
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

High‑level synthesis algorithm for the design of
reconfigurable constant multiplier

Chen, Jiajia; Chang, Chip Hong

2009

Chen, J., & Chang, C. H. (2009). High‑level synthesis algorithm for the design of
reconfigurable constant multiplier. IEEE Transactions On Computer‑Aided Design Of
Integrated Circuits And Systems, 28(12), 1844‑1856.

https://hdl.handle.net/10356/80022

https://doi.org/10.1109/TCAD.2009.2030446

© 2009 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. This material is
presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying
this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.

Downloaded on 23 Aug 2022 13:13:33 SGT



1844 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 12, DECEMBER 2009

High-Level Synthesis Algorithm for the Design
of Reconfigurable Constant Multiplier

Jiajia Chen and Chip-Hong Chang, Senior Member, IEEE

Abstract—Multiplying a signal by a known constant is an es-
sential operation in digital signal processing algorithms. In many
application scenarios, an input or output signal is repeatedly
multiplied by several predefined constants at different instances.
These temporal redundancies can be exploited for the design of
an efficient reconfigurable constant multiplier (RCM). An RCM
achieves greater hardware savings than the conventional multiple
constant multiplication architecture, limited only by the available
latency of the subsystem. Motivated by a number of lucrative
examples, this paper presents a new high-level design methodology
for RCM. Common subexpressions in the preset constants rep-
resented in minimum signed-digit system are first eliminated to
obtain a minimum depth multiroot directed acyclic graph (DAG).
The DAG is converted into a primitive data flow graph (DFG)
where mobile adders are identified. By scheduling each mobile
adder into a control step within its legitimate time window with
the minimum opportunity cost, mutually exclusive adders can be
merged with significantly reduced adder and multiplexing cost.
The opportunity cost for each scheduling decision is assessed
by the probability displacement and disparity measures of the
scheduled node as well as its predecessors and successors in the
DFG. The algorithm is runtime efficient as exhaustive search for
the best fusion of independently optimized constant multipliers
has been avoided. Simulation results on randomly generated 12-b
constant sets show that the solutions generated by the proposed
algorithm are on average 19% to 25% more area–time efficient
than the best reported solutions.

Index Terms—High-level synthesis, multirate digital signal
processing (DSP), reconfigurable constant multiplier (RCM),
scheduling.

I. INTRODUCTION

MULTIPLICATION of a variable with constant is es-
sential in many digital signal processing (DSP) appli-

cations. It can become a throughput bottleneck when many
different constant multiplications are iteratively executed in the
data path. Such computationally intensive kernels are com-
monly found in convolutions, correlations, inner products, fast
Fourier transform, recursive discrete cosine transform (DCT),
finite impulse response (FIR), and infinite impulse response
filters. An analysis from over two hundred industry examples

Manuscript received January 7, 2009; revised May 4, 2009. Current version
published November 18, 2009. This work was supported by the Singapore Min-
istry of Education’s Academic Research Fund Tier 2 under Grant T208B1216.
This paper was recommended by Associate Editor R. Camposano.

J. Chen is with 3M Singapore Pte. Ltd., Singapore 738205 (e-mail: herbert.
chen@mmm.com).

C. H. Chang is with the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore 639798 (e-mail: echchang@
ntu.edu.sg).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2030446

mainly on DSP, communication, graphics, and control appli-
cations showed that more than 60% of them have more than
20% of operations that are multiplications with constants [1].
As constant multiplication operations can be reused in many
application domains, dedicated hardware resources and pro-
grammatic architecture generator capable of delivering a high-
peak computational density (in bit operations per unit of silicon
area per second) are desired to accelerate a well-defined set of
repetitive operations. To maximize the computational density
provided by a specialized resource, its use should be gener-
alized, but the more it is generalized, the less suited it is for
solving a particular problem [2], [3].

Reconfiguration provides advantages in irregular architec-
tures, and previous work has shown that converting multifunc-
tion cores to several reconfigurable field-programmable gate
array (FPGA) cores resulted in core area reduction of around
21% and a performance increase of 14% [4]. A FIR filter
implementation using a single multiply accumulate (MAC)
stage and employing real time reconfiguration to change tap
values showed a 37% improvement in clock speed as compared
to a static design [5]. However, each time an FPGA fabric
is configured, there is a time penalty. Moreover, the time it
takes to convert a system description to an FPGA configuration
is significant. As the proportion of silicon area devoted to
reconfigurable space scales up, the amount of configuration
data that is required to set up large parallel structures and the
interconnect congestion become a limiting factor.

An alternative approach to optimize computational density
and reconfiguration time overhead is to focus on the design
methodologies of parametric and lightweight problem-oriented
special purpose architecture. Reconfigurable Multiplier Block
(ReMB) mappings to FPGA have been proposed in [6]–[11]
to specially reduce the complexity of the multiplier block of
digital filter. These algorithms are developed to optimize the
designs on FPGAs by efficiently utilizing the four-input lookup
tables (LUTs). It is based on fixed graph topologies and relies
on high-complexity exhaustive search to obtain the minimal
solution. The latest known algorithms with similar objective are
proposed in [12], [13], and the solution is technology mapped
to the standard cell library in an application-specified integrated
circuit (ASIC) design flow. Reference [12] reduces the number
of partial products of the coefficient multiplier by modified
Booth encoding but the sharing of common subexpressions
is also limited by the encoding method. In [13], the method
uses an existing algorithm [14], [15] to create the directed
acyclic graph (DAG) representation for the constant coeffi-
cients and performs DAG fusion [13]. The best solution is
returned after all admissible assignments have been attempted

0278-0070/$26.00 © 2009 IEEE

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



CHEN AND CHANG: HIGH-LEVEL SYNTHESIS ALGORITHM FOR THE DESIGN OF RCM 1845

Fig. 1. RCM.

for DAG fusion. However, the use of decimal numbers in
DAG fusion assumes no specific binary format. Due to the
enormous number of alternatives, it is difficult to explore the
totality of adder redundancies over all constant multiplica-
tions. Common subexpression sharing may be undermined as
the DAG and partial sums of each coefficient multiplier are
independently optimized before they are fused. In addition,
the algorithm requires exhaustive or quasi-exhaustive searches
among existing DAG pairs, which results in high computational
complexity.

Fusing independently optimized single constant multipli-
ers is not always expedient for the general parallel multiple
constant multiplication problems. Section II of this paper
exemplifies several classes of system architectures whereby a
reconfigurable constant multiplier (RCM) can be most cost
effectively integrated without impediment to the system’s
throughput. Fig. 1 shows the general structure of an RCM
where a serial constant multiplier is shared in several multi-
plications involving N scalars specified a priori. The delay
of the RCM is limited by the system’s throughput T1. The
control logic operates at an internal rate T2 which is d time
faster than T1. The constant multiplier can be implemented
multiplication free by an adder and shifter network. To amor-
tize the processing bandwidth and resource utilization over
all multiplications, the logic depth and adder width of the
combinatorial adders are to be minimized while eliminating
the redundancy among different scalar multiplications. The
logic depth is constrained by d and T2, which, in turn, are
dependent on the cost of realizing the adders (for the same
operand length, faster adder is more costly) in the critical
path. This relation has led us to the new formulation of RCM
design as a programmatic resource scheduling and allocation
problem. A rudimentary method adopting an as soon as possible
(ASAP) scheduling strategy to solve this problem was proposed
in [16]. In this paper, the adder resources are prepensely gen-
erated and minimized by common subexpression elimination
(CSE). The data dependences of these adder resources are mod-
eled by a data flow graph (DFG) in Section III. A new heuristic
algorithm is proposed to schedule the adders in the DFG to
maximize the resource utilization over several control steps
to generate a more area × time (AT) product efficient RCM
architecture than previously reported designs. The experimental
results are compared with existing methods and discussed in
Section IV.

Fig. 2. RCM blocks in matrix multiplication.

II. HARDWARE REDUCTION BY RECONFIGURABLE

CONSTANT MULTIPLICATIONS

Making a multiplier reconfigurable for different predefined
scalars can provide a significant overall cost savings in many
DSP applications. This section suggests several interesting
application scenarios that motivate the design of efficient RCM.
These scenarios show that ingenious deployment of RCMs can
lower the hardware cost significantly at little or no penalty to
the overall system performance.

A linear time invariant system without feedback can be
described by a linear transform

⎡
⎢⎢⎣

y1

y2
...

yN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c11 c12 · · · c1N

c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 · · · cNN

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎦ (1)

where N input data X = {xi} are mapped by an N × N
matrix C = {cij} to generate the outputs Y = {yi}. This
matrix-vector multiplication is an expensive operation, which
is also found in the state-space equations of systems involving
feedback. In many DSP applications such as digital filtering
[17]–[21], error detection and correction [22], fast Fourier
and Consine transforms [23], autoregressive model [24], the
matrix C consists of constants that are determined a priori
from the system specifications. The parallel processing of
Y = C × X requires the replication of N independent sum-
of-products (SOP) processing units. Each SOP performs N
discrete constant multiplications with different input variables
and N − 1 additions. In many situations, this quadratic increase
in hardware cost is prohibitive due to the limitation in design
areas. However, if the N outputs are decimated in time, the
N × N array of SOP units can be collapsed into N parallel
scalar multiplications such that each input data are multiplied
by only one out of N constant factors at any cycle, as shown
in Fig. 2. The scalar products in each cycle are summed by an
adder tree to produce an output element of Y . The adder tree
can be pipelined, if necessary, to improve the throughput. In
this example, each column of N processing units is reduced to
a single RCM.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



1846 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 12, DECEMBER 2009

Fig. 3. Recursive Goertzel filter.

Fig. 4. Polyphase decimation filters (M = 3).

Goertzel algorithm has been used to reduce the complex mul-
tiplications to real multiplications in the recursive computation
of discrete Fourier transform. Recently, it has been shown that
Goertzel kernels also offer significant improvement in quanti-
zation noise performance for the DCT used in many multimedia
and image compression applications [25]. The transfer function
of an N -point DCT is given by

H(z) =
Pk(1 − z−1)

1 − 2βkz−1 + z−2
(2)

where k ∈ [0,N) is the frequency bin index. βk = cos(kπ/N)
and Pk = 4βk/N for all k except k = 1. For k = 1, P1 =
(2
√

2/N)β1.
This transfer function can be realized with several resonator

configurations of recursive Goertzel filter [25]. All Goertzel
kernel structures involve a premultiplication of the difference
signal by 2βkin the feedback path and a postmultiplication
of the output signal by Pk. The two sets of scalars can be
predetermined by the discrete cosine function according to
the frequency bin index k and the transform length N . The
same recursive structure can be employed for all frequency
bins by multiplexing it in time. One such architecture using
two RCM units is shown in Fig. 3. Prestored LUTs have been
avoided as the RCM can be implemented multiplication free by
combinational adders. To cut down the circuit cost, the RCM
can be designed to share the adder resources for different scalar
multiplications of different frequency bins by exploiting the
time-multiplexed system.

Multirate DSP uses decimators and interpolators to change
the sampling rates of a system internally to maximize the per-
formance of DSP system while keeping the cost down. Using
the Noble relation [26], a complex DFG can be decomposed
into several simpler DSP blocks, which can be processed paral-
lelly at a faster rate. An example of a polyphase decomposition
is shown in Fig. 4. The input signal x is down sampled into
M subsequences by an M -fold decimator and each of the M
decimated input sequences is fed to a subfilter. Each subfilter
is reduced by a factor of M from the original filter length. The

decimator generates one output for every M input samples, and
each subfilter can thus be processed at M times slower rate
than that of the original input sequence x[n]. In each decimation
filter, each MAC implementation is realized by an ReMB. One
input sample will be multiplied with N constants generated
from the ReMB sequentially and the products are stored into
the partial sum store. As the input sample frequency has been
reduced by M times in each subfilter, the time interval between
two samples are much longer. Therefore, the multiplier block
in each subfilter can afford to be processed by a serial-parallel
architecture by merging L different coefficient multipliers into
an RCM. The adder resources of the L coefficient multipliers
can then be shared by processing them serially, provided that
the total time taken to produce the L scalar multiples is able
to meet the slower output rate of the subfilter. If the subfilter
sampling period is not sufficient for one RCM to generate all
distinct coefficient multiplier outputs, the filter coefficients can
be partitioned into several subsets of distinct constants for an
input sample to be concurrently multiplied by a few RCM units.

III. PROPOSED HIGH-LEVEL ALGORITHM

FOR RCM DESIGN

The scenarios depicted in the previous section show that
RCM units are amenable for integration into multirate digital
systems or other subsystems when not all constant multiplica-
tions are processed in parallel. A practical consequence of these
scenarios is the number of different multiplication operations
is bound by the ratio of the system’s sampling clock period
and the critical path delay of the RCM. Our proposed design
methodology allows the elementary operators in an RCM to
assume different input operands to fulfill a prespecified set
of scalar multiplications by suitably rearranging the input bits
through a multiplexer network. The latency of the RCM is thus
dependent on the control step granularity and the number of
control steps used to execute the most time critical operation
among a group of prespecified multiplications. The former is
defined by the delay of the most critical adder, and the latter
is constrained by the logic depth of the RCM. The resolution
of any control step can be minimized by reducing the length
of the adders in that control step and the worst case delay of
each adder can be independently optimized, if necessary, by
different parallel structures at the cost of hardware complexity.
To meet the latency constraint with the best utilization of
silicon resources, our design methodology emphasizes on a
global reduction of adder depth while optimizing the number
of adders, and the average sizes of adders and multiplexers.
If the latency constraint cannot be met by a single RCM, this
process itself also identifies underutilized hardware resources
and provides an insight into the partitioning of operations into
multiple RCM units in a partially parallel implementation.

A. Design Problem Formulation

To allow for programmability of different scalar product
generations, temporally independent adders are shared across
different constant multiplications. This is illustrated with an ex-
ample of four different constant multiplications using the values

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



CHEN AND CHANG: HIGH-LEVEL SYNTHESIS ALGORITHM FOR THE DESIGN OF RCM 1847

Fig. 5. Example of RCM design. (a) DAGs of constant multipliers.
(b) Reduced DFG. (c) Mapping to RCM.

from, [1, Table II]. Fig. 5(a) shows the DAG representation of
the four constants after eliminating the common subexpres-
sions. Since an RCM makes only one multiplication at a time,
the span of the input variable can be divided into as many num-
ber of control steps as, if not more than, the number of adders
in the critical path of the DAG. The adders are then scheduled
into the control steps without violating the precedence of any
connected pair of adders in the DAG. The gray color adders
in Fig. 5(a) are called the mobile adders. Mobile adders are
critical variants to reduce the implementation complexity as
they have some flexibility to be scheduled into more than one
control steps without increasing the logic depth of the RCM.

To schedule the adders, the data dependence of DAG is
compacted into a primitive DFG. A DFG G has a node set V
and an edge set E. Each node, v ∈ V represents an adder, and
each edge e ∈ E is an interconnection between two adders or
between an adder and a primary input or output. Each edge is
annotated with the output shift and a directed edge implies an
intraprecedence constraint of two adders. If the shift amount
is negative, it indicates that the node to which this edge is
connected is a subtractor. For convenience, adder and subtractor
are both called adder. The source and sink of the DFG are the
input and output of the RCM, respectively.

In a properly scheduled DFG, each node can only fire when
all its predecessor nodes have fired. Upon firing, a node com-
putes the required value and places it on all its output edges.
Fig. 5(b) shows a primitive DFG by merging some adders that
are not executed concurrently. The number of adders has been
reduced significantly from ten to four, but some adders have
more inputs than needed to fire. This happens because every

time an adder is eliminated, it is accompanied by an increase in
the fan-out of some other adder. These contentions are resolved
by introducing multiplexers as the point-to-point interconnect-
ing elements between two nodes so that every node v in a
properly scheduled DFG has exactly two predecessor nodes
firing at time t and satisfies the following dependence relation:

v(t) = 2el(v(t)) l (v(t)) + 2er(v(t))r (v(t)) (3)

where v(t) is the output of v at time t. l(v(t)) and r(v(t)) are
the left and right predecessor operators of v(t). eu denote the
amount of shifts applied to u ∈ {l(v(t), r(v(t)}.

To generate a scheduled DFG, cut lines are drawn through
the primitive DFG of Fig. 5(b) so that only one adder depth is
allowed between two cut lines. For every operator that has a
fan-in greater than two, multiplexers are placed at the cut edge.
Control steps t1, t2, and t3 define the boundaries between the
outputs of one adder or the source, and the inputs of another
adder or the sink, by hard wirings or through multiplexers.
The resolution of each control step needs not be equal. It
is determined by the maximum delay of the adders in the
critical paths that are allocated to the control step and their
maximum input connection delay through the multiplexer, if the
inputs are not directly wired to the adders. Fig. 5(c) shows the
architectural mapping of the RCM from the scheduled DFG.
Therefore, the design of an area–time efficient RCM can be
viewed as the transformation of a given set of constants into a
reduced DFG by scheduling and merging of the mobile adders
that are not used simultaneously in the same control step. The
quality of the solution is measured in terms of the adder and
interconnection cost. The adder cost is contributed by the total
number of nodes in the set V of the final DFG while the cost
of the interconnects is measured by the number and the size of
multiplexers used.

B. CSE

Without affecting the adder depth, the spatial redundancy
in the original DAG is converted into temporal redundancy in
the primitive DFG to increase the mobility of as many nodes
as possible. The nodes in our DFG are atomic in that they
encapsulate information about the elementary operations at bit
level granularity. To preserve the atomic information of the
nodes after removing the redundant adders, the detection and
elimination of common subexpressions are better carried out in
a positional representation.

Signed-digit (SD) representations are widely used for coef-
ficient quantization and online arithmetic due to its attractive
property for digit-serial and distributive operations. Minimum
SD (MSD) [27] and its canonical SD (CSD) subset are two
popular symmetric binary SD representations. They allow a
fixed point number to be represented by a minimal number
of SDs, such that its multiplication with a variable can be
realized with reduced depth adder tree. Although representation
with more SD terms can help to further reduce the adder
cost [28], the improvement is made at the expense of higher
logic depth and computational complexity. To reduce the search
space, the uniqueness of CSD has been exploited by many
CSE algorithms [29], [30] for common subexpressions but the

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



1848 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 12, DECEMBER 2009

canonicity also limits the number of common subexpressions.
For a given magnitude response specification, a signed powers-
of-two coefficient set with more sharable subexpressions of 101
and 10 1̄ can be synthesized from CSD or MSD by [31]. On
the other hand, the advantage of having more subexpression
sharing with binary representation [20], [18] is often offset by
the higher number of nonzero power-of-two terms over MSD
and CSD. Since solutions for MSD and CSD based on weight-
two common subexpressions have the same minimum logic
depth of �log2 n�, where n is the maximum number of nonzero
digits in a coefficient, the logic depths (LDs) of contention
resolution algorithm (CRA) [32] and non-recursive signed com-
mon subexpression elimination (NR-SCSE) [30] reported in
[20] are incorrect. Experiments run on random coefficient sets
for CSE using binary, CSD, and MSD representations [18]
concluded that MSD is preferred when seeking minimum delay
solution. As minimum delay solution is critical for the scenarios
discussed in Section II, MSD representation of integers will be
considered.

We minimize the latency of the RCM by minimizing the
adder depth. If the latency is relaxed, more control steps than
the adder depth can be allocated which makes every adder
mobile. Finding an optimal CSE solution for a set of integers in
the MSD space is an NP-complete problem. The search space is
reduced by detecting only common subexpressions of hamming
weight two instead of all possible common subexpressions
in the set of integers. These common subexpressions can be
categorized into two different types. An even parity subex-
pression takes the form, IOI, and an odd parity subexpression
takes the form IOĪ, where I ∈ {1, 1̄} and O is either void or
a string of zeros. The number of zeros in O is the distance of
the subexpression. This distinction allows the frequencies of
different weight-two subexpressions to be tracked by a simple
2-D PT array defined in [30].

Definition 1: A PT array of a set of MSD numbers C =
{ci} is a 2 × (B − 1) dimensional array. The entry in the upper
(lower) row and the jth column represents the frequency of
occurrences of even (odd) parity subexpressions of distance j,
where j = 0, 1, . . . , B − 1 and B is the maximum wordlength
of ci.

As an example, an MSD representation for the constants of
Fig. 5 and its corresponding PT array is given by

H =

⎧⎪⎨
⎪⎩

815
831
621
105

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

0 1 1 0 0 1 1 0 0 0 1
0 1 1 0 1 0 0 0 0 0 1
0 1 0 1 0 0 1 0 0 1 1
0 0 0 1 0 0 1 1 0 0 1

⎫⎪⎬
⎪⎭

PT (H)=
[

5 2 3 3 1 0 1 0 0 0
0 0 3 3 2 2 1 3 3 0

]
.

An entry in the PT (C) array with value greater than one
indicates the presence of a common subexpression in C. The
number of adders saved by every common subexpression is one
less than its frequency in the PT array. We adopt the MSD
generation method of [33] to generate all possible sets of MSD
numbers for a given set of constants. With the help of the PT
arrays, the MSD set with the highest total saving of adders is
selected. The common subexpression with the highest value in
the PT array is first identified, and an adder node v is created

in a DAG to add the two operands corresponding to the input
variable shifted by the positions of the two nonzero digits. If
there are more than one entry with the same highest value,
the one with the least distance d is selected to minimize the
wordlength of the adder. The distance d and coefficients from
which the common subexpression is detected are also recorded.
These information are used to determine the amount of shifts
applied to the left and right operands of v and the firing time
t of v. The two nonzero digits of the common subexpression
are replaced by zeros in all their occurrences in the set of MSD
coefficients. The PT array is updated to reflect the removal of
this subexpression. This process of searching for the highest
frequency subexpression and the creation of adder node in the
DAG to eliminate the common subexpression from the MSD
coefficient set is repeated until no entry in the PT array is
greater than one. Finally, new nodes are created to add the
operands corresponding to the remnant nonzero digits (which
are not parts of the common subexpressions) to the outputs of
the existing nodes in the DAG accordingly.

C. Proposed Mobile Operator Scheduling Scheme

After the aforementioned global CSE process, the total num-
ber of adders in the DAG G can be further reduced by merg-
ing the adders allocated for different constant multiplications.
There are many different ways of merging the adders without
violating the intraprecedence relationship of G by routing the
inputs to an adder from the output of another adder or the
primary inputs through multiplexers. The objective of our pro-
posed adder scheduling scheme is to minimize the total cost of
the adders and multiplexers within the given latency constraint.
Let D(G) be the adder depth of G. The latency constraint can
be sliced into a number of control steps t1, t2, . . . , tmax so that
tmax ≥ D(G) and each control step ti has a time resolution
sufficient to complete the longest latency addition scheduled to
that control step. The time resolution of a control step can be
reduced by minimizing the wordlengths of the merged adders
allocated to the control step without resorting to faster but more
complex adder structure. This is possible if there exist mobile
adders.

An adder is said to be mobile if it can be assigned to more
than one control step in a DFG. The mobility of a node v in G
is defined as μ(v) = tmax − δ(v), where δ(v) is the number of
nodes in the longest path through v from a root to a leaf. The
significance of the mobility of a node is that before scheduling,
the probability of a node v appearing in a control step ti,
denoted by pv(ti), is equal to {μ(v) + 1}−1 for ti ∈ [te, tl]
and zero outside this time window, where te and tl are the
earliest and the latest control steps the node can fire due to
the intraprecedence relation of the DFG. Scheduling a mobile
adder to a particular control step fixes its probability to one
in that control step and to zero in all other control steps. The
probability displacement before and after scheduling a mobile
node v to a specific control step tj ∈ [te, tl] is given by

Δpv(ti) =

{
μ(v)

μ(v)+1 , if ti = tj

− 1
μ(v)+1 , if ti �= tj

(4)

where ti, tj ∈ [te, tl].

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



CHEN AND CHANG: HIGH-LEVEL SYNTHESIS ALGORITHM FOR THE DESIGN OF RCM 1849

This change in adder probability is associated with the op-
portunity cost of merging a mobile adder with the mutually
exclusive adders in any control step within the time window
defined by [te, tl]. Two adders in the same control steps are
said to be mutually exclusive if they are not used to generate
the same scalar multiplier output simultaneously. Merging two
mutually exclusive adders results in a saving of one adder but
the merged adder assumes the length of the longer adder. In
other words, the output of the shorter length adder will be
expanded by an amount equal to the difference between the two
adder lengths. This will increase the bitwidths of its successive
adders and multiplexers. To minimize the cost of RCM, it is
important to schedule the mobile node to a control step that
will minimize the disparities in the bitwidths among mutually
exclusive adders.

The output of each node v(t) = a(v) · x(t), where x(t) is
the input variable x to the RCM, and the constant a(v) can be
expressed in a SD representation as follows:

a(v) =
h(v)∑
i=1

si2wi (5)

where h(v) is the hamming weight of a(v), si ∈ {−1, 1} is
the ith SD and wi ∈ {0, 1, 2, . . . , wmax} is the weighted bit
position of si.

From [34], if the length of the variable x is fixed, the bitwidth
of an adder is largely dependent on the difference between the
maximum most significant and the maximum least significant
SD positions of its input operands. Since the SDs of a(v)
are inherited from those of its input operands and the input
operands to an adder are commutative, a meaningful metric to
assess the disparity of mutually exclusive adders is through the
aggregate distance of all SDs to the leading SD position wl. Let

W (v) =
h(v)−1∑

i=1

(wl − wi). (6)

The disparity of a node v in control step ti is defined as

ΔWv(ti) =

∣∣∣∣∣∣W (v) − 1
Mi

×

⎛
⎝ Mi∑

j=1

W (uj)

⎞
⎠

∣∣∣∣∣∣ (7)

where Mi is the total number of existing nodes in control step
ti that are mutually exclusive to v.

The aggregate distance W (v) measures how compact the
sign digits in a(v) are distributed and the disparity of v is
an indicator of the bitwidth variation by merging the existing
adders in the same control step with v. Fig. 6 shows the
disparities of mobile nodes v4, v5, and v6 in control steps t1 to
t3 after nodes v1, v2, and v3 have been scheduled. Scheduling
v4 to t1, v5 to t1 or t2, and v6 to t2 will minimize the disparity
and reduced the costs of the merged adders and multiplexers.

To minimize the bitwidth of the merged adders and mul-
tiplexers, mobile nodes should be scheduled to control steps
with minimal disparity. However, scheduling a mobile node

Fig. 6. Disparities of operators scheduled in different control steps.

to a particular control step will restrict the mobility of its
predecessor and successor nodes and hence the probabilities
and disparities of their scheduling in other control steps. The
overall effect can be accounted by the probability displacement
and the time window reduction of the predecessor and successor
nodes when evaluating the opportunity cost of scheduling a
mobile node v in control step ti ∈ [te, tl]. This opportunity cost
is given by

Cost(v, ti) =
tl∑

t=te

Δpv(t) · ΔWv(t)

+
∑

u∈parent(v)

t̃l∑
t=t̃e

Δpu(t) · ΔWu(t)

+
∑

u∈children(v)

t̃l∑
t=t̃e

Δpu(t) · ΔWu(t) (8)

where [t̃e, t̃l] denotes the reduced time windows of the prede-
cessor or successor nodes, in general, due to the scheduling
of v to control step ti. parent(v) and children(v) refer to the
immediate predecessors and successors of v, respectively.

To minimize the computational complexity, the opportunity
costs are evaluated in batches of identical mobility nodes,
commencing from the least mobility nodes. When a node with
the least opportunity cost is scheduled, the mobilities of all
its affected predecessor and successor nodes are recalculated.
After all nodes with the least mobility have been allocated into
the DFG, the opportunity costs of all mobile nodes with the next
higher mobility are evaluated and the least cost mobile node
will be scheduled. The process repeats until all nodes in the
DAG have been scheduled into the DFG.

D. Adder Merging and Multiplexer Splitting

After all nodes in the DAG have been scheduled into a DFG,
the DFG are reduced by merging mutually exclusive nodes in

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



1850 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 12, DECEMBER 2009

Fig. 7. RCM design (a) before and (b) after multiplexer splitting.

the same control step. For the calculation of disparity, each
node v in the DAG is annotated with a set of labels φ(v) to
indicate its phases of computation in the RCM. An RCM is
programmed to output only one product of an input variable
x and a constant ci in any one phase but each node in a reduced
DAG may involve in more than one phase of computation due
to the presence of common subexpressions. Using the index
of the coefficient as phase number, the criterion for merging
two scheduled nodes v and u is given by φ(v) ∩ φ(u) = ∅.
Merging two mutually exclusive nodes v and u introduces at
least a multiplexer at either or both inputs of the merged node v̂,
where

child(v̂, t) = c(t) · child(v, t) + c(t) · child(u, t) (9)

where the control input to the multiplexer c(t) = 0 if
t = φ(v) and 1 if t = φ(u). child(v, t) ∈ {l(v(t)), r(v(t))}
and child(u, t) ∈ {l(u(t)), r(u(t))} with the constraint that
l(v̂, t) �= r(v̂, t).

In general, more than one mutually exclusive node can be
merged after scheduling. Every legitimate merging increases
the in degree of the merged node in the DFG. Large mul-
tiplexers for high in degree nodes can be decomposed into
smaller multiplexers. The data inputs to the large multiplexer
can be split and rescheduled into one or more smaller multi-
plexers. The split inputs can be merged into existing smaller
multiplexers in the earlier control steps instead of forming new
multiplexers provided that these inputs are not required by the
adders in two consecutive control steps. Multiplexer splitting
attempts to speed up the connection time by reducing the fan-
ins of large multiplexers at the expense of increasing the fan-ins
of smaller multiplexers. Fig. 7 shows the result of multiplexer
load balancing by extracting four data inputs from an eight-to-
one multiplexer into a new four-to-one multiplexer so that the
interconnection time is reduced in the critical path.

An m-to-one multiplexer has m data inputs and the number
m is also called the fan-in of the multiplexer. It should be
noted that to reduce the adder width, appropriate amount of
shifts have been applied to the inputs and output of each
adder during the scheduling and merging processes so that
the most significant digit of its a(v) is either 1 or −1. Thus,
the data inputs to the multiplexer have nonuniform bitwidth.
Unfortunately, the cost of a multiplexer is a function of its
bitwidth and the bitwidth of a multiplexer must be catered to the
largest data input [13]. This cost may be reduced by splitting

Fig. 8. Flow chart of the proposed algorithm.

a large multiplexer into two smaller multiplexers. Which data
inputs to be split can be judicially decided by examining the
disparity of each fan-in, which takes a similar form as (7). The
disparity of a data input fi to an m-to-one multiplexer is de-
fined as

Δb(fi) =

∣∣∣∣∣∣b(fi) −
1
m

×

⎛
⎝ m∑

j=1

b(fj)

⎞
⎠

∣∣∣∣∣∣ (10)

where b(fi) is the bitwidth of the ith data input of the
multiplexer.

Δb(fi) measures the deviation of the bitwidth of a specific
data input fi from the average bitwidth of a multiplexer.
Decoding of wide multiplexers requires large logical effort.
When the stray capacitance is considered, over a broad range
of assumption, the best multiplexer has 4 inputs [35]. For
each multiplexer, MUX with m ≥ 4, we first assume that it
is cost effective to decompose it into two multiplexers MUX1

and MUX2. Let F be the set of data inputs to MUX sorted
by their bitwidths, i.e., F = {fi}m

i=1 with b(fi) ≤ b(fj) if
i < j. Initially, the data input sets of MUX1 and MUX2 are
set to F1 = {fi}m

i=2 and F2 = {f1}, respectively. Then, the
disparity of the smallest data input of F1, i.e., Δb1(fj) for
j = arg{min(F1)} is computed and compared with the average
bitwidth of MUX2, ave(F2). If Δb1(fj) < ave(F2), then F1 =
F1 − {fj} and F2 = F2 + {fj}. The process is repeated with
the next smallest data inputs of F1 until all data inputs of F1

have been evaluated. If the final fan-in of MUX2, |F2| ≥ 2,
MUX will be decomposed into MUX1 and MUX2. Otherwise,
MUX will be preserved.

The flow chart in Fig. 8 summarizes the proposed optimiza-
tion strategy for the design of RCM.

E. Design Example

A design example of an RCM for a eight-point Goertzel
recursive DCT from [6, Fig. 7] is used to illustrate the proposed
adder scheduling algorithm. The three constants of the RCM
are C = {362, 392, 473}. The best MSD set with the highest

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



CHEN AND CHANG: HIGH-LEVEL SYNTHESIS ALGORITHM FOR THE DESIGN OF RCM 1851

Fig. 9. DAG of constant multipliers with C = {362, 392, 473}.

common subexpression frequency happens to be its CSD subset
and its PT array are given as follows:

C =

⎧⎨
⎩

362
392
473

⎫⎬
⎭=

⎧⎨
⎩

1 0 1 0 1 0 1 0 1 0
1 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0 1

⎫⎬
⎭

PT (C)=
[

0 3 0 0 0 2 0 1 1
0 3 1 4 1 2 0 0 0

]
.

Following the CSE procedure described in Section III-B, the
reduced DAG is shown in Fig. 9.

We assume the number of control steps to be the min-
imal adder depth of the reduced DAG for the most strin-
gent timing requirement. Therefore, tmax = 3. From the DAG,
the number of nodes in the longest path through each node
is given by: δ(v1) = δ(v2) = δ(v3) = 3 and δ(v4) = δ(v5) =
δ(v6) = 2. The computation phases of each node in the
DFG are φ(v1) = {0, 1, 2}, φ(v2) = φ(v3) = {0}, φ(v4) =
{1}, φ(v5) = φ(v6) = {2}. The three fixed nodes are identified
by μ(v1) = μ(v2) = μ(v3) = 0. These three adders will be
directly scheduled into control steps t1, t2, and t3, respectively.
Since μ(v4) = μ(v5) = μ(v6) = 1, we need to compute the
opportunity costs of scheduling these mobile nodes into specific
control steps within their legitimate time windows.

Consider v4. From (7), since a(v4) = 101̄0001, the aggregate
distance of v4 is W (v4)=(w3−wl)+(w3−w2)=(6−0) +
(6 − 4) = 8. v4 can be scheduled into either control step t2
or t3. According to (8), its disparity in t2 and t3 can be
calculated as follows. If v4 is scheduled into t2, Δpv4(t2) =
0.5 and Δpv4(t3) = −0.5. Since v2 is the only scheduled
(fixed) node in t2 and φ(v2) ∩ φ(v4) = ∅, v2 and v4 are mu-
tually exclusive. From a(v2) = 101̄01̄01, W (v2)=(w4−w1)+
(w4 − w2)+(w4−w3)=(6 − 0)+(6 − 2)+(6 − 4) = 12 and
ΔWv4(t2)= |W (v4) − W (v2)|= |8 − 12|=4. Similarly, v3 is
the only fixed node in t3 and φ(v3) ∩ φ(v4)=∅. From a(v3)=
101̄01̄0101, W (v3)=(w5 − w1) + (w5 − w2) + (w5 − w3) +
(w5 − w4)=(8 − 0) + (8 − 2) + (8 − 4) + (8 − 6)=20 and
ΔWv4(t3) = |W (v4) − W (v3)| = |8 − 20| = 12. As v4 has
no unscheduled predecessor or successor node, according to
(9), the opportunity cost of scheduling v4 into step t2 is
Cost(v4, t2) = 0.5 × 4 + (−0.5) × 12 = −4. If v4 is sched-
uled into t3, Δpv4(t2) = −0.5 and Δpv4(t3) = 0.5. Hence,
Cost(v4, t3) = (−0.5) × 4 + 0.5 × 12 = 4.

Consider v5. Since a(v5) = 1̄001, W (v5) = 3. v5 can be
scheduled into either t1 or t2. Since the only scheduled

TABLE I
TRACES OF COMPUTATION OF THE PROPOSED SCHEDULING ALGORITHM

adder in t1, v1, is involved in all phases of computation,
φ(v1) ∩ φ(v5) �= ∅. There is no fixed node that is mutually
exclusive with v5 in t1 and ΔWv5(t1) = |W (v5) − 0| = 3.
In addition, v2 is the only fixed node in t2 and φ(v2) ∩
φ(v5) = ∅. Thus, v2 and v4 are mutually exclusive and
ΔWv5(t2) = |W (v5) − W (v2)| = 9. If v5 is scheduled into
t1, Δpv5(t1) = 0.5 and Δpv5(t2) = −0.5 and its successor
node, v6, can still be scheduled into t2 and t3. There is no
change in the probability of v6 and Δpv6(t2) = Δpv6(t3) = 0.
According to (9), Cost(v5, t1) = 0.5 × 3 + (−0.5) × 9 = −3.
If v5 is scheduled into t2, Δpv5(t1) = −0.5 and Δpv5(t2) =
0.5. Its successor node, v6, has to be scheduled into
t3. Therefore, Δpv6(t2) = −0.5 and Δpv6(t3) = 0.5. Since
a(v6) = 10001̄01̄001, W (v6) = 19. There is only one fixed
node, v2, in t2 and φ(v2) ∩ φ(v6) = ∅. Thus, ΔWv6(t2) =
|W (v6) − W (v2)| = 7. v3 is the only fixed node in t3 and
φ(v3) ∩ φ(v6) = ∅. Thus, ΔWv6(t3) = |W (v6) − W (v3)| =
1. According to (9), Cost(v5, t2) = [(−0.5) × 3 + 0.5 × 9] +
[(−0.5) × 7 + 0.5 × 1] = 0.

Now, consider node v6. Since v6 can be scheduled into
either t2 or t3. If v6 is scheduled into t2, Δpv6(t2) = 0.5 and
Δpv6(t3) = −0.5. Its predecessor node, v5, has to be scheduled
into t1. Thus, Δpv5(t1) = 0.5 and Δpv5(t2) = −0.5.
Cost(v6, t2) = [0.5 × 7 + (−0.5) × 1] + [0.5 × 3 + (−0.5) ×
9] = 0. If v6 is scheduled into t3, Δpv6(t2) = −0.5 and
Δpv6(t3) = 0.5. v5 can still be scheduled into t1 and t2.
Since there is no change in the probability of v5, Δpv5(t1)=
Δpv5(t2) = 0. According to (9), Cost(v6, t3) = (−0.5) × 7 +
0.5 × 1 = −3.

The traces of computation are summarized in Table I. In
Stage 1, the minimum opportunity cost is −4. Consequently, v4

is scheduled into t2 and become a fixed node. The opportunity
costs of scheduling v5 and v6 need to be reevaluated after
updating their mobilities. The traces of computation are shown
in Stage 2 of Table I, from which v6 is scheduled into t3 with
the minimum opportunity cost. After fixing v6 in t3, the only
mobile node is v5. It can be scheduled in either t1 or t2 as
computed in Stage 3. The scheduling of v5 into t1 has less
opportunity cost, hence v5 is scheduled into t1.

After all mobile nodes have been fixed, the mutually exclu-
sive nodes in the same control steps are merged. Multiplexers
are inserted between the nodes with fan-in greater than two and
their immediate predecessor nodes or primary inputs. Since all

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



1852 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 12, DECEMBER 2009

Fig. 10. RCM of the design example. (a) DFG. (b) Circuit architecture.

multiplexers have fan-in less than four, no multiplexer splitting
is performed. The optimized DFG and the RCM circuit are
shown in Fig. 10.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the area and time complexities of the RCM
solutions generated by our proposed method are evaluated and
compared against other methods in the literature. In the first
part of the experiments, four commonly cited sets of constants
in the ReMBs are considered. Set A is obtained from [7, Fig. 6],
Sets B and C are taken from [6, Figs. 7 and 8], respectively,
and Set D is taken from [9, Fig. 6]. Unitless cost function in
[13] is adopted for the area estimate. In this estimate, the cost
of an operator is equal to a · k, where k is the bitwidth of
the operator and a is a constant of proportionality. The value
of a can be characterized by the implementation technology.
Technology mapping of typical operators using a commercial
0.18-μm standard cell library [13] yields am−1multiplexer =
14 · m, aadder =67, asubtractor =75, and aadder/subtractor =98
measured in square micrometers. With Artisan TSMC 0.18-μm
standard cell library, am−1multiplexer =13.3 · m and aadder =
69.9, which show that the same cells from different libraries
developed for the same process technology have very similar
areas. With Avant! Passport 0.35-μm standard cell library,
am−1multiplexer =1.17 · m, aadder =5.0, asubtractor =5.66, and
aadder/subtractor =7.0 measured in number of equivalent gates.

The numbers of operators and multiplexers used in our
designs in RCM and their area costs, “I” and “II” estimated
based on 0.18- and 0.35-μm cell libraries, respectively, are
presented in Tables II–V. The results are compared with those
reported in [6], [7], and [9] by ReMB methods, [13] by DAG
fusion algorithm, and [16] by our preliminary ASAP scheduling
approach. The bitwidth of the input signal to the RCM is
assumed to be 8 b for all designs. It should be noted that
the result of DAG fusion for Set C is different from that of
[13] because of an erratum in [13]. The inputs to the top 2-1
multiplexer in, Fig. 16(c)[13] should be multiplied by “16
and 4,” instead of “4 and 2.” We have verified this using the
online tool provided by authors of [13]. The results reported in
Table IV are based on the corrected design of DAG fusion.

From Tables II–V, the proposed RCM design algorithm
generates lower cost solutions than the classical ReMB ap-
proaches. On average, the proposed algorithm is 19.3% more

TABLE II
AREA COST ESTIMATION FOR DATA SET A

TABLE III
AREA COST ESTIMATION FOR DATA SET B

TABLE IV
AREA COST ESTIMATION FOR DATA SET C

area efficient than ReMB algorithms, [6], [7] and [9], which
are originally designed to target on FPGAs. This indicates that
the ReMB approaches may not be as efficient on ASIC imple-
mentation as they are on FPGA. For ASIC implementation, a
more insightful conclusion can be drawn from the comparison
with the solutions generated by DAG fusion [13], which is
not tailored to dedicated configurable logic cell structure. On
average, the proposed algorithm is still 7% more area efficient
than this latest and most competitive method [13]. This saving
is mainly contributed by the holistic consideration of opportu-
nity costs in scheduling mobile adders. Merging adders with
minimal disparity has successfully reduced the overall bitwidth
of the adders and multiplexers. As shown in Tables III–V,

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



CHEN AND CHANG: HIGH-LEVEL SYNTHESIS ALGORITHM FOR THE DESIGN OF RCM 1853

TABLE V
AREA COST ESTIMATION FOR DATA SET D

TABLE VI
SYNTHESIZED AREAS OF DATA SETS A–D (IN SQUARE MICROMETERS)

TABLE VII
SYNTHESIZED DELAYS OF DATA SETS A–D (IN NANOSECONDS)

the bitwidths of the arithmetic operators and multiplexers of
the proposed designs are always smaller than those of [13].
In addition, the proposed multiplexer splitting also helps. For
example, in Table II, instead of having a 16-b seven-to-one
multiplexer [13], our proposed algorithm divides the large fan-
in multiplexer into multiplexers of lower fan-in and bitwidth.
The improved scheduling method also outperforms ASAP in
data sets B and D.

To corroborate the merits of our proposed algorithm, the
designs are technology mapped to TSMC 0.18-μm standard cell
library using Synopsys Design Compiler. The synthesized areas
and delays are tabulated in Tables VI and VII, respectively. Rip-
ple carry adders (RCAs) and carry look-ahead adders (CLAs)
are used to demonstrate the two different scenarios of using
the faster but more costly adders versus using the slower but
simpler adders for the RCM design under the same timing con-
straint. Due to the multiplexer overheads for reconfigurability

TABLE VIII
AT PRODUCTS OF DATA SETS A–D (IN SQUARE

MICROMETERS × NANOSECONDS)

Fig. 11. AT complexity comparison of proposed RCM, ReMB methods, and
[13] with (left) RCA and (right) CLA adders for data sets A–D.

and the reduced number of adders, the overall area increment
caused by the use of CLA over RCA is not as significant.

The area and delay values are combined into an overall AT
complexity evaluation. The AT product of each design is shown
in Table VIII. The results demonstrate the effectiveness of our
proposed algorithm in reducing both the critical path delay
and the logic area for different RCM designs. On average,
our proposed algorithm generates RCM designs of 41.09% and
35.53% lower AT complexities than ReMB with RCA and CLA
implementations, respectively. Comparing with DAGfusion,
our AT products are 12.63% and 9.74% lower with RCA and
with CLA implementations, respectively. The AT complexity
comparisons are shown in Fig. 11. The reduction of AT product
is attributed in part to the CSE using MSD representation
and in part to the minimization of average adder disparity in
each control step. The balanced adder graph after CSE and the
reduction in adder/subtractor and multiplexer bitwidths play a
crucial role in shortening the critical path delay.

The RCM of the 2 × α multipliers of type A Goertzel recur-
sive DCT structure in [25] are implemented for two different
DCT transform lengths N = 8 and N = 16. The coefficients
are generated in three levels of precision w = 8, 12, and 16 b.
Every design is implemented with two types of adders, RCA
and CLA. The synthesis results are presented in Table IX.
Since [13] is the latest and most relevant method for ASIC
implementation, the AT product is compared with that in [13]
in Fig. 12. On average, the proposed algorithm reduces the AT
product by 8.51% and 10.60% over DAG fusion method [13]
based on RCA and CLA, respectively. The AT products are
also evaluated with the constant sets from seven FIR filters in
Table X. The results show that the proposed method is able to
generate more area–time efficient solutions in general.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



1854 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 12, DECEMBER 2009

TABLE IX
SYNTHESIZED AREA (A) (IN SQUARE MICROMETERS), DELAY (T) (IN

NANOSECONDS), AND AT PRODUCT (IN SQUARE MICROMETERS ×
NANOSECONDS) OF 2 × α MULTIPLIERS IN 8-POINT/16-POINT

TYPE A GOERTZEL RECURSIVE DCT STRUCTURES

Fig. 12. AT complexity comparison of proposed RCM and [13] for type A
Goertzel recursive DCT with (left) RCA and (right) CLA adders.

TABLE X
AT PRODUCTS OF FIR FILTER COEFFICIENT SETS (IN SQUARE

MICROMETERS × NANOSECONDS)

The proposed algorithm is further compared against DAG-
fusion algorithm with the help of the online tool [42] using
large sets of randomly generated constants. The number of
constants in each set, N = 10 and 20, and the wordlength of
the constants, w = 8, 10 and 12 b. The average AT products
with different N and w are shown in Fig. 13.

From Fig. 13, the average reduction of area–time cost of our
proposed algorithm over DAGfusion algorithm is lower (about
4%) for w ≤ 10 and more significant (up to 25%) for w = 12.
This is because by scheduling mobile operators based on adders
disparity features, mutually exclusive mobile adders are more
likely to be scheduled into the same control step and merged
by the proposed algorithm. Due to the inclination to merge

Fig. 13. Comparison of average AT products on randomly generated constant
sets. (a) N = 10. (b) N = 20.

adders of similar disparity values, the merged adders are more
likely to have smaller adder width. In addition, the proposed
multiplexer splitting based on multiplexer disparities has also
helped to reduce the fan-in of large bitwidth multiplexers.

Aside from the solution quality, computational effort is
another important criterion for design automation algorithms.
The complexity of our proposed algorithm is dominated by the
scheduling decisions of the mobile adders. The computational
complexity of our algorithm can be evaluated as follows.

Let L(v) be the wordlength of a(v) for an arbitrary node,
v ∈ V of the DAG, G(V,E). It is well known that MSD
reduces the number of nonzero digits of an integer by 33.3% on
average from its binary representation [43]. Assuming an equal
probability of “1” and “0” b in a binary number, the expected
number of SDs in a(v) is ĥ(v) = (1 − 1/3) × 1/2 × L(v) =
1/3 × L(v). The average number of iterations in the computa-
tion of W (v) is equal to ĥ(v) − 1. Hence, the complexity for
the aggregate distance computation is O(|V | × L(v)).

Since only one mobile node is scheduled in each iteration,
the total number of iterations required to compute the disparity
and opportunity cost is equal to the number of mobile nodes.
In each iteration, the number of operations required to compute
the disparity of a mobile node can be enumerated by the total
number of fixed nodes in all its legitimate control steps. In
the worst case, every node in the DFG is mobile initially
and can be scheduled into any control step. |V | iterations are
required. The number of fixed nodes is zero in the first iteration
and incremented by one in each iteration until all the |V |
mobile nodes become fixed in the last iteration. The number of
operations is given by the sum of an arithmetic progression of
|V | terms with a common difference of one starting from zero.
This sum is equal to |V |/2 × (|V | − 1). The complexity for the
disparity computation is thus O(|V |2).

From (9), the opportunity cost is computed by summing the
product of the disparity and probability displacement over all
legitimate control steps. Each iteration requires at most tmax

multiplications and tmax − 1 additions, where tmax is the num-
ber of control steps. Let H be the maximum hamming weight
of all constants. Then, tmax = �log2(H)� if we assume that
tmax = D(G). The number of operations required for the com-
putation of opportunity cost is given by |V | × (2�log2(H)� −
1). It should be noted that the hamming weights, H of the
constants in MSD representation is usually less than ten, The
complexity of opportunity cost computation is O(|V |).

A small fraction of nondeterministic computations due to the
opportunity costs of predecessor and/or successor nodes and the

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



CHEN AND CHANG: HIGH-LEVEL SYNTHESIS ALGORITHM FOR THE DESIGN OF RCM 1855

update of mobilities can be omitted since the aggregate distance
and disparity computations of all nodes required for their evalu-
ation have been conservatively included in the aforementioned
analysis. The total computational complexity of proposed al-
gorithm is O(|V | × L(v) + |V |2 + |V |). In practice, L(v) is
finite and can be safely assumed to be lower than 20. Hence,
the computational complexity of our algorithm is O(|V |2).

This complexity is far less than the brute force approach of
DAG fusion which searches exhaustively for all possible pairs
of DAGs for the best fusion. The runtime for fusing N DAGs is
given by O(Num_iterations × N × Runtime(FusePairDAGs)),
where Runtime(FusePairDAGs)=O(n!(mN+n)/�log2(m +
1)�!(n − m)!) and Num_iterations is the number of different
orderings of fusing a pair of DAGs, with n and m being the
numbers of adders in the first and second DAGs, respectively
[13]. The first DAG is obtained iteratively by the previous
fusion of N DAGs, thus n is comparable to m and in the worst
case, m = n. The maximum Num_iterations for N DAGs is
N ! [13]. Limiting Num_iterations to reduce the runtime will
compromise the solution quality. The overall complexity can
be approximated to O(N2N !n!). This is much higher than our
overall runtime complexity of O(N2n2) if the |V | adders are
amortized over the N constants so that the average number of
adders contributed by each DAG is n.

V. CONCLUSION

For many general DSP problems, the need for multiple con-
stant multiplications is mandatory. This paper presents a new
insight into the design of RCMs where the adder resources can
be time multiplexed to reduce the hardware cost. Comparing
with existing design methodologies which are mostly based on
the reduced adder graph or matured techniques in the design
of the multiplier block of digital filters, the concept conceived
in this paper is new and unique. It is the first proposal that
delineates the RCM architecture as a DFG and solves this
design problem by an efficient heuristic scheduling algorithm.
A disparity measure is defined to assess the cost of merging two
or more temporally correlated adders by evaluating the com-
pactness of SD distribution among mutually exclusive nodes in
the same control step. This is used in conjunction with their
probability displacement to determine the opportunity cost of
scheduling a mobile adder into a control step, from which
an optimized scheduling decision is made. Since the depth of
the adder tree is first minimized by a global CSE, the RCM
resulting from the scheduled DFG is minimized in the area ×
delay sense. Our synthesis results on some practical RCMs
and randomly generated sets of constants show that the pro-
posed algorithm produces solutions which are up to 25% more
area–time efficient than the latest and best reported solutions
known in the literature for 12-b constant sets.

REFERENCES

[1] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Multiple con-
stant multiplications: Efficient and versatile framework and algorithms
for exploring common subexpression elimination,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 15, no. 2, pp. 151–165, Feb. 1996.

[2] A. DeHon, “The density advantage of configurable computing,” Com-
puter, vol. 33, no. 4, pp. 41–49, Apr. 2000.

[3] G. Estrin, “Reconfigurable computer origins: The UCLA fixed-plus-
variable computer,” IEEE Ann. Hist. Comput., vol. 24, no. 4, pp. 3–9,
Oct.–Dec. 2002.

[4] J. Macbeth and P. Lysaght, “Dynamically reconfigurable cores,” in Proc.
Int. Conf. Field-Programmable Logic Appl., 2001, vol. 2147, pp. 462–472.

[5] J. P. Heron, R. Woods, S. Sezer, and R. H. Turner, “Development of a run-
time reconfiguration system with low reconfiguration overhead,” J. VLSI
Signal Process. Syst., vol. 28, no. 1/2, pp. 97–113, May/Jun. 2001.

[6] S. S. Demirsoy, A. G. Dempster, and I. Kale, “Design guidelines for
reconfigurable multiplier blocks,” in Proc. IEEE Int. Symp. Circuits Syst.,
Bangkok, Thailand, May 25–28, 2003, pp. 293–296.

[7] S. S. Demirsoy, I. Kale, and A. G. Dempster, “Efficient implementation
of digital filters using novel reconfigurable multiplier blocks,” in Proc.
Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, Nov. 7–10,
2004, pp. 461–464.

[8] S. S. Demirsoy, I. Kale, and A. G. Dempster, “Synthesis of reconfig-
urable multiplier blocks—Part I: Fundamentals,” in Proc. IEEE Int. Symp.
Circuits Syst., Kobe, Japan, May 23–26, 2005, vol. 1, pp. 536–539.

[9] S. S. Demirsoy, I. Kale, and A. G. Dempster, “Synthesis of reconfigurable
multiplier blocks—Part II: Algorithm,” in Proc. IEEE Int. Symp. Circuits
Syst., Kobe, Japan, May 23–26, 2005, vol. 1, pp. 540–543.

[10] N. Sidahao, G. A. Constantinides, and P. Y. K. Cheung, “Multiple re-
stricted multiplication,” in Proc. Int. Conf. Field-Programmable Logic
Appl., Aug. 2004, pp. 374–383.

[11] S. S. Demirsoy, I. Kale, and A. Dempster, “Reconfigurable multiplier
blocks: Structures, algorithms and applications,” Circuits Syst. Signal
Process., vol. 26, no. 6, pp. 793–827, Dec. 2007.

[12] Y. E. Kim, K. J. Cho, and J. G. Chung, “Low power small area modified
booth multiplier design for predetermined coefficients,” IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., vol. E90-A, no. 3, pp. 694–
697, Mar. 2007.

[13] P. Tummeltshammer, J. Hoe, and M. Püschel, “Time-multiplexed
multiple-constant multiplication,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 26, no. 9, pp. 1551–1563, Sep. 2007.

[14] O. Gustafsson, A. G. Dempster, and L. Wanhammar, “Extended results for
minimum-adder constant integer multipliers,” in Proc. IEEE Int. Symp.
Circuits Syst., May 2002, vol. 1, pp. I-73–I-76.

[15] O. Gustafsson, A. G. Dempster, K. Johansson, M. D. Macleod, and
L. Wanhammar, “Simplified design of constant coefficient multipliers,”
Circuits Syst. Signal Process., vol. 25, no. 2, pp. 225–251, Apr. 2006.

[16] J. Chen, C. H. Chang, and C. C. Jong, “Time-multiplexed data flow graph
for the design of configurable multiplier block,” in Proc. IEEE Int. Symp.
Circuits Syst., Taipei, Taiwan, May 2009, pp. 1145–1148.

[17] P. Flores, J. Monteiro, and E. Coista, “An exact algorithm for the max-
imum sharing of partial terms in multiple constant multiplications,” in
Proc. IEEE Int. Conf. Comput.-Aided Des., Nov. 6–10, 2005, pp. 13–16.

[18] L. Aksoy, E. da Costa, P. Flores, and J. Monteiro, “Exact and approximate
algorithms for the optimization of area and delay in multiple constant
multiplications,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 27, no. 6, pp. 1013–1026, Jun. 2008.

[19] K. Johansson, O. Gustafsson, and L. Wanhammar, “A detailed complexity
model for multiple constant multiplication and an algorithm to minimize
the complexity,” in Proc. Eur. Conf. Circuit Theory Des., Cork, Ireland,
Aug. 28–Sep. 2, 2005, pp. 465–468.

[20] R. Mahesh and A. P. Vinod, “A new common subexpression elimina-
tion algorithm for realizing low-complexity higher order digital filters,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 2,
pp. 217–229, Feb. 2008.

[21] M. D. Macleod and A. G. Dempster, “Common subexpression elimination
algorithm for low-cost multiplierless implementation of matrix
multipliers,” Electron. Lett., vol. 40, no. 11, pp. 651–652, May 2004.

[22] K. Wu and R. Karri, “Algorithm-level computing with shifted
operands—A register transfer level concurrent error detection technique,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 3,
pp. 413–422, Mar. 2006.

[23] C. Chao and K. K. Parhi, “High-throughput VLSI architecture for FFT
computation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 10,
pp. 863–867, Oct. 2007.

[24] Y. Shao and C. H. Chang, “A Kalman filter based on wavelet filter-bank
and psychoacoustic modeling for speech enhancement,” in Proc. IEEE
Int. Symp. Circuits Syst., Kos, Greece, May 21–24, 2006, pp. 121–124.

[25] S. S. Demirsoy, R. Beck, A. G. Dempster, and I. Kale, “Reconfigurable
implementation of recursive DCT kernels for reduced quantization noise,”
in Proc. IEEE Int. Symp. Circuits Syst., Bangkok, Thailand, May 25–28,
2003, pp. 289–292.

[26] P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs,
NJ: Prentice-Hall, 1993.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 



1856 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 12, DECEMBER 2009

[27] S. Arno and F. S. Wheeler, “Signed digit representations of minimal
hamming weight,” IEEE Trans. Comput., vol. 42, no. 8, pp. 1007–1010,
Aug. 1993.

[28] A. G. Dempster and M. D. Macleod, “Generation of signed-digit repre-
sentations for integer multiplication,” IEEE Signal Process. Lett., vol. 11,
no. 5, pp. 663–665, Aug. 2004.

[29] R. Paško, P. Schaumont, V. Derudder, S. Vernalde, and D. Ďuračkovấ, “A
new algorithm for elimination of common subexpressions,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 1, pp. 58–68,
Jan. 1999.

[30] M. M. Peiro, E. I. Boemo, and L. Wanhammar, “Design of high-speed
multiplierless filters using a nonrecursive signed common subexpression
algorithm,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,
vol. 49, no. 3, pp. 196–203, Mar. 2002.

[31] F. Xu, C. H. Chang, and C. C. Jong, “Design of low-complexity FIR
filters based on signed-powers-of-two coefficients with reusable com-
mon subexpressions,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 26, no. 10, pp. 1898–1907, Oct. 2007.

[32] F. Xu, C. H. Chang, and C. C. Jong, “Contention resolution algorithm for
common subexpression elimination in digital filter design,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 52, no. 10, pp. 695–700, Oct. 2005.

[33] I. C. Park and H. J. Kang, “Digital filter synthesis based on an algorithm to
generate all minimal signed digit representations,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 21, no. 12, pp. 1525–1529,
Dec. 2002.

[34] C. H. Chang, J. Chen, and A. P. Vinod, “Information theoretic approach
to complexity reduction of FIR filter design,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 55, no. 8, pp. 2310–2321, Sep. 2008.

[35] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast
CMOS Circuits. San Francisco, CA: Morgan Kaufmann, 1999.

[36] R. Jain, P. T. Yang, and T. Yoshino, “FIRGEN: A computer-aided design
system for high performance FIR filter integrated circuits,” IEEE Trans.
Signal Process., vol. 39, no. 7, pp. 1655–1668, Jul. 1991.

[37] Y. H. Jang and S. J. Yang, “Low-power CSD linear phase FIR filter
structure using vertical common sub-expression,” Electron. Lett., vol. 38,
no. 15, pp. 777–779, Jul. 2002.

[38] A. P. Vinod, E. M. Lai, A. B. Premkuntar, and C. T. Lau, “FIR filter
implementation by efficient sharing of horizontal and vertical common
subexpressions,” Electron. Lett., vol. 39, no. 2, pp. 251–253, Jan. 2003.

[39] Q. Zhao and Y. Tadokoro, “A simple design of FIR filters with powers-of-
two coefficients,” IEEE Trans. Circuits Syst., vol. 35, no. 5, pp. 566–670,
May 1988.

[40] J. Laskowski and H. Samueli, “A 150-MHz 43-tap half-band FIR digital
filter in 1.2-um CMOS generated by silicon compiler,” in Proc. IEEE
Custom Integr. Circuits Conf., Boston, MA, May 1992, pp. 11.4.1–11.4.4.

[41] Y. C. Lim and S. R. Parker, “Discrete coefficient FIR digital filter design
based upon an LMS criteria,” IEEE Trans. Circuits Syst., vol. CAS-30,
no. 10, pp. 723–739, Oct. 1983.

[42] Spiral Project: Software/Hardware Generation for DSP Algorithms.
[Online]. Available: http://www.spiral.net

[43] R. W. Reitwiesner, “Binary arithmetic,” in Advances in Computers, vol. 1.
New York: Academic, 1960, pp. 231–308.

Jiajia Chen received the B.Eng. degree from
Nanyang Technological University, Singapore,
in 2004.

From 2004 to 2008, he joined the School of
Electrical and Electronic Engineering, Nanyang
Technological University, as a Teaching Assistant
while working toward the Ph.D. degree. He is cur-
rently a Research Engineer with 3M Singapore Pte.
Ltd., Singapore. His main research interest includes
computational transformations of low-complexity
digital filters, reconfigurable filters, and filter archi-

tectural optimization.

Chip-Hong Chang (S’92–M’98–SM’03) received
the B.Eng.(Hons.) degree from National University
of Singapore, Singapore, in 1989 and the M.Eng.
and Ph.D. degrees from Nanyang Technological
University (NTU), Singapore, in 1993 and 1998,
respectively.

He served as a Technical Consultant in industry
prior to joining the School of Electrical and Elec-
tronic Engineering (EEE), NTU, in 1999, where he
is currently an Associate Professor. He is the holder
of joint appointments at the university as Assistant

Chair of Alumni, School of EEE since June 2008, Deputy Director of the
Centre for High Performance Embedded Systems since 2000, and Program
Director of the Centre for Integrated Circuits and Systems since 2003. He has
published three book chapters and more than 140 research papers in refereed
international journals and conferences. His current research interests include
low-power arithmetic circuits, digital filter design, application specific digital
signal processing, and digital watermarking for IP protection.

Dr. Chang is a Fellow of the Institution of Engineering and Technology. He
serves as an Editorial Advisory Board member of The Open EEE Journal and
the Journal of Electrical and Computer Engineering. He is listed in the Marquis
Who’s Who in the World since 2008 and is appointed the Charter Fellow of
Advisory Directorate International by the American Biographical Institute, Inc.

Authorized licensed use limited to: Nanyang Technological University. Downloaded on February 26,2010 at 02:28:21 EST from IEEE Xplore.  Restrictions apply. 


