr1 is float(Prob1), Pr2 is float(Prob2),
(Pr1 = 0.0 ) , (Pr2 = 0.0 ) , V2 $<= V1.

/* In the case of episodic decision task, whenever horizon
is not known in advance and is determined by transition into a
terminal (absorbing) state, the value of horizon can be defined by
the constant "episodic". Note that in this case the predicate
positive(Horizon) is true.

*/
decrement(Input,Output) :-

integer(Input), Input > 0, Output is Input - 1.

decrement(Input,Output) :-
not integer(Arg), Output = Input.

positive(Arg) :- integer(Arg), Arg > 0.
positive(Arg) :- not integer(Arg).
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/* A handy primitive action noOp(T) does not change anything. */
agentAction(noOp(T)).
time(noOp(T), T).
poss(noOp(T), S).
deterministic(noOp(T),S).
deterministic(A,S) :- not nondetActions(A,S,OutcomesList).

range([],[]).
range([H | T], [H | T]).

/* Time specific clauses. */

start(do(A,S),T) :- time(A,T).
start( s0, 0 ).

/* Fix on an earliest solution to the temporal constraints.
This predicate is not used in the current implementation.

*/
chooseTimes(s0).
chooseTimes(do(A,S)) :- chooseTimes(S), time(A,T), T $<= Time, rmin(Time).

/* "now" is a synonym for "start". */
now(T,S) :- start(S,T).

/* The time of an instantenous action is its last argument.
time(X,T) :- X =.. [ActName|Args],

reverse(Args,[Last | OtherArgs]), Last=T.
*/

/* sub(Name,New,Term1,Term2): Term2 is Term1 with Name
replaced by New. */

sub(X1,X2,T1,T2) :- var(T1), T2 = T1.
sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.
sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),

T2 =..[F|L2].
sub_list(X1,X2,[],[]).
sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2),

sub_list(X1,X2,L1,L2).

/* The holds predicate implements the revised Lloyd-Topor
transformations on test conditions. */
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holds(P & Q,S) :- !, holds(P,S), holds(Q,S).
holds(P v Q,S) :- !, ( holds(P,S) ; holds(Q,S) ).
holds(P => Q,S) :- holds(-P v Q,S).
holds(P <=> Q,S) :- holds((P => Q) & (Q => P),S).
holds(-(-P),S) :- holds(P,S).
holds(-(P & Q),S) :- holds(-P v -Q,S).
holds(-(P v Q),S) :- holds(-P & -Q,S).
holds(-(P => Q),S) :- holds(-(-P v Q),S).
holds(-(P <=> Q),S) :- holds(-((P => Q) & (Q => P)),S).
holds(-all(V,P),S) :- holds(some(V,-P),S).
holds(-some(V,P),S) :- not holds(some(V,P),S). /* Negation */
holds(-P,S) :- isAtom(P), not holds(P,S). /* by failure */
holds(all(V,P),S) :- holds(-some(V,-P),S).
holds(some(V,P),S) :- sub(V,_,P,P1), holds(P1,S).

/* The following clause treats the holds predicate for some
domain independent atoms, including Prolog system predicates.
For this to work properly, the GOLOG programmer must provide,
for those generic atoms taking a situation argument,
a clause giving the result of restoring its suppressed situation
argument, for example:

restoreSitArg(now(Time),S,now(Time,S)).
*/

holds(A,S) :- restoreSitArg(A,S,F), F ;
isAtom(A), not restoreSitArg(A,S,F), % calls standard
A. % Prolog predicates

isAtom(A) :- not (A = tt ;A = -W ; A = (W1 & W2) ; A = (W1 => W2) ;
A = (W1 <=> W2) ; A = (W1 v W2) ; A = some(X,W) ; A = all(X,W)).

/* It might be convenient to keep the following domain-independent
clauses in this file.

*/

restoreSitArg(poss(A),S,poss(A,S)).
restoreSitArg(now(T),S,now(T,S)).

/* The representation considered here can be elaborated as follows.
Modified successor state axioms can be formulated using the
predicate "ssa". Specifically, ssa-predicates must have 4 arguments:
- guard condition Alpha ; % if it is true, then the axiom applies
- action term A ;
- fluent name F ;
- the right hand side Gamma of the successor state axiom.
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The domain axiomatization must include the set of unary axioms
fluent(X) specifying fluents.
The domain axiomatization may include several different ssa
for the same fluent, but their guards must be mutually incompatible.
If A is a sensing action, then its second before the last argument
contains data returned from doing sensing in reality.

holds(F,do(A,S)) :- fluent(F),
ssa(Alpha,A,F,Gamma), holds(Alpha,S), holds(Gamma,S).

holds(tt,S). % the truth value tt holds in any situation
holds(F,s0) :- ini(F). % initially, fluent F is true
holds(-F,s0) :- ini(-F). % initially, fluent F is false

Note that in such implementation there would be no need to provide
restoreSitArg axioms for fluents:

holds(A,S) :- restoreSitArg(A,S,F), F ;
isAtom(A), not restoreSitArg(A,S,F), % calls standard
not fluent(A), A. % Prolog predicates

*/

/* ----------- cut here ------------------------ */

stophere(yes).
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