
Abstract
This paper describes a high-level multi-HDL design pro-
cess applied to an industrial design of a single chip Video-
phone Codec. It makes use of many state-of-the-art design
tools and methods:

• Behavioural VHDL control path synthesis for the con-
troller of the Codec motion estimator.

• Behavioural DSP synthesis from Silage to generate an
application-specific calculation unit that performs vec-
tor prediction for the motion estimator.

• Retargetable C compilation for an embedded applica-
tion-specific microcontroller.

• Multi-level (behavioural, RTL, gate) and multi-lan-
guage (VHDL, Silage, C) co-simulation.

We will show that, with respect to a manual design process,
the use of these tools led to the following results:

• A five-fold reduction in the source HDL description
complexity.

• Equal or better timing performance.

• Silicon area within 15% (4% area overhead for the
DSP operator, and 14% overhead for the controller).

• Automatically compiled assembly code (from ANSI C
descriptions) that is as compact as hand-coded assem-
bler.

We also identified a strong need to pay attention to design
verification issues, especially when dealing with multi-level
descriptions and multiple languages. Validation of the
design was the single most time consuming part of the pro-
cess.

1. Introduction

While there has been much talk on the necessity of a major
breakthrough in design methods and advanced CAD to sup-
port the multi-million gate chips that are already a reality
[Paul95a], there have been very few examples of industrial
success in the application of state-of-the-art synthesis and
microcode compilation tools. The focus of this paper is the
description of a design experiment at SGS-Thomson which
made use of advanced tools in these key areas. The empha-
sis here is on the methodology and the lessons learned, not
the technical aspects of the tools used. The latter can be
found elsewhere, e.g. [KiDJ94], [KiDJ95], [DeMa90],
[Vern94], [Vald95], [Liem95], [Paul95b].

The target project is a production single-chip videotele-
phone codec, the STi1100 [STM93]. This chip simulta-
neously encodes and decodes 15 QCIF (144x176 pixels)
images per second, according to the H.261 standard. A
block diagram of the Codec is given in Figure 1.

Figure 1: Videophone Codec block diagram

Host
Interface

Unframer VLC -1
Recons-
truction:
Q -1,
DCT -1

Grabber
Motion
Estimator

Coding:
DCT, Q,
Formatting

VLC/
Framer

Prgm
ROM

MSQ: Display
Contr.
Interface

Memory
Controller

micro-
controller

Command Bus
Data Bus

Bit-stream in Pictures in Bit-stream out

Host BusData Address
VRAM

Display

@MCC:

Controller

High-Level Synthesis and Codesign Methods:
An Application to a Videophone Codec

Pierre Paulin, Jean Fréhel, Michel Harrand, Elisabeth Berrebi,
Clifford Liem, François Naçabal, Jean-Claude Herluison

SGS-Thomson Microelectronics
850, rue Jean Monnet

BP 16 - 38921 Crolles cedex - France
Email: Pierre.Paulin@st.com (or paulinp@stm.com)

To appear inProc. of EuroDAC/EuroVHDL, Brighton, U.K., Sept. 1995

2

A more detailed description of the chip’s functionality and
design is given in [Harr95]. For the purpose of this paper,
we need to distinguish two distinct design paths:

1. The original design methods used for the existing chip
in a CMOS 0.7 micron process at SGS-Thomson (which
is currently being ported to 0.5 micron CMOS).

2. A subsequent redesign using the new design methods
and tools which are the focus of this paper. These meth-
ods where validated and quantified by comparing with
the results for the production design above.

The next section will describe the original design process.
This will be followed by a description of the process used
for the design experiment, with particular emphasis on the
retargetable compiler and the co-simulation issues
involved. We present results for the entire design experi-
ment and conclude with an outlook on the emerging pro-
cess which will be applied in the next generation codec.

2. Initial design process

The design process used for the production chip is
shown in Figure 2. It is characterized by a fairly elaborate
front-end design process which exploits executable specifi-
cations which are technology and implementation indepen-
dent. This front-end design process makes use of
abstraction levels well above those supported by commer-
cial implementation tools. As a result, there are many
design refinement steps which were performed manually.

The first step consists of the definition of an executable
specification of the videoalgorithms to be supported. This
specification is written in ANSI C, and is based on the
videophone H.261 standard. The resulting image data
obtained from program execution is stored in data files and
used as test vectors for the next step.

A coarse architecture partition is then performed, with
an assignment of functions to specific operators. These cor-
respond to the blocks in Figure 1. An implementation inde-
pendent description of thebehaviour of these operators is
written in VHDL. Each behaviour is described as a VHDL
process, with only high-level timing. A handshake-based
communication is used to synchronize the communication
of the parallel operators via a data/control communication
bus.

The next step consists of the partition of the overall
functionality into hardwired blocks and microprogramma-
ble ones. This partition is done manually, based on esti-
mates of required throughput. All complex control
functions are assigned to dedicated microcontrollers, the
MSQ and the MCC, shown as round boxes in Figure 1.
High-throughput functions like direct and inverse discrete
cosine transforms (DCT) and motion estimation are
assigned to hardwired components (square boxes).

As shown in Figure 2, all of the transformations of the
algorithm and behavioural level design to the register-trans-
fer level (RTL) were performed manually. This holds for
the hardware blocks, where a synthesizable RTL descrip-
tion is written; as well as for the programmable compo-
nents, where the instruction-set is defined manually, and the
VHDL behaviour is translated to assembly code by hand.
This transformation is time consuming and error-prone.

Figure 2: Initial Design Process

3. New Design Process

As shown in Figure 3, three new tools were used in this
design experiment:

1. Amical: A control-oriented high-level synthesis tool
developed at the TIMA lab of the Institut National Poly-
technique de Grenoble (INPG) [KiDJ94], [KiDJ95].

2. Cathedral-2/3: A DSP-oriented high-level synthesis
tool developed at IMEC [Vern94], [DeMa90].

3. FlexWare: An environment for the design of embedded
software [Paul95b]. In the current experiment, only the
retargetable compiler was used. TheInsulin instruction-
set simulator [SuPa94] will be used in the next design.

The motivations for using these tools were twofold:

1. Higher productivity through the use of higher levels of
abstraction. In the original design process, two activities
consumed nearly 50% of the total design time: i) the
manual translation of the behavioural VHDL code to
the RTL description (25% of design time), and ii) the
co-simulation of the RTL VHDL with the VHDL test-
bench to validate its correctness (24% of design time).
Both of these activities become unnecessary with the
use of high-level synthesis and compilation tools.

2. Architectural style independence. While technology
independence is achieved with current RTL synthesis
tools, the architectural style is hard-coded into the RTL

Assembly
Code

VHDL RTL:
MSQ

VHDL RTL
Description

VHDL MSQ
S/W Behav.

VHDL
H/W Behav.

VHDL Netlist

C code

Binary code

Instruction
Set

AssemblerCommercial
RTL Synth.

Manual

Behavior

RTL

Netlist

Manual
Translation

Design
Manual

Translation

Algorithm Test
Vectors

Manual
Design

3

code. The Amical, Cathedral-2/3, and FlexWare tools
support various types of architecture styles, e.g. control-
datapath pipeline stage in Amical; ALU pipeline stage
in Cathedral-2/3; and instruction-set parameterization in
FlexWare.

Figure 3: New design process used in the
experiment.

In order to evaluate the benefits of these tools, two key
blocks of the Codec were selected for this experiment: The
hardwired motion estimator and the microprogrammable
MSQ microcontroller. These blocks are highlighted in
Figure 1. In the original design process, both of these oper-
ators were described at the RT level, via a manual transla-
tion of the VHDL behavioural description, as shown in
Figure 2.

The motion estimator is a hardwired high-throughput
operator which uses a full search block matching algorithm
on a +7/-8 pixel range. It was chosen for this experiment
because it was the most critical in terms of throughput and
complex communications with its environment.

The motion estimator behaviour was partitioned into
two functions: 1. the control and communication portion,
which was assigned to the Amical tool; and 2. a high-
throughput digital signal processing block, which was
assigned to the Cathedral-2/3 toolset. The DSP block is
contained in the controller, and therefore the two must com-
municate via a well-defined protocol.

The multi-sequencer (MSQ) is a custom microcontrol-
ler driven by a 4K word microprogram. The instruction
word width is 18 bits. The purpose of the MSQ is to
sequence the overall operations of the chip. It does this by
arbitrating request from the hardware operators, taking into
account the availability of data for these operators and the
availability of memory space to store their results.

The FlexWare compiler environment was used to
develop a MSQ microcode compiler for a subset of ANSI
C. The specific objective was to allow the description of
application code in C rather than hand-coded assembler.

VHDL RTL:
MSQ Arch.

VHDL:
Control

Assembly
Code

VHDL RTL
Description

Instruction Set
Definition

VHDL: Insulin
Instr. Set Model

Cathedral : DSP
Behav. Synth.

VHDL Netlist

C code

Binary code

FlexWare
Retarg.

Compiler

Retarg.
Assembler

RTL Synth.

Performance
Analysis

Instruction Format
Definition

Amical : Control
Behav. Synth.

Silage:
DSP

Co-
DSP H/W Control H/W Embedded S/W

Simulate
Co-
Simulate

This also allows the C description to be used as a simulat-
able specification which could be validated with the rest of
the design.

3.1. Use of the Amical toolset

The main characteristic that differentiates Amical from
existing architectural synthesis tools is the possibility to
extend the design re-use concept to the behavioural level
[KiDJ95]. The library used by Amical may include mega-
function components (DSP operators e.g. DCT/IDCT
blocks, intelligent peripherals, A/D & D/A converters,
etc.). The behavioural description accesses these mega-
function blocks through VHDL procedure and function
calls. Amical handles the scheduling of complex operations
(procedure and function calls) and the allocation of mega-
function blocks. We will refer to this mechanism as proto-
col encapsulation.

In the video codec application, the control block of the
motion detector communicates with two types of compo-
nents: 1. the search cache and current cache memories, 2.
the high-speed DSP operator (to be synthesized by Cathe-
dral-2/3).

Two methods were considered for linking the controller
to the cache memories. The first is a simple instantiation.
This requires the definition of explicit handshake and
clock-cycle accurate communication. This is the approach
that is commonly used in commercial RTL synthesis tools.

The second method of linking the cache memories is via
protocol encapsulation. This exploits the ability of the Ami-
cal system to send and receive status and data to external
blocks via user-defined protocols, as outlined above. This
simplifies the behavioural description considerably. For this
experiment, in order to compare the advantages of either
approach, the current cache was instantiated, while the con-
nection to the search cache was through protocol-based
encapsulation. The communication with the Cathedral DSP
operator was also done via encapsulation.

3.2. Use of the Cathedral-2/3 toolset

The Cathedral-2/3 system is targeted towards the syn-
thesis of high-throughput application-specific units (ASU)
for DSP-oriented applications [Vern94], [DeMa90]. The
ASUs are characterized by an optimized high-speed datap-
ath, with optional pipelining, governed by a local hardwired
controller.

The function assigned to Cathedral-2/3 is the motion
vector calculation. The fundamental operation performed
by this operator is a form of subtract, absolute value and
accumulate calculation (SAC). For a 15 image/sec.
throughput constraint, this requires 97.3 million SAC/sec.
To obtain this throughput, retiming and pipelining of the
ASU datapath was required. This is performed automati-

4

cally by Cathedral-2/3, under user control. As we will see
in the results later, this led to an implementation with less
logic than the original design, but more flip-flops, due to
additional pipe stages.

3.3. Use of the Retargetable Compiler

The compiler developed here uses the same front and
back-end as the FlexWare system’s CodeSyn compiler
[Paul95b]. However, it relies on a rule-driven retargetable
code generation approach which is based directly on the
concepts described in [Gurd83]. In this approach, compiler
retargeting is achieved through a combination of target-
independent and architecture-specific optimization and
transformation rules. In contrast, in the CodeSyn system,
the compiler retargeting relies heavily on an algorithmic
approach which makes use of pattern matching [LiMP94a],
and dedicated register allocation [LiMP94b]. Here, the
irregular nature of the MSQ’s datapath lent itself better to a
rule-based approach, as explained in [Liem95].

The main phases of the rule-driven compiler are shown
in Figure 4. After the usual parsing and lexical analysis
steps, the C source algorithm is mapped onto a virtual
machine for a generic architecture. This is similar to the
approach presented by Antoniazzi et al. [Anto94] (where it
used for software performance estimation purposes). The
virtual machine contains a set of predefined assembly-level
operations for a non-existing machine.

Figure 4: Retargetable Compiler

Generic operations for the virtual machine are passed to a
peephole optimizer. The optimizer transforms sequential
occurrences of operations into more efficient operations
through simple replacements. The operations that remain
are then expanded into operations for the real machine.
Each expansion follows a rule provided by the compiler
writer. Each rule indicates a source piece of code and a tar-
get implementation in the form of micro-operations repre-
senting bit fields of the instruction-set. Micro-operations

Retargetable
Peep-hole Optimizer

Map to Real Machine

Retargetable Compactor

Retargetable Assembler/Linker

C to Virtual machine

C Source

 Register declarations

 Instruction Format

 Replacement rules

Expansion
rules

Object Code

are subsequently assembled, linked and loaded to produce
executable object-code.

A rule base for a C compiler was developed for the
MSQ in approximately two person weeks. The compiler
supports a subset of ANSI C; however, it does support the
entire functionality of the architecture. The data RAM is
treated as a large register file, therefore, the support of tra-
ditional memory is unnecessary. In fact, the actual operand
and accumulator registers of the MSQ ALU are never seen
by the register allocator in the front-end. Here, register file
accesses are transformed into local RAM accesses and
moves to and from the accumulator, using situation-specific
rules.

4. Co-simulation issues

One of the important requirements from the original
designers was that all the behavioural descriptions be co-
simulated with the original testbench. This testbench was
originally designed for the RT level VHDL code. Fortu-
nately, the handshake-based inter-operator communication
approach used in this design simplified this issue. All of the
testbenches exploited this handshake to perform event syn-
chronization.

4.1. Co-simulation of the Amical behaviour

The main issue here is to correlate the behavioural-level
Amical VHDL descriptions with the RTL testbench. A sim-
ple handshake mechanism is used to synchronize the
descriptions by triggering a behavioral VHDL process. All
behavioural descriptions are assumed to run in less than one
clock cycle. This synchronization mechanism preserves the
partial ordering of events, and validates the function per-
formed at the behavioural level, but not the detailed timing.

4.2. Co-simulation of the Silage behaviour

As mentioned earlier, the Cathedral-2/3 toolset uses
Silage as the behavioural description language. In order to
co-simulate with the VHDL behavioural code and the RTL
VHDL testbench, it was necessary to develop a package to
allow the co-simulation of the C code generated from the
Silage description with the VHDL testbench. Also, since
Silage assumes an applicative simulation semantics, a sim-
ulation adaptation layer was required. This adaptation layer
reconciles the event-driven nature of the VHDL simulation
with the sample-oriented Silage model.

In principle, this was to be reasonably straightforward
as each invocation of the Silage model corresponds to a sin-
gle data sample. In practice, it was necessary to introduce a
pseudo-clock in order to correctly trigger the Silage-gener-
ated C model. The Synopsys CLI (C Language Interface)
utility was used to link the Silage-generated C simulation

5

model.

4.3. Co-simulation of the MSQ C code

The use of a C compiler for the automatic generation of
the microcode solves one problem but creates another.
Namely, the need to co-simulate the input C descriptions
with the VHDL behaviour. Previously, the MSQ behaviour
was written in VHDL, so this was not an issue.

We investigated the use of the Synopsys CLI (C Lan-
guage Interface) for this purpose. This interface comes with
one very strict requirement on the type of interaction
between the VHDL model and the C program. To illustrate
the effect of this requirement, we will use a simple exam-
ple. The left-hand side of Figure 5 shows the form of the
original C code. It is made up of straight-line code seg-
ments (S1 to S6), where the execution of S3 or S4 is gov-
erned by an if-then-else. A call to the MSQ bus interface is
shown asWrMSQ (write to MSQ bus), orRdMSQ (read
from MSQ bus). These calls indicate an interaction with the
VHDL model. As shown in Figure 5, they are typically
spread throughout the code.

Figure 5: Style of C required for use of C-
VHDL CLI Interface

The use of the CLI interface imposes two fundamental con-
straints:

1. A single entry point to the C function called. This
makes it impossible to exit a C function and resume
from that location upon re-entry.

2. The C program may only interact with the VHDL
model at theend of the call.

In order to realize the desired behaviour for our example,
the designer would have to rewrite the program in the form
shown on the right-hand side of Figure 5. This is essentially
an FSM, where the user must save the state of the previous
invocation of the C code.

This approach, while functionally correct, has many
disadvantages:

• It is cumbersome for the designer, and hides the
intended function.

Original C style: Required C style:

Wr

Rd

S1

S4

S2

S5

S3

S6

Wr

Wr

S1 S2

S3

S5
Rd

MSQ

MSQ

MSQ

MSQ MSQ

S4

Wr
MSQ

S5

Rd
MSQ

S6

Case

Save current state

• In the FSM-oriented form required for CLI, the source
C code becomes nearly impossible to use as input for
the C compiler. This would require an elaborate analysis
to remove the FSM structure required for the CLI, but
which is not needed in the actual implementation.

• It precludes the concurrent use of the VHDL debugger
and the C dbx debugger. The C code itself cannot be
debugged directly when using CLI. Only the VHDL
code is directly accessible.

Due to these restrictions, we have developed an alternate
approach and a tool, dubbedCoGen, as shown in Figure 6.
This approach relies on the Unix inter-process communica-
tion (IPC) layer and is based on the principles presented in
[Vald95].

Figure 6: IPC-based C-VHDL co-simulation

This requires the following components:

• a VHDL co-simulation entity, which can be configured
initially for C-VHDL co-simulation, and later for the
VHDL implementation of the actual MSQ processor;

• a datatype conversion procedure, which maps the user’s
VHDL datatypes onto those supported in C (and vice-
versa);

• a CLI-based interface between the VHDL co-simulation
entity and the VHDL-IPC interface procedure;

• the VHDL-IPC interface procedure itself, which hides
the IPC-specific communication;

• and finally, a C-IPC interface procedure, which links the
MSQ C application code with the IPC layer. The user
calls this interface via pre-defined input/output proce-
dure names (in this case, WrMSQ, RdMSQ).

The IPC-based approach has three major advantages:

1. The application C code can be used in its original form
(i.e. as in the left-hand side of Figure 5).

2. The C and VHDL dbx debugging tools can be used con-
currently.

3. The MSQ C compiler can be used directly. We simply
need to have two implementations of the RdMSQ and
WrMSQ functions, one for simulation and one for com-
pilation. For simulation, these are calls to the underly-

WrMSQ

ANSI C code:
MCU Appln. code:

VHDL:
H/W Behavior

VHDL - IPC

IPC IPC

CLI

C - IPC

UNIX

RdMSQWrMSQ

RdWr RdWr

Process1 Process2

VHDL
dbx

C
dbx

Cosim

Cosim entity

RdMSQ

Interface
Generator

CoGen:

6

ing C-IPC interface procedure. For compilation, they
are mapped to reads and writes of the MSQ interface
registers.

If implemented manually, this approach is tedious and
error-prone due to the numerous layers and the signals
involved. The CoGen co-simulation interface generator
(center of Figure 6) takes as input the VHDL description,
determine the names of signals in the co-simulation entity,
and automatically produces all the co-simulation interfaces
and IPC processes.

5. Results

All of the results shown below have been validated at
multiple levels, using the original testbench from the origi-
nal design. This required the following levels of co-simula-
tion.

• Behavioural VHDL (Amical code) and Silage behav-
iour (i.e. C code generated from Silage and co-simu-
lated via CLI interface), with RTL testbench (of the
original design).

• Behavioural VHDL (Amical code) and synthesized
technology independent netlist (from Cathedral), with
RTL testbench.

• Synthesized RTL (from Amical) and Silage behaviour,
with RTL testbench.

• Synthesized RTL (from Amical) and synthesized tech-
nology independent netlist (from Cathedral), with RTL
testbench.

• Synthesized gate-level, after technology mapping (from
Amical and Cathedral) with gate-level implementation
of original design.

These validation steps represented the single largest effort
in the design experiment. Although some of this time was
necessary due to the use of new tools and abstractions, it is
clear that this activity needs to be planned up-front.

5.1. Amical Synthesis Results

Table 1 shows the results obtained with the Amical
toolset, in comparison with the data from the original man-
ual design.

The number of logic cells is nearly identical. The criti-
cal path requirements are easily achieved, in part due to the
use of a pipeline stage between the controller and the datap-
ath. This explains the additional flip-flops in the Amical
result. The overall area overhead is nevertheless fairly low
(+14%). This additional area, when compared with thetotal
chip area, represents less than one tenth of a percent.

Most important, especially in the context of time-to-
market, is the nearly fivefold reduction in the number of

lines of code. Furthermore, the VHDL behavioural source
code is more structured, modular and easy to read than the
RTL VHDL state machine description. This lends to higher
reusability, another important productivity lever.

Table 1: Comparison of manual design and
Amical synthesis results.

5.2. Cathedral-2/3 Synthesis Results

Table 2 shows the results obtained with Cathedral-2/3,
in comparison with the data from the original manual
design.

Table 2: Comparison of manual design and
Cathedral-2/3 synthesis results.

The main observation is that the number of logic cells is
considerably smaller with respect to the manual design
while the number of flip-flops has increased significantly.
The latter is caused by a pipeline stage that was added by
Cathedral-2/3 in order to achieve the critical path con-
straint. Nevertheless, on the whole, the resulting 4% area
overhead is a very reasonable figure. In this case, when
compared to the total chip area this represents less than one
tenth of a percent overhead.

Not quantifiable, but equally important, is the ability to
quickly change the architecture parameters, without rewrit-
ing the code. For example, the addition of a pipeline stage
requires a simple synthesis pragma. Conversely, an RTL

Parameter Manual Amical Compare

No. logic cells 1146 1173 +2%

No. flip-flops 82 100 +22%

Total Area 0.300 mm2 0.342 mm2 +14%

Critical Path 65.9 ns 60.0 ns -9%

Lines of Code
for Spec.

668
(RTL VHDL)

136
(Beh. VHDL) 4.9 : 1

Parameter Manual Cathedral-2/3 Compare

No. logic cells 3153 2630 - 16%

No. flip-flops 551 877 + 59%

Total Area 1.17 mm2 1.22 mm2 + 4%

Critical Path 22.0 ns 22.4ns + 2%

Lines of Code
for Spec.

1381
(RTL VHDL)

300
(Silage) 4.6 : 1

7

approach would require a complete rewrite of the code as
the introduction of a pipeline stage at this level affects the
cycle-based behaviour throughout.

5.3. Retargetable Compiler Results

The examples chosen contain a cross section of the dif-
ferent types of tasks the MSQ performs, and represent over
half of the original behavioral VHDL code. A rule base for
a C compiler was developed for the MSQ in approximately
two person weeks. The results obtained are shown in
Table 3. The average code size overhead is roughly 2%
smaller when compared with hand code. This indicates that
the compiler performs on average at least as well as an
assembly-level programmer.

Table 3: Number of Assembly lines: C vs Hand
Code for the MSQ microcontroller

5.4. Cosimulation interface generator

The CoGen tool has been successfully implemented for
a single processor (the MSQ microcontroller) communicat-
ing with the VHDL model of the videophone. The upper
bound for the number of transactions supported by the IPC-
based link is on the order of 1000 transactions per minute.
In practice, the substitution of an entirely VHDL-based
model with the mixed C-VHDL model causes an increase
of approximately 10% of the simulation time. This is an
acceptable overhead in this case. In the general case how-
ever, when small C and VHDL models are linked, the IPC
communication time will largely dominate the simulation
time which will cause significant performance degradation.

Algorithm
No. Lines
Assembler
(manual)

No. Lines
Assembler
(compiled)

Compare

codec_gr 189 203 +7%

codec_mo 318 311 -2%

codec_io 592 587 -1%

codec_hi 710 676 -5%

Overall 1809 1777 -2%

6. Conclusion

This paper described a design experiment using
advanced synthesis and compilation tools applied to a sin-
gle chip Videophone codec. The design process presented
features:

• VHDL modelling for behavioural-level design.

• Behavioural VHDL control path synthesis for the image
processor controller, using the Amical system.

• Behavioural DSP synthesis for the image processor, via
the Cathedral-2/3 system.

• Application of a retargetable C compiler to an embed-
ded application-specific microcontroller (used for top-
level control and internal communication).

• Multi-level and multi-language co-simulation.

We have shown that the use of these tools led to the follow-
ing results:

• A five-fold reduction in the HDL description complex-
ity.

• A significant simplification of the HDL code structure
and modularity.

• Results that were competitive with manual RTL-based
design for the hardware (4% area overhead for the DSP
operator, and 14% overhead for the controller), while
meeting all speed constraints.

• Results that were more than competitive with hand-
coded assembler for the embedded software (2%more
compact than hand-coded assembler).

We also identified a strong need to pay attention to the
design verification process. Multi-level validation of the
design was the single most time consuming part of the
experiment. In particular, co-simulation of Silage and/or C
code with the VHDL description still requires significant
time and effort.

Outlook. Based on the quality of the results obtained, the
tools and methods presented in this paper are currently
being re-applied to the production design of the next gener-
ation codec. Two important trends are to be noted: 1. the
continuing evolution of the H26x videophone standard, 2.
the increased presence of microprogrammable operators to
accommodate this evolution and increasing system com-
plexity.

Acknowledgments.We would like to thank the fol-
lowing people for their technical contributions: Ivo
Bolsens, Serge Vernalde and Stefan De Troch of IMEC;
Ahmed Jerraya, Polen Kission and Carlos Valderrama of
the TIMA lab of INPG; and Olivier Deygas of SGS-
Thomson. Also, we extend our gratitude to Joseph Borel,
who was one of the main champions of this advanced
design methodology.

7. References

[Anto94] Antoniazzi, A. Balboni, W. Fornaciari, D. Sciuto,
“A Methodology for Control-Dominated Systems
Codesign”,Proc. of Intl. Workshop on Hardware/
Software Codesign, Sept 1994, pp. 2-9.

[DeMa90] Hugo De Man et al., “Architecture-Driven
Synthesis Techniques for VLSI Implementation of
DSP Algorithms”,Proceedings of the IEEE, Vol.
78, No. 2, Feb. 1990, p. 330.

[Gurd83] R. P. Gurd, “Experience Developing Microcode
Using a High-Level Language”, Proc. of the 16th
Annual Microprogramming Workshop, Oct 1983,
pp. 179-184.

[Harr95] M. Harrand et al., “A Single Chip Videophone
Video Encoder/Decoder”,Proc. of IEEE
International Solid-State Circuits Conference, Feb.
1995, pp. 292-293.

[KiDJ94] P. Kission, H. Ding and A.A. Jerraya, "Structured
Design Methodology for High-Level Design",
Proc. of 31st ACM/IEEE Design Automation
Conference, June 1994.

[KiDJ95] P. Kission, H. Ding, A.A. Jerraya, “VHDL-based
Design Methodology for Hierarchy and Component
Re-use at the Behavioral Level”,Proc. of
EuroVHDL, Brighton, U.K., Sept. 1995.

[LiMP94a] C. Liem, T. May, P. G. Paulin, “Instruction-Set
Matching and Selection for DSP and ASIP Code
Generation”,Proc. of European Design and Test
Conference, Paris, France, March 1994.

[LiMP94b] C. Liem, T. May, P. G. Paulin, “Register
Assignment through Resource Classification for
ASIP Microcode Generation”,Proc. of
International Conference on Computer-Aided
Design (ICCAD), San Jose, California, Nov. 1994.

[Liem95] C. Liem, P. Paulin, M. Cornero, A. Jerraya,
“Industrial Experience Using Rule-Driven
Retargetable Code Generation for Multimedia
Applications “,To appear in Proc. of International
Symposium on System Synthesis, Cannes, France,
Sept. 1995.

[Paul95a] P. G. Paulin, C. Liem, T. May, S. Sutarwala, “DSP
Design Tool Requirements for Embedded Systems:
A Telecommunications Industrial Perspective”,
Journal of VLSI Signal Processing, 9, 23-47,
Kluwer Academic Publishers, Mar. 1995.Invited
Paper.

[Paul95b] P. G. Paulin, C. Liem, T. May, S. Sutarwala,
“FlexWare: A Flexible Firmware Development
Environment for Embedded Systems”, from G.
Goossens and P. Marwedel, eds.,Code Generation
for Embedded Processors, Kluwer Academic
Publishers, to appear mid-1995.

[SuPa94] S. Sutarwala, P. G. Paulin, “Flexible Modeling
Environment for Embedded Systems Design”,
Proc. of Hardware-Software Codesign Workshop
(Codes), Grenoble, France, Sept. 1994, pp. 124-
130.

[STM93] SGS-Thomson MicroElectronics, “STi1100
VideoPhone CODEC Preliminary Data
Specification”, Aug 1993.

[Vald95] C.A. Valderrama et al., "A Unified Model for Co-
simulation and Co-synthesis of Mixed Hardware/
Software systems",Proc. of European Design and
Test Conference, Paris, France, March 1995.

[Vern94] S. Vernalde, P. Schaumont, I. Bolsens, H. De Man,
J. Frehel, "Synthesis of high throughput DSP
ASICs using Application Specific Datapaths", DSP
& Multimedia Technology, June 1994.

