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Abstract : This paper presents an attempt towards design
quality improvement by incorporation of testability features
during datapath high–level synthesis. This method is based
on the use of hardware sharing possibilities to improve the
testability of the circuit without a time consuming re–syn-
thesis process. This is achieved by incorporating test
constraints during register allocation and interconnect net-
work generation. The main features of this method are:
– a test analysis at the behavioral level rather than at a
structural one.
– the non limitation on the behavioral descriptions (loops,
control constructs are supported),
– the optimized test area overhead and cpu time compared to
standard approach,
The method was applied to several benchmarks resulting in
easily testable designs for almost the same area costs as the
original (without testability) designs.

I Introduction
Recent works have proved the efficiency of considering

testability as one of the design constraints [2][10][14][20]
during High Level Synthesis. Based on the observation that
the behavioral description of a circuit can be implemented
by various structures with the same area and time costs but
with different testability costs, one of the goals of ‘‘High
Level Test Synthesis” is to take advantage of the design
alternatives offered by high level synthesis in order to
improve or guarantee the testability of the circuit.

In this paper, we present a testability driven behavioral
synthesis chain, the aim of which is to generate an easily
testable design (where all nodes can be easily controlled
from primary inputs and easily observed from primary
outputs) while keeping area overhead to a minimum. The
three main tasks of high level synthesis are scheduling,
allocation and generation of interconnections. Scheduling
is the assignation of operations to control steps; allocation is
the step during which operations are mapped to functional
modules and variables to memory modules; finally,
interconnections are generated between the previously
defined structural entities according to the functionality of
the circuit. In the presented system, register allocation and
interconnect generation algorithms take into account the

testability of the potential design as well as area
considerations. To realize this goal, the partial design’s
testability is analyzed before each one of these two
synthesis steps leading to the generation of constraints that
are taken into account to guide the architectural choices.

We consider here architectures composed of a controller
and a datapath. We deal with the datapath testability
improvement assuming that the controller can be modified
to support the test plan and to be self–testable [12]. Next
section relates relevant works in this area. Section III is an
overview of our test synthesis method while section IV
gives some definitions. In section V, we present the register
allocation for testability method and give some compari-
sons with the standard approach. The interconnect
generation method is detailed in section VI.

II Related works
 The traditional testability approaches, which consist in

constructing a datapath without testability considerations
and adding test hardware at the RT level(e.g. [6]), have two
major drawbacks. Firstly, the problem of finding a minimal
set of test points to make the design testable is
NP–complete. Secondly, the area overhead resulting from
the additional test material may be large (and is at least not
under control). The earliest approaches to high level
synthesis for testability [1][9] used a testability insertion
back–end where a post synthesis module is added to the
synthesis chain. This module converts an RTL design into a
testable one by test hardware insertion. However, these
techniques do not actually support testability on the
behavioral level.

In [10], Gebotys et al. proposed a design and test
synthesis methodology where test cost is taken into account
as one of the design parameters for scan and BIST test
strategies. Papachristou et al. [17] proposed a high level
synthesis for testability method based on BIST insertion
where allocation techniques are used to minimize the area
overhead due to BIST resources. Another scheme for
synthesis of BISTed data paths was proposed by Avra [2]
where the number of CBILBO registers is minimized by
imposing testability constraints during allocation.
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Chen et al. [4] proposed a high–level testability analysis
system which identifies controllable and observable nodes
on a Control Flow Graph and finds test paths for them.
However, only control sequences existing in the normal
behavior are authorized for building up test paths (i.e. all
other structural paths in the circuit, are ignored). For those
nodes that are identified as hard to test, the authors propose
the modification of the control graph by test point insertion
(additional connections), or test statements insertion
(modification of the controller).

Considering external testing, Lee et al. [14][15] have
proposed two rules for synthesis for testability that are used
to guide datapath allocation and datapath scheduling, which
are: i) whenever possible, allocate a register to at least one
primary input or primary output variable, ii) reduce the
sequential depth from a controllable register to an
observable register. The register allocation scheme uses the
left edge algorithm while incorporating these two rules.
This method is intrinsically limited to purely sequential
specifications or under the hypothesis that all variables
alive at the first (resp. last) c–step of a control construct (and
only these ones) are connected to primary inputs (resp.
outputs). As far as we are concerned, this method is
inapplicable to control–dominated circuits (i.e. with
specifications embedding control constructs), and func-
tional unit transparency is not questioned.

Another proposal was made by Bhatia et Jha [3], which
involves not only register allocation but also functional
module allocation. They propose to map a controllable
(observable) variable to an uncontrollable (unobservable)
register or a testable operation to an untestable module thus
making the register or module testable. This allocation
scheme uses backtracking to undo allocation when a
module is declared untestable and when allocation is unable
to resolve a testability problem, an extra multiplexed
connection is added to enhance controllability (and/or
observability).

III Contribution
The method presented here overcomes the limitations of

the above approaches and of a late testability insertion by
providing early diagnosis of hard to test points and solutions
for these testability problems. It addresses external test and
aims to generate directly RTL designs where every node
possesses 1/ a justification path from a primary input
allowing to set it to any desired value and 2/ an observation
path allowing to detect on a primary output, any error in the
value carried by the node. As no assumption is made on the
actual values of test data, the test paths are such that any test
data can be propagated to and from any fault location. These
justification and sensitization paths are composed of a
cascade of transparent modules and are determined using
data transfers issued from the initial behavioral description.

These modules are the physical entities building up the
datapath: functional units (FUs), registers, ....

 Our method differs from the approach presented in [3]
by using functional unit transparency properties and on the
other hand, by not restricting data transfers to the behavioral
paths of the normal mode of execution. Taking advantage of
the alternatives of high level synthesis, we either guarantee
the testability of the datapath without a high area overhead
and without the time consuming backtracking step, or
generate the most testable design for a given area.

Fig. 1 presents the synoptic of the complete high level

Fig. 1  Synthesis of testable datapath
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test synthesis system [7]. The test synthesis methodology
can be summarized as follows:
1. All justification and propagation paths for all nodes are
found and all uncontrollable and unobservable nodes are
detected. This testability analysis is performed on the
circuit’s partially determined structure, i.e. composed of
FUs and variables.
2. Register allocation for testability is performed based on
the information provided by the first step in order to make as
many registers as possible testable.
3. Testability analysis is run again on the new partial
structure now composed of FUs, registers and RAMS.
4. Interconnection generation is conducted based on the
information provided by the third step.

It must be stressed that the justification and propagation
behavioral paths are data–flow graphs and not structural
paths. These paths are built up from the elementary data
transfers of the behavioral specification, that is, they are set
independently of the schedule of the specification and of the
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initial instruction set (we assume that the controller can be
modified to support the test plan).

Next section gives some definitions used in the proposed
high level test synthesis method.

IV Definitions
The testability analysis (or test path search) method is

based on the following definitions:
1. Independently of its use in a circuit, a module is
C–transparent if its output port can be set to any desired
value. This property is an intrinsic property. Registers,
variables, busses, muxes are C–transparent.
2. In the same way, a module is O–transparent if any
change on the value at one of its inputs is reflected by a
change at the output (without any change on the other
inputs). Registers, variables, busses, muxes are
O–transparent.
3. A C–path of an n–bitwidth variable v is a path that allows
v to be assigned to the 2n possible values from a primary
input port. A C–path is composed of cascades of
C–transparent modules.
4. An O–path of v is a path that allows any change in the
value carried by v to be propagated from v to a primary
output. An O–path is composed of a cascade of
O–transparent modules.
5. If a variable v possesses at least one C–path, it is said to be
controllable.
6. If a variable v possesses at least one O–path, it is said to be
observable.
7. An input port  of a FU is controllable, if at least one of the
variables feeding this port is controllable.
8. A FU is fully controllable  if each of its input ports is
controllable independently.
9. An output port  of an FU f is observable for a fault in f , if
there exists an observable variable fed by this port such that
its O–path and its lateral C–paths (C–paths which control
the propagation through the O–path) do not contain f.

In our system, the transparency properties of FUs are
assumed as known and are attributes in the library. C–paths
and O–paths are a generalization of the notions of I–path
from [1] and of S–path, F–path from [8].

The output output is the set of all C–paths (O–paths) for
all controllable (observable) modules’ ports (FUs,
variables,  registers..).

This information is used during the next synthesis steps
to establish merging preferences during register allocation
and interconnect generation for testability. The interested
reader can refer to [11] for the exact definitions of
controllability  and observability as well as for the analysis
process.

To illustrate the testability analysis methodology, we
applied it to the differential equation benchmark from [18].
Its scheduled and partially allocated data flow graph is
depicted in Fig. 2. This representation, classical in HLS is
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Fig. 2:  Scheduled data flow graph
the system’s internal representation of the behavioral
description. We consider that variables x, y and u are loaded
from primary inputs in the first iteration and then loaded
from the FUs in the other iterations. For simplicity, the
output of the comparator which communicates directly with
the controller is not considered. For instance, let’s assume
that the 5 FUs used in the design are C– and O–transparent
except the ��� one. Table 1 shows the results of the
testability analysis. Rows 2 and 3 give respectively the
controllability  and observability of the variables. Table 2
gives the number of possible justification and propagation
paths for test vectors of faults occurring in the FUs.

var. y x u b d k e f c h m g

control. c c c c c c c c c nc nc c

observ. o o o no no o no no no no o o

Table1 :Variables controlability / observability

Mult1 Mult2 Add Sub

input 1 (just. paths) 1 1 2 1

input 2 (just. paths) 1 1 1 4

output (prop. paths) 1 0 1 1

 Table 2 : # of justification and propagation paths for
faults occurring in the FUs

Fig. 3 represents the observability path of the sub FU. It
is built up from the elementary data transfers depicted by
thick lines in Fig. 2.

V Register allocation for testability
The basic principle of register allocation for testability is

to merge uncontrollable (unobservable) variables with
controllable (observable) ones into registers in order to
make these registers and the FUs connected to them
controllable (observable).
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Let’s first recall the basic principle of register allocation:
variables can share the same register if their life times do not
overlap. The merging possibilities of variables are extracted
performing a life time analysis and a compatibility graph is
built up. A solution minimizing area expressed by a cost
function fa (nb. of registers, nb. of multiplexer inputs,...) is
sought by finding an adequate clique partitioning in the
compatibility  graph. Generally, the search is guided by
weighting the graph edges by the area gain �fa, i.e. the area
gain due to the merge of the two involved variables (see [19]
for more details). The pair of variables joined by the edge of
maximal weight is merged. After each merge, all weights
are updated and the process is iterated until no merge is
possible.

To take account for testability, we simply replace �fa by
��fa /�fa max +��fc/�fc max +��fo/�fo max where �fc
(resp. �fo) is the controllability (resp. observ.) gain and �fa
max, �fc max and �fo max�are normalization factors. ���� and �
are user defined tuning factors allowing trade–offs between
area, controllability and observability. Next, we only detail
the calculations of �fc and �fo can be obtained in a similar
fashion.

V.1 Controllability gain  �fc
The controllability gain is intended to measure the effect

of a merge on the controllability of the whole circuit. As
mentioned earlier, merging an uncontrollable variable with
a controllable one into a register makes this register and the
FU port connected to it controllable. Therefore, controlla-
bility gain is composed of three terms representing: i) The
number of FUs that become fully controllable due to the
merge, ii) the number of FU ports that become controllable,
and iii) the variable merging preference. As testability
bottlenecks usually concern FUs, since more test patterns
are required to test a FU than to test a register , we give a
priority to merges that increase the controllability of FUs
over those that only affect registers. Thus� �fc is taken as:

�fc� FuI � �1PI � �2VI with �2 �� �1 �� 1

where Fui is a FU influence factor, Pi a FU ports influence
factor and Vi a variable influence factor. These three factors
are detailed below.

a. Functional unit influence factor Fui:
Fui represents the effect of a merge of two variables on

the circuit’s FUs. Its value is equal to the number of FUs that
become fully controllable due to the merge. A variable
merge can make a FU controllable either directly (because
the FU input is linked to the non controllable variable) or
indirectly (because the FU in question is down–stream a
C–transparent FU linked to this variable and so on). Thus,
the algorithm for computing Fui for a given variable pair
(v1,v2) is the following (v1 is an uncontrollable variable
while v2 is controllable, and �� is the set of fully
controllable FUs):
�= {v1} ; Fui(v1,v2)=0;
� = ∅  ; /* set of FUs made controllable */
Until no variables are added to �

for every FU F / F��, F��� , and all input ports of
F are controllable or are fed by v��

Fui(v1,v2)++;�=��{F} ;
if F is C–transparent

for every uncontrollable variable v’� fed
by F: � =��{v’};
b. Functional unit ports influence factor Pi:

While Fui represents the influence of a merge on the
controllability  of a functional unit as a whole, Pi represents
the effect of a merge on the controllability of input ports of a
FU taken separately (i.e. even when the merge does not
make the FU in question fully controllable). Pi is taken as: ,

�
fui�F

nb. of input ports of fui made controllable
nb.of uncontrollable ports of fui

where F is the set of uncontrollable FUs of which some input
ports will become controllable due to the merge.
c. Variable influence factor Vi:

This term takes into account the effect of a merge on the
controllability  of registers regardless of the effect on the FU
controllability. Vi=0 if the merge is between two
controllable variables or two uncontrollable ones.
Otherwise, the value of Vi, given in table 3, depends on the
controllability  classes of the merging variables, with a
maximum value for merges that influence the controllabil-
ity of a large number of variables and reduce sequential
depth. The controllability classification of variables, issued
from the testability analysis, is the following (the same
classification can be obtained for any other entity):
�1: variables controllable directly from primary input ports
without FUs in the C–path.
�2: variables v � �1 and ∃ C–path to v with FUs in the
C–path.
�3: variables only fed by non C–transparent FUs and thus de
facto uncontrollable.
�4: variables v � �1��2��3 and ∃ C–path from v’� �3
to v. These variables would be controllable through FUs if
the �3 variables became controllable.
�5: � – �1��2��3��4 = uncontrollable variables, they
only belong to structural loops. �51 is a subset of �5 such
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that all structural loops are broken if all v��51 became
controllable (�52=�5–�51).

Merging a non–controllable variable with a �1 variable
is preferred to that with a �2 variable due to the sequential
depth reduction resulting from such a merge. Such a merge
makes a previously non–controllable point in the circuit
directly accessible from a test point (e.g. a primary input).
In the same way, merging a controllable variable with a �3
or a �51 variable is encouraged more than with a �4
(respectively �52) variable because if all �3 (resp. �51)
variables are made controllable, then all �4 (resp. �52)
variables would become controllable too.

�1 �2 �3 �4 �51 �52

0 0 10 5 10 0 �1

0 8 3 8 0 �2

0 0 0 0 �3

0 0 0 �4

0 0 �51

Table 3  : Variable influence factor (Vi) between
register compatible variables of different classes.

V.2 Examples and Results
To show the effectiveness of our method, we applied it to

several benchmark examples. Table 4 gives the characteris-
tics of these circuits: ex1 is Tseng’s example borrowed from
[20]. ex2 is the differential equation example (c.f. IV) from
[18]. ex3 is the AR filter borrowed from [13]. ex4 is the
elliptical  filter borrowed from [5]. In the last three
examples, multiplication coefficients are constants and are
assumed to be stored in ROMs. Thus, with regard to the
C–path and O–path definitions, the multipliers can not
belong to transparency paths.

circuits # FUs # FU
C transp

#FU
O transp

# var. var. control-
lability

var. observ-
ability

circuits # FUs # FU
C–transp.

#FU
O–transp.

# var. var. control
lability

var. observ
ability

ex1 [20] 4 2 2 11 5 c 6 nc 3 o 8 no
ex2 [18] 4 3 3 12 10 c 2 nc 6 o 6 no
ex3 [13] 5 1 4 32 4 c 28 nc 2 o 30 no
ex4 [5] 5 3 3 35 2 c 33 nc 1 o 34 no

Table 4 : characteristics of the benchmarks

The number of supposed C–transparent and O–transpar-
ent functional units are given in columns 3 and 4. Column 5
gives the total number of variables of the behavioral
description, while the number of controllable/uncontrol-
lable and observable/ unobservable variables are given in
columns 6 and 7. We only detail the register allocation
process for one of these benchmarks: ex2 (differential
equation). Fig. 4  shows the register compatibility graph of
ex2. Table 5 gives the results of register allocation for ex2,
once without testability considerations and once taking into
account the testability of the design.

u
x

y

b

d

k
e

f

c

h

m

g

Fig. 4 : Register compatibility graph of ex2
Without testability  With testability

variables  Reg. cont. obs. variables  Reg. cont. obs.
u Reg1 c o u Reg1 c o
x Reg2 c o x Reg2 c o
y Reg3 c o y Reg3 c o

b,k Reg4 c o b,m Reg4 c o
d,g Reg5 c o d,h Reg5 c o
e,c Reg6 c o k,f Reg6 c o
f,m Reg7 c o e,c Reg7 c o
h Reg8 nc no g Reg8 c o

Table 5 : Testability results for register allocation
without testability for ex2.

Table 6 gives the results of register allocation (with and
without testability constraints) for the four benchmarks in
terms of area cost, and testability problems. The results
given below show that considerable testability improve-
ment has been achieved with no overhead. For ex3 and ex4,
register allocation for testability even resulted in fewer
registers. However, certain testability problems remain
unsolved. For example, for circuits ex3 and ex4, the
non–controllability  of certain FUs is due to the fact that one
of the operands of each of these FUs is always a constant
(multiplication  coefficient). In such a case, register
allocation cannot intervene directly on the uncontrollable
FU port, but it still plays an important role concerning the
testability of down–stream entities.
Remark : generally and conversely to these examples, it
may happen that the number of registers differs from the
initial solution (more or less registers) since clique
partitioning is an NP–complete problem. So, any heuristic
may not converge toward the best solution.

circuits without testability with testabilitycircuits
Area cost Testability pbs Area cost Testability pbs

ex1 [20] 5 registers 1 reg. nc 5 reg. None
ex2 [18] 8 registers   1 reg nc.,

1 reg no
8 reg. None

ex3 [13] 12 registers 8 reg nc, 5 FU nc
5 reg no, 1 FU no

11 reg. 2 reg nc,
 3 FU nc

ex4 [5] 14 registers 1 reg. nc, 1 FU nc
13 reg. no, 3FU no

13 reg. 1 FU nc

Table 6 : results of register allocation of  benchmarks
During register allocation, we have used controlability

and observability gains to weigh the graph edges in the
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compatibility  graph. This method allows to improve
testability in the limit of the merging possibilities with
controllable/observable  variables. Our aim being the
generation of easily testable designs, all remaining
testability problems (if any) have to be solved in the next
step of the synthesis flow, that is during interconnection
generation. In the next section we propose an interconnec-
tion generation methodology that takes into account
testability constraints and results in an easily testable
architecture with a minimal number of additional
connections.

VI Interconnect network generation for acces-
sibility enhancement

At this stage of the High Level Test Synthesis process,
the data structure is composed of a set of physical modules
(FUs, registers,...) and a set of data transfers between these
modules. In order to solve the possible remaining testability
problems, the next step consists in generating automatically
an interconnect network such that modules’ input ports are
controllable from primary inputs and modules’ output ports
are observable through primary outputs.

Generally, two models of interconnect networks are
used: either a bus based model or a mux based model [21].
The first one is a generalization of the second one since a
bus can be viewed as a mux/dmux device. In the following,
a bus based model is assumed in which modules
communicate through buses. For instance, a data transfer
A � B is of the form:
 A –> connection –> BUS –> connection –> B.

VI.1 Basic interconnect generation algorithm
In the Mach system, the interconnect generation process is
composed of two main tasks described below.
1. A preprocessing phase consists in:
i. constructing a transfer matrix M in which each data
transfer between a resource output port and a resource input
port is identified by a connection variable xi. Each row in M
contains connection variables corresponding to transfers
from a module’s output port, each column contains
connection variables corresponding to transfers to a
module’s input port (see example in Fig. 3.a). For instance,
in this example, connection variables x1 and x2 are
respectively associated to transfers from Alu1(O1) to
R1(I1) and from R2(O1) to Alu2(I2)
ii. setting up a set of ‘‘parallelism” constraints between
these connection variables. A ‘‘parallelism” constraint
exists between xi and xj if data transfers identified by these
variables are executed during the same control step.
2. Then, a solution is sought minimizing the number of
connections between entities for a given number of buses.
Let B be the chosen number of buses, and let �: xi –> �(xi)

� {1,... ,B} be the searched mapping function. The
algorithm attempts to find �(xi) for every xi such that:
�

l

Card({ �(xl1),�(xl2), ...,�(xli)}) ��
c

Card({�(xc1),�(xc2), ...,�(xci)})

(where l� matrix rows and c belongs to matrix columns) is
minimum while respecting the parallelism constraints,
which are expressed as �(xi)��(xj). For instance in
Fig.3.a, if �(x2)=1, the output of R2 will be connected to
Bus1 as well as the second input of Alu2. It must be noticed
that the cost of the solution (number of connections)
increases with the number of parallelism constraints.

Controllability  and observability properties are ex-
tended to connection variables using the definitions below:
1.The connection variable xi is controllable (resp.
observable) if there is one module’s controllable output
(resp. observable input) port connected to xi.
2.The controllable (resp. observ.) bitwidth  of xi, CB(xi)
(resp. OB(xi)), is the number of controllable (resp.
observable) bits through xi. Let CB(Oj) be the number of
controllable bits on a module output port Oj, CB(xi) = Max
{CB(Oj) / Oj is connected to xi}.

VI.2 Principle
Controllability  and observability problems are solved by

imposing to some data transfers to be executed through the
same bus. In the above formalism, this is done by forcing the
the corresponding connection variables to be assigned to the
same bus.

For instance, let us consider a data transfer of the
behavioral description from a module’s output port O to
another module’s input port I, and let us assume that I is not
controllable. Let xi be the connection variable associated to
the data transfer from O to I. Let xj be a controllable
connection variable associated to another data transfer from
a controllable output port O’ to an input port I’. Assuming
that CB(xj) is large enough to control I and no parallelism
constraint exists between xi and xj, forcing these two data
transfers to be assigned to the same bus makes I controllable
through the new transfer possibility from O’ to I. This is
achieved by setting up the constraint �(xi) = �(xj). Such
constraints are called test constraints and are to be set before
the processing step in the above algorithm. Conversely to
parallelism constraints which prevent the assignment of two
connection variables to the same bus, a test constraint leads
to the assignment of two variables to the same bus.

The test constraint generation for controllability is
illustrated by the example in Fig. 5. For convenience, we
will assume that all ports have the same bitwidth. The R2’s
output port, R2(O1), is controllable and the Alu2’s input
port, Alu2(I2), is controllable through R2(O1). As a
consequence, x2 is a controllable connection variable and
all input ports which will be connected to x2 will be
controllable through R2(O1) and x2. In the same way,
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R1(I1) is not controllable since it is only connected to not
controllable outputs.

If there are no parallelism constraints between x1 and x2,
a test constraint �(x1)=�(x2) forces the two transfers,
R2(O1) � Alu2(I2) and Alu1(O1) � R1(I1), to be executed
through the same bus. A transfer possibility is created
between R2(O1) and R1(I1) which becomes controllable
through R2(O1). In the transfer matrix, the test constraint
�(x1)=�(x2) is applied replacing x2 by x1 in M. The
interconnect generation process working on the new
transfer matrix will assign the same bus (B1) to the two
preceding transfers (Fig. 5.b).

Alu1(O1)
R2(O1)

R1(I1) Alu2(I2)

x1

x2

Test constraint

(x1=x2=x100)

Alu3(O1) x4

Alu2(O1)

R3(I1)

x3

R1(O1)

Alu4(I1)

x5
.
.
.

.  .  .
nc c c nc

nc
c
c
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Alu1(O1)
R2(O1)

Alu3(O1)
Alu2(O1)
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.

.

.

nc
c
c
nc
nc

R1(I1) Alu2(I2)

x1

x1

x4

R3(I1)

x3

Alu4(I1)

x5

.  .  .
nc c c nc

M

new M

Fig. 5.a :Transfer Matrix modification
x1=x2 –> B1

Alu1 R1Alu2 R2

B2
B3

. . . . . .
Fig. 5.b : Impact on interconnect generation

The interconnection unit generation with testability
improvement algorithm is the following :
connect_generation_including_test_constraints() {
create_transfer_matrix;
create_parallelism_constraints;
if (test improvement) {

test_analysis(behavioral transfers);
if (hard to control points)

controllability_constraints();
test_analysis(behavioral transfers + added transfers)
if (hard to observe points)

observability_constraints();
}}

generate_connect(transfer_matrix);}.
 Testability analysis is applied a first time taking into

account transfers specified in the initial behavioral
description. After the controllability constraints generation
process, a second testability analysis takes into account
behavioral transfers plus transfer possibilities created by
this process (cf. VI.3.C).

Controllability  constraints generation is detailed in the
following sub–section, observability constraints are
generated in a similar way.

VI.3 Controllability constraints generation
We call objectives the test problems to solve, i.e. the

module input ports to be made controllable.
It must be noticed that when a test constraint (xi=xj) is set

up, all parallelism constraints for xi become parallelism
constraints for xj and vice versa. As the solution cost
increases with the number of parallelism constraints and the
number of parallelism constraints increases with the
number of generated test constraints, the solution cost
depends on the test constraints set chosen to solve the
objectives.

Generally, several test constraints can be set to solve a
given controllability problem. In addition, if there are
several test problems to solve we have to choose what
problem to solve first. These two points are illustrated in the
preceding example (cf. Fig. 5):
i. The controllability problem on R1(I1) can be solved by
setting up one the test constraints �(x4)=�(x2),
�(x1)=�(x3) or �(x4)=�(x3).
ii. If the objective R1(I1) is solved first, then R1(O1)
becomes controllable too because of the C–transparence of
R1. Since there is a transfer from R1(O1) to Alu4(I1),
Alu4(I1) becomes also controllable. Conversely, solving
the objective Alu4(I1) first, does not solve the objective
R1(I1). In the remaining, we say that the controllability of
R1(I1) implies the controllability of ALU4(I2).

As explained above, we want to generate as few as
possible additional parallelism constraints in order to obtain
a solution as close as possible to the optimal solution which
would be generated without testability constraint. Like the
interconnect generation process itself, the identification of
a minimal set of test constraints to is an NP–complete
problem. We use two heuristics to choose i) what objective
has to be solved first and ii) what test constraint has to be
applied to solve this objective.

A. Objective priority:
When several objectives are identified by testability

analysis, a priority degree (D) is used to rank these
objectives. D of an objective is proportional to the number
of modules whose controllability depends on that of the
objective and takes into account the controllability class of
the objective. D takes also into account the nature of the
objective: the priority degree for a FU should be higher than
for a register (as testability bottlenecks usually concern
large modules). Finally, D should be higher for an objective
that makes a FU fully controllable rather than partially
controllable.  Thus, D = a�df + b� cf + c�clf + d�if
where a,b,c,d are balancing factors.
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The term df reflects the relative difficulty for testing
FUs, RAMs and registers. In the first prototype coefficients
are the following: df=1000 if the objective is a FU, df=500 if
it is a RAM, df=0 if it is a register.

The second term clf is the ratio of controllable input ports
of the objective versus the total number of its input ports.
This term favours the control of all input ports of a same
module rather than partial control of many modules.

Based on the results of the controlability classification
issued from testability analysis, the third term favours input
ports where controllability cannot be indirectly set up by the
controlability of other ones: clf=10 if controllability class of
objective is �3 or �51, clf=0 if controllability class of
objective is �4 or �52.

The last term if is the number of output ports made
controllable by objective resolution, it allows to take into
account controllability ’implications’ in the testability
improvement process.

B. Choice of the test constraint:
As presented in the previous example, an objective can

be solved in several ways that is to say using different
controllability  constraints. In the transfer matrix, if xi is a
connection variable in the column of the objective, any
possible association of xi with any controllable connection
variable xj is a control constraint allowing to solve the
objective (it is clear that all associations between all xi and
all xj are not possible due to the bitwidth to control and to
parallelism constraints).
A cost function is set up in order to choose the most suitable
test constraint �(xi)=�(xj) among all, allowing to resolve
an objective. As the best test constraint is one that
minimizes the number of additional parallelism constraints,
the cost function naturally represents the difference
between the number of parallelism constraints before and
after the application of the test constraint.

C. Test constraint algorithm:
The outline of the algorithm for test constraints

generation is:
– Test constraints are generated according to the ordering
given by D and C and the connection matrix is modified
accordingly.
– If not all test problems are solved and if the user allows
extra connections to be added, the algorithm proposes to
add transfers from controllable nodes to the uncontrollable
ones. These transfers are considered in the same way as the
other transfers in the interconnect generation process.

It must be noticed that the preprocessing phase of test
constraints generation for controllability and observability
is negligible in comparison with the global CPU time of
interconnection unit generation, the complexity of which is
O(|X|NB) where X is the set of connection variables and NB
is the number of busses. Furthermore, since testability
constraints reduce the number of connection variables in the

transfer matrix, test improvement method contributes to
speed up the processing phase.

VI.4 Example
To illustrate this method, we ran it on the example circuit

ex5 whose behavioral description is presented by its
scheduled and partly allocated data flow graph in Fig. 6.
The C– and O– transparencies of the FUs are given in table 7
(F1 and F2 are O–transparent only for one of their inputs I2).
Table 8 gives the controllability and observability
characteristics  of the circuit’s modules after register
allocation.  Due to lack of merging possibilities with
observable variables, all observability problems cannot be
resolve by a register allocation process, and R1 and R3 stay
unobservable.

Fig. 6  Scheduled and partly allocated
 data flow graph of ex6
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PI PI
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F3F4

f ga

a

c

c d e

f gd PO

f g

Ctr

F1 F2 F3 F4

C–transparent yes yes yes yes

O–transparent no(I1), yes(I2) no(I1), yes(I2) yes no

Table 7 : C– and O–transparency properties of FUs
used in ex6

 Reg. controllability observability  FUs controllability observability

R1 (a) c no F1 c o

R2 (b,d) c o F2 c o

R3 (c) c no F3 c o

R4 (e,g) c o F4 c –

R5 (f) c o – – –

Table 8 : Testability results on ex6 after register
allocation

Two interconnect networks have been generated, the
first one in Fig. 7.a without considering testability, the
second one, Fig.7.b, using test constraints. In both cases, the
chosen number of busses (6) is the lower bound allowing to
implement the parallelism declared in the behavioral
description and the number of generated connections is 28.
In Fig. 7.a, R1 and R3 are still unobservable. These
problems are solved in Figure 7.b forcing the transfers from
R1 to F1(I1) and from R5 to F3(I1) to be executed through
the same bus B1, and forcing the transfers from R3 to F2(I1)
and from R2 to F3(I1) to be executed through the same bus
B2.
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Fig 7.a  Interconnect network without test constraints

Fig. 7.b  Interconnect network with test  constraints
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It must be noticed that for several examples, many (but
not necessarily all) testability problems are solved without
test constraints due to the bus based model. In fact, this
model creates numerous paths between modules which are
not expected by the initial behavioral description of the
circuit. We expect more significant results with the mux
based model of architecture.

VII Conclusion
In this paper, we presented a high level synthesis system

for easy testability. A register allocation and interconnec-
tion generation schemes that take into account testability
constraints are proposed. They are based on a testability
analysis acting at the behavioral level. These high level
synthesis tasks consider testability as one of the design
parameters to be optimized in addition to area and speed. A
set of testability constraints are derived from a testability
analysis process and hardware sharing possibilities are used
to enhance the testability of the circuit for a minimal area
overhead. Register allocation is performed according to the
testable/not testable characteristic of variables in order to
make the largest number of registers and FUs testable.
Considerable testability improvement has been obtained for
several examples and for almost no overhead. Interconnec-
tion generation is performed, taking into account testability
problems that have not been settled during register

allocation,  to ensure justification and propagation paths for
all entities in the circuit. Several benchmark circuits were
synthesized using this new method and results show that
testability improvement is obtained for low area overhead.
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