
26 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

High-Level Synthesis Based VLSI Architectures for Video Coding / Ahmad, Waqar. - (2017).
[10.6092/polito/porto/2665803]

Original

High-Level Synthesis Based VLSI Architectures for Video Coding

Publisher:

Published
DOI:10.6092/polito/porto/2665803

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2665803 since: 2017-02-22T01:34:15Z

Politecnico di Torino

Doctoral Dissertation

Doctoral Program in Electronics and Communications Engineering (28thcycle)

High-Level Synthesis Based VLSI

Architectures for Video Coding

By

Waqar Ahmad

Supervisor(s):

Prof. Guido Masera, Supervisor

Prof. Maurizio Martina, Co-Supervisor

Doctoral Examination Committee:

Prof. Matteo Cesana, Politecnico di Milano

Prof. Sergio Saponara, Università di Pisa

Prof. Enrico Magli, Politecnico di Torino

Politecnico di Torino

2017

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my

own original work and does not compromise in any way the rights of third parties,

including those relating to the security of personal data.

Waqar Ahmad

2017

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.

degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my loving parents, my wife–Sania and my

lovely son–Mujtaba

Acknowledgements

I wish to express my sincere thanks to Prof. Guido Masera for his support and

advice. I would like to express my very great appreciation for his support and advice,

his visionary project ideas, and for providing such a great research environment.

I would like to express my deep gratitude to Prof. Maurizio Martina, who served

as PhD co-supervisor. His constant support, his enthusiastic encouragement and

exciting research ideas and his constructive criticism have been an invaluable help

for the success of this thesis. Also, I am particularly grateful for the technical and

non-technical help given by my supervisor Prof. Guido Masera and Prof. Maurizio

Martina. Furthermore, I want to thank all my colleagues from VLSI Lab. Polito for

an excellent work environment and a great time. I would further like to thank the

support and administrative team at VLSI Lab, who are doing a perfect job such that

PhD students can focus on their research work. Finally, I wish to thank my wife

Sania for her non-technical contributions to this work and for letting me follow my

passion, my lovely son Mujtaba, my parents for their constant support in what I do,

and my family and friends for reminding me of life outside my office.

Abstract

High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard.

Emerging applications like free-viewpoint video, 360degree video, augmented reality,

3D movies etc. require standardized extensions of HEVC. The standardized exten-

sions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview

Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen

Content Coding. 3D-HEVC is used for applications like view synthesis generation,

free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used

for the virtual view synthesis by the algorithms like Depth Image Based Rendering

(DIBR). As first step, we performed the profiling of the 3D-HEVC standard. Com-

putational intensive parts of the standard are identified for the efficient hardware

implementation. One of the computational intensive part of the 3D-HEVC, HEVC

and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation

(FME). The hardware implementation of the interpolation filtering is carried out

using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for

the HLS implementation of the interpolation filters of HEVC and H.264/AVC. The

complexity of the digital systems is greatly increased. High-Level Synthesis is the

methodology which offers great benefits such as late architectural or functional

changes without time consuming in rewriting of RTL-code, algorithms can be tested

and evaluated early in the design cycle and development of accurate models against

which the final hardware can be verified.

Contents

List of Figures x

List of Tables xii

Nomenclature xiii

1 Introduction 1

1.1 Introduction to Video Coding . 1

1.2 High Level Synthesis Based Video Coding 3

1.3 Problem Statement . 6

1.4 Contribution . 7

1.5 Organization of the Thesis . 7

2 State-of-the-art Video Coding Standards 9

2.1 History of The Standardization Process 10

2.2 H.264/AVC Video Coding . 11

2.3 High Efficiency Video Coding (HEVC) 14

2.3.1 HEVC Feature Highlights and Coding Design 14

2.4 Standardized Extensions of HEVC 17

2.4.1 Range Extensions . 17

2.4.2 Scalability Extensions . 18

Contents vii

2.4.3 3D Video Extensions . 18

2.5 3D High Efficiency Video Coding (3D-HEVC) 20

2.5.1 Neighbouring Block-Based Disparity Vector Derivation . . 20

2.5.2 Inter-View Motion Prediction 20

2.5.3 Inter-View Residual Prediction 22

2.5.4 Illumination Compensation 23

2.5.5 Multiview HEVC With Depth 24

3 Coding Complexity Analysis of 3D-HEVC 27

3.1 3D-HEVC Tools . 28

3.1.1 Dependent View Coding 28

3.1.2 Depth Maps Coding . 30

3.1.3 Encoder Control . 31

3.2 Complexity Analysis . 31

3.2.1 Profiling of 3D-HTM Encoder 32

3.2.2 Profiling of 3D-HTM Decoder 34

3.3 Identified Computational Complex Tools 35

4 High-Level Synthesis 37

4.1 What is High-Level Synthesis? . 37

4.2 Overview of High-Level Synthesis Tools 39

4.2.1 Academic HLS Tools . 39

4.2.2 Other HLS Tools . 40

4.3 HLS Optimizations . 43

4.3.1 Operation Chaining . 43

4.3.2 Bitwidth Optimization . 43

4.3.3 Memory Space Allocation 43

viii Contents

4.3.4 Loop Optimizations . 44

4.3.5 Hardware Resource Library 44

4.3.6 Speculation and Code Motion 44

4.3.7 Exploiting Spatial Parallelism 45

4.3.8 If-Conversion . 45

4.4 Xilinx Vivado Design Suite . 45

4.4.1 Benefits of High-Level Synthesis 46

4.4.2 Basics of High-Level Synthesis 46

4.4.3 Understanding the design flow of Vivado HLS 48

5 HLS Based FPGA Implementation of Interpolation Filters 53

5.1 Fractional Motion Estimation . 53

5.2 H.264/AVC Sub-pixel Interpolation 55

5.2.1 HLS based FPGA Implementation 57

5.3 HEVC Sub-pixel Interpolation . 62

5.3.1 HEVC Luma Sub-pixel Interpolation 63

5.3.2 HLS based FPGA Implementation of Luma Interpolation . . 64

5.3.3 HEVC Chroma Sub-pixel Interpolation 67

5.3.4 HLS based FPGA Implementation of Chroma Interpolation 70

5.3.5 Summary: HLS vs manual RTL Implementations 73

5.3.6 Design Time Reduction 74

6 Conclusions and Future Work 76

6.1 Conclusions . 76

6.1.1 Hardware Implementation: HLS vs Manual RTL 76

6.2 Future Work . 77

6.2.1 3D-HEVC Renderer Model 77

Contents ix

6.2.2 Hardware complexity analysis of Renderer Model 80

References 85

List of Figures

1.1 Postcard from 1910 . 2

2.1 Video coding standardization scope 10

2.2 H.264/AVC macroblock basic coding structure 11

2.3 HEVC video encoder . 15

2.4 3-view case: Prediction structure of Multiview HEVC 19

2.5 HEVC Inter-view motion prediction 19

2.6 Spatial Neighbouring blocks for NBDV 21

2.7 3D-HEVC temporal motion prediction 22

2.8 3D-HEVC Temporal motion vector prediction 23

2.9 Illumination Compensation . 24

2.10 Partitioning of depth PU . 25

2.11 Contour partition of a block . 26

3.1 Block Diagram of basic structure of 3D-HEVC. 29

3.2 Block Level Representation of 3D Tools of HEVC. 30

3.3 Computationally Complex parts of 3D-HEVC 36

4.1 HLS Tools Classification . 40

4.2 Vivado HLS Design Flow . 49

5.1 Pixel positions for Integer, Luma half and Luma quarter pixels. . . . 57

List of Figures xi

5.2 13x13 Pixel Grid for H.264/AVC Luma Interpolation of 8x8 block

(where green colour represents the integer pixels block to be interpo-

lated and yellow colour represents the required integer pixels padded

to the block to support interpolation). 58

5.3 HLS implementation of H.264/AVC Luma Sub-pixel. 59

5.4 15x15 Pixel Grid for HEVC Luma Interpolation of 8x8 block (where

green colour represents the integer pixels block to be interpolated

and yellow colour represents the required integer pixels padded to

the block to support interpolation). 65

5.5 HLS implementation of HEVC Luma Sub-pixel. 66

5.6 Chroma sample grid for eight sample interpolation 69

5.7 7x7 Pixel Grid for HEVC chroma Interpolation of 4x4 block (where

green colour represents the integer pixels block to be interpolated

and yellow colour represents the required integer pixels padded to

the block to support interpolation). 71

5.8 HLS implementation of HEVC Chroma Sub-pixel. 72

5.9 Design time comparison HLS vs Manual RTL Design. 75

6.1 Block Diagram of SVDC . 79

6.2 Block Diagram of Renderer Model. 79

6.3 High Level Hardware Architecture of Renderer Model 80

6.4 Initializer Hardware Diagram. 81

6.5 Partial re-rendering algorithm flow diagram. 82

6.6 Re-renderer Hardware Diagram. 83

6.7 SVDC Calculator Hardware Diagram. 84

List of Tables

3.1 Class-wise time distribution 3D-HEVC vs HEVC Encoder. 33

3.2 Class-wise time distribution 3D-HEVC vs HEVC Decoder. 35

5.1 Resources required for HLS implementation of H.264/AVC Luma

Sub-pixel Interpolation using multipliers for multiplication. 61

5.2 Resources required for HLS implementation of H.264/AVC Luma

Sub-pixel Interpolation using add and shift operations for multiplica-

tion. 61

5.3 H.264/AVC Luma Sub-pixel HLS vs Manual RTL Implementations. 62

5.4 H.264/AVC vs HEVC Luma Sub-pixel HLS implementation. 62

5.5 Resources required for HLS based HEVC luma implementation

using multipliers for multiplication. 67

5.6 Resources required for HLS based HEVC luma implementation

using add and shift operations for multiplication. 67

5.7 HEVC luma sub-pixel HLS vs manual RTL Implementations. . . . 67

5.8 Resources required for HLS based HEVC chroma implementation

using multipliers for multiplication. 72

5.9 Resources required for HLS based HEVC chroma implementation

using add and shift operations for multiplication. 72

5.10 HEVC Chroma sub-pixel HLS vs manual RTL Implementations. . . 73

Nomenclature

Acronyms / Abbreviations

3D−HEVC 3D High Efficiency Video Coding

AVC Advanced Video Coding

CPU Central Processing Unit

DSL Digital Subscriber Line

DV D Digital Versatile Disk

FF Flip-Flop

FPGA Field-Programmable Gate Array

FPS Frames Per Second

HD High Definition

HDL Hardware Description Language

HEVC High Efficiency Video Coding

HLL High-Level Language

HLS High-Level Synthesis

IEC International Electrotechnical Commission

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

xiv Nomenclature

ITU −T International Telecommunication Union-Telecommunication

JTC Joint Technical Committee

JV T Joint Video Team

LAN Local Area Network

LUT Lookup Table

MB Macro Block

MMS Multimedia Messaging Services

MPEG Moving Picture Experts Group

PST N Public Switched Telephone Network

RT L Register Transfer Level

SD Standard Definition

SoC System on Chip

TV Television

UMT S Universal Mobile Telecommunications System

VCEG Video Coding Experts Group

V HDL VHSIC Hardware Description Language

V HSIC Very High Speed Integrated Circuit

V LSI Very Large Scale Integration

VoD Video-on-Demand

Chapter 1

Introduction

This chapter starts with an introduction to the fundamentals of video coding through

an historical perspective. Following this, the chapter surveys High-Level Synthesis

(HLS) based video coding. Subsequently, we propose an alternative methodology for

VLSI implementation of video coding algorithms and introduce its main components,

i.e., the HLS based simulation, verification, optimization and synthesis. We conclude

with an overview of the individual chapters, indicating the relevant contributions.

1.1 Introduction to Video Coding

The process of compressing and decompressing video is called video coding or video

compression. Moving digital images are digitally compressed by video compression

algorithms. There is a long list of the video coding applications, some applications

of the video compression include TV, phones, laptops, cameras etc. Where there

is a digital video content, there should be video compression behind that content.

For the digital video large amount of the storage capacity is required if the video is

in its original form i.e. uncompressed. As an example, uncompressed 1080p high

definition (HD) video at 24 frames/second requires 806 GB of storage for a video of

1.5 hours duration with bit-rate requirement of 1.2 Gbits/second. That is why, for

storage and transmission purposes of the digital video, video compression is a must,

otherwise it will be impossible to store and process the uncompressed video contents

for applications of today’s era. Decompression of compressed video is required for

displaying the video contents to the consumers.

2 Introduction

Sending visual images to a remote location has captured the human imagination

for more than a century Figure 1.1. The invention of television in 1926 by the

Scotsman John Logie Baird [1] led to the realisation of this concept over analogue

communication channels. Even analogue TV systems made use of compression or

information reduction to fit higher resolution visual images into limited transmission

bandwidths [2].

Fig. 1.1 "in the year 2000", postcard from 1910

The emergence of mass market digital video in the 1990s was made possible

by compression techniques that had been developed during the preceding decades.

Even though the earliest videophones [3] and consumer digital video formats were

limited to very low resolution images (352x288 pixels or smaller), the amount

of information required to store and transmit moving video was too great for the

available transmission channels and storage media. Video coding or compression

was an integral part of these early digital applications and it has remained central to

each further development in video technology since 1990 [4].

By the early 1990s, many of the key concepts required for efficient video com-

pression had been developed. During the 1970s, industry experts recognised that

video compression had the potential to revolutionise the television industry. Efficient

compression would make it possible to transmit many more digital channels in the

bandwidth occupied by the older analogue TV channels.

Present-day video coding standards [5]–[6] and products share the following

features:

1.2 High Level Synthesis Based Video Coding 3

1. Motion compensated prediction [7].

2. Subtraction of a motion compensated prediction for residual unit creation (e.g.

a residual MB).

3. Block transform and quantization to form blocks of quantized coefficients.

1.2 High Level Synthesis Based Video Coding

Video compression technology can be seen in a variety of applications ranging

from mobile phones to autonomous vehicles. Many video compression applications

such as drones and autonomous vehicles requires real-time processing capability

in order to communicate with the control unit for sending commands in real time.

Besides real-time processing capability, it is crucial to keep the power consumption

low in order to extend the battery life of not only mobile devices, but also drones

and autonomous vehicles. Field Programmable Gate Arrays (FPGAs) are desired

platforms that can provide high-performance and low-power solutions for real-time

video processing. Increasing demands of multimedia applications and services

has make up the need for embedded systems aiding ever-accelerating functionality

and flexibility [8]. Evolution of video coding supporting new advanced coding

tools and increased demand of multimedia contents make the embedded media

processing systems difficult to design and implement, under shorter time-to-market

restriction. Sate-of-the-art video coding standards i.e. HEVC [9] and H.264/AVC

are good examples of complex multimedia system with low-power and typical

performance embedded implementation requirements. Several works [10]–[11]

has been proposed for the performance enhancement and complexity reduction of

HEVC and H.264/AVC multimedia systems. As hardware designs typically are

more time consuming than equivalent software designs. Due to difficult and time

hungry process of manual RTL design, an alternative methodology for hardware

implementations of complex system is High-Level Synthesis (HLS) based hardware

implementation. Increased complexity of the digital systems [12], energy-efficient

heterogeneous systems [13] for high-performance and shortening time-to-market,

are the key factors for the popularity of the High-Level Synthesis (HLS) [14]. In

HLS, hardware functionality is specified by using the software i.e. at a higher-level

of abstraction. Moreover, field-programmable gate array (FPGA) design by HLS

4 Introduction

becomes interesting and has two fold advantage i.e. the hardware implementations

in the target device can be easily replaced and refined at higher abstraction level.

Nowadays, heterogeneous-systems are being adopted as the energy-efficient,

high-performance and high-throughput systems. The reason behind this is the

impossibility of further clock frequency scaling. These systems consist mainly

of two parts i.e., the application-specific integrated circuits (ASICs) [15] and the

software processor [16]. Each part of the system is dedicated for a specific task.

The design of these types of systems become very complex due to increase in

the complexity of the systems. ASICs are the dedicated hardware components

for the accelerated implementation of the computational complex parts for the

system. As stated above, due to increase in the complexity of the systems, the

design of these dedicated hardware also become complex and time-consuming.

Hardware description languages (HDLs) [17] are used for the register transfer level

(RTL) [18] implementation of these components. Cycle-by-cycle activity for RTL

implementation of these components is specified, which is a low abstraction level.

For such a low level of implementation, advanced expertise in hardware design are

required, alongside being unmanageable to develop. The impact of these low-level

implementation of complex systems increase the time-to-market by taking more

design and development time.

High-level synthesis (HLS) and FPGAs in combination, is an intriguing solution

to these problems of longer time-to-market and to realize these heterogeneous sys-

tems [19]. FPGAs are used for the configurable implementation of digital integrated

circuits. Manufacturing cost is an important factor in the implementation of digital

ICs. The use of FPGAs as reconfigurable hardware, help us the fast implementation

and optimization by providing ability to reconfigure the integrated circuits, hence,

removing the extra manufacturing cost. It allows the designer to re-implement modi-

fications made to the design, by changing the HDL code description, re-synthesize

and implement the design using same FPGA fabric by the help of implementation

tools. Thus HLS based FPGA implementation of digital systems can be helpful in

functional verification, possible hardware implementation and large design-space

exploration of the systems. FPGA based implementation of user applications can be

used an intermediate implementation before the ASICs and SoC implementation.

C, SystemC and C++ etc. are the High-level languages (HLLs) being used for

the software programming and development. HLS tools take HLL as input and HDL

1.2 High Level Synthesis Based Video Coding 5

description (circuit specification) is generated automatically. This automatically gen-

erated circuit specification performs the same functionality as software specification.

Since, the benefits of HLS i.e. to have a new fast hardware implementation just by

changing the code in software, help software engineers with very little requirement

of the hardware expertise. The benefits of the HLS to hardware engineers are the fast,

rapid and high-level abstraction implementation of complex systems design, thus

increasing the possibility in design space exploration. For the fast and optimized

implementation of the complex systems and designs having FPGAs as the imple-

mentation technology, HLS based implementation provides significant suitability in

terms of alternative design-space explorations by facilitating implementations of the

modifications made to the design [20].

The prominent developments in the applications of FPGA industry include the

use of FPGAs in the acceleration of the Bing search by the Microsoft and the Altera

acquisition by Intel [21]. These developments enhance the possibility of usability of

FPGAs in computing platforms with the help of high-level design methodologies.

Further recent applications of HLS include in the areas of machine learning, medical

imaging, neural networks etc. The primary reason behind the application of HLS in

above specified areas is energy and performance benefits [22].

As hardware designs typically are more time consuming than equivalent soft-

ware designs, this thesis proposes a rapid prototyping flow for FPGA-based video

processing system design. High-level synthesis tools translate a software design

into hardware descriptive language, which can be used for configuring hardware

devices such as FPGAs. The video processing algorithm design of this thesis takes

advantage of a high-level synthesis tool from one of the major FPGA vendors, Xilinx.

However, high-level synthesis tools are far from being perfect. Users still need

embedded hardware knowledge and experience in order to accomplish a successful

design. This thesis focuses on interpolation filter architecture design and imple-

mentation for high-performance video processing system designs using a high-level

synthesis. The consequent design results in a frame processing speed of 41 QFHD,

i.e. 3840x2160@41fps for H.264/AVC sub-pixel Luma interpolation, 46 QFHD for

HEVC luma sub-pixel and 48 QFHD for HEVC chroma interpolation. This thesis

shows the possibility of realizing a high-performance hardware specific application

using software. By comparing our approach with the approaches in other works,

the optimized interpolation filter architecture proves to offer better performance and

6 Introduction

lower resource usage over what other works could offer. Its reconfigurability also

provides better adaptability of many video coding interpolation algorithms.

1.3 Problem Statement

In recent years, FPGA development has been moved towards higher abstraction levels.

The move not only helps improve productivity, but also lowers the barrier for more

algorithm designers to get access to the tempting FPGA platform. There is a wide

selection of tools available in the market that can be used for high-level synthesis.

Conventionally algorithm designers prefer using high-level languages such as C/C++

for algorithm developments, and Vivado HLS is one of the tools that is capable for

synthesis C/C++ code into RTL for hardware implementation. Nevertheless, most

high-level synthesis tools could not translate a high level implementation to a RTL

implementation directly, and users must restructure the high level implementations in

order to make them synthesizable and suitable for the specific hardware architecture.

Therefore, it becomes important to adapt to the high-level synthesis tool and to

discover approaches for achieving an efficient design with high performance and low

resource usage. The high-level synthesis tool used in this work is Vivado HLS from

Xilinx.

This thesis addresses the following issues:

1. How can engineers with limited FPGA experience quickly prototype an FPGA-

based SoC design for high performance video processing system?

2. How productive is Vivado HLS? What changes need to be made in order for a

software implementation to be synthesized to a hardware implementation?

3. How are the performance and area of video processing algorithms modelled

by Vivado HLS compared to that of RTL modelling from related works?

4. How are the performance and power consumption of a FPGA-based video

processing system compared to that of an Intel CPU based video processing

system?

1.4 Contribution 7

1.4 Contribution

This thesis work presents an FPGA-based video processing system rapid prototyping

flow that aims to lower the boundary between software and hardware development.

The rapid prototyping flow consists of two major parts: 1) the video processing

system architecture design, and 2) the video processing algorithms design. By un-

derstanding the underlying architecture of Xilinx’s Zynq platform, I can quickly

assemble a video processing system on the block level with minimum RTL modifica-

tions. The development period can be reduced from months to weeks. In addition,

since Vivado HLS does not provide a common structure for domain-specific algo-

rithm designs, this thesis proposed HLS based hardware architecture for interpolation

filters of video coding algorithm designs in Vivado HLS. Several optimizations are

also done to the proposed interpolation filter architecture so that it not only improves

the video processing rate, but also reduces the flip-flop utilization and saves the LUT

utilization when comparing with similar works done in the literature. This work

demonstrates the possibility of rapid prototyping of a computation-intensive video

processing system with more than enough of the real-time processing performance.

1.5 Organization of the Thesis

This thesis is organized as the following: Chapter 2 discusses and compares the

sate-of-the-art video coding standards i.e. High Efficiency Video Coding (HEVC),

H.264/AVC and standardized extensions of HEVC. Also included in Chapter 2

are several related works that were done by others as well as some background

information related to the coding tools that have been added in 3D-HEVC. Moreover,

Chapter 3 describes the coding complexity analysis of 3D-HEVC. It identifies the

computational intensive tools of 3D-HEVC encoder and decoder. Chapter 3 also

discusses the class-wise coding and decoding time distribution of different classes

(tools). In addition, Chapter 4 presents the High-level synthesis, available High-level

synthesis tools and Xilinx Vivado Design Suite. Chapter 5 describes the HLS based

implementation of interpolation filters of HEVC and H.264/AVC, which is one of

the computational intensive part of the video coding algorithms. It includes the

performance and resource utilization comparison between my work and other works.

8 Introduction

Last but not least, Chapter 6 will conclude this thesis with discussion about the

contributions, challenges and future work.

Chapter 2

State-of-the-art Video Coding

Standards

For effective communication, standard define a common language to be used between

different parties. The same holds equally valid for the video coding standards.

The common language that the video encoding and decoding components use for

communication and syntax of the bitstream, is defined by the video compression

standards. For the video compression standards, it is very important to support

efficient compression algorithms and allow efficient implementation of the encoder

and decoder.

Coding efficiency optimization is the most important and primary goal of majority

of the video coding standards. For specific video quality, coding efficiency can be

defined as, minimization of the bit-rate required for representing the specified video

quality. Other way around, for a specific bit-rate, the increase in the video quality

can be termed as coding efficiency.

The goal of this chapter is to describe the state-of-the-art video coding stan-

dards being used i.e. High Efficiency Video Coding (HEVC) standard [5][23] and

H.264/AVC [24][6] comparative to their major forerunner including H.262/MPEG-2

Video [25][26], H.263 [27] and MPEG-4 Visual [28].

10 State-of-the-art Video Coding Standards

2.1 History of The Standardization Process

An enabling technology for digital television systems worldwide was, the MPEG-2

video coding standard [25], which was an extension of MPEG-1. MPEG-2 was

widely used for transmission of TV signals of High definition (HD) and Standard

Definition (SD) over a variety of transmission media such as terrestrial emission,

cable, satellite and for storage onto DVDs.

The popular growth of HDTV and its services increase the need for higher

coding efficiency. Coding efficiency enhancement allows the transmission of high

quality and higher number of video channels over already available digital media

transmission infrastructures e.g. UMTS, xDSL, Cable Modem etc. These mediums

allow less data rates as compared to the broadcast channels.

The evolution of video coding in applications of telecommunication include

the development of H.261 [29], H.262 [25][26], H.263 [27], H.264/AVC [24][6]

and H.265 (HEVC) [5] video coding standards. The prominent telecommunication

applications are wireless mobile networks, ISDN, LAN and T1/E1. To maximize the

coding efficiency, significant efforts dealing with the loss/error optimization, network

types and formatting of the characteristic have been made. This evolution of the

video coding standards expanded the capabilities like video shaping and broadened

the application areas of the digital video.

Fig. 2.1 Video coding standardization scope [6].

The scope of the video coding standard is shown in Fig.2.1. The transportation

and storage media for video signal is not present in the scope of the video coding

standard. The standardization of the decoder is central to video coding standard in

all ISO/IEC and ITU-T standards. The standardization is about the syntax, bitstream

structure and procedure for decoding the syntax elements. This makes for all the

2.2 H.264/AVC Video Coding 11

decoders to produce the same type of output when an encoded input bitstream

conforming to the constraints of a specific standard is given. This limitation in

standard’s scope, allows the flexibility and freedom for optimized implementations

e.g. time-to-market, quality of compression, cost of implementation etc. But there

is no guarantee of reproduction quality as any crude coding technology can be

conforming to the standard.

2.2 H.264/AVC Video Coding

H.264/AVC macroblock basic coding structure is shown in Fig. 2.2. By splitting

the input video frame results in macroblocks, each macroblock is associated with a

specific slice, slice consists of several macroblocks. As shown, processing on each

macroblock of every slice is performed. Usually, one picture consists of various

slices, in that case parallel processing is possible by processing more than one

macroblocks in parallel.

Fig. 2.2 H.264/AVC macroblock basic coding structure.

The prominent applications areas of H.264/AVC for which the technical solutions

are designed include the following

12 State-of-the-art Video Coding Standards

• DSL, cable, terrestrial, satellite etc.

• Storage on DVD, optical and magnetic disks etc.

• Services over mobile networks, LAN, modems, Ethernet etc.

• Multimedia services like Video-on-demand, MMS over ISDN, DSL, wireless

networks etc.

Some prominent features of the H.264/AVC are as follows [6].

• Supports motion compensation of small block sizes as 4 x 4 luma, hence, more

flexible.

• More accurate motion vector by supporting quarter-sample motion compensa-

tion.

• Supports picture boundary extrapolation technique.

• For efficient coding supports enhanced reference picture selection.

• More flexible selection of pictures ordering for display and referencing pur-

poses.

• Flexible picture referencing and representation methods.

• Supports weighted motion prediction.

• Supports "Skipped" motion inference in improved form and in addition to that

supports "direct" motion inference method.

• Intra coding based on directional spatial prediction.

• Supports In-the-loop deblocking filtering.

For improvement in the coding efficiency, the following parts of the standard were

also enhanced:

• Supports block size of 4x4 transform.

• Supports block transform in hierarchical manner.

2.2 H.264/AVC Video Coding 13

• Supports 16-bit transform i.e. short, as comparative to 32-bit processing of the

previous standards.

• Inverse transform is more efficient in terms of video content equality after

decoding from all decoders.

• Includes CABAC (context-adaptive binary arithmetic coding) and CAVLC

(context-adaptive variable-length coding) , more powerful and advanced en-

tropy coding methods.

For the more robust and flexible operations, the new design features included in

H.264/AVC standard are as follows:

• For the efficient and robust header information conveyance the Parameter set

structure is provided.

• The logical data packet is used for every syntax structure, this is called NAL

unit. This structure provides more flexibility in terms of customization for

transmission of the video content over specific networks.

• Supports more flexible slice sizes.

• Supports Flexible macroblock ordering (FMO).

• Supports Arbitrary slice ordering (ASO), in real-time applications which can

improve delay e.g., internet protocol networks.

• Supports Redundant pictures, which improves robustness to data losses.

• Supports Data Partitioning, allows the partitioning of the slice syntax up-to

three different parts, for purpose of transmission, it depends on syntax elements

categorization.

• Supports SP/SI synchronization/switching pictures, picture types specification

enables synchronization of the decoder in decoding process of an ongoing

video content stream produced by other decoders, hence improving the effi-

ciency. This allows decoder switching between video content representations

for different data rates, losses or errors recovery, enabling trick modes such as

fast-reverse and fast-forward etc.

14 State-of-the-art Video Coding Standards

2.3 High Efficiency Video Coding (HEVC)

Growth in the popularity of HD video, increase in diversification of services, ap-

pearance of UHD and QFHD formats of video e.g. 4K or 8K resolution, demands

the higher coding efficiency as compared to H.264/AVC’s abilities. In addition to

that, the demand for higher coding efficiency becomes more strong while consider-

ing the multiview or stereo applications of higher resolution. Furthermore, tablet

PCs and mobile devices become the source of higher video contents consumption,

application like video-on-demand needs efficient network infrastructure. Accumula-

tively, all these factors are imposing big challenges on the current networks. Mobile

applications require higher resolutions and quality.

To address all existing H.264/AVC applications, need for a more efficient video

standard becomes obvious. The most recent video project of the ITU-T Video Coding

Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG)

standardization organizations is the High Efficiency Video Coding (HEVC). These

organizations are collaborating as Joint Collaborative Team on Video Coding (JCT-

VC) [23]. In 2013, HEVC’s first edition was finalized in the form of an aligned draft

published by both ISO/IEC and ITU-T. For extending the applications areas of HEVC

standard more work was planned to support scalable, extended-range, 3D, multiview

and stereo video coding. HEVC has been designed for this purpose and specifically

to focus on two hot issues: increased applications of parallel architectures and higher

resolution for video processing. Like all previous video compression standards of

ITU-T and ISO/IEC, only the bitstream structure and syntax is standardized, and

also the procedure for decoding.

2.3.1 HEVC Feature Highlights and Coding Design

HEVC has been designed to accomplish many goals, including integration of trans-

port system, coding efficiency, resilience to data losses and architectures implemen-

tation using parallel processing.

Main features of the HEVC design are described briefly in the following para-

graphs.

2.3 High Efficiency Video Coding (HEVC) 15

Video Coding Layer

Video coding layer utilize the hybrid approach for intraprediction, interprediciton

and 2-D transform coding, the same approach was used in all previous video coding

algorithms since H.261. Hybrid video encoder’s block diagram is shown in Fig. 2.3,

which could make a HEVC conformed bitstream.

Fig. 2.3 HEVC video encoder (Light gray elements show decoder).

Highlighted features of HEVC are given in the following text. A more detailed

version of these properties can be found in [9].

• Coding tree block (CTB) and Coding tree units (CTUs): One luma CTB,

related chroma CTBs comprise the CTU. The size of the luma CTB can be

LxL, where L= 16, 32, or 64 pixels. The larger the size the better the compres-

sion. CTBs are partitioned into smaller blocks of quadtree-like structure and

signalling [30].

• Coding blocks (CBs) and Coding units (CUs) : One luma CB and two cor-

responding chroma CBs and the related syntax comprise a coding unit (CU).

CUs are partitioned into prediction units (PUs) and transform units (TUs) tree.

16 State-of-the-art Video Coding Standards

• Prediction blocks (PBs) and Prediction units : Luma and chroma CBs can be

further partition in size and predicted from luma and chroma PBs depending

on the decision of the prediction-type. 64×64 down to 4×4 samples variable

PB sizes are supported in HEVC.

• Transform blocks (TBs) and Transform units (TUs): Transforms blocks are

used for the coding of prediction residual. Supported TB size are 32x32, 16x16

and 4x4.

• Motion vector signalling: In Advanced motion vector prediction (AMVP),

most probable candidates are derived from reference picture and the adjacent

PBs. For MV coding, a merge mode can be used. In merge mode, MVs

are inherited from the spatially or temporally neighbouring PBs. Direct and

improved skipped motion can also be used.

• Motion compensation: For the motion vectors (MVs), quarter-pixel precision

is used. 7-tap and 8-tap filters are designed for the sub-pixel interpolation as

compared to the H.264/AVC six-tap filters.

• Intrapicture prediction: 33 directional, DC (flat) and planar (surface fitting)

prediction modes are supported in HEVC. The encoding of the selected pre-

diction mode is performed based on neighbouring blocks previously decoded.

• Quantization control: HEVC supports uniform reconstruction quantization

(URQ). For different transform block sizes the scaling matrices for quantization

are used.

• Entropy coding: Context adaptive binary arithmetic coding (CABAC) method

is used. The improvements made to the entropy coding method includes

better coding performance, higher speed of throughput and reduction in the

requirements of the context memory.

• In-loop deblocking filtering: More simplified deblocking filter in terms of

filtering and decision-making, friendly in terms of parallel processing.

• Sample adaptive offset (SAO): Post deblocking in the interpicture prediction

loop, a new type of non-linear amplitude mapping is used, for the better

original signal reconstruction.

2.4 Standardized Extensions of HEVC 17

Modified Slice Structuring and Parallel Decoding Syntax

For slice data structure modification and parallel processing enhancement for the

purpose of packetization, new features are added in the HEVC. In the context of a

particular application, these features have specific benefits.

• Tiles: Partitioning a picture into rectangular area (Tiles) is supported in HEVC.

Parallel processing capability can be increased by application of the concept

of tiles. Tiles can be decoded independently with some common header

information. Tiles support parallelism in terms of subpicture/picture i.e. coarse

level of granularity.

• Wavefront parallel processing: WPP supports parallelism in terms of slice

i.e. at a fine level of granularity. It gives better performance of compression as

compared to tiles and removes the visual artefacts which may be present in

case of tiles.

• Dependent slice segments: Dependent slice segment structure enables the

fragmented packetization (separate NAL unit) of the data of a specific tile

or wavefront entry. It improves the performance by reducing the latency.

Low-level encoding may takes advantage of the dependent slice segments.

2.4 Standardized Extensions of HEVC

HEVC extensions can be divided into three types:

1. Range extensions

2. Scalability extensions

3. 3D video extensions

All of these extensions are briefly described in the following paragraphs:

2.4.1 Range Extensions

The structures of enhanced chroma sampling 4:2:2 and 4:4:4 and pixel bit depths

more than 10 bits are supported in the range extensions of the HEVC. Range ex-

18 State-of-the-art Video Coding Standards

tensions are applicable to the areas of screen content coding, direct source content

coding of the RGB, auxiliary pictures coding and lossless and high bit-rate coding.

The draft range extensions can be found in [31].

2.4.2 Scalability Extensions

The coarse grain SNR and spatial scalability are possible through scalability exten-

sions of the HEVC also termed as "SHVC". [32] provides the draft text of scalability

extensions. SNR and spatial scalability in SHVC can combined with already avail-

able temporal scalability [33]–[34]. Resampling of the decoded reference layer

picture is performed when spatial scalability is used. This resampling is performed

by the use of upsampling filter defined specifically for the spatial scalability scenario.

2.4.3 3D Video Extensions

Depth for a visual scene can perceived by the multiview and 3D video formats

in combination with the proper 3D display system. There are two type of the 3D

displays available in the market:

1. Stereoscopic displays: Special glasses are required to perceive the depth of

the view.

2. Auto-stereoscopic displays: No requirement of the glasses to perceive the

depth of the scene, instead, view-dependent pixels are emitted. Auto-stereoscopic

displays perform depth-image based rendering (DIBR). For DIBR systems,

depth is part of the input coded bitstream. 3D formats in form of video plus

depth is an important category of 3D formats.

Multiview HEVC

Mutiview HEVC is the most simple and straightforward architectural extension of

HEVC, also termed as MV-HEVC, based on H.264/AVC MVC design principles

[35], [36]. The draft text can be found in [37].

2.4 Standardized Extensions of HEVC 19

Fig. 2.4 3-view case: Prediction structure of Multiview HEVC.

The 3-view case prediction structure of the multiview is shown in Fig. 2.4.

HEVC is capable of flexible management of the reference pictures. This capability

of the HEVC enables the inter-view sample prediction.

Fig. 2.5 HEVC Inter-view motion prediction.

20 State-of-the-art Video Coding Standards

Multiview HEVC With Modification in Block-Level Tools

The correlation between views exploited through residual and motion data. Block-

level changes make possible the exploitation of this correlation as shown in 2.5

2.5 3D High Efficiency Video Coding (3D-HEVC)

3D-HEVC is the HEVC extension for which the working draft and the reference

test model are specified in [38], [39]. The advanced coding tools for multiple views

are included in this extension. [40] becomes the basis for the 3D-HEVC. Prominent

3D-HEVC tools are presented in the following paragraphs.

2.5.1 Neighbouring Block-Based Disparity Vector Derivation

Neighbouring block based disparity vector (NBDV) is the 3D-HEVC tool used for

the identification of similar blocks in multiple different views. This tool’s design is

very similar to the merge mode and AMVP in HEVC. For inter-view pixel prediction

of spatial and temporal neighbouring blocks, NBDV is used which make use of

already available disparity vectors [41].

Fig. 2.6 shows the spatial neighbouring blocks used for the NBDV process, these

are same blocks as in merge modes/AMVP of HEVC. The order of the block’s access

is also same as in merge mode: A1, B1 , B0, A0, and B1.

2.5.2 Inter-View Motion Prediction

The merge mode modification by the addition of more candidates make the realization

of the inter-view motion prediction. No modification to the AMVP is made. The new

merge list has six candidates. The construction of the list is still same as in HEVC.

Additional two candidates can be put into the list as described in the following text.

NBDV provides the index of the reference picture and motion vector of block

found, as shown in Fig. 2.5. This is the first candidate inserted into the merge

list. NBDV also provides the disparity vector and index of the reference inter-view

2.5 3D High Efficiency Video Coding (3D-HEVC) 21

picture. This is the second candidate inserted in merge list. Disparity vector insertion

into the candidate list does not depend on existence of the inter-view candidate [42].

B2 B1

A1

Current Block

A0

B0

Fig. 2.6 Spatial Neighbouring blocks for NBDV.

Fig. 2.7 shows that the TMVP co-located block of view 1 at time 1 for current

block, have a reference index 0 and disparity vector according to the current pic-

ture’s temporal reference. That is why the TMVP candidate is usually regarded as

unavailable. The candidate is regarded as available by changing the reference target

index to 2 i.e. according to the inter-view reference picture.

22 State-of-the-art Video Coding Standards

Fig. 2.7 3D-HEVC temporal motion prediction.

2.5.3 Inter-View Residual Prediction

In case of two-views residual signal motion-compensation, the advantage of the

correlation is taken by the application of advanced residual prediction (ARP) [43].

2.5 3D High Efficiency Video Coding (3D-HEVC) 23

Fig. 2.8 3D-HEVC Temporal motion vector prediction.

In current non-base view i.e. for the block DC, motion compensation is carried

out using the VD motion vector as shown in as shown in Fig. 2.8. The NBDV vector

identifies the BC inter-view block. Then, by the use of VD, the motion compensation

is performed by the base view reconstructed Br and BC. Addition of this predicted

signal to the signal predicted by motion compensation of Dr is performed. The

precision of the current block’s residual signal is best as same VD vector is used. This

residual prediction can be can weighted by 1 or 0.5, with ARP enabled.

2.5.4 Illumination Compensation

The calibration of the cameras in lighting effects and colour transfer is very important.

Otherwise, the prediction of the cameras recording the same scene may fail. For

improvement in the coding efficiency of the blocks predicted through inter-view

pictures, new coding tool named as illumination compensation is developed [44].

24 State-of-the-art Video Coding Standards

The disparity vector of the current PU is used for the identification of reference view

neighbour sample as shown in Fig. 2.9.

Reference PUCurrent PU

Neighbor samples of current block Neighbor samples of reference block

Reference block in the reference view identified by disparity
Current PU

Fig. 2.9 Illumination Compensation.

2.5.5 Multiview HEVC With Depth

In 3D-HEVC, Depth maps are used in the investigation of compression formats

such as video-plus-depth. The 3D data consists of multiple video and depth data

components. For their efficient implementation, many new coding tools are added in

3D-HEVC for exploiting the correlation among video and depth data components.

For coding of these types of formats, first video component is assumed as to be

coded by 2D HEVC. This makes the codec compatible with the 2D video service.

For the dependent video and depth maps, specific 3D tools are added in 3D-HEVC.

Each block can be optimally coded by the application of appropriate tools from a set

of 3D and 2D tools.

2.5 3D High Efficiency Video Coding (3D-HEVC) 25

Partition-Based Depth Intra Coding

Coding tools specific to the depth for efficient depth information representation, are

added in the 3D-HEVC design. These tools allow the non-rectangular partitioning of

the depth blocks. Depth coding modes such as depth modelling modes (DMM) [45],

simplified depth coding (SDC) [46] and region boundary chain coding (RBC) [47]

are used for partition-based depth intra coding. Fig. 2.10 shows the division of depth

PU as one or two parts. DC value is used for representing each part of the depth PU.

P0 P0P0 P0

P0 P1P0 P0

P1 P1P0 P0

P1 P1P0 P1

(b) Boundary chain coding pattern(a) Wedge-shaped pattern

P0 P0P0 P0

P0 P0P1 P0

P0 P1P1 P1

P1 P1P1 P1

Fig. 2.10 Partitioning of depth PU.

Two types of depth partitioning are available in case of DMM. These are contour

and wedge-shaped pattern. As shown in Fig 2.10(a), In case of the wedge-shaped

pattern the depth PU is segmented by a straight line. Connected chain in a series

fashion are used for segmenting the depth PU in case of RBC as shown in Fig.

2.10(b). Fig. 2.11 shows the partitioning of the depth PU based on contour pattern.

As shown, these are irregular partitions with separate sub-regions.

26 State-of-the-art Video Coding Standards

Fig. 2.11 Contour partition of a block.

Motion Parameter Inheritance

The motion parameters of the texture block can be used for the depth block. Merge

list of current depth block is modified by the addition of one more candidate, making

the inheritance of motion parameters of texture block for the corresponding depth.

The co-located block of texture helps in the generation of the extra candidate [48].

View Synthesis Prediction (VSP)

For the reduction of the inter-view redundancy, the VSP approach is used. In this

approach for texture view warping depth data information is used. By this method a

current view predictor can be generated [49].

Chapter 3

Coding Complexity Analysis of

3D-HEVC

Recent advancements in video technology increased the interest in 3D Video. Video

sequences are found in mobile, 3D cinema, internet and 3D television broadcast

channels [50]. The quality of the video sequences is rapidly increasing due to the

improvements in the video compression techniques and tools. Also, the improve-

ments in the 3D video display technologies have led to an increased demand for

3D videos. Autostereoscopic displays are the future of displaying technologies in

3D Cinemas, 3D-TV and home entertainment. Video contents in resolutions are

getting high definition and ultra-high definition for mobile and home applications

respectively. 3D video features are already being integrated in most of the video pro-

cessing devices including capturing, processing and display devices. The demand for

compression of videos is also increased. The most recent and advanced standard for

video compression is High Efficiency Video Coding (HEVC) [9]. After HEVC, focus

is on extensions of the standard to support broad range of applications. 3D-HEVC is

one of the extensions of High Efficiency Video Coding. Advanced coding algorithms

are developed for 3D video coding. To analyse and assess the complexity, profiling

of the reference software of 3D-HEVC is carried out using gprof and gcc compiler

of the standard video sequences mentioned in the Common Test Conditions (CTC).

Results based on profiling show that alongside motion estimation and interpolation

filters, majority of the encoding time (18-26%) of total encoding time is consumed

by the Renderer model. Thus, 3D-HEVC Renderer model is identified as one of the

computational intensive part of the standard alongside motion estimation and inter-

28 Coding Complexity Analysis of 3D-HEVC

polation filters. While some papers in the literature are available on the complexity

evaluation of some tools of 3D-HEVC encoder/decoder, no results are currently avail-

able to specifically explore the complexity and hardware implementation analysis of

renderer model of 3D-HEVC used for the View Synthesis Optimization (VSO). [51]

presents time profiling of 3D-HTM 10.2 reference software, in which the complexity

of texture and Depth Modelling Modes (DMMs) used for depth maps encoding, is

given. Inter-prediction encoding time percentage for 3D-HTM 8.0 reference software

is given in [52], no information is presented regarding the complexity analysis of

rendering distortion estimation model for 3D-HEVC.

Renderer model is used for RDO of depth maps coding by estimation of synthe-

sized view distortion. Depth maps are used for virtual view synthesis. Depth maps

lie at the core of 3D video technologies. Distortion in depth maps coding effect the

quality of intermediate virtual views generated during the process of DIBR. Because

of these important observations and based on the profiling result, in Chapter 6, we

have focused on the Renderer model. Identification of computational hotspots help

both in decreasing the complexity and increasing the performance by developing the

efficient tools and by implementing the accelerated software and hardware solutions

for real time visualization of the 3D video coding standard.

3.1 3D-HEVC Tools

3D-HEVC basic structure is shown in Fig. 3.1. 3D-HEVC is an enhanced version of

HEVC codec, for coding dependent views, the base view is coded using the HEVC

codec.

Supplementary coding tools and techniques, as shown in Fig. 3.2, take into

account the already coded data of other views, hence reducing the data redundancy.

3.1.1 Dependent View Coding

Dependent view coding in 3D-HEVC is performed by applying some supplementary

coding methods in addition to the basic tools of independent view coding. Additional

coding methods are used to decrease the data redundancy in the dependent view as

described in the following paragraphs.

3.1 3D-HEVC Tools 29

HEVC

Texture

Coder

Depth

View

Coder

(2Nx1) View Multiplexer

Dependent

View

Texture

Coder

Dependent

View

Depth

Coder

Dependent

View

Texture

Coder

Dependent

View

Depth

Coder

Frame N Frame NFrame N Frame N Frame N Frame N

Dependent

View (1)
Dependent

View (N-1)

Frame 2 Frame 2Frame 2 Frame 2 Frame 2 Frame 2

Frame 1

Video Input

0

Frame 1

Video

Input 1

Frame 1

Depth

Input 1

Frame 1

Video

Input 2

Frame 1

Depth

Input 2

Base View

(0)

Frame 1

Depth

Input 0

Binary

Bitstream

Fig. 3.1 Block Diagram of basic structure of 3D-HEVC.

Disparity-Compensated Prediction

Disparity Compensated Prediction (DCP) is used for the inter-view prediction of de-

pendent views. The incorporation of DCP affects only the reference list construction

procedure i.e. already coded pictures of other views and same access unit are added

in the reference picture lists.

Inter-view Motion Prediction

Inter-view motion prediction is used for eliminating the data redundancy of the

multiple views. The detailed description of Inter-view motion prediction is given in

[53]. The motion information of current block of dependent view is obtained from

corresponding block in the reference view.

30 Coding Complexity Analysis of 3D-HEVC

3D HEVC Tools

Dependent Texture Coding Tools

Disparity Compensated

Prediction (DCP)

Depth based Inter-view Motion

Parameter Prediciton (DBIvMPP)

Inter-view Residual Prediction

(IvRP)

Depth Map Coding Tools

Intra Coding using

Depth Modeling Modes

(DMMs)

Modified Motion

Compensation and

Motion Vector Coding

Motion Parameter

Inheritance (MPI)

Encoder Control for Depth Enhanced Formats

View Synthesis

Optimization (VSO)

Block-wise Synthesized

View Distortion Change

(SVDC)

Encoder-side

Render Model

Decoder-side View Synthesis

Decoder-side View Synthesis using Depth Image Based Rendering (DIBR)

Fig. 3.2 Block Level Representation of 3D Tools of HEVC.

Advanced Residual Prediction

In [54] the Advanced Residual Prediction (ARP) is described in detail. The correla-

tion between the residual of already coded view and residual of current view also

exist. To compensate this correlation advanced interview prediction is used.

3.1.2 Depth Maps Coding

Depth maps represent the distance of the objects in scene from the camera. Depth

maps are used for view synthesis of intermediate views in multi-view generation

systems. Depth maps consist of constant value regions with sharp edges. For depth

maps intra-prediction, additional coding tools are used.

3.2 Complexity Analysis 31

Depth Modelling Modes

In [55] depth modelling modes are introduced for coding of the depth maps intra-

prediction. These tools divide the depth maps in two different non-rectangular

regions of constant values for intra coding.

Motion Parameter Inheritance

Partitioning of a block to sub-blocks and motion information of the current block of

depth map can be inherited from the corresponding block of texture as in [56].

3.1.3 Encoder Control

In 3D-HEVC, encoder mode is decided based on Lagrangian cost measure. Depth

maps added for virtual view synthesis, the distortion measure for the depth maps

can be observed only in synthesized views as described in [57]. Synthesized View

Distortion Change (SVDC) is used for efficient estimation of distortion in rendered

synthesized views due to distortion in depth maps coding.

3.2 Complexity Analysis

3D-HEVC is based on video plus depth format. Depth maps facilitate the synthesis of

intermediate views on the decoder side for applications like 3D-TV, Free viewpoint

TV etc. The compression errors of depth maps result in synthesis artefacts for

the intermediate views rendered through Depth Image Based Rendering (DIBR)

methods. To remove these coding artefacts in the virtual view synthesis process,

the Synthesized View Distortion Computation (SVDC) models are included in 3D-

HEVC. Encoding and decoding time Complexity analysis of 3D-HEVC standard

is presented in this section. Profiling of the reference software of 3D-HEVC is

carried out using gprof and gcc compiler of the standard video sequences mentioned

in the Common Test Conditions (CTC). Results based on profiling show that (18-

26%) of total encoding time is consumed by the Renderer model. Alongside other

compute-intensive parts i.e. Motion Estimation (ME) and Interpolation Filtering,

32 Coding Complexity Analysis of 3D-HEVC

3D-HEVC Renderer model is identified as one of the computational intensive part of

the standard.

The 3D-HTM software provides the reference implementations of 3D-HEVC

video encoder and decoder. Our aim is to identify computational hotspots of the

standard. Implementation and complexity analysis of the standard may be assessed

based on these computational hotspots. The detailed analysis of 3D-HEVC coding

tools based on profiling results is given as in the following paragraphs.

3.2.1 Profiling of 3D-HTM Encoder

We have performed the profiling of latest available 3D-HTM Software Encoder

Version 15.0 based on HM Version 16.6. GNU gprof is used for profiling. Compu-

tationally intensive parts are identified based on the profiling. CTC of 3DV Core

Experiments are used for encoding the video sequences, used for profiling of the

encoder [58]. Eight test video sequences (1024 x 768 pixels and 1920 x 1088 pixels)

of 3DV Core Experiments are used for encoding at five different QP values (25, 30,

35, 40, 45). Two types of Encoder configuration i.e. Random Access (RA) and All

Intra (AI), are used for the experiments. We have used the three-view case (C3)

test scenario of the multiview/stereo video coding with depth data. Majority of the

encoding time is spent in classes and functions shown in Table 3.1. Encoding times

are obtained on an Intel Xeon-based (16 Core) Processor (E312xx clocked at 1.99

GHz) and using gcc 4.4.7.

Profiling Results comparison of 3D-HEVC and HEVC Encoder

Although in [51] and [52] partial profiling results of 3D-HEVC texture and depth

maps are presented. We cannot directly compare our profiling results with results

presented in [51] and [52] because our results are more detailed up-to class/function

level. Table 3.1 shows the comparison between the profiling results of encoder of

3D-HEVC and HEVC [59] standards for Random Access (RA) and All Intra (AI)

configurations, respectively. As shown in the Table 3.1, TComRdCost class consumes

majority of the time spent in encoding i.e. about 31.3-35.4% and 9.8-38.8% in both

configuration of 3D-HEVC and HEVC, respectively. Motion Estimation (ME), Inter

view residual, Inter view motion prediction and other distortion operations takes

place in TcomRdCost class. Operations like Sum of Absolute Difference (SAD),

3.2 Complexity Analysis 33

Hadmard transform (HAD) and Sum of Squared Error (SSE) for Rate Distortion

Computation are performed. Depth maps estimation used in inter view motion

prediction for the calculation of disparity vector derivation in dependent views is

also calculated in this class. TRenSingleModelC class consumes about (26.8% and

18.3 %) of time. Process like VSO and SVDC estimation takes place in this class.

Process of rendering is used for Virtual View Synthesis generation. In Random

Access (RA) configuration, the time taken by TComInterpolationFilter class is about

(19.3%) and (19.8%) , respectively, where the motion compensation Vertical and

Horizontal Filtering (VHF) occurs. Interpolation filtering is used, whenever the

inter-view residual prediction, de-blocking and View Synthesis prediction is applied.

Table 3.1 Class-wise time distribution 3D-HEVC vs HEVC Encoder.

Function / Class
3D-HEVC HEVC [59]

AI% RA% AI% RA%

TComRdCost 35.4 31.3 9.8 38.8

TRenSingleModelC 26.8 18.3 Nil Nil

TComInterpolationFilter 0.0 19.3 0.0 19.8

TComTrQuant 9.0 10.0 24.4 10.7

TEncSearch 8.7 3.6 11.8 7.4

TComPrediction 5.0 0.88 10.0 1.1

partialButterfly* 2.3 4.1 8.7 4.0

TEncSbac 2.9 1.8 8.4 3.5

TRenModel 0.4 2.3 Nil Nil

TComDataCU 2.2 1.0 5.8 2.7

TComPattern 2.2 0.2 6.6 0.4

TComYuv 0.2 1.8 0.1 1.7

TEncEntropy Nil Nil 1.2 0.6

TEncBinCABAC* Nil Nil 2.2 0.9

memcpy/memset Nil Nil 11.0 7.1

Total percentage of time 95.1% 95.3% 100% 98.7%

In 3D-HEVC and HEVC, TComTrQuant class accounts for about (9% and 10%)

and (24.4% and 10.7%) of total encoding time, respectively. In TComTrQuant the

process of Rate-Distortion Optimized Quantization (RDOQ) occurs. As the name of

34 Coding Complexity Analysis of 3D-HEVC

class shows, in TComTrQuant, the process of rate and distortion optimized transform

and quantization takes place. TEncSearch accounts for about (8.7 % and 3.6 %) and

(11.8 % and 7.4 %) of the time in both configurations of HEVC encoders, respectively.

In TEncSearch , the encoder searches for the cost and rate-distortion computation of

modes for inter, intra, depth intra for DMM, for motion estimation processes and

Advanced Motion Vector Prediction (AMVP) of HEVC based standards. Similarly

for intra prediction classes like TComPrediction and TComPattern contribute about

(2% to 7%) to the total encoding time in both configuration of 3D-HEVC. Actual

optimized Transform takes place in partialButterfly* and contribute about (2.3 %

and 4.1 %) and (2.3 % and 4.1 %) in both configurations of the standards. Other

classes like TEncSbac,TComDataCU and TComYuv contribute about (1%-3%) to

total encoding time in both configurations.

3.2.2 Profiling of 3D-HTM Decoder

Profiling of 3D-HTM Software Decoder Version 15.0 based on HM Version 16.6 is

carried out using GNU gprof. Computationally intensive critical parts of decoder are

identified based on the profiling information.

Profiling Results comparison of 3D-HEVC and HEVC Decoder

Table 3.2 shows the decoding time distribution of 3D-HEVC and HEVC Decoder.

Classes contributing significantly in terms of time consumption, in the decoding

process, are shown. In all intra configuration more than quarter of total time is spent

in TComInterpolationFilter. In the process of motion compensation, interpolation

filtering is used. TComCUMvField, TComLoopFilter, TComDataCU classes also

account for most of the decoding time. In these classes the processes internal to

CU, advance motion vector prediction and filtering takes place. TComYuv is a

general YUV buffer class, it manages the memory related functionalities of decoder.

In random access configuration, partialButterflyInverse, TComPattern, TDecCu

and TComLoopFilter classes are computationally intensive classes in the decoding

process. In these classes processes related to inverse transform, functions related to

coding unit, intra prediction and loop filtering takes place. In HEVC and 3D-HEVC,

the computational complexity of classes varies from one standard to the other, as

observed from the profiling results.

3.3 Identified Computational Complex Tools 35

Table 3.2 Class-wise time distribution 3D-HEVC vs HEVC Decoder.

Function / Class
3D-HEVC HEVC [59]

AI% RA% AI% RA%

TComInterpolationFilter 0.0 26.96 0.0 24.8

TComCUMvField 7.39 16.03 Nil Nil

TDecCu 15.97 3.69 7.2 2.6

partialButterflyInverse 15.83 1.80 15.9 7.6

TComYuv 0.83 14.42 0.5 8.2

TComDataCU 7.54 13.89 7.5 7.1

TComLoopFilter 13.73 8.94 12.9 12.4

TComPattern 10.19 0.0 9.4 2.6

TComTrQuant 8.07 2.74 8.7 4.2

TComPrediction 5.22 2.06 5.1 2.3

TDecSbac 3.84 0.0 6.2 2.8

TDecBinCABAC 2.93 .42 5.3 2.3

TComSampleAdaptiveOffset 2.64 1.04 3.8 2.4

TComPicYuv 0.0 2.3 Nil Nil

writeplane 1.06 1.68 Nil Nil

TDecEntropy 1.23 .71 1.4 1.0

memcpy/memset Nil Nil 6.2 10.1

Total percentage of time 96.47% 96.68% 90.1% 90.4%

3.3 Identified Computational Complex Tools

Fig. 3.3 shows the identification and mapping of computationally intensive parts of

the 3D-HTM standard. The identification of these parts is carried out by mapping

the profiling results of C++ HTM encoder and decoder classes to 3D-HEVC High

level encoder coding tools. From the profiling results, it is identified that the major

part of the encoding time of 3D-HEVC is consumed in motion estimation including

interview motion prediction, encoder control regions consisting of the VSO, SVDC

by the use of rendering method and interpolation filters, as shown in Fig. 3.3.

Identified computational intensive parts of 3D-HEVC standard are listed as follows:

36 Coding Complexity Analysis of 3D-HEVC

1. Motion Estimation (ME)

2. Synthesized View Distortion Change (SVDC)

3. Interpolation Filters

Motion Data

TComRdCost

TRenSingleModelC

TComRdCost

partialButterfly*

TComPattern

TComPrediction

TEncSearch

TRenSingleModelC

TComTrQuant

TComDataCU

TEncSbac

TComInterpolation

Filter

TComYuv

TRenModel

N Views x 1

input MUX

Reference Depth

Image

Camera Parametrs

Image

Rendering

Header

Formatting

and CABAC

Deblocking

and SAO

Filters

Filter

Control

Analysis

Scaling and

Inverse

Transform

Motion

Estimation/

Interview

Prediction

Motion

Compensatio

n

Intra-Picture

Prediction

Intra-Picture

Estimation

Transform,

Scaling and

Quantization

General

Coder Control
General Control Data

Quantized Transform Coefficients

Coded

Bitstream

Filter Control Data
Inter/Intra

Selection

Intra Prediction Data

Decoder

Picture

Buffer

Decoder

Picture

Buffer

Decoder

Picture

Buffer Ref

Index 1

Rendered

Reference

Image R(Ref)

Index 0 `
TComInterpolationFilter

Fig. 3.3 Identification and mapping of Computationally Complex parts of 3D-HEVC.

Chapter 4

High-Level Synthesis

In this chapter, an analysis of HLS techniques, HLS tools, current HLS research

topics are presented. For the automatic design of customized application-specific

hardware accelerators, academia and industry are working together. Three academic

tools considered are Delft workbench automated reconfigurable VHDL generator

(DWARV) [60], BAMBU [61], and LEGUP [62] alongside many other commercial

available tools. Many research challenges are still open in HLS domain.

4.1 What is High-Level Synthesis?

Nowadays, heterogeneous-systems are being adopted as the energy-efficient, high-

performance and high-throughput systems. The reason behind this is the impossibility

of the further scaling of the clock frequency. These systems consist mainly of two

parts i.e., the application-specific integrated circuits (ASICs) and the software proces-

sor [16]. Each part of the system is dedicated for a specific task. The design of these

types of systems become very complex due to increase in the complexity of systems.

ASICs are the dedicated hardware components for the accelerated implementation

of the computational complex parts for the system. As stated above, due to increase

in the complexity of systems, the design of these dedicated hardware also become

complex and time-consuming. Hardware Description Languages (HDLs) are used

for the register transfer level (RTL) implementation of these components. Cycle-

by-cycle activity for RTL implementation of these components is specified, which

is a low abstraction level. For the such a low level of implementation, advanced

38 High-Level Synthesis

expertise in the hardware design are required, alongside being unmanageable to

develop. The impact of these low-level implementation of complex systems increase

the time-to-market by taking more design and development time.

High-level synthesis (HLS) and FPGAs in combination, is an intriguing solution

to these problems of longer time-to-market and to realize these heterogeneous sys-

tems [19]. FPGAs are used for the configurable implementation of digital integrated

circuits. Manufacturing cost is an important factor in the implementation of digital

ICs. The use of FPGAs as reconfigurable hardware, help us the fast implementation

and optimization by providing the ability to reconfigure the integrated circuits, hence,

removing the extra manufacturing cost. It allows the designer to re-implement modi-

fications made to the design, by changing the HDL code description, re-synthesize

and implement the design using the same FPGA fabric by the help of implementation

tools.

C, SystemC and C++ etc. are High-level languages (HLLs) being used for the

software programming and development. HLS tools take HLL as input and then

HDL description (circuit specification) is generated automatically. This automati-

cally generated circuit specification perform the same functionality as the software

specification. Since, the benefits of HLS i.e. to have a new fast hardware implemen-

tation just by changing the code in software, help software engineers with very little

requirement of the hardware expertise needed. The benefits of the HLS to hardware

engineers include are the fast, rapid and high-level abstraction implementation of

complex systems design, thus increasing the possibility in design space exploration.

For the fast and optimized implementation of the complex systems and designs hav-

ing FPGAs as the implementation technology, HLS based implementation provides

significant suitability in terms of alternative design-space explorations by facilitating

implementations of the modifications made to the design [20].

The prominent developments in the applications of the FPGA industry includes

the use of FPGAs in the acceleration of the Bing search by the Microsoft and the

Altera acquisition by Intel [21]. These developments enhance the possibility of

usability of FPGAs in computing platforms with the help of the high-level design

methodologies. Further recent applications of HLS include in the areas of machine

learning, medical imaging, neural networks etc. The primary reason behind the

application of HLS in above specified areas is due to the energy and performance

benefits [22].

4.2 Overview of High-Level Synthesis Tools 39

4.2 Overview of High-Level Synthesis Tools

HLS tools overview is presented in this section. As shown in Figure 4.1, HLS tools

are presented by classifying the design input language. Two classes of the tools

are made based on input languages. First category of tools accept general-purpose

languages (GPLs) and the second category of the tools accept domain-specific

languages (DSLs) as input. Further splitting of the DSLs tools is made on the basis

of tools invented for GPL-based dialects and for a specific tool-flow. The tools

are categorized, in each category red, blue and green fonts are used for the tools.

Where red shows the tool is obsolete, blue represents N/A i.e. no information about

the usability status of the tool and green shows the tool is still in use. The figure

legends show the application areas of the tool. The use of SystemC or DSLs as input

language increase the chances of tools adoption by the software developers.

In the following paragraphs we presented available commercial and academic

HLS tools with brief description. Information regarding the target application domain,

automatic generation of test bench and support for fixed and floating arithmetic can

found in [63].

4.2.1 Academic HLS Tools

• DWARV: Developed by ACE, this tool is based on commercial infrastructure

of CoSy compiler [60], it has robust and modular back-end.

• BAMBU: Developed by Politecnico di Milano, has the ability to produce

Pareto-optimal solutions to trade-off resource and latency requirements [61].

• LEGUP: Developed by University of Toronto, this tool is based on virtual

machine compiler framework (LLVM) [62]. Supports OpenMP and Pthreads

i.e. parallel hardware are synthesized automatically from parallel software

threads.

40 High-Level Synthesis

Fig. 4.1 HLS Tools Classification.

4.2.2 Other HLS Tools

• CyberWorkBench: Specifically developed for system-level design accepting

behavioural description language (BDL) as input [64].

• Bluespec Compiler (BSC): Design language is Bluespec System Verilog

(BSV), special expertise are required for the designers to use BSV [65].

• PipeRench: Originally developed for streaming applications for producing

reconfigurable pipelines [66].

• HercuLeS: Based on a typed-assembly language accessible through GCC

Gimple and used for only FPGA targeted applications [67].

4.2 Overview of High-Level Synthesis Tools 41

• CoDeveloper: Developed by Impulse accelerated technologies, C-language

based Impulse-C, only streaming and image processing applications are sup-

ported [68].

• DK Design Suite: Design language is Handel-C, an extended hardware fo-

cussed version of C language [69].

• Single-Assignment C (SA-C): Design language is based on C-language, only

one time setting of variables is supported [70].

• Garp: Main aim of this project was the loops acceleration of general-purpose

(GP) software services [71].

• Napa-C: Developed at Stanford University, this was the first project which

considers systems containing configurable logic and microprocessors compila-

tion based on high-level synthesis [72].

• eXCite: Supports manual insertion of communication channels between hard-

ware and software [73].

• ROCCC: Mainly developed for parallel implementation of computational

dense heavy applications [74]

• Catapult-C: HLS tool initially developed for ASICs but now it is used for

both ASICs and FPGA [75].

• C-to-Silicon (CtoS): Developed by Cadence used for both dataflow and con-

trol applications. SystemC is the input language [76].

• SPARK: Targets image processing and multimedia applications, generated

VHDL and can be implemented on FPGA and ASICs [77].

• C to Hardware Compiler: Application specific processor core based hard-

ware design with manual verification [78].

• GAUT: This can produce communication, memory and accelerator hardware

units with automatic testbench generation [79].

• Trident: Produce VHDL based hardware accelerators for floating point appli-

cations [80].

42 High-Level Synthesis

• C2H: Technology dependent tool targeting Altera soft processor and Avalon

bus based hardware accelerator units [81].

• Synphony C: HLS tool Developed by Synopsys for DSP hardware design

supports loop pipelining and loop unrolling [82].

• MATCH: Implementation of image and signal processing heterogeneous

systems based on MATLAB code [83].

• CHiMPS compiler: Targets high performance applications by optimized

implementation of FPGA memories [84].

• DEFACTO: Supports software/hardware co-design for computational inten-

sive applications [85].

• MaxCompiler: Accepts java-based MaxJ as input language and produces

Maxeler hardware based data-flow specific hardware engines [86].

• Kiwi: Generates verilog based FPGA co-processor from C# code [87].

• Sea cucumber: Java-based compiler produces electronic design interchange

format netlists [88].

• Cynthesizer: Supports formal verification between gates and RTL, FP opera-

tions and power analysis [89].

• Vivado HLS: AutoPilot [90] initially developed by AutoESL, later Xilinx

acquired AutoPilot in 2011 and it becomes Vivado HLS [91]. Xilinx HLS

is based on LLVM and released in early 2013. This improved product in-

cludes in it, a complete environment for the design with rich characteristics

for generation of fine-tune HDL from HLL. Accepting C++, C and SystemC

as the input and generating hardware modules in Verilog, VHDL and Sys-

temsC. At the time of compilation it gives the possibility of applying various

optimizations such as loop unrolling, operation chaining and loop pipelining

etc. Furthermore, memory specific optimizations can be applied. For the

simplification of accelerator integration, both, shared and streaming mem-

ory interfaces are supported. We have also adopted Vivado Design Suite for

hardware implementation of interpolation filters.

4.3 HLS Optimizations 43

4.3 HLS Optimizations

For improvement of accelerators performance, HLS tools characterize many opti-

mizations. The basis for these optimizations are the compiler community and some

are hardware specific. Current hot area of research for the HLS community is HLS

optimizations. In this section we will discuss some of these optimizations in the

following paragraphs.

4.3.1 Operation Chaining

This optimization execute operation scheduling for the specified clock period. In a

single clock cycle, by the use of this optimization, two combinational operators can

be chain together removing the false paths [92].

4.3.2 Bitwidth Optimization

By the use of bit-width optimization, the number of bits needed for the data-path

operators are reduced. All the non-functional requirements such as power, area and

performance are impacted by the application of this optimization. It does not affect

the behaviour of design.

4.3.3 Memory Space Allocation

Distributed block RAMs (BRAMs) are present in FPGAs as form of multiple memory

banks. The partitioning and mapping of the software data structures is supported

by this structure of the FPGAs. It makes the fast memory accesses implementation

at minimum cost. Other way around, the memory ports are very limited in these

elements. To configure and customize the memory accesses may need the making of

an efficient and optimized architecture based on multi-bank in order to reduce the

performance limitation [93].

44 High-Level Synthesis

4.3.4 Loop Optimizations

Loops are the compute-intensive parts of the algorithms. Hardware acceleration for

these types of algorithms having compute-intensive loops is significantly important.

Loop pipelining is major performance optimization factor for the hardware imple-

mentation of the loops. Loop-level parallelism can be exploited by this optimization,

if the data dependencies are mitigated, this optimization allows a new loop iteration

before finishing of its predecessor. This idea of loop pipelining is related to the

software pipelining [94], very long instruction word processors (VLIW) already use

this concept. To fully exploit the advantage of parallelism, combination of the loop

pipelining and multi-bank architecture is frequently used [93].

4.3.5 Hardware Resource Library

In HLS, meeting the timing requirements for efficient implementation and minimiz-

ing the resources usage, it is very necessary to to have the knowledge of how to

implement each operation. The given behavioural specification is first inspected

by the front-end phase of the HLS implementation. This inspection identifies the

characteristics of operations e.g operand type (float and integer), operation type

(arithmetic or non-arithmetic), bit-width etc. Some of the operations get benefited

from some specific optimizations. For example, division and multiplications by a

constant value are transformed into operations of adds and shifts [95], [96] for the

improvement of the timing and area. The resulting timing and resources of the circuit

are heavily impacted by this methodology. So, for efficient HLS, the composition of

this type of library is very crucial.

4.3.6 Speculation and Code Motion

Extraction of parallelism can be done by the use of HLS scheduling techniques.

Usually, the parallelism extraction lies within the same control area (same CDFG

block), thus resulting in performance limitation of the accelerator specifically in

control-intensive systems. A technique known as the Speculation, is used for the

code-motion that makes the operations to be shifted with their execution traces.

Thus, this code-motion technique anticipate those operations before their conditional

constructs [97]-[98].

4.4 Xilinx Vivado Design Suite 45

4.3.7 Exploiting Spatial Parallelism

The spatial parallelism is a hardware acceleration technique. By applying this tech-

nique, the hardware may be accelerated as compared to the software implementation.

In this technique, for the concurrent execution (spatial parallelism) of the hardware

units, multiple hardware units are instantiated.

4.3.8 If-Conversion

A well-known software transformation technique is If-conversion [99]. This tech-

nique allows the predicated execution. This means that, the execution of an instruc-

tion will only be performed if its predicate evaluates to true. By application of this

technique, number of parallel operations are increased. The other advantage is the

facilitation of pipelining by the removal of control dependencies in the loop, in turn

which may result in the shortening of loop body schedule. On average, 34% im-

provement is caused by this technique in software [100]. The condition for enabling

of the if-conversion is, when branches have balanced requirement of cycles for their

execution.

4.4 Xilinx Vivado Design Suite

As stated earlier, AutoPilot [90] initially developed by AutoESL, later Xilinx ac-

quired AutoPilot in 2011 and it becomes Vivado HLS [91]. Xilinx HLS is based on

LLVM and released in early 2013. This improved product includes in it, a complete

environment for the design with rich characteristics for generation of fine-tune HDL

from HLL. Accepting C++, C and SystemC as the input and generating hardware

modules in Verilog, VHDL and SystemsC. At the time of compilation it gives the

possibility of applying various optimizations such as loop unrolling, operation chain-

ing and loop pipelining etc. Furthermore, memory specific optimizations can be

applied. For the simplification of accelerator integration, both, shared and streaming

memory interfaces are supported.

The transformation of C code into RTL level implementation in terms of Verilog

or VHDL, synthesis of the generated HDL code into Xilinx FPGA, is the flow

adopted by the Vivado HLS. Input C code could be in C++, C, SystemC and Open

46 High-Level Synthesis

Computing Language (OpenCL). FPGA supports massively parallel architectures

with advantages in cost, performance and power as compared to their counter parts

i.e. traditional processors. An overview of Xilinx Vivado high-level synthesis tools

flow is presented in this section.

4.4.1 Benefits of High-Level Synthesis

Software and hardware domains can bridged through High-level synthesis. The

primary benefits of HLS are listed as follows:

• For hardware designers, improved productivity

• For software designers, improved performance of system

• C-level algorithms development

• C-level functional verification

• C synthesis process control by optimization directives

• Multiple hardware implementations from the same C code by the help of

optimization directives

• Portable and readable C code creation

4.4.2 Basics of High-Level Synthesis

Phases of the High-level synthesis are described as follows:

Scheduling

Clock cycle-specific determination of operations occurrence based on:

• Clock frequency or clock cycle length

• Time required to complete the operation, it depends on the target device

• Applied Optimization directives

4.4 Xilinx Vivado Design Suite 47

Binding

Implementation of each operation in corresponding specific hardware is performed

by the Binding operation. In HLS, Target device information is used for the optimal

implementation of the design.

Control Logic Extraction

For the sequencing of operation in RTL design i.e. to generate finite state machine

(FSM), control logic is extracted.

In HLS, C code is synthesized as follows:

• Arguments of top-level function into RTL I/O ports

• C function into RTL level blocks

• By default loops are kept rolled

• In final FPGA implementation, arrays into UltraRAM or block RAM

Information about the synthesis performance metrics is contained in synthesis

report. These performance metrics described as follows:

• Area: Information about required hardware resources needed for implementa-

tion of design e.g. bock RAMS, look-up tables (LUT), DSP48s and registers.

• Latency: Information about the required clock cycles for computation of all

values of output.

• Initiation interval (II): Information about the required clock cycles for accept-

ing new inputs.

• Loop iteration latency: Information about the required clock cycles for com-

pletion of single iteration of loop.

• Loop initiation interval: Information about the required clock cycles for before

next iteration of loop gets start.

• Loop latency: Information about the required clock cycles for all iterations of

loop.

48 High-Level Synthesis

4.4.3 Understanding the design flow of Vivado HLS

In Vivado HLS, a C function is synthesized into an IP block. The synthesized IP

block can be integrated into a hardware system. Xilinx Vivado HLS is tightly coupled

with other Xilinx design tools. It provides broad language support and characteristics

for optimal hardware implementation from C algorithm.

The design flow of Vivado HLS is given as follows:

1. C algorithm Compilation, execution (simulation) and debugging.

2. RTL implementation by synthesizing the C algorithm. Here the optimization

directives are optionally applied.

3. Synthesis report generation about desgn metrics.

4. RTL verification by a pushbutton flow.

5. RTL implementation packaging into supported IP formats

Inputs and Outputs

The possible inputs of Vivado HLS are listed as follows:

• Function written in C++, C, OpenCL API C kernel or SystemC

• Directives

• Constraints

• C test bench and any associated files

Vivado HLS ouputs are as follows:

• HDL based RTL implementation files The following RTL formats are sup-

ported:

– Verilog (IEEE 1364-2001)

– VHDL (IEEE 1076-2000)

4.4 Xilinx Vivado Design Suite 49

• Report files

An overview of input and output files of Vivado HLS is shown in Fig. 4.2.

Fig. 4.2 Vivado HLS Design Flow.

Language Support, Test Bench and C Libraries

Top-level function in any C program is called main(). Any sub-function can be speci-

fied as top-level function in Vivado HLS. main() cannot be synthesized. Additional

rules are as follows:

• Only one top-level function for synthesis is allowed.

• Sub-functions of top-level function are automatically synthesized.

• All the functions to be synthesized must be merged into a single top-level

function.

50 High-Level Synthesis

Test Bench

To synthesize functionally correct C function, a test bench is used for functional

validation before synthesis, thus improving the productivity,

Language Support

For C simulation/compilation, the following standards are supported:

• C++ (G++ 4.6)

• ANSI-C (GCC 4.6)

• SystemC (IEEE 1666-2006, version 2.2)

• OpenCL API (1.0 embedded profile)

Not supported Language Constructs

The following language constructs are not supported for synthesis:

• Operating system (OS) operations

• Dynamic Memory Allocation

C Libraries

For the FPGA implementation, Vivado HLS contains optimized C libraries. High

quality of results (QoR) are achieved by using these libraries. In addition to the

standard C language libraries, Vivado HLS provides an extended support for the

following C libraries:

• Half-precision (16-bit) floating-point data types

• Arbitrary precision data types

• Video functions

• Math operations

4.4 Xilinx Vivado Design Suite 51

• Maximized usage of shift register LUT (SRL) resources using FPGA resource

functions

• Xilinx IP functions, including FFT and FIR

Synthesis, Optimization, and Analysis

A project based on Vivado HLS can holds multiple solutions for a set of C code.

Different optimizations and constraints can be applied in each solution. The results

based on each solution can be compared in Vivado HLS GUI.

The steps involved in the Vivado HLS design process i.e synthesis, optimization

and analysis, are listed as follows:

1. Project creation with an initial solution.

2. Verification of C simulation and execution without error.

3. Design synthesis.

4. Results analysis.

By the analysis of the results, if the design does not meet the requirements,

a new solution can be created and synthesized based on new optimization direc-

tives and constraints.The process can be repeated until the design performance and

requirements are met. The advantage of multiple solutions is moving forward in

development and still retaining the old results.

Optimization

Different constraints and optimization directives can be applied to the design in

Vivado HLS. Some of them are listed as follows:

• Task Pipelining.

• Latency specification.

• Resources limit specification.

• Override the implied and inherent code dependencies.

52 High-Level Synthesis

• I/O protocol selection.

Analysis

In Vivado HLS, the results can be analysed using the Analysis Perspective. The

performance tab in the Analysis Perspective allows to analyse the synthesis results.

RTL Verification

C/RTL co-simulation is supported in Vivado HLS. By using the C/RTL co-simulation

infrastructure, RTL verification by simulating the C and RTL design is automatically

executed using supported RTL simulator listed as follows:

• ModelSim simulator

• VCS (only supported on Linux operating system)

• Vivado Simulator (XSim) (Vivado Design Suite)

• Riviera (only supported on Linux operating system)

• NCSIm (only supported on Linux operating system)

RTL Export

Final RTL output files can be exported as an IP package in Xilinx Vivado Design

Suite. The supported IP formats are listed as follows:

• For use in Vivado Design Suite: Vivado IP Catalog

• For use in Embedded Development Kit (EDK) and for import into Xilinx

Platform Studio (XPS): Pcore

• For import directly into the Vivado Design Suite: Synthesized Checkpoint

(.dcp)

Chapter 5

HLS Based FPGA Implementation of

Interpolation Filters

Video processing systems are becoming more complex thus decreasing the produc-

tivity of the hardware designers and the software programmers, producing design

productivity gap. To fill this productivity gap, hardware and software fields are

bridged through High Level Synthesis (HLS), thus improving the productivity of

the hardware designers. One of the most computational intensive parts of High

Efficiency Video Coding (HEVC) and H.264/AVC video coding standards is the

Interpolation filtering used for sub-pixel interpolation. In this chapter, we present a

HLS based FPGA Implementation of sub-pixel Luma and chroma Interpolation of

HEVC and sub-pixel Luma interpolation of H.264/AVC, respectively. Xilinx Vivado

Design Suite is used for the FPGA implementation of interpolation filtering on Xilinx

xc7z020clg481-1 device. The consequent design results in a frame processing speed

of 41 QFHD, i.e. 3840x2160@41fps for H.264/AVC sub-pixel Luma interpolation,

46 QFHD for HEVC luma sub-pixel and 48 QFHD for HEVC chroma interpolation.

The development time is significantly decreased by the HLS tools.

5.1 Fractional Motion Estimation

Significant storage is needed for uncompressed digital videos. Digital video is

handled by high compression and efficient video coding standards, such as HEVC

and H.264/AVC. The temporal redundancy present in the video signal is exploited

54 HLS Based FPGA Implementation of Interpolation Filters

by the process of Motion Compensated Prediction(MCP). MCP reduces the amount

of data to be sent to the decoder [101]. We can get rid from large amount of video

data by temporal motion prediction. Current block/object location is compared with

the previous frame to measure if there exist the same block/object. Hence, reducing

the amount of data required to transmit to the video decoder. In MCP, to process

the current frame, the similar data/object of the current frame and the previous

frame are measured first by the video encoder. For this purpose the frame is divided

into blocks of pixels. MCP sends the motion vector as side information to tell the

decoder about the similarity between the current frame and the previous frame for

prediction. Prediction error is also sent along with the motion vector, for new frame

reconstruction. The objects in the consecutive video frames may differ by fractional

position i.e. these displacements are continuous. These objects are independent of

the sampling grid of the digital video sequence. Fractional motion vector accuracy

makes the video encoder efficient and reduce the prediction error [102].

Interpolation filters are used for fractional value motion vector. The design of the

interpolation is carried out by keeping in view the important factors such as visual

quality, coding efficiency and implementation complexity [103]. H.264/AVC and

HEVC video coding standards, support half and quarter pixel accuracy. Interpolation

filtering used for sub-pixel interpolation is one of the most computational intensive

parts of H.264/AVC and HEVC. Computational complexity of the interpolation filters

is about 20% and 25% of total time in 3D-HEVC encoder and decoder, respectively,

as reported in our previous work [104]. In industry and academia, HLS is being

studied for many years and there exist many operational projects [105]. In this chap-

ter, HLS based FPGA implementation of sub-pixel luma interpolation is presented.

Xilinx Vivado HLS tools are used for FPGA implementation of H.264/AVC and

HEVC sub-pixel interpolation. HLS has some specific benefits over the conventional

RTL based VLSI design. One key benefit is its power to render micro-architectures

with specific area vs. performance trade-off for the same behavioural description

by surroundings different synthesis choice [106]. A comparison between the HLS

based FPGA implementation of sub-pixel interpolation of H.264/AVC and HEVC is

also carried out in this chapter.

5.2 H.264/AVC Sub-pixel Interpolation 55

5.2 H.264/AVC Sub-pixel Interpolation

For 4:2:0 colour format video in H.264/AVC, luma sampling supports the quarter-

pel accuracy and chroma sampling support one-eight pixel accuracy of the motion

vectors [6]. Motion vector may points to an integer and/or fractional samples position.

In the latter case, fractional pixel are generated by interpolation. A one-dimensional

6-tap FIR filter is used for prediction signals at the half-sample value, in vertical and

horizontal directions. Average of the sample values at full and half-pixel are used for

the quarter sample values generation of the prediction signal.

The luma sub-pixel interpolation process in H.264/AVC is shown in Fig. 5.1.

The half pixel values b0,0 and h0,0 are obtained by applying the 6-tap filter in the

horizontal and vertical directions, respectively, as follows:

b0,0 = (A−2,0 −5∗A−1,0 +20∗A0,0 +20∗A1,0 −5∗A2,0 +A3,0 +16)>> 5 (5.1)

h0,0 = (A0,−2 −5∗A0,−1 +20∗A0,0 +20∗A0,1 −5∗A0,2 +A0,3 +16)>> 5 (5.2)

where An,0,A0,n with values of n = −2,−1,0,1,2,3, are integer pixels in hori-

zontal and vertical directions, respectively. Intermediate half-pel samples b′n or h′n

are used for the calculation of half pixel value j0,0 , by applying the 6-tap filter in

the vertical or horizontal directions, as follows:

b
′

n = b
′

n,−2 −5∗b
′

n,−1 +20∗b
′

n,0 +20∗b
′

n,1

−5∗b
′

n,2 +b
′

n,3

(5.3)

j0,0 = (b
′

n +512)>> 10 (5.4)

where n = −2,−1,0,1,2,3 and b′ = b << 5− 16, i.e. we can use the values of b.

We can obtain the values of j0,0 alternatively, as given by equations 5.5 and 5.6.

h
′

n = A−2,0 −5∗A−1,0 +20∗A0,0 +20∗A1,1 −5∗A2,0 +A3,0 (5.5)

56 HLS Based FPGA Implementation of Interpolation Filters

j0,0 = (h
′

n,−2−5∗h
′

n,−1+20∗h
′

n,0+20∗h
′

n,1−5∗h
′

n,2+h
′

n,3+512)>> 10 (5.6)

Nearest, half pixel and/or integer pixel averaging is used for the calculation of

the quarter-pixel sample. The samples used in the averaging could be both half-pel

and a combination of the half-pel and integer-pel samples.

As an example, the following equations shows the method to calculate quarter-

pixel samples for some of the quarter-pixel positions i.e. a0,0, f0,0 and e0,0 out of

a0,0,c0,0,d0,0,n0,0, f0,0, i0,0,k0,0,q0,0,e0,0,g0,0, p0,0 and r0,0:

a0,0 = (A0,0 +b0,0 +1)>> 1 (5.7)

f0,0 = (b0,0 + j0,0 +1)>> 1 (5.8)

e0,0 = (b0,0 +h0,0 +1)>> 1 (5.9)

5.2 H.264/AVC Sub-pixel Interpolation 57

A-1,-1 b0,-1 c0,-1A0,-1 a0,-1

A-1,0

d-1,0

h-1,0

n-1,0

b0,0 c0,0A0,0 a0,0

f0,0 g0,0d0,0 e0,0

j0,0 k0,0h0,0 i0,0

q0,0 r0,0n0,0 p0,0

A1,-1

A1,0

d1,0

h1,0

n1,0

A2,-1

A2,0

d2,0

h2,0

n2,0

A-1,1 A0,1 A1,1 A2,1

A-1,2 b0,2 c0,2A0,2 a0,2 A1,2 A2,2

Fig. 5.1 Pixel positions for Integer, Luma half and Luma quarter pixels.

5.2.1 HLS based FPGA Implementation

In our proposed design, 13x13 integer pixels are used for the half and quarter pixel

interpolation of the 8x8 PU as shown in Fig. 5.2. In Fig. 5.3, the proposed HLS

implementation of H.264/AVC luma sub-pixel interpolation is shown. For the larger

PU sizes, half and quarter pixel can be interpolated using each 8x8 PU part of the

larger block i.e. dividing the larger block in PU sizes of 8x8. 13 integer pixels are

given as input to the first half pixel interpolator array hpi1 in each clock cycle.

58 HLS Based FPGA Implementation of Interpolation Filters

Fig. 5.2 13x13 Pixel Grid for H.264/AVC Luma Interpolation of 8x8 block (where green

colour represents the integer pixels block to be interpolated and yellow colour represents the

required integer pixels padded to the block to support interpolation).

8 half pixels b0,0 are computed in parallel in each clock cycle, so in total it will

interpolate 13x8 half pixels in 13 clock cycles. These half pixels are stored into

registers for interpolation of the half pixels j0,0 or quarter pixels a0,0 and c0,0. During

the interpolation of b0,0 half pixels interpolation, 13x13 integer pixels are stored for

the half pixel interpolation of the h0,0. Then the h0,0 half pixels are interpolated using

these stored 13x13 integer pixels using hpi1, meanwhile, in parallel the j0,0 half

pixel are interpolated using hpi2 from the already available intermediate b0,0 half

pixels. The half pixels h0,0 and j0,0 are also stored in the registers for the quarter pixel

interpolation. Finally all the a0,0,c0,0,d0,0,n0,0, f0,0, i0,0,k0,0, q0,0,e0,0,g0,0, p0,0 and

5.2 H.264/AVC Sub-pixel Interpolation 59

Fig. 5.3 HLS implementation of H.264/AVC Luma Sub-pixel.

60 HLS Based FPGA Implementation of Interpolation Filters

r0,0 quarter pixels are generated using the already computed registered half pixels

b0,0,h0,0, j0,0 and the 13x13 integer pixels.

Vivado Design Suite is used for HLS based the FPGA implementation of the

design. The HLS based design is synthesized to verilog RTL. Vivado HLS tools take

C,C++ or SystemC codes as input. In our case the C code is applied as input to

the vivado HLS tool. The C code is written according to the H.264/AVC reference

software video encoder. Vivado HLS provides various optimization techniques called

as optimization directives or pragmas. Many variants of the HLS implementation

of H.264/AVC luma sub-pixel interpolation are possible depending on the area

vs performance trade-off requirements. Design Space Exploration (DSE) of the

H.264/AVC luma sub-pixel interpolation is carried out using these optimization

directives.

Discussion on Results

Vivado HLS kept the loops as rolled by default. Loops are considered and operated

as single sequence of operations defined within the body of the loop. All operations

of the loops defined in the body of the loops are synthesized as hardware. So, all

iterations of the loops use the same common hardware. Loop UNROLL directive

available in the Vivado HLS, unrolls the loops partially or fully, depending on the

application requirements. If the application is performance critical, then the loop

UNROLL directive can be used to unroll the loops for better optimized hardware

in terms of performance by parallel processing, but it will increase the area e.g. if

the loops are fully unrolled then the multiple copies of the same hardware will be

synthesized. The other directive which we used in our design is PIPELINE. Pipeline

directive can be applied to function or loop, it is basically the pipelining. The new

inputs can be processed after every N clock cycles. Here N is Initiation Interval (II)

i.e. the number of clock cycles after which the new inputs will be processed by the

design.

When the pipeline directive is applied, it automatically unrolls all the loops

within the scope of the pipeline region i.e. you do not need to apply loop UNROLL

directive separately if the pipeline directive is already applied to the scope containing

loop. For the parallel processing the data requirement must be satisfied. In our design

the arrays are used as input to the HLS tools. Arrays are by default mapped to block

RAMs in the Vivado HLS i.e. you can only read or write or both read write at the

5.2 H.264/AVC Sub-pixel Interpolation 61

same time if the block RAM is dual port. So, ARRAY PARTITION directive is used

to partition the arrays into individual registers. It makes the data available for the

parallel processing.

Two different implementations of the H.264/AVC luma sub-pixel interpolation is

carried out using two different techniques for constant multiplication i.e. multiplica-

tion using multipliers, multiplication using add and shift operations.

Table 5.1 Resources required for HLS implementation of H.264/AVC Luma Sub-pixel

Interpolation using multipliers for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps

NO OPTIMIZATION 0 0 706 1188 430 128 1489 0.5

LOOP UNROLL 0 0 3011 5084 1670 110 577 1.5

LOOP UNROLL + ARRAY PARTITION 0 0 3451 8653 2655 112 473 2

PIPELINE + ARRAY PARTITION 0 0 10224 27995 8817 102 19 41

Table 5.2 Resources required for HLS implementation of H.264/AVC Luma Sub-pixel

Interpolation using add and shift operations for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps

NO OPTIMIZATION 0 0 302 413 110 129 1432 1

LOOP UNROLL 0 0 2304 3033 422 212 577 3

LOOP UNROLL + ARRAY PARTITION 0 0 2843 4056 748 210 449 3

PIPELINE + ARRAY PARTITION 0 0 11001 12774 2606 102 19 41

Table 5.1 and 5.2 enlist the optimization directives used and the corresponding

hardware resources required for HLS implementation using the multipliers as con-

stant multiplication and multiplication by shift and add operations. Mainly three

directives are used for the efficient implementation of H.264/AVC Luma interpola-

tion designs. As shown in Table 5.1 and 5.2 , when there is NO OPTIMIZATION

directive applied, the latency is much higher i.e. to process 8x8 PU it takes higher

clock cycles as compared to the optimized ones. For the optimized design we use

the combination of optimization directives such as LOOP UNROLL + ARRAY

PARTITION and PIPELINE + ARRAY PARTITION. In both designs the application

of optimizations shows significant area vs performance trade-off. In case of constant

multiplication using add and shift operations, we have better optimized design in

terms of area and performance.

Comparison with Manual RTL implementation

Table 5.3 gives the comparison between HLS and manual RTL implementations of

H.264/AVC luma sub-pixel interpolation. It evident that the HLS implementation is

62 HLS Based FPGA Implementation of Interpolation Filters

more efficient in terms of performance. Even though the other two implementations

are VLSI based, we expect the same performance for the FPGA implementations of

the corresponding implementations.

Table 5.3 H.264/AVC Luma Sub-pixel HLS vs Manual RTL Implementations.

Comparison Parameter [107] [11] Proposed

Tech. SMIC 130 nm 130 nm Xilinx Virtex 7

Slice/Gate Count 75 K 67 K 2606

Freq. (MHz) 340 200 102

Fps 30 QFHD 2160p@30fps 41 QFHD

Design ME ME ME + MC

Comparison with HLS implementation of HEVC

Table 5.4 gives the comparison between HLS implementations of H.264/AVC and

HEVC luma sub-pixel interpolation. The proposed implementation takes less area

as compared to the HLS implementation of HEVC because the HEVC uses larger

interpolation filters and hence larger area. The throughput of the HEVC luma

interpolation is also higher because the quarter pixel interpolation is independent of

the half pixel interpolation e.g. a0,0,b0,0,d0,0 and h0,0.

Table 5.4 H.264/AVC vs HEVC Luma Sub-pixel HLS implementation.

Comparison Parameter Proposed [108]

Tech. Xilinx Virtex 7 Xilinx Virtex 6

Slice/Gate Count 2606 4426

Freq. (MHz) 102 168

Fps 41 QFHD 45 QFHD

Design ME + MC ME + MC

5.3 HEVC Sub-pixel Interpolation

Ai, j upper-case letters within the yellow blocks in Fig. 5.1 represent luma sample

positions at full-pixel locations. For the prediction of fractional luma sample values,

5.3 HEVC Sub-pixel Interpolation 63

these integer pixel at ful-pixel locations can be used. White blocks with lower-case

letters e.g. a0,0, b0,0 represent the luma sample positions at quarter-pixel locations.

5.3.1 HEVC Luma Sub-pixel Interpolation

Fractional luma sample positions are computed by Equations (5.10 – 5.24). Fractional

luma sample values a0,0, b0,0, c0,0, d0,0, h0,0 and n0,0 are computed by by applying

7 and 8-tap interpolation filters to the integer pixel values specified by Equations

(5.10–5.15) as follows:

a0,0 = (−A−3,0 +4∗A−2,0 −10∗A−1,0 +58∗A0,0 +17∗A1,0

−5∗A2,0 +A3,0)>> shi f t1
(5.10)

b0,0 = (−A−3,0 +4∗A−2,0 −11∗A−1,0 +40∗A0,0 +40∗A1,0

−11∗A2,0 +4∗A3,0 −A4,0)>> shi f t1
(5.11)

c0,0 = (A−2,0 −15∗A−1,0 +17∗A0,0 +58∗A1,0 −10∗A2,0

+4∗A3,0 −A4,0)>> shi f t1
(5.12)

d0,0 = (−A0,−3 +4∗A0,−2 −10∗A0,−1 +58∗A0,0 +17∗A0,1

−5∗A0,2 +A0,3)>> shi f t1
(5.13)

h0,0 = (−A0,−3 +4∗A0,−2 −11∗A0,−1 +40∗A0,0 +40∗A0,1

−11∗A0,2 +4∗A0,3 −A0,4)>> shi f t1
(5.14)

n0,0 = (A0,−2 −15∗A0,−1 +17∗A0,0 +58∗A0,1 −10∗A0,2

+4∗A0,3 −A0,4)>> shi f t1
(5.15)

The quarter-pixel values denoted as e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0 and

r0,0 are computed by applying 7 and 8-tap filters in vertical direction to the already

computed values of a0,i, b0,i and c0,i where i = -3 .. 4, as shown by the Equations

(5.16 – 5.24)

e0,0 = (−a−3,0 +4∗a−2,0 −10∗a−1,0 +58∗a0,0 +17∗a1,0

−5∗a2,0 +a3,0)>> shi f t2
(5.16)

64 HLS Based FPGA Implementation of Interpolation Filters

i0,0 = (−a−3,0 +4∗a−2,0 −11∗a−1,0 +40∗a0,0 +40∗a1,0

−11∗a2,0 +4∗a3,0 −a4,0)>> shi f t2
(5.17)

p0,0 = (a−2,0 −15∗a−1,0 +17∗a0,0 +58∗a1,0 −10∗a2,0

+4∗a3,0 −a4,0)>> shi f t2
(5.18)

f0,0 = (−a−3,0 +4∗a−2,0 −10∗a−1,0 +58∗a0,0 +17∗a1,0

−5∗a2,0 +a3,0)>> shi f t2
(5.19)

j0,0 = (−a−3,0 +4∗a−2,0 −11∗a−1,0 +40∗a0,0 +40∗a1,0

−11∗a2,0 +4∗a3,0 −a4,0)>> shi f t2
(5.20)

q0,0 = (a−2,0 −15∗a−1,0 +17∗a0,0 +58∗a1,0 −10∗a2,0

+4∗a3,0 −a4,0)>> shi f t2
(5.21)

g0,0 = (−a−3,0 +4∗a−2,0 −10∗a−1,0 +58∗a0,0 +17∗a1,0

−5∗a2,0 +a3,0)>> shi f t2
(5.22)

k0,0 = (−a−3,0 +4∗a−2,0 −11∗a−1,0 +40∗a0,0 +40∗a1,0

−11∗a2,0 +4∗a3,0 −a4,0)>> shi f t2
(5.23)

r0,0 = (a−2,0 −15∗a−1,0 +17∗a0,0 +58∗a1,0 −10∗a2,0

+4∗a3,0 −a4,0)>> shi f t2
(5.24)

The value of variable shift1 is given by the Equation (5.25) and shift2 = 6.

shi f t1 = BitDepthY −8 (5.25)

where BitDepthY is the bit depth of luma sample.

5.3.2 HLS based FPGA Implementation of Luma Interpolation

In our proposed design, 15x15 integer pixels are used for the half and quarter pixel

interpolation of the 8x8 PU as shown in Fig. 5.4. In Fig. 5.5, the proposed HLS based

implementation of HEVC luma sub-pel interpolation is shown. For the larger PU

sizes, half and quarter pixel can be interpolated using each 8x8 PU part of the larger

block i.e. dividing the larger block in PU sizes of 8x8. 15 integer pixels are given as

input to the array of sub-pixel interpolator filter i.e. FilterSetabc1–FilterSetabc8 in

5.3 HEVC Sub-pixel Interpolation 65

Fig. 5.4 15x15 Pixel Grid for HEVC Luma Interpolation of 8x8 block (where green colour

represents the integer pixels block to be interpolated and yellow colour represents the required

integer pixels padded to the block to support interpolation).

each clock cycle. 24 sub-pixels i.e. 8a,8b,8c are computed in parallel in each

clock cycle, so in total it will interpolate 15x24 half pixels in 15 clock cycles. These

half pixels are stored into registers for computing the half pixels e.g. e0,0, f0,0, j0,0

etc. 15x15 integer pixels are stored for the half pixel interpolation of the a0,0,b0,0,c0,0

etc. Then the d0,0,h0,0,n0,0 half pixels are interpolated using these stored 15x15

integer pixels using the same filter set. Finally the half pixels e.g. e0,0, f0,0, j0,0 etc.

are interpolated using the already stored half pixels a0,0,b0,0,c0,0.

66 HLS Based FPGA Implementation of Interpolation Filters

Fig. 5.5 HLS implementation of HEVC Luma Sub-pixel.

Two different implementations of the HEVC luma sub-pixel interpolation is car-

ried out using two different techniques for constant multiplication i.e. multiplication

using multipliers, multiplication using add and shift operations.

Table 5.5 and 5.6 enlist the optimization directives used and the corresponding

hardware resources required for HLS implementation using the multipliers as con-

stant multiplication and multiplication by shift and add operations. Mainly three

directives are used for the efficient implementation of HEVC Luma interpolation de-

signs. As shown in Table 5.5 and 5.6 , when there is NO OPTIMIZATION directive

applied, the latency is much higher i.e. to process 8x8 PU it takes higher clock cycles

as compared to the optimized ones. For the optimized design we use the combination

of optimization directives such as LOOP UNROLL + ARRAY PARTITION and

PIPELINE + ARRAY PARTITION. In both designs the application of optimizations

5.3 HEVC Sub-pixel Interpolation 67

shows significant area vs performance trade-off. In case of constant multiplication

using add and shift operations, we have better optimized design in terms of area and

performance.

Table 5.5 Resources required for HLS based HEVC luma implementation using multipliers

for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps

NO OPTIMIZATION 0 0 1221 1845 718 218 1505 1

LOOP UNROLL 0 0 4132 14031 2167 150 190 6

LOOP UNROLL + ARRAY PARTITION 0 0 8201 17215 3356 165 130 10

PIPELINE + ARRAY PARTITION 0 0 11490 29534 9315 165 59 21

Table 5.6 Resources required for HLS based HEVC luma implementation using add and shift

operations for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps

NO OPTIMIZATION 0 0 719 1243 325 210 966 2

LOOP UNROLL 0 0 3203 8598 1388 180 190 7

LOOP UNROLL + ARRAY PARTITION 0 0 6456 12766 1890 165 88 14

PIPELINE + ARRAY PARTITION 0 0 11122 14452 3477 165 28 46

Comparison with Manual RTL implementation

Table 5.7 gives the comparison between HLS and manual RTL implementations of

HEVC luma sub-pixel interpolation. It is evident that the HLS implementation is

more efficient in terms of performance. Even though the other three implementations

are VLSI based, we expect the same performance for the FPGA implementations of

the corresponding implementations.

Table 5.7 HEVC luma sub-pixel HLS vs manual RTL Implementations.

Comparison Parameter [10] [109] [110] [111] Proposed

Technology Xilinx Virtex 6 90nm 150nm 90nm Xilinx Virtex 7

Slice/Gate Count 1597 32.5 K 30.5 K 224 K 3477

Frq. (MHz) 200 171 312 333 165

Fps 30 QFHD 60 QFHD 30 QFHD 30 QFHD 46 QFHD

Design ME + MC MC ME + MC ME + MC ME + MC

5.3.3 HEVC Chroma Sub-pixel Interpolation

Bi, j upper-case letters within the shaded blocks in Fig. 5.6 represent chroma sample

positions at full-pixel locations. For the prediction of fractional chroma sample

68 HLS Based FPGA Implementation of Interpolation Filters

values, these integer pixel at full-pixel locations can be used. Un-shaded blocks

with lower-case letters e.g. ab0,0, ac0,0 represent the chroma sample positions at

eight-pixel locations.

Fractional chroma sample positions are computed by Equations (5.26 – 5.32).

Fractional chroma sample values ab0,0, ac0,0, ad0,0, ae0,0, a f0,0, ag0,0 and ah0,0

are computed by by applying 4-tap interpolation filters to the integer pixel values

specified by Equations (5.10–5.15) as follows:

ab0,0 = (−2∗B−1,0 +58∗B0,0 +10∗B1,0 −2∗B2,0)>> shi f t1 (5.26)

ac0,0 = (−4∗B−1,0 +54∗B0,0 +16∗B1,0 −2∗B2,0)>> shi f t1 (5.27)

ad0,0 = (−6∗B−1,0 +46∗B0,0 +28∗B1,0 −4∗B2,0)>> shi f t1 (5.28)

ae0,0 = (−4∗B−1,0 +36∗B0,0 +36∗B1,0 −4∗B2,0)>> shi f t1 (5.29)

a f0,0 = (−4∗B−1,0 +28∗B0,0 +46∗B1,0 −6∗B2,0)>> shi f t1 (5.30)

ag0,0 = (−2∗B−1,0 +16∗B0,0 +54∗B1,0 −4∗B2,0)>> shi f t1 (5.31)

ah0,0 = (−2∗B−1,0 +10∗B0,0 +58∗B1,0 −2∗B2,0)>> shi f t1 (5.32)

Fractional chroma sample values ba0,0, ca0,0, da0,0, ea0,0, f a0,0, ga0,0 and ha0,0

are computed by by applying 4-tap interpolation filters to the integer pixel values

specified by Equations (5.33–5.39) as follows:

ba0,0 = (−2∗B0,−1 +58∗B0,0 +10∗B0,1 −2∗B0,2)>> shi f t1 (5.33)

ca0,0 = (−4∗B0,−1 +54∗B0,0 +16∗B0,1 −2∗B0,2)>> shi f t1 (5.34)

da0,0 = (−6∗B0,−1 +46∗B0,0 +28∗B0,1 −4∗B0,2)>> shi f t1 (5.35)

ea0,0 = (−4∗B0,−1 +36∗B0,0 +36∗B0,1 −4∗B0,2)>> shi f t1 (5.36)

f a0,0 = (−4∗B0,−1 +28∗B0,0 +46∗B0,1 −6∗B0,2)>> shi f t1 (5.37)

ga0,0 = (−2∗B0,−1 +16∗B0,0 +54∗B0,1 −4∗B0,2)>> shi f t1 (5.38)

ha0,0 = (−2∗B0,−1 +10∗B0,0 +58∗B0,1 −2∗B0,2)>> shi f t1 (5.39)

5.3 HEVC Sub-pixel Interpolation 69

hb0,-1 hc0,-1ha0,-1

ab0,0 ac0,0ah-1,0

bb0,0 bc0,0bh-1,0 ba0,0

ch-1,0 ca0,0

hf0,-1 hg0,-1A0,-1 he0,-1

af0,0 ag0,0ad0,0 ae0,0

bf0,0 bg0,0bd0,0 be0,0

A-1,0 da0,0

eh-1,0 ea0,0

fh-1,0 fa0,0

gb0,0 gc0,0gh-1,0 ga0,0

b0,0 c0,0A0,0 a0,0

f0,0 g0,0d0,0 e0,0

j0,0 k0,0h0,0 i0,0

gf0,0 gg0,0gd0,0 ge0,0

A1,-1

ah0,0

ba1,0bh0,0

ca1,0

da1,0A1,0

ea1,0d1,0

fa1,0h1,0

ga1,0gh0,0

A-1,1 ha0,0 A0,1 ha1,0A1,1

B0,0 B1,0

B0,1 B1,1

dh-1,0

hh-1,0

hd0,-1 hh0,-1

cb0,0 cc0,0 cf0,0 cg0,0cd0,0 ce0,0 ch0,0

db0,0 dc0,0 df0,0 dg0,0dd0,0 de0,0 dh0,0

eb0,0 ec0,0 ef0,0 eg0,0ed0,0 ee0,0 eh0,0

fb0,0 fc0,0 ff0,0 fg0,0fd0,0 fe0,0 fh0,0

hb0,0 hc0,0 hf0,0 hg0,0hd0,0 he0,0 hh0,0

ab0,1 ac0,1 af0,1 ag0,1ad0,1 ae0,1 ah0,1

Fig. 5.6 Chroma sample grid for eight sample interpolation

Fractional chroma sample values bV0,0, cV0,0, dV0,0, eV0,0, fV0,0, gV0,0 and hV0,0

for V being replaced by b, c, d, e, f, g and h, respectively, are computed by applying

4-tap interpolation filters to the intermediate values aV0,i with i = -1..2 in the vertical

direction as given by Equations (5.40–5.46) as follows:

bV0,0 = (−2∗aV0,−1 +58∗aV0,0 +10∗aV0,1 −2∗aV0,2)>> shi f t2 (5.40)

cV0,0 = (−4∗aV0,−1 +54∗aV0,0 +16∗aV0,1 −2∗aV0,2)>> shi f t2 (5.41)

dV0,0 = (−6∗aV0,−1 +46∗aV0,0 +28∗aV0,1 −4∗aV0,2)>> shi f t2 (5.42)

70 HLS Based FPGA Implementation of Interpolation Filters

eV0,0 = (−4∗aV0,−1 +36∗aV0,0 +36∗aV0,1 −4∗aV0,2)>> shi f t2 (5.43)

fV0,0 = (−4∗aV0,−1 +28∗aV0,0 +46∗aV0,1 −6∗aV0,2)>> shi f t2 (5.44)

gV0,0 = (−2∗aV0,−1 +16∗aV0,0 +54∗aV0,1 −4∗aV0,2)>> shi f t2 (5.45)

hV0,0 = (−2∗aV0,−1 +10∗aV0,0 +58∗aV0,1 −2∗aV0,2)>> shi f t2 (5.46)

The value of variable shift1 is given by the Equation (5.47) and shift2 = 6.

shi f t1 = BitDepthC −8 (5.47)

where BitDepthC is the bit depth of chroma sample.

5.3.4 HLS based FPGA Implementation of Chroma Interpola-

tion

In our proposed design, 7x7 integer pixels are used for the eight-pixel interpolation

of the 4x4 chroma PU as shown in Fig. 5.7. In Fig. 5.8, the proposed HLS based

implementation of HEVC chroma sub-pel interpolation is shown. For the larger PU

sizes, eight-pixel can be interpolated using each 4x4 PU part of the larger block i.e.

dividing the larger block in PU sizes of 4x4. 7 integer pixels are given as input to

the array of sub-pixel interpolator filter i.e. FilterSetbcde f gh1-FilterSetbcde f gh4

in each clock cycle. 28 sub-pixels i.e. 4a,4b,4c,4d,4 f ,4g and 4h are computed

in parallel in each clock cycle, so in total it will interpolate 7x28 sub pixels in 7

clock cycles. These sub-pixels are stored into registers for computing the half pixels

e.g.bb0,0,bc0,0,bh0,0 etc. 7x7 integer pixels are stored for the sub-pixel interpolation

of the bb0,0,bc0,0,bh0,0 etc. Then the ba0,0–ha0,0 sub-pixels are interpolated using

these stored 7x7 integer pixels using the same filter set. Finally the sub-pixels e.g.

e0,0, f0,0, j0,0 etc. are interpolated using the already stored half pixels ab0,0 – ah0,0.

5.3 HEVC Sub-pixel Interpolation 71

Fig. 5.7 7x7 Pixel Grid for HEVC chroma Interpolation of 4x4 block (where green colour

represents the integer pixels block to be interpolated and yellow colour represents the required

integer pixels padded to the block to support interpolation).

Two different implementations of the HEVC chroma sub-pixel interpolation is

carried out using two different techniques for constant multiplication i.e. multiplica-

tion using multipliers, multiplication using add and shift operations.

72 HLS Based FPGA Implementation of Interpolation Filters

Fig. 5.8 HLS implementation of HEVC Chroma Sub-pixel.

Table 5.8 Resources required for HLS based HEVC chroma implementation using multipliers

for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps

NO OPTIMIZATION 0 0 615 1020 313 220 1424 2

LOOP UNROLL 0 0 2144 7010 1077 162 178 7

LOOP UNROLL + ARRAY PARTITION 0 0 4671 9156 1796 169 116 11

PIPELINE + ARRAY PARTITION 0 0 6723 15884 5358 169 53 24

Table 5.9 Resources required for HLS based HEVC chroma implementation using add and

shift operations for multiplication.

Optimization BRAM18K DSP48E FF LUT SLICE Freq. (MHz) Clock Cycles Fps

NO OPTIMIZATION 0 0 321 654 325 215 622 3

LOOP UNROLL 0 0 1603 8598 745 176 145 9

LOOP UNROLL + ARRAY PARTITION 0 0 3288 12766 967 169 79 17

PIPELINE + ARRAY PARTITION 0 0 5986 14452 1752 169 27 48

5.3 HEVC Sub-pixel Interpolation 73

Table 5.8 and 5.9 enlist the optimization directives used and the corresponding

hardware resources required for HLS implementation using the multipliers as con-

stant multiplication and multiplication by shift and add operations. Mainly three

directives are used for the efficient implementation of HEVC Chroma interpolation

designs. As shown in Table 5.8 and 5.9 , when there is NO OPTIMIZATION di-

rective applied, the latency is much higher i.e. to process 4x4 PU it takes higher

clock cycles as compared to the optimized ones. For the optimized design we use

the combination of optimization directives such as LOOP UNROLL + ARRAY

PARTITION and PIPELINE + ARRAY PARTITION. In both designs the application

of optimizations shows significant area vs performance trade-off. In case of constant

multiplication using add and shift operations, we have better optimized design in

terms of area and performance.

Comparison with Manual RTL implementation

Table 5.10 gives the comparison between HLS and manual RTL implementations of

HEVC chroma sub-pixel interpolation. It is evident that the HLS implementation is

more efficient in terms of performance. Even though the other implementation is

VLSI based, we expect the same performance for the FPGA implementations of the

corresponding implementations.

Table 5.10 HEVC Chroma sub-pixel HLS vs manual RTL Implementations.

Comparison Parameter [110] Proposed

Technology 150nm Xilinx Virtex 7

Slice/Gate Count 1132 1752

Frq. (MHz) 312 169

Fps 30 QFHD 48 QFHD

Design ME + MC ME + MC

5.3.5 Summary: HLS vs manual RTL Implementations

In this work, hardware implementation of the HEVC interpolation filters and H.264/AVC

luma interpolation based on HLS design flow is presented. The throughput of HLS

accelerator is 41 QFHD, i.e. 3840x2160@41fps for H.264/AVC sub-pixel Luma

74 HLS Based FPGA Implementation of Interpolation Filters

interpolation, 46 QFHD for HEVC luma sub-pixel and 48 QFHD for HEVC chroma

interpolation. It achieves almost the same performance as the manual implemen-

tation with half of development time. The comparison of the Xilinx Vivado HLS

based implementation with already available RTL-style hardware implementations

built using Xilinx System Generator is presented. Both hardware designs were

implemented using Xilinx Vivado Suite as stand-alone cores by using Xilinx Virtex

7 xc7z020clg481-1 device. By optimizing and refactoring the C algorithmic model,

we became able to implement a design that has almost the same performance as

the reference implementation. The design time required for HLS based implemen-

tation is significant low about half of the design time required by the manual RTL

implementation.

Our design is semi-automated by using Vivado HLS tools. Other designs were

developed using manual RTL Verilog/VHDL typical design flow. Design time for

Xilinx Vivado HLS was extracted from control log of source code. This time shows

the design time taken needed by a designer who has expertise in tool not a domain

expert. This means, the designer takes an unfamiliar code, use the tool to implement

it as first design, refactor the code to have an optimized desired architecture. Discover

the RTL improvements made in the algorithm by reverse engineering the original

RTL code and perform design-space exploration. Originally, the algorithm itself do

not have those improvements in software model. The throughput in terms of fps of

the manual design almost the same as that of the HLS design.

5.3.6 Design Time Reduction

For comparison purpose we are designing the same interpolation filters using both

design methodologies. The breakdown of each methodology for the purpose of

evaluation and comparison of development times is shown in Fig. 5.9. For the

same hardware functionality both the design flows have different design steps with

different development time. Vivado HLS based design allows implementing the

architecture in about 3 months. The manual design will take about 6 months to

implement the final hardware design. A trade-off between performance and design

time is observed in both methodologies: It is observed that the manual design flow

takes almost double the design time than HLS design flow.

5.3 HEVC Sub-pixel Interpolation 75

In
te

rp
o
la

ti
o
n
 F

ilt
e
r

A
lg

o
ri
th

m
 S

tu
d
y

F
ilt

e
ri
n
g
 o

rd
e
r

p
ro

c
e
s
s
 d

e
fi
n
it
io

n

H
ig

h
-l
e
v
e
l

a
rc

h
it
e
c
tu

re
 d

e
s
ig

n

R
T
L
 D

e
s
ig

n

M
ic

ro
-a

rc
h
it
e
c
tu

ra
l

D
e
s
ig

n

S
im

u
la

ti
o
n

A
re

a
/T

im
in

g

o
p
ti
m

iz
a
ti
o
n

S
y
n
th

e
s
is

V
e
ri
fi
c
a
ti
o
n

T
e
s
ti
n
g

H
L
S

 t
o
o
l

fa
m

ili
a
ri
z
a
ti
o
n

In
te

rp
o
la

ti
o
n
 f
ilt

e
r

C
+
+
 a

d
a
p
ta

ti
o
n
 t
o

H
L
S

 c
o
d
e

O
p
ti
m

iz
a
ti
o
n
 a

n
d

S
y
n
th

e
s
is

 c
o
d
e

g
e
n
e
ra

ti
o
n
,

S
im

u
la

ti
o
n
 C

 a
n
d
 C

/

R
T
L
 C

o
 S

im
u
la

ti
o
n

F
in

a
l
D

e
s
ig

n
 T

e
s
ti
n
g

Fig. 5.9 Design time comparison HLS vs Manual RTL Design.

Thus we were able to draw the conclusion that High Level Synthesis (HLS) tools

provides shorter development time by automatically generating the hardware imple-

mentations still working at a higher level of software abstraction [112]. Furthermore,

HLS design flow has large design-space exploration of different performance and

area trade-off. HLS flow is also efficient in terms of simulation, documentation

design, coding, debugging and reuse. Instead, manual design needs long time to

generate a single hardware architecture that requires further redesign effort if time or

area constraints are not fulfilled.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Time-to-market is the critical factor for digital systems, thus increasing the require-

ment of FPGA platforms. FPGA platforms help to avoid manufacturing cycles and

chip design time. Design time reduction at the cost of increased power, performance

or cost is acceptable for the designers. Latest HLS tools provide option to designers

to consider HLS tools as hardware implementation due to significant design time

reduction and comparable Quality-of-Results (QoR) as manual RTL design.

6.1.1 Hardware Implementation: HLS vs Manual RTL

Factors on which FPGA system design’s time-to-market depend, includes develop-

ment boards, reference designs and FPGA devices themselves. The primary aim of

the HLS design is to increase the designer productivity by implementing the archi-

tecture for new algorithms with more ease. Reduction of time-to-market depends

on many factors including design time and functional form of the design in terms of

integration into a working system. System integration, embedded software and the

verification are all concerned parts of the system-level design integration [113].

A trade-off between design time and performance is presented and discussed

with respect to both methodologies: The HLS design flow time is less than the half

of manual design flow time.

6.2 Future Work 77

For verification and testing steps, manual design needs more time and effort

since possibility of errors is considerable in this kind of design, unlike automated

design flows that minimize errors prone. Generation of RTL code is automatized in

proposed HLS design. But the generation of the interface between processor and

accelerator is still manual configured.

Verification productivity is the key factor in the adoption of high-level synthesis

methodologies for hardware implementation. Design simulation at high-level i.e. C

level is much faster than the simulation at RTL level implementation. This does not

mean that the RTL verification is no more needed, instead it states that the design

time can be significantly reduced by reducing the verification-debug cycles. In RTL,

the verification-debug cycles take a lot of design time. The HLS users can achieve

almost two times improvement in verification process with almost the same design

performance.

6.2 Future Work

Synthesized View Distortion Change (SVDC) using Renderer model (TRenSingle-

ModelC Class), was identified as the second most computational intensive part of

the 3D-HEVC encoder. To the best of our information, still there is no hardware

implementation available in the literature for SVDC. As a future work, for the hard-

ware implementation of this critical part, we have analysed the high-level hardware

architecture for the renderer model as given in the following paragraphs. This anal-

ysis gives the high-level detail about the possible hardware blocks of the renderer

model. In next step, we plan to have manual-RTL based hardware implementation

vs HLS implementation of the renderer model.

6.2.1 3D-HEVC Renderer Model

Depth maps are used for virtual view synthesis. Distortion in depth maps coding

affect the quality of synthesized views. SVDC due to the coding of current depth

block is given by

78 Conclusions and Future Work

SV DC = DdistCB −DorgCB

= ∑(x,y)∈S

[
ST,distCB(x,y)−ST,Re f org(x,y)

]2

−∑(x,y)∈S

[
ST,orgCB(x,y)−ST,Re f org(x,y)

]2

(6.1)

where ST,Re f org is the reference view synthesized from original input left, right

textures ST,l , ST,r and depth maps SD,l , SD,r. ST,orgCB and ST,distCB are views synthe-

sized by using original SorgCB (indicated in yellow) and distorted SdistCB (indicated in

red) data of current depth block as shown in the Fig. 6.1. T , D, l, r, x , y and S shows

texture, depth, left, right, horizontal component, vertical component of pixel and

the set of pixels in the synthesized view, respectively. DdistCB, DorgCB are distortion

while using distorted and original current depth block, respectively. SV DC is the

difference between DdistCB, and DorgCB. As shown in the Fig. 6.1, as an example, if

the current depth frame is divided into four depth blocks B0, B1, B2 and B3, where

the B0 and B1 are already coded blocks, B3 is the current block to be coded and B4

is the original block to be coded after coding of B3 is finished. SSD unit computes

the Sum of Squared Differences of ST,Re f org and ST,distCB, ST,orgCB.

6.2 Future Work 79

Fig. 6.1 Block Diagram of SVDC.

For the efficient computation of SVDC, Renderer model is integrated in 3D-

HEVC encoder. Block diagram of the Renderer model is shown in Fig. 6.2.

Fig. 6.2 Block Diagram of Renderer Model.

80 Conclusions and Future Work

6.2.2 Hardware complexity analysis of Renderer Model

TRenSingleModelC Class basically implements the renderer model for View Syn-

thesis Optimization. This is one of the computational complex part of the 3D-HEVC

encoder. Complexity of this class comes from rendering functionalities needed for

SVDC computation of each coded depth block. As shown in Fig. 6.2, renderer

model consists of three main processing units. Detailed algorithmic description of

the renderer model is given [114]. Functional description and hardware complexity

analysis of the each part of the renderer is described in the following paragraphs.

Fig. 6.3 High Level Hardware Architecture of Renderer Model.

Initializer

High level hardware architecture of renderer model is shown in Fig. 6.3. Buffers are

used for temporary data storage between the external memory and the processing

elements. Initializer synthesize the reference view ST,Re f org from original input

textures ST,l , ST,r and depth maps SD,l , SD,r stored in the T (texture) and depth (D)

maps memories, respectively, as shown in Fig. 6.4. Initialization is performed once

for every frame. Depth maps are stored as renderer model depth states. Reference

view and intermediate variables are stored in the ST (synthesized texture) memory

for faster re-rendering. At the time of initialization, the up-sampling of input textures

and depth maps is carried out to be used later in interpolation step. Up-sampled

6.2 Future Work 81

textures Sups(T,l), Sups(T,r) and depth maps Sups(D,l), Sups(D,r) are stored in the UpS

(Up-sampled) memory.

Fig. 6.4 Initializer Hardware Diagram.

Partial Re-renderer

The partial re-rendering of the synthesized view need to be performed when the

coding of a depth block is finished. The reconstructed depth block is given to

the renderer model, the renderer model updates the depth maps stored as renderer

model depth states in the initialization step. Instead of rendering the whole views

ST,distCB and ST,orgCB which is computational too complex, the partial re-rendering

algorithm is applied which re-renders only parts of synthesized view which got

affected by the depth block coding as shown in Fig. 6.5, for right view to left

view rendering, the same steps hold for the left view to right view rendering. 1 - 7

are the samples position in the reference and synthesized views and SDisp,r are the

disparity values. D1distCB - D7distCB are distortions due to samples 1 - 7, respectively.

There are basically different steps involved in the re-renderer algorithm i.e. warping,

interpolation, occlusion, dis-occlusion and blending. The hardware diagram of the

re-renderer is shown in Fig. 6.6. In the warping the depth maps are warped to the

synthesis position by disparity value calculated by

dv = (s∗ v+o)>> n (6.2)

82 Conclusions and Future Work

where v, s, o and n represent the depth sample value, transmitted scale factor,

transmitted offset vector and shifting parameters, respectively. The depth blocks

are stored in the depth memory DM. The warping itself is very complex process

requiring the calculation of depth values z from depth maps by the use of camera

parameters.

Fig. 6.5 Partial re-rendering algorithm flow diagram.

Warping may cause the original image pixel to be mapped at the fractional pixel

position, so rounding required for sub-pixel i.e. half-pel or quarter-pel position

depending upon the quality requirement of synthesized view. After the warping, one

6.2 Future Work 83

of the three functions will be carried out i.e. interpolation, occlusion or dis-occlusion.

The interpolation position is measured by

x̂ = 4

(
x
′

FP−x
′

s

x
′

e−x
′

s

+ xs

)
(6.3)

where x
′

FP is the integer interpolation location between samples interval boundaries x
′

s

and x
′

e of the intermediate synthesized view. x̂ shows the position of the sample value

in up-sampled input textures Sups(D,l) or Sups(D,r). Occlusion and dis-occlusion are

handled by z-buffering and hole filling algorithms. Filled positions of dis-occluded

regions are stored as filling maps SF,l , SF,r.

Fig. 6.6 Re-renderer Hardware Diagram.

Blending of synthesized left and right view takes place like blending procedure

of view synthesis reference software. Re-rendering process requires high memory

cost in terms of z-buffers for occlusion handling, re-order buffers in warping.

SVDC Calculator

The hardware diagram of SVDC calculator is shown in Fig. 6.7. SVDC is calculated

by SSD of ST,Re f org and ST,orgCB, ST,distCB.

84 Conclusions and Future Work

Fig. 6.7 SVDC Calculator Hardware Diagram.

The view synthesized from original texture and depth maps is used as reference

view for SVDC calculation. RDO optimization for depth maps coding is carried out

i.e. to decide whether to use the applied depth coding mode or not, based on this

synthesized view distortion change value.

References

[1] Russell W Burns. John Logie Baird: Television Pioneer. Number 28. Iet,
2000.

[2] Randy D Nash and Wai C Wong. Simultaneous transmission of speech and
data over an analog channel, April 16 1985. US Patent 4,512,013.

[3] Sara A Bly, Steve R Harrison, and Susan Irwin. Media spaces: bringing people
together in a video, audio, and computing environment. Communications of
the ACM, 36(1):28–46, 1993.

[4] Didier Le Gall. Mpeg: A video compression standard for multimedia applica-
tions. Communications of the ACM, 34(4):46–58, 1991.

[5] Gary J Sullivan and Jens-Rainer Ohm. Recent developments in standardiza-
tion of high efficiency video coding (hevc). In SPIE Optical Engineering+
Applications, pages 77980V–77980V. International Society for Optics and
Photonics, 2010.

[6] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra.
Overview of the h. 264/avc video coding standard. IEEE Transactions on
circuits and systems for video technology, 13(7):560–576, 2003.

[7] T Koga. Motion-compensated interframe coding for video conferencing. In
proc. NTC 81, pages C9–6, 1981.

[8] Fei Sun, Srivaths Ravi, Anand Raghunathan, and Niraj K Jha. Application-
specific heterogeneous multiprocessor synthesis using extensible processors.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(9):1589–1602, 2006.

[9] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
Overview of the high efficiency video coding (hevc) standard. IEEE Transac-
tions on circuits and systems for video technology, 22(12):1649–1668, 2012.

[10] Ercan Kalali and Ilker Hamzaoglu. A low energy sub-pixel interpolation
hardware. In Image Processing (ICIP), 2014 IEEE International Conference
on, pages 1218–1222. IEEE, 2014.

86 References

[11] Grzegorz Pastuszak and Mariusz Jakubowski. Optimization of the adaptive
computationally-scalable motion estimation and compensation for the hard-
ware h. 264/avc encoder. Journal of Signal Processing Systems, 82(3):391–
402, 2016.

[12] Carlos Dangelo and Vijay Nagasamy. Specification and design of complex
digital systems, June 8 1999. US Patent 5,910,897.

[13] Anton Beloglazov and Rajkumar Buyya. Energy efficient resource man-
agement in virtualized cloud data centers. In Proceedings of the 2010 10th
IEEE/ACM international conference on cluster, cloud and grid computing,
pages 826–831. IEEE Computer Society, 2010.

[14] Daniel D Gajski, Nikil D Dutt, Allen CH Wu, and Steve YL Lin. High—Level
Synthesis: Introduction to Chip and System Design. Springer Science &
Business Media, 2012.

[15] John Polkinghorne and Michael Desnoyers. Application specific integrated
circuit, March 28 1989. US Patent 4,816,823.

[16] Shekhar Borkar and Andrew A Chien. The future of microprocessors. Com-
munications of the ACM, 54(5):67–77, 2011.

[17] Zainalabedin Navabi. VHDL: Analysis and modeling of digital systems.
McGraw-Hill, Inc., 1997.

[18] Louis J Hafer and Alice C Parker. A formal method for the specification,
analysis, and design of register-transfer level digital logic. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2(1):4–18,
1983.

[19] Philippe Coussy and Adam Morawiec. High-level synthesis: from algorithm
to digital circuit. Springer Science & Business Media, 2008.

[20] Hung-Yi Liu, Michele Petracca, and Luca P Carloni. Compositional system-
level design exploration with planning of high-level synthesis. In Proceedings
of the Conference on Design, Automation and Test in Europe, pages 641–646.
EDA Consortium, 2012.

[21] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,
Gopi Prashanth Gopal, Jan Gray, et al. A reconfigurable fabric for accelerat-
ing large-scale datacenter services. In Computer Architecture (ISCA), 2014
ACM/IEEE 41st International Symposium on, pages 13–24. IEEE, 2014.

[22] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 161–170. ACM, 2015.

References 87

[23] Benjamin Bross, Woo-Jin Han, Jens-Rainer Ohm, Gary J Sullivan, Ye-Kui
Wang, and Thomas Wiegand. High efficiency video coding (hevc) text specifi-
cation draft 10. JCTVC-L1003, 1, 2013.

[24] Joint Video Team. Advanced video coding for generic audiovisual services.
ITU-T Rec. H, 264:14496–10, 2003.

[25] MPEG-4 Committee et al. Generic coding of moving pictures and associated
audio information: Video. ISO/IEC, 2000.

[26] Barry G Haskell, Atul Puri, and Arun N Netravali. Digital video: an introduc-
tion to MPEG-2. Springer Science & Business Media, 1996.

[27] Karel Rijkse. H. 263: Video coding for low-bit-rate communication. IEEE
Communications magazine, 34(12):42–45, 1996.

[28] Mislav Grgić, Branka Zovko-Cihlar, and Sonja Bauer. Coding of audio-visual
objects. In 39th International Symposium Electronics in Marine-ELMAR" 97,
1997.

[29] Thierry Turletti. H. 261 software codec for videoconferencing over the Internet.
PhD thesis, INRIA, 1993.

[30] Hanan Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys (CSUR), 16(2):187–260, 1984.

[31] D Flynn, M Naccari, K Sharman, C Rosewarne, J Sole, GJ Sullivan, and
T Suzuki. Hevc range extensions draft 6. Joint Collaborative Team on Video
Coding (JCT-VC) JCTVC-P1005, pages 9–17, 2014.

[32] J Chen, J Boyce, Y Ye, and MM Hannuksela. Scalable high efficiency video
coding draft 3. Joint Collaborative Team on Video Coding (JCT-VC) document
JCTVC N, 1008, 2014.

[33] Ajay Luthra, Jens-Rainer Ohm, and Jörn Ostermann. Requirements of the
scalable enhancement of hevc. ISO/IEC JTC, 1, 2012.

[34] Gary Sullivan and Jens-Rainer Ohm. Joint call for proposals on scalable video
coding extensions of high efficiency video coding (hevc). ITU-T Study Group,
16, 2012.

[35] Ying Chen, Ye-Kui Wang, Kemal Ugur, Miska M Hannuksela, Jani Lainema,
and Moncef Gabbouj. The emerging mvc standard for 3d video services.
EURASIP Journal on Applied Signal Processing, 2009:8, 2009.

[36] Anthony Vetro, Thomas Wiegand, and Gary J Sullivan. Overview of the stereo
and multiview video coding extensions of the h. 264/mpeg-4 avc standard.
Proceedings of the IEEE, 99(4):626–642, 2011.

[37] G Tech, K Wegner, Y Chen, MM Hannuksela, and J Boyce. Mv-hevc draft
text 9, document jct3v-i1002. Sapporo, Japan, Jul, 2014.

88 References

[38] G Tech, K Wegner, Y Chen, and S Yea. 3d-hevc draft text 7, document
jct3v-k1001. Geneva, Switzerland, Feb, 2015.

[39] Y Chen, G Tech, K Wegner, and S Yea. Test model 11 of 3d-hevc and mv-
hevc. Document of Joint Collaborative Team on 3D Video Coding Extension
Development, JCT3V-K1003, 2015.

[40] H Schwarz, C Bartnik, S Bosse, H Brust, T Hinz, H Lakshman, D Marpe,
P Merkle, K Müller, H Rhee, et al. Description of 3d video technology
proposal by fraunhofer hhi (hevc compatible; configuration a). ISO/IEC JTC,
1, 2011.

[41] Li Zhang, Ying Chen, and Marta Karczewicz. Disparity vector based advanced
inter-view prediction in 3d-hevc. In Circuits and Systems (ISCAS), 2013 IEEE
International Symposium on, pages 1632–1635. IEEE, 2013.

[42] Li Zhang, Y Chen, and L Liu. 3d-ce5. h: Merge candidates derivation from
disparity vector. ITU-T SG, 16, 2012.

[43] L Zhang, Y Chen, X Li, and M Karczewicz. Ce4: Advanced residual predic-
tion for multiview coding. In Joint Collaborative Team on 3D Video Coding
Extensions (JCT-3V) document JCT3V-D0117, 4th Meeting: Incheon, KR,
pages 20–26, 2013.

[44] H Liu, J Jung, J Sung, J Jia, and S Yea. 3d-ce2. h: Results of illumination
compensation for inter-view prediction. ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11 JCT3V-B0045, 2012.

[45] Karsten Muller, Philipp Merkle, Gerhard Tech, and Thomas Wiegand. 3d
video coding with depth modeling modes and view synthesis optimization. In
Signal & Information Processing Association Annual Summit and Conference
(APSIPA ASC), 2012 Asia-Pacific, pages 1–4. IEEE, 2012.

[46] Fabian Jäger. 3d-ce6. h results on simplified depth coding with an optional
depth lookup table. JCT3V-B0036, Shanghai, China, 2012.

[47] Jin Heo, E Son, and S Yea. 3d-ce6. h: Region boundary chain coding for
depth-map. In Joint Collaborative Team on 3D Video Coding Extensions
(JCT-3V) Document JCT3V-A0070, 1st Meeting: Stockholm, Sweden, pages
16–20, 2012.

[48] YW Chen, JL Lin, YW Huang, and S Lei. 3d-ce3. h results on removal of
parsing dependency and picture buffers for motion parameter inheritance.
Joint Collaborative Team on 3D Video Coding Extension Development of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCT3V-C0137, 2013.

[49] Sehoon Yea and Anthony Vetro. View synthesis prediction for multiview video
coding. Signal Processing: Image Communication, 24(1):89–100, 2009.

References 89

[50] Christoph Fehn, Eddie Cooke, Oliver Schreer, and Peter Kauff. 3d analysis
and image-based rendering for immersive tv applications. Signal Processing:
Image Communication, 17(9):705–715, 2002.

[51] Gustavo Sanchez, Mário Saldanha, Gabriel Balota, Bruno Zatt, Marcelo
Porto, and Luciano Agostini. Dmmfast: a complexity reduction scheme for
three-dimensional high-efficiency video coding intraframe depth map coding.
Journal of Electronic Imaging, 24(2):023011–023011, 2015.

[52] Pin-Chen Kuo, Kuan-Hsing Lu, Yun-Ning Hsu, Bin-Da Liu, and Jar-Ferr
Yang. Fast three-dimensional video coding encoding algorithms based on
edge information of depth map. IET Image Processing, 9(7):587–595, 2015.

[53] Heiko Schwarz and Thomas Wiegand. Inter-view prediction of motion data
in multiview video coding. In Picture Coding Symposium (PCS), 2012, pages
101–104. IEEE, 2012.

[54] Xiang Li, Li Zhang, and C Ying. Advanced residual predction in 3d-hevc. In
2013 IEEE International Conference on Image Processing, pages 1747–1751.
IEEE, 2013.

[55] Philipp Merkle, Christian Bartnik, Karsten Müller, Detlev Marpe, and Thomas
Wiegand. 3d video: Depth coding based on inter-component prediction of
block partitions. In Picture Coding Symposium (PCS), 2012, pages 149–152.
IEEE, 2012.

[56] Martin Winken, Heiko Schwarz, and Thomas Wiegand. Motion vector in-
heritance for high efficiency 3d video plus depth coding. In Picture Coding
Symposium (PCS), 2012, pages 53–56. IEEE, 2012.

[57] Gerhard Tech, Heiko Schwarz, Karsten Müller, and Thomas Wiegand. 3d
video coding using the synthesized view distortion change. In Picture Coding
Symposium (PCS), 2012, pages 25–28. IEEE, 2012.

[58] Karsten Muller and Anthony Vetro. Common test conditions of 3dv core
experiments. In JCT3V meeting, JCT3VG1100, 2014.

[59] Frank Bossen, Benjamin Bross, Karsten Suhring, and David Flynn. Hevc
complexity and implementation analysis. IEEE Transactions on Circuits and
Systems for Video Technology, 22(12):1685–1696, 2012.

[60] Razvan Nane, Vlad-Mihai Sima, Bryan Olivier, Roel Meeuws, Yana Yankova,
and Koen Bertels. Dwarv 2.0: A cosy-based c-to-vhdl hardware compiler. In
Field Programmable Logic and Applications (FPL), 2012 22nd International
Conference on, pages 619–622. IEEE, 2012.

[61] Christian Pilato and Fabrizio Ferrandi. Bambu: A modular framework for the
high level synthesis of memory-intensive applications. In Field Programmable
Logic and Applications (FPL), 2013 23rd International Conference on, pages
1–4. IEEE, 2013.

90 References

[62] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-
moona, Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. Legup:
high-level synthesis for fpga-based processor/accelerator systems. In Proceed-
ings of the 19th ACM/SIGDA international symposium on Field programmable
gate arrays, pages 33–36. ACM, 2011.

[63] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort,
Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi,
et al. A survey and evaluation of fpga high-level synthesis tools. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
35(10):1591–1604, 2016.

[64] Kazutoshi Wakabayashi and Takumi Okamoto. C-based soc design flow and
eda tools: An asic and system vendor perspective. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19(12):1507–
1522, 2000.

[65] Wim Meeus, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk
Stroobandt. An overview of today’s high-level synthesis tools. Design
Automation for Embedded Systems, 16(3):31–51, 2012.

[66] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi,
Matthew Moe, and R Reed Taylor. Piperench: A reconfigurable architecture
and compiler. Computer, 33(4):70–77, 2000.

[67] Nikolaos Kavvadias and Kostas Masselos. Automated synthesis of fsmd-based
accelerators for hardware compilation. In Application-Specific Systems, Archi-
tectures and Processors (ASAP), 2012 IEEE 23rd International Conference
on, pages 157–160. IEEE, 2012.

[68] Nikhil Subramanian. A C-to-FPGA solution for accelerating tomographic
reconstruction. PhD thesis, University of Washington, 2009.

[69] Mentor Graphics. Dk design suite: Handel-c to fpga for algorithm design,
2010.

[70] Walid A Najjar, Wim Bohm, Bruce A Draper, Jeff Hammes, Robert Rinker,
J Ross Beveridge, Monica Chawathe, and Charles Ross. High-level language
abstraction for reconfigurable computing. Computer, 36(8):63–69, 2003.

[71] Timothy J Callahan, John R Hauser, and John Wawrzynek. The garp architec-
ture and c compiler. Computer, 33(4):62–69, 2000.

[72] Maya B Gokhale and Janice M Stone. Napa c: Compiling for a hybrid
risc/fpga architecture. In FPGAs for Custom Computing Machines, 1998.
Proceedings. IEEE Symposium on, pages 126–135. IEEE, 1998.

[73] Y Explorations. excite c to rtl behavioral synthesis 4.1 (a). Y Explorations
(YXI), 2010.

References 91

[74] Jason Villarreal, Adrian Park, Walid Najjar, and Robert Halstead. Designing
modular hardware accelerators in c with roccc 2.0. In Field-Programmable
Custom Computing Machines (FCCM), 2010 18th IEEE Annual International
Symposium on, pages 127–134. IEEE, 2010.

[75] Calypto Design. Catapult: Product family overview, 2014.

[76] Lars E Thon and Robert W Brodersen. C-to-silicon compilation. In Proc. of
CICC, pages 11–7, 1992.

[77] Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alexandru Nicolau. Spark: A
high-level synthesis framework for applying parallelizing compiler transfor-
mations. In VLSI Design, 2003. Proceedings. 16th International Conference
on, pages 461–466. IEEE, 2003.

[78] Hui-zheng ZHANG and Peng ZHANG. Integrated design of electronic prod-
uct based on altium designer [j]. Radio Communications Technology, 6:019,
2008.

[79] Ivan Augé, Frédéric Pétrot, François Donnet, and Pascal Gomez. Platform-
based design from parallel c specifications. IEEE transactions on computer-
aided design of integrated circuits and systems, 24(12):1811–1826, 2005.

[80] Justin L Tripp, Maya B Gokhale, and Kristopher D Peterson. Trident: From
high-level language to hardware circuitry. Computer, 40(3), 2007.

[81] Ravikesh Chandra. Novel Approaches to Automatic Hardware Acceleration
of High-Level Software. PhD thesis, ResearchSpace@ Auckland, 2013.

[82] Erdal Oruklu, Richard Hanley, Semih Aslan, Christophe Desmouliers, Fer-
nando M Vallina, and Jafar Saniie. System-on-chip design using high-level
synthesis tools. Circuits and Systems, 3(01):1, 2012.

[83] P Banerjee, N Shenoy, A Choudhary, S Hauck, C Bachmann, M Chang,
M Haldar, P Joisha, A Jones, A Kanhare, et al. Match: A matlab compiler for
configurable computing systems. IEEE Computer Magazine, 1999.

[84] Andrew Putnam, Dave Bennett, Eric Dellinger, Jeff Mason, Prasanna Sun-
dararajan, and Susan Eggers. Chimps: A c-level compilation flow for hybrid
cpu-fpga architectures. In Field Programmable Logic and Applications, 2008.
FPL 2008. International Conference on, pages 173–178. IEEE, 2008.

[85] Kiran Bondalapati, Pedro Diniz, Phillip Duncan, John Granacki, Mary Hall,
Rajeev Jain, and Heidi Ziegler. Defacto: A design environment for adaptive
computing technology. In International Parallel Processing Symposium, pages
570–578. Springer, 1999.

[86] Oliver Pell, Oskar Mencer, Kuen Hung Tsoi, and Wayne Luk. Maximum per-
formance computing with dataflow engines. In High-Performance Computing
Using FPGAs, pages 747–774. Springer, 2013.

92 References

[87] Satnam Singh and David J Greaves. Kiwi: Synthesis of fpga circuits from
parallel programs. In Field-Programmable Custom Computing Machines,
2008. FCCM’08. 16th International Symposium on, pages 3–12. IEEE, 2008.

[88] Justin L Tripp, Preston A Jackson, and Brad L Hutchings. Sea cucumber:
A synthesizing compiler for fpgas. In International Conference on Field
Programmable Logic and Applications, pages 875–885. Springer, 2002.

[89] CK Cheng and Liang-Jih Chao. Method and apparatus for clock tree solution
synthesis based on design constraints, April 2 2002. US Patent 6,367,060.

[90] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers,
and Zhiru Zhang. High-level synthesis for fpgas: From prototyping to deploy-
ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 30(4):473–491, 2011.

[91] Tom Feist. Vivado design suite. White Paper, 5, 2012.

[92] Leon Stok. Data path synthesis. Integration, the VLSI journal, 18(1):1–71,
1994.

[93] Christian Pilato, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P
Carloni. System-level memory optimization for high-level synthesis of
component-based socs. In Hardware/Software Codesign and System Syn-
thesis (CODES+ ISSS), 2014 International Conference on, pages 1–10. IEEE,
2014.

[94] B Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In Proceedings of the 27th annual international symposium
on Microarchitecture, pages 63–74. ACM, 1994.

[95] Florent De Dinechin. Multiplication by rational constants. IEEE Transactions
on Circuits and Systems II: Express Briefs, 59(2):98–102, 2012.

[96] Martin Kumm, Martin Hardieck, Jens Willkomm, Peter Zipf, and Uwe Meyer-
Baese. Multiple constant multiplication with ternary adders. In Field Pro-
grammable Logic and Applications (FPL), 2013 23rd International Confer-
ence on, pages 1–8. IEEE, 2013.

[97] Ganesh Lakshminarayana, Anand Raghunathan, and Niraj K Jha. Incorporat-
ing speculative execution into scheduling of control-flow intensive behavioral
descriptions. In Proceedings of the 35th annual Design Automation Confer-
ence, pages 108–113. ACM, 1998.

[98] Hongbin Zheng, Qingrui Liu, Junyi Li, Dihu Chen, and Zixin Wang. A
gradual scheduling framework for problem size reduction and cross basic
block parallelism exploitation in high-level synthesis. In Design Automation
Conference (ASP-DAC), 2013 18th Asia and South Pacific, pages 780–786.
IEEE, 2013.

References 93

[99] Scott A Mahlke, Richard E Hank, Roger A Bringmann, John C Gyllenhaal,
David M Gallagher, and Wen-mei W Hwu. Characterizing the impact of
predicated execution on branch prediction. In Proceedings of the 27th annual
international symposium on Microarchitecture, pages 217–227. ACM, 1994.

[100] Nancy J Warter, Daniel M Lavery, and WW Hwu. The benefit of predicated
execution for software pipelining. In System Sciences, 1993, Proceeding of the
Twenty-Sixth Hawaii International Conference on, volume 1, pages 497–506.
IEEE, 1993.

[101] Kemal Ugur, Alexander Alshin, Elena Alshina, Frank Bossen, Woo-Jin Han,
Jeong-Hoon Park, and Jani Lainema. Motion compensated prediction and
interpolation filter design in h. 265/hevc. IEEE Journal of Selected Topics in
Signal Processing, 7(6):946–956, 2013.

[102] Bernd Girod. Motion-compensating prediction with fractional-pel accuracy.
IEEE Transactions on Communications, 41(4):604–612, 1993.

[103] T Wedi. Motion compensation in h. 264/avc. IEEE Trans. Circuits Syst. Video
Technol, 13(7):577–586, 2003.

[104] Waqar Ahmad, Maurizio Martina, and Guido Masera. Complexity and imple-
mentation analysis of synthesized view distortion estimation architecture in
3d high efficiency video coding. In 3D Imaging (IC3D), 2015 International
Conference on, pages 1–8. IEEE, 2015.

[105] Yao Chen, Swathi T Gurumani, Yun Liang, Guofeng Li, Donghui Guo, Kyle
Rupnow, and Deming Chen. Fcuda-noc: A scalable and efficient network-on-
chip implementation for the cuda-to-fpga flow. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 24(6):2220–2233, 2016.

[106] Benjamin Carrion Schafer. Enabling high-level synthesis resource sharing
design space exploration in fpgas through automatic internal bitwidth adjust-
ments. 2015.

[107] Jialiang Liu, Xinhua Chen, Yibo Fan, and Xiaoyang Zeng. A full-mode fme
vlsi architecture based on 8× 8/4× 4 adaptive hadamard transform for qfhd h.
264/avc encoder. In VLSI and System-on-Chip (VLSI-SoC), 2011 IEEE/IFIP
19th International Conference on, pages 434–439. IEEE, 2011.

[108] Firas Abdul Ghani, Ercan Kalali, and Ilker Hamzaoglu. Fpga implemen-
tations of hevc sub-pixel interpolation using high-level synthesis. In 2016
International Conference on Design and Technology of Integrated Systems in
Nanoscale Era (DTIS), pages 1–4. IEEE, 2016.

[109] Zhengyan Guo, Dajiang Zhou, and Satoshi Goto. An optimized mc inter-
polation architecture for hevc. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pages 1117–1120. IEEE,
2012.

94 References

[110] Cláudio Machado Diniz, Muhammad Shafique, Sergio Bampi, and Jorg
Henkel. High-throughput interpolation hardware architecture with coarse-
grained reconfigurable datapaths for hevc. In Image Processing (ICIP), 2013
20th IEEE International Conference on, pages 2091–2095. IEEE, 2013.

[111] Grzegorz Pastuszak and Maciej Trochimiuk. Architecture design and effi-
ciency evaluation for the high-throughput interpolation in the hevc encoder. In
Digital System Design (DSD), 2013 Euromicro Conference on, pages 423–428.
IEEE, 2013.

[112] Sotirios Xydis, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano.
Spirit: Spectral-aware pareto iterative refinement optimization for supervised
high-level synthesis. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 34(1):155–159, 2015.

[113] Cadence Design Systems Inc. Silicon realization enables next-generation ic
design. Cadence EDA360 White Paper, 2010.

[114] Y. Chen, G. Tech, K. Wegner, and S. Yea. Test model 11 of 3d-hevc and
mv-hevc. In JCT3V meeting, JCT3VK1003, 2015.

