
High-Level Synthesis of Accelerators in Embedded Scalable Platforms

Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni

Department of Computer Science, Columbia University, New York, NY - USA

{paolo,giuseppe,luca}@cs.columbia.edu

Embedded scalable platforms combine a flexible socketed architecture for het-

erogeneous system-on-chip (SoC) design and a companion system-level design

methodology. The architecture supports the rapid integration of processor cores

with many specialized hardware accelerators. The methodology simplifies the de-

sign, integration, and programming of the heterogeneous components in the SoC.

In particular, it raises the level of abstraction in the design process and guides

designers in the application of high-level synthesis (HLS) tools. HLS enables a

more efficient design of accelerators with a focus on their algorithmic properties,

a broader exploration of their design space, and a more productive reuse across

many different SoC projects.

I. Introduction

The system-on-chip (SoC) has emerged as the most im-
portant computing platform across many application do-
mains from embedded systems to data centers [23, 25, 28].
To achieve energy-efficient high performance while facing
the challenges of dark silicon [15], SoC architects realize
heterogeneous architectures by combining a few processor
cores with an increasing number of accelerators [33]. Het-
erogeneity, however, increases system complexity, reduces
architecture regularity, and prolongs design time.

The reuse of intellectual property (IP) blocks, includ-
ing specialized hardware accelerators, is one of the most
promising strategy to mitigate the SoC design complex-
ity [30]. To create and maintain reusable IP blocks, how-
ever, is estimated to be 2 to 5 times harder than their
creation for one-time use [1]. But the biggest challenges
are actually in their integration into the SoC, a manual
process that involves both hardware and software aspects
and requires to deal with many interfaces and protocols.
This leads to very long design cycles and high costs (es-
timates are that $50M is required to get a complex SoC
to first prototype [19]), which ultimately reduce the ap-
pealing of starting new entrepreneurial efforts and seek-
ing innovation in hardware design. CAD researchers must
raise the level of abstraction above register-transfer level
(RTL) [6, 12, 31] and make system-level design (SLD) be-
come a commercial success.

Motivated by these challenges, in the System-Level De-
sign group at Columbia University we have been devel-
oping the concept of Embedded Scalable Platforms (ESP),
which brings together a new platform architecture with a
companion SLD methodology. The architecture addresses
the complexity of IP-block integration by balancing hard-
ware specialization and design regularity with a tile-based

Application

Specification

Application

Requirements

Profiling & Kernel Identification

Accelerator IP

Encapsulation

Specification

Refinement

HLS & Micro-Architectural Choices

Processor IP

Instancing

w/ SW socket

Accelerator IP Instancing

w/ HW socket

Interconnect &

Tile Configuration

Application-Driven System Specification

IP Block Development and Reuse

System Integration

Modular

Socket

Interface

Accelerator IP

Encapsulation

Specification

Refinement

Physical

Constraints

Fig. 1. The SLD methodology for embedded scalable platforms.

approach. The methodology seeks to increase productiv-
ity by moving the bulk of the engineering effort to the
system level and reducing the gap between hardware de-
sign and software programming.

Fig. 1 illustrates the relation between the methodology
and the architecture. An SoC is an instance of an ESP
architecture that is obtained by specifying a mix of tiles.
Each tile may implement a processor, a hardware acceler-
ator, or some auxiliary functionality like I/O access. The
number and mix of tiles of a particular ESP instance de-
pends on its target application domain. The choice of a
specific tile combination is the result of an application-
driven design-space exploration (DSE) that is guided by
our methodology, which is supported by a combination of
state-of-the-art commercial CAD tools and in-house de-
veloped tools [14, 22, 26]. The premise of our approach is
that the target workloads must drive both the software-
programming and hardware-design efforts throughout all
stages of the system realization.

The system specification involves the definition of the
application requirements and the development of the ap-
plication software. Software profiling identifies those criti-
cal computational kernels that deserve to be implemented
in hardware. The corresponding accelerators can be ei-
ther developed from scratch or acquired as reusable IP
blocks. Critically, for both cases our methodology advo-
cates and promotes the use of high-level programming lan-
guages such as SystemC [5] and high-level synthesis (HLS)
tools [9, 11, 17] to design parameterized IP blocks and
provide a richer spectrum of power/performance tradeoff
points. This augments reusability because architects of

978-1-4673-9569-4/16/$31.00 ©2016 IEEE

3S-2

204

very different SoCs can synthesize those IP-block imple-
mentations that are more suitable to their purposes.

At the level of individual IP block, the task of DSE
consists in deriving a set of alternative implementations,
each offering a particular cost-performance tradeoff. In
this contest, the Pareto curve (or Pareto set) represents
the set of implementations that are Pareto optimal: i.e.
no higher performance implementation exists for the given
cost [32, 36]. The broader are the cost and performance
ranges spanned by the Pareto curve, the higher is the
reusability of the IP block. At the system level, the task of
DSE is inherently a component-based design effort, as the
choice of a particular RTL implementation for a module
must be made in the context of the choices for all the other
modules that are also components of the given system. A
particular set of choices leads to a point in the multi-
objective design space for the whole SoC. So, the process
of deriving the diagram of Pareto-optimal points repeats
itself hierarchically at the system level [22].

Our methodology mitigates the complexity of integrat-
ing heterogeneous components by providing a regular but
flexible socket-based template and a set of platform ser-
vices, including: accelerator reservation and configura-
tion, data transfers, performance counters, and diagnos-
tics. In particular, the accelerator tiles contain high-
throughput accelerators that are loosely coupled with the
processor: each accelerator typically works on large (e.g.
300MB) data sets by leveraging a private local memory
that is tailored to its specific needs and exchanges data
with main memory through a private DMA controller [10].

The platform services are supported by: (1) a scalable
communication and control infrastructure; (2) a set of con-
figurable hardware sockets that interface the components
to the interconnect and are designed for modularity and
flexibility by following the Protocols and Shells Paradigm
of latency-insensitive design [7, 8]; and (3) a set of soft-
ware sockets that convey the illusion of a simpler homoge-
neous architecture to the programmer. The interconnect
can be realized either with a bus or a network-on-chip
(NoC), depending on the needs in terms of bandwidth
and platform services. Designs that have a larger num-
ber of components typically rely on an NoC, which can
be scaled up by adding more virtual channels or physical
planes [35].

The system-integration phase is completed by the val-
idation of the given ESP instance through its emulation
with an FPGA board. This prototyping effort is strongly
simplified by the adoption of SLD methods. For exam-
ple, HLS tools provide an immediate way to re-target an
accelerator implementation from an ASIC to an FPGA
technology. FPGA emulation is critical not only to val-
idate the correctness of the design but also to obtain an
accurate analysis of its performance. For instance, as il-
lustrated later in the paper, it allows us to assess how the
performance of a given hardware accelerator is affected by
its interaction with all the other system components.

TABLE I
Characteristics of the WAMI-App source code.

Function LOC If Loop Assign FCall ArrOp

Debayer 195 4 24 70 12 56
Grayscale 21 2 2 8 0 4
Warp 88 12 0 51 3 11
Gradient 65 7 4 34 0 54
Subtract 36 7 2 13 0 3
Steep.-Descent 34 0 3 21 0 3
SD-Update 55 9 4 20 0 5
Hessian 43 0 6 18 0 4
Matrix-Invert 166 33 8 59 8 20
Matrix-Mult 55 7 5 20 0 5
Reshape 42 11 1 15 0 2
Matrix-Add 36 7 2 13 0 3
Change-Detect. 128 12 9 62 3 41

Total 964 111 70 404 26 211

II. HLS-Based Accelerator Design

C and C++ languages are popular input formats for
HLS tools for several reasons: a large number of existing
algorithms are written in these languages; they facilitate
hardware/software co-design since most embedded soft-
ware is written in C; and C-level functional execution is
much faster than RTL simulation. Over the years, how-
ever, they have also manifested some proven limitations
because they inhibit the specification, or the automatic
inference, of important properties of hardware systems re-
lated to concurrency, timing, data formatting, and com-
munication. Many C/C++ applications are sequential
programs written with a focus on software performance
without any intent to map them on specialized hardware.
Applications written to exploit multi-core architectures
use multi-threading libraries that make the code difficult
to be refined for HLS tools.

SystemC is an IEEE-standard language that has been
developed to overcome these limitations and that has be-
come a de-facto standard for HLS. The task of porting
an application specification (or a portion of it) to Sys-
temC to enable the HLS of specialized accelerator may
be time consuming. A well-structured C/C++ code that
partitions the specification into functional blocks helps
the engineer who performs this task. The goal is not only
to obtain any SystemC specification that can be synthe-
sized by the given HLS tool but to do so in a way that en-
ables the exploration of a broad design space by evaluating
many architectural and micro-architectural optimization
choices. To illustrate some of the aspects of this process
we present the design of an ESP instance implementing
WAMI-App, an accelerated version of the Wide-Area Mo-
tion Imagery (WAMI) application.

A case study: WAMI-App. WAMI is an image
processing application used for aerial surveillance [27]. It
processes a sequence of input frames to extract masks
of “meaningfully changed” pixels. For example, it can
detect and track vehicles moving on the ground, while
discarding environmental noises, e.g. shadows, surface
reflections, etc. As a starting point for our case study, we
use the WAMI specification that is available in the Per-

3S-2

205

Debayer

Change-Detection

Warp (grayscale) Gradient

Subtract Warp (dx) Warp (dy)

Steep.-Descent

SD-update Hessian

Matrix-Mult

Matrix-Invert

Reshape

Matrix-Add

Warp (iwxp)

fe
e

d
b

a
ck

fe
e

d
b

a
ck

fe
e

d
b

a
ck

feedback

Grayscale

Lucas-Kanade

fe
e

d
b

a
ck

Fig. 2. Block diagram of the WAMI-App.

fect Benchmark Suite [4], together with a testbench and
some input sensory data. This specification is written us-
ing a subset of the C language: e.g, it has a limited use of
pointers and does not use dynamic memory allocation and
recursion; also, with the exception of few mathematical
functions (e.g. exp(), sqrt(), etc.), no external library
functions are called. This simplifies the task of porting
this specification from C into a subset of SystemC that
can be synthesized effectively with HLS tools. Table I re-
ports some of the characteristics of the WAMI specifica-
tion. Specifically, for each main (Function), it reports the
number of: lines of C code (LOC), conditional statements
(If), loops (Loop), assignments (Assign), calls to func-
tions, including both functions provided with the source
code and functions from the C math library (FCall), and
read/write operations on arrays (ArrOp).

Code Partitioning and Potential Parallelism.

TheWAMI specification in C consists of four main compu-
tational kernels: the Debayer filter, the RGB-to-Grayscale

conversion, the Lukas-Kanade image alignment, and the
Change-Detection classifier. As we ported the WAMI code
into SystemC, we partitioned the Lukas-Kanade kernels
into nine SystemC processes to have the option of syn-
thesizing an accelerator for each of them, thereby increas-
ing parallelism at the architecture level. The block dia-
gram of Fig. 2 highlights the data-dependency relations
among the WAMI kernels and the potential for paral-
lel execution: e.g., Mult must run after SD-Update and
Invert-GJ, which instead can run concurrently. The data-
dependency relations apply to the processing of a sin-
gle input frame. Overlapping the processing of multiple
frames in a pipeline fashion allows more accelerators to
execute in parallel.

Refinement and Micro-Architectural Choices.

Fig. 3 shows the relationship between the SystemC design
space and the RTL design space. HLS tools provide a rich
set of configuration knobs [9, 11, 17] that can be applied to
synthesize a variety of RTL implementations. These im-
plementations are based on different micro-architectures

SystemC

Design Space

RTL

Design Space

Ver. 1

Ver. 2

Ver. 3

Code Transformation

High-Level Synthesis

Performance

A
re

a
 /

 P
o

w
e

r

3

2

1

Fig. 3. HLS-driven design space exploration.

and provide different cost-performance tradeoffs points.
The micro-architectural knobs are “push-button” direc-
tives of the HLS tool represented by the red arrows in
Fig. 3. In addition, the engineer may perform manual
transformations (represented as green arrows) to obtain
revised versions of the SystemC specification: these trans-
formations preserve the functional behavior but extend
the RTL design-space exploration. For example, they can
expose parallelism, remove false dependencies, increase
resource sharing etc. In this way, the engineer may ei-
ther reduce the area/power (ver. 1 → 2) or improve the
performance (ver. 1 → 3).

Example. A simple HLS directive is function inlining. It allows

HLS to further optimize the body of the function in the context

of the caller and it removes performance degradation due to inter-

module communication; but the complexity of the synthesized hard-

ware may increase due to resource replications. Function-inlining

knob is provided with most HLS tools. In contrast, function encap-

sulation is a manual code transformation that identifies frequent

patterns in the C-like implementation and encapsulates them with

new functions. Fig. 4 shows a portion of the Gradient kernel of

WAMI-App: the engineer may be able to identify the pattern (a -

b) >>1 in the before-transformation code and encapsulate it in the

function cntrl diff(). This function is then used at any occur-

rence of the pattern. Function encapsulation allows HLS to reduce

the large number of states in the main module that may produce an

inefficient circuit with a long critical path delay due to the compli-

cated control; in addition, the body of the functions can be highly

optimized and reused. �

ESP Accelerator Model. With ESP, we propose a
model for the accelerators that is loosely-coupled with the
processor [10]. The accelerator is located outside the pro-
cessor core and interacts with it and the off-chip memory
via DMA through the on-chip interconnect. We came to
define this model after implementing many different accel-
erators for high-performance embedded application ker-
nels. Each kernel has distinctive characteristics that in-
fluence the design of the corresponding accelerator. These
include the degree and granularity of computational par-

3S-2

206

/* ********************* */

/* before transformation */

/* ********************* */

for (y = 1; y < nRows - 1; y++) {
for (x = 1; x < nCols - 1; x++) {

z = y * nCols + x;

Xgrad[z] = (Iin[y*nCols + (x+1)] - Iin[y*nCols + (x-1)]) >>1;

Ygrad[z] = (- Iin[(y-1)*nCols + x] + Iin[(y+1)*nCols + x]) >>1;

}
}

/* ******************** */

/* after transformation */

/* ******************** */

float cntrl_diff(float a, float b) {
return ((a - b) >>1);

}

for (y = 1; y < nRows - 1; y++) {
for (x = 1; x < nCols - 1; x++) {

z = y * nCols + x;

Xgrad[z] = cntrl_diff(Iin[y*nCols + (x+1)], Iin[y*nCols + (x-1)]);

Ygrad[z] = cntrl_diff(Iin[(y+1)*nCols + x], Iin[(y-1)*nCols + x]);

}
}

Fig. 4. Code transformation by function encapsulation.

allelism, the ratio of computation versus communication
with main memory, and the memory access patterns to
read and write data. For instance, Debayer has a simple-
strided pattern, Warp has a data-dependent pattern, while
Gradient has a sequential-access pattern. Despite these
differences, however, we identified a main structure in the
behavior of loosely-coupled accelerators that allows us to
define our model and develop a configurable interface that
can be applied effectively to synthesize many kernels.

As shown in Fig. 5, the accelerator behavior is orga-
nized in four main phases. First, there is the configu-
ration that entails the interaction between software and
hardware. By accessing state and command registers, a
device driver checks the status of the accelerator, config-
ures it, and starts a new execution. The configuration
phase takes a negligible time with respect to the others.
When invoked, the accelerator iterates over three main
phases: input, computation and output. These repeat for
portions or chunks of data until the entire input is pro-
cessed. During the input phase, the accelerator issues a
DMA request for a chunk of data from the main memory.
Such request is autonomous and not controlled by the
processor. The accelerator transfers the chunk of data
from the main memory to a properly-sized private local
memory (PLM) using transaction-level modeling (TLM)
primitives. When data are available in the PLM the accel-
erator performs the actual computation specified by the
synthesized functionality. Finally, upon completion, an
autonomous write request is issued to store the results
back into main memory.

Component-Based Design-Space Exploration.

By leveraging a mix of state-of-the-art commercial CAD
tools and in-house developed tools [14, 22, 26], we per-
formed the HLS-driven DSE of Fig. 3 on twelve kernels
of WAMI-App. For this case study, we targeted an in-
dustrial 32nm ASIC technology. Fig. 6 reports the DSE
result as Pareto sets for four representative accelerators.
For each synthesized implementation, we plot the area
and effective latency, which is the product of the clock
cycle count times the clock period.

For example, we obtained eight Pareto-optimal RTL
implementations of the Debayer accelerator. Point d1 in

dma_read_ctrl
dma_info_t

dma_write_ctrl
dma_info_t

dma_read
sc_bv<32>

dma_write
sc_bv<32>

 clock
bool

 reset
bool

 kernel_done
bool

 conf_info
conf_info_t

 conf_done
bool

Cycle-accurate

Interface

sc_port

DMA
Controller

Config.

Registers

Configuration

Input

Compute

Output

Compute

PLM
ports

banks

Fig. 5. ESP Model for accelerator design and integration.

Fig. 6 is synthesized from a baseline synthesizable Sys-
temC specification that is not partitioned according to
the model of Fig. 5. Then, in order to achieve higher
throughput, we synthesized the input and output pro-
cesses to transfer data with the off-chip main memory and
implemented the PLM as a circular data buffer. Circular-
buffering improves throughput by overlapping in time
computation and communication. The resulting RTL im-
plementation (d2) has a better effective latency (9% im-
provement) with respect to d1 but a slightly bigger area
(0.5%) due to the larger memory of the circular buffer.

To generate other Pareto-optimal implementations, we
focused on the Debayer memory access pattern. The De-

bayer algorithm interpolates pixels row by row and uses
5 × 5-interpolation masks centered on the pixel of inter-
est. In particular, the input process pre-fetches at least
5 rows of the image and stores them in the PLM; from
this, the computation reads 9 to 11 neighbouring pixels
to interpolate a single pixel. For the implementations d1
and d2, we designed the PLM using traditional vendor
memories provided by the adopted HLS tool that support
at most two read ports. To improve the performance of
our accelerators, we used our memory compiler to gener-
ate a customized PLM [26] that provides more ports, thus
supporting many concurrent read/write operations. Cor-
respondingly, we instructed the HLS to leverage the avail-
ability of a higher number of ports during the scheduling
phase. By progressively increasing the number of read
ports, we obtained six new distinct implementations (d3-
d8): with 11 read ports, d8 gives an 3.8X improvement
of effective latency with respect to the baseline, in ex-
change for a 3.4X area increase (due to the complexity of
the memory-arbitration logic).

We performed similar HLS-driven DSE for Gradient

and Warp to obtain four and three Pareto-optimal im-
plementations, respectively. Here, increasing the number
of ports does not necessarily lead to an optimal imple-
mentation (e.g. g5 and w4) because a higher number of
ports requires a more complex datapath and control logic
that may increase the critical path.

For Change-Detection, the Pareto-optimal implementa-
tions c1-c4 are the result of combining manual code refac-

3S-2

207

0.80

1.20

1.60

2.00

2.40

2.80

3.20

3.60

4.00

4.40

 0.4 0.8 1.2 1.6 2 2.4 2.8

E
ff
e
c
ti
v
e
 L

a
te

n
c
y
 (

m
s
)

Area (mm
2
)

Debayer

d1

d2

d3

d4
d5

d6
d7

d8

1.00

1.12

1.25

1.38

1.50

1.62

1.75

1.88

2.00

2.12

2.25

 1 1.5 2 2.5 3 3.5 4

E
ff
e
c
ti
v
e
 L

a
te

n
c
y
 (

m
s
)

Area (mm
2
)

Gradient
g1

g2

g3
g4

g5

2.18

2.20

2.22

2.24

2.26

2.28

2.30

2.32

2.34

2.36

 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ff
e
c
ti
v
e
 L

a
te

n
c
y
 (

m
s
)

Area (mm
2
)

Warp
w1

w2w3

w4

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

 1.45 1.5 1.55 1.6 1.65 1.7 1.75

E
ff
e
c
ti
v
e
 L

a
te

n
c
y
 (

m
s
)

Area (mm
2
)

Change Detection

c1

c2

c3

c4

c5

c8
c6

c7

c9

c10

Fig. 6. IPs Pareto curves for Debayer, Gradient, Warp and Change-Detection.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00

E
ff
e
c
ti
v
e
 L

a
te

n
c
y
 (

s
)

Area (mm
2
)

Pareto-dominated

Pareto-optimal

a2
a4a5-7

a8-9

a10-11

a1a3

a12

Fig. 7. Compositional DSE results for WAMI-App.

toring aimed at decoupling the access to the PLM (i.e. ref-
erence to large arrays and data structures in the C specifi-
cation) from computation with the aggressive application
of HLS-knobs (e.g., the c4 is obtained with deep partial-
unrolling of some computational intensive loops); RTL
implementations c5-c9, obtained with partial-unrolling
combined with function inlining, are suboptimal due to
the reduced resource sharing.
We performed compositional DSE on the whole WAMI-

App by combining the data-dependency graph of Fig. 2
with the synthesis results for each accelerator. Fig. 7
shows the combined latency/area trade-off points, includ-
ing twelve Pareto-optimal points. Notice that the fastest
system implementation (a1) is not the result of composing
the fastest implementation for each accelerator; instead,
it is obtained by composing d1 (smallest), g1 (smallest),
w3 (fastest), and c4 (fastest) from Fig. 6. Intuitively,
this corresponds to accelerate as much as possible Change-

Detection, which is the bottleneck, while keeping Debayer

and Gradient small to improve area occupation.
With the available information at this stage, the com-

positional DSE ignores contention for shared-resources as
well as the interconnect area overhead. In this ideal sce-
nario, each accelerator starts the computation as soon as
the predecessors have completed theirs. In Section IV we
explain how to overcome these limitations.

III. The ESP Flexible Socketed Architecture

HLS enables quick tuning of accelerator IP blocks in
isolation. In addition, application-level analysis can be

performed by combining the results from each acceler-
ator with a dependency graph. The effective cost and
performance of a design, however, can be estimated only
accounting for the interaction across multiple accelera-
tors, the interconnect, and the system I/O. A system-level
DSE must be performed to obtain the SoC Pareto curve,
which considers the environment in which the accelerators
run. The combination of the architecture and methodol-
ogy of Embedded Scalable Platforms enables fast system-
level DSE because it simplifies the integration of hetero-
geneous IP blocks into an SoC. In particular, we designed
the ESP tile-based architecture to strike the right bal-
ance between heterogeneity and regularity. It consists of
a set of templated hardware and software sockets that en-
able the generation and programming of a complete SoC
by assembling a configurable infrastructure with off-the-
shelf processors and accelerators. The latter are designed
following the steps described in Section II.
ESP Accelerator Sockets. Fig. 8 shows the encap-

sulation of an accelerator IP block in an ESP configurable
tile, which implements the platform services and pro-
vides access to the system interconnect. An accelerator
tile hosts a hardware socket, whose signal-level interface
matches the accelerator interface described in Section II.
The interface exposes:
• Input read and output write requests from the accel-

erator; these are in the form of DMA bursts with con-
figurable bit-widths. The burst length and accelerator
virtual address are set at run-time by load input() and
store output() SystemC threads. The socket implements
a latency-insensitive protocol [8] matching the behavior
of the TLM point-to-point channels used during the ac-
celerator design. Relaxing interface requirements with
a latency-insensitive protocol enables a seamless replace-
ment of an IP implementation with any other alternative
ones taken from its Pareto-optimal set [7].
• Memory-mapped configuration registers are used for

run-time setup of the accelerators. Besides common com-
mand and status registers, all user-defined registers and
their memory mapping are generated based on the data
structure conf info defined by the interface of Fig.5.
• Interrupt notifications; the accelerator triggers an in-

terrupt request when it completes or in case of error.
The ESP hardware sockets implement the TLM ab-

3S-2

208

ESP Services

DMA Registers Controller IRQ

Interconnect Interface and Queues

Accelerator IP
Pareto-optimal from HLS PLM

IP Socket

Fig. 8. Configurable ESP Accelerator tile with hardware socket.

straction used during the HLS of the accelerators. In this
way the IP designer can be completely unaware of the
SoC interconnect specifications. Transactions are trans-
lated into platform-dependent messages directed to either
a processor or an I/O tile. Similarly, all environment re-
quests are forwarded to the simple accelerator’s interface.

ESP Processor Sockets. ESP eases the process of
integrating the accelerators in a heterogeneous SoC by
pairing accelerator sockets with software sockets running
on processor. Similarly to accelerators, a processor is also
encapsulated in a tile which implements ESP platform
services. In this case, the DMA engine is replaced by a
cache, which gives the illusion of a traditional homoge-
neous system and decouples the processor bus from the
rest of the SoC. Hence, legacy software can transparently
execute on the processor. The processor socket is com-
pleted by three software layers as shown in Fig. 9.

• ESP Linux modules. This low-level software allows
Linux to recognize the accelerators in the ESP tiles. It im-
plements interrupt registration/handling and primitives
to configure all ESP common registers with one IO CTL

system call. The modules relieve the IP designer from
writing complex low-level routines for each accelerator.

• ESP Linux device drivers. Since ESP accelerators
are seen by the operating system like any other periph-
eral, they need a device driver. The use of ESP tem-
plate drivers requires the programmer only to implement
the behavior of user-defined control registers. Lower-level
routines, in fact, are provided by ESP modules. For in-
stance, across all accelerators for WAMI-App, the “accel-
erator specific” code that is user-provided represents on
average less than 2% of the entire device driver.

• ESP user-level library. This library has two main
purposes: (1) it implements an API to invoke accelera-
tors within user-level applications and (2) it provides a
multi-threaded infrastructure to perform a DSE of multi-
accelerator applications. For instance, an application like
WAMI-App consists of multiple kernels, each potentially
implemented by an accelerator. Thanks to the library,
each accelerator is controlled by a Pthread and a hidden
queue-based mechanism synchronizes its execution.

The combination of ESP hardware and software sockets
allows us to bring up a system in a very short time and to
perform a DSE from a system-level viewpoint. Similarly
to TLM, which decouples computation from communica-
tion, our software library decouples accelerators manage-
ment from the application data-flow. To build an ESP
application we must perform a few tasks. First, we re-

caches

Controller

IRQ

Interconnect Interface and Queues

ESP

Services

Processor IP Socket

I$ D$

CPU IP

ESP modules

OS Drivers

ESP-lib. C-lib

Accelerated app.

Fig. 9. ESP Processor tile with software socket.

serve a buffer in DRAM. Such memory region should be
large enough to hold input, output and intermediate data
processed by the accelerators. Then, we prepare a data
structure for every accelerator which includes all neces-
sary memory offsets with respect to the memory buffer
and the configuration for the user-defined registers. ESP
modules take care of building a page table for each accel-
erator which allows them to perform autonomous DMA
transactions. Finally, for every accelerator we prepare a
data structure specifying the name of the device and the
list of devices that produce its inputs. Each accelerator, in
fact, is associated with an output queue that corresponds
to a memory buffer in main memory. A thread runs and
starts its accelerator when all of its input queues have
at least one set of valid data and the output queue has
room to store the result. The size of the queues is config-
urable and it has a direct impact on the parallelism that
can be exploited by the multi-threaded ESP application.
In general, larger queues enable more concurrency among
the accelerators. In practice, power caps, contention for
shared resources, data dependencies, and diversity in the
accelerator execution time may impose unexpected limits
to the benefits of parallelism.

IV. Full-System Design Space Exploration

To show how ESP supports the system integration
phase of Fig. 1, we generated various SoCs for WAMI-app:
each SoC is an ESP instance featuring one processor tile,
two I/O tiles connected to DRAM banks, a multi-plane
NoC, and a set of twelve to fifteen accelerator tiles. Each
accelerator tile maps to one kernel of WAMI-app except
from Matrix Inversion, which is executed in software to
preserve floating-point precision. For each ESP instance
we built a prototype on a Xilinx Virtex7 FPGA.
The relations among the WAMI-app kernels shown in

Fig. 2 translates into data dependencies across the corre-
sponding accelerators: e.g., some kernel-level parallelism
can be exploited by supporting multiple concurrent exe-
cutions of the four Warp kernels. In fact, the Pareto curve
of Fig. 7 is derived assuming four parallel Warp acceler-
ators. For our experiment, we selected three implemen-
tations from Fig. 7: the fastest (labeled a1), the smallest
(a12), and a medium one (a3). For each of these im-
plementations, we considered three additional derivative
implementations, each obtained from the previous one by
removing one Warp accelerator. Hence, we have 12 ESP
instances that correctly implement WAMI-app while of-

3S-2

209

change_detection

warp_iwxp

add

reshape

mult

invert_gauss_jordan

hessian

sd_update

steepest_descent

warp_dy

warp_dx

subtract

warp_grayscale

gradient

grayscale

debayer

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

fast

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

fast

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

fast

t

t

y

t

t

r

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

fast

1

2

3

4

5

change_detection

warp_iwxp

add

reshape

mult

invert_gauss_jordan

hessian

sd_update

steepest_descent

warp_dy

warp_dx

subtract

warp_grayscale

gradient

grayscale

debayer

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

medium

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

medium

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

medium

t

t

y

t

t

r

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

medium

1

2

3

4

5

change_detection

warp_iwxp

add

reshape

mult

invert_gauss_jordan

hessian

sd_update

steepest_descent

warp_dy

warp_dx

subtract

warp_grayscale

gradient

grayscale

debayer

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

small

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

small

r

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

small

r

 0 2.5e+08 5e+08 7.5e+08 1e+09 1.25e+09 1.5e+09 1.75e+09

time

small

1

2

3

4

5

Fig. 10. Example of full-system DSE. The Gantt charts are obtained from emulating 12 ESP instances for WAMI-app on an FPGA board.

fering different degrees of parallelism for the Warp kernels.

Fig. 10 shows the Gantt chart of the WAMI-app exe-
cution on each ESP instance. The four top, middle, and
bottom charts of Fig. 10 correspond to a1, a3, and a12,
respectively. Moving from left to right we see the effect of
reducing the number of Warp accelerators available in the
system. In each chart, a bar corresponds to a time interval
where a thread is active. For example, the first line of each
chart shows the active time intervals for the thread con-
trolling Debayer. The color of the bars identifies the frame
number (1 to 5) processed by the accelerators. Note that
the active interval includes the waiting time for the accel-
erator interrupts, as well as additional waiting time due to
contention on shared resources. For instance, by looking
at the three yellow bars for Warp-grayscale, Warp-dx and
Warp-dy in the rightmost top chart, we notice that the
latter is immediately granted access to the sole Warp ac-
celerator, even if Warp-grayscale is activated first. When
Warp-dy releases the accelerator, Warp-grayscale resumes.
Eventually, Warp-dx can also reserve the accelerator and
processes Frame #5. The analysis of Fig. 10 shows that
the a1 and a3 implementations enable much higher par-
allelism than a12. The latter suffers more the fact that
Change-detection dominates the execution time, prevent-
ing other accelerators to proceed.

The latency vs. area chart of Fig. 11 reports the points
corresponding to the twelve implementations of Fig. 10
together with the three Pareto-optimal points (the empty

triangles) taken from Fig. 7. The arrows highlights how
these three points “migrate” in the chart when one ac-
counts for the area of the interconnect, processor, and
network interfaces, as well as for all the system factors
impacting the actual execution time (reported in Fig. 10).
While the SoC area is easy to estimate, the FPGA emula-
tion is critical to obtain a precise performance estimation
through an accurate analysis of the interaction among all
SoC components. By enabling a quick generation of differ-
ent SoC instances, our ESP architecture and methodology
supports a fast and accurate DSE of complex heteroge-
neous SoCs. For example, the analysis of Fig. 10 shows
that reducing the number of Warp accelerators saves area
with a negligible performance penalty. And the analysis
of Fig. 11 shows that all implementations derived from a1

are no longer Pareto optimal in a real scenario because the
small performance gain over a3 of the ideal scenario evap-
orates when the accelerators must share the interconnect
fabric and the two DRAM channels.

V. Related Work

Since specialized hardware is key to energy-efficient per-
formance [21], many approaches have been proposed for
accelerator design [16, 20, 34, 29]. With ESP, we focus on
high-throughput accelerators that are designed indepen-
dently from processor cores and operate independently
from them to execute large workloads [10]: these loosely-

3S-2

210

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25

E
ff
e
c
ti
v
e
 L

a
te

n
c
y
 (

s
)

Area (mm
2
)

a1/w4-ideala3/w4-ideal

a12/w4-ideal

a1/w1

a3/w1

a12/w1

a1/w2

a3/w2

a12/w2

a1/w3

a3/w3

a12/w3

a1/w4

a3/w4

a12/w4

Fig. 11. Pareto-point migration from ideal to full-system scenario.

coupled accelerators are easier to integrate and reuse.
SLD methodologies, which raise the design process

to a higher level of abstraction from the familiar RTL
thereby simplifying the specification, implementation and
verification of complex SoCs, have been advocated for
years [3, 13, 18]. The 2011 ITRS, however, still lamented
that CAD tools provide little support for SLD and that
this situation must change if necessary advances in pro-
ductivity are to be achieved [1]. Recently there has been
some progress in the commercial production of SLD tools,
particularly for HLS [9, 11, 17] but their adoption is not
widespread and HLS usage is still limited to small por-
tions of the designs [24]. We propose a SLD methodology
that embraces existing commercial HLS tools and pro-
vides guidelines to exploit it for increased productivity in
heterogeneous SoC design. Instead of proposing a new
language for hardware design [2], we leverage SystemC,
an IEEE-standard, and we provide an infrastructure to
guide its use for improved SLD productivity.
DSE is a crucial step of the design process that should

be brought to the highest possible abstraction level.
While simulators that enable early power-performance
analysis are useful for modeling individual accelera-
tors [33], with ESP we advocate the use of HLS to build
prototypes that enable full-system DSE, thus accounting
for the complex interactions among all SoC components.

VI. Conclusions

Embedded Scalable Platforms (ESP) combine an archi-
tecture and a methodology. The flexible socketed archi-
tecture addresses the complexity of component integra-
tion in heterogeneous SoCs. The companion methodol-
ogy raises the level of abstraction to system-level design to
promote close collaboration among software programmers
and hardware engineers in selecting the best mix of com-
ponents for a given application-driven SoC. By balancing
regularity, flexibility, and specialization, ESP simplifies
the reuse and integration of IP blocks. It also accelerates
the deployment of full-system prototypes, which are key
to an accurate evaluation of cost-performance trade-offs.

Acknowledgments. This work is supported in part by DARPA

PERFECT (C#: R0011-13-C-0003), the NSF (A#: 1219001), and

C-FAR (C#: 2013-MA-2384), an SRC STARnet centers.

References

[1] 2011 International Technology Roadmap for Semiconductors. www.itrs.net.
[2] J. Bachrach et al. Chisel: Constructing hardware in a Scala embedded

language. In Proc. of DAC, pages 1212–1221, June 2012.
[3] B. Bailey and G. Martin. ESL Models and Their Application: Electronic

System Level Design and Verification in Practice. Springer-Verlag, 2006.
[4] K. Barker et al. PERFECT (Power Efficiency Revolution For Embedded

Computing Technologies) Benchmark Suite Manual. PNNL and GTRI, Dec.
2013. http://hpc.pnnl.gov/PERFECT/.

[5] D. C. Black, J. Donovan, B. Bunton, and A. Keist. SystemC: From the
Ground Up, Second Edition. Springer-Verlag, 2010.

[6] S. Borkar. Design perspectives on 22nm CMOS and beyond. In Proc. of
DAC, pages 93–94, 2009.

[7] L. P. Carloni. From latency-insensitive design to communication-based
system-level design. Proc. of the IEEE, 103(11):2133–2151, Nov. 2015.

[8] L. P. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. Theory of
latency-insensitive design. IEEE Trans. on CAD, 20(9):1059–1076, Sept.
2001.

[9] J. Cong et al. High-level synthesis for FPGAs: from prototyping to deploy-
ment. IEEE Trans. on CAD, 30(4):473–491, Apr. 2011.

[10] E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni. An analysis
of accelerator coupling in heterogeneous architectures. In Proc. of DAC,
pages 202:1–202:6, June 2015.

[11] P. Coussy, D. Gajski, M. Meredith, and A. Takach. An introduction to
high-level synthesis. IEEE Design & Test of Computers, 26(4):8–17, 2009.

[12] W. Dally, C. Malachowsky, and S. Keckler. 21st century digital design tools.
In Proc. of DAC, pages 1–6, May 2013.

[13] D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli. A platform-
based taxonomy for ESL design. IEEE Design & Test of Computers,
23(5):359–374, May 2006.

[14] G. Di Guglielmo, C. Pilato, and L. P. Carloni. A design methodology for
compositional high-level synthesis of communication-centric SoCs. In Proc.
of DAC, pages 128:1–128:6, June 2014.

[15] H. Esmaeilzadeh et al. Dark silicon and the end of multicore scaling. In
ISCA, pages 365–376, June 2011.

[16] H. Esmaeilzadeh et al. Neural acceleration for general-purpose approximate
programs. In Proc. of Micro, pages 449–460, 2012.

[17] M. Fingeroff. High-level Synthesis Blue Book. Mentor Graphics Corp., 2010.
[18] A. Gerstlauer et al. Electronic system-level synthesis methodologies. IEEE

Trans. on CAD, 28(10):1517–1530, 2009.
[19] R. Goering. Are SoC development costs significantly underestimated?

http://www.cadence.com/Community/blogs.
[20] V. Govindaraju et al. DySER: Unifying functionality and parallelism special-

ization for energy-efficient computing. IEEE Micro, 32(5):38–51, 2012.
[21] M. Horowitz. Computing’s energy problem (and what we can do about it).

In ISSCC, pages 10–14, Feb. 2014.
[22] H.-Y. Liu, M. Petracca, and L. P. Carloni. Compositional system-level design

exploration with planning of high-level synthesis. In Proc. of DATE, pages
641–646, Mar. 2012.

[23] H. Mair et al. A highly integrated smartphone SoC featuring a 2.5GHz
octa-core CPU with advanced high-performance and low-power techniques.
pages 424–425, Feb. 2015.

[24] G. Martin and G. Smith. High-level synthesis: Past, present, and future.
IEEE Design & Test of Computers, 26(4):18–25, 2009.

[25] J. Park et al. A 646GOPS/W multi-classifier many-core processor with
cortex-like architecture for super-resolution recognition. In ISSCC, pages
168–169, 2013.

[26] C. Pilato, P. Mantovani, G. D. Guglielmo, and L. P. Carloni. System-level
memory optimization for high-level synthesis of component-based SoCs. In
Proc. of CODES+ISSS, pages 18:1–18:10, Oct. 2014.

[27] R. Porter, A. M. Fraser, and D. Hush. Wide-area motion imagery. IEEE
Signal Processing Magazine, 27(5):56–65, 2010.

[28] J. Pyo et al. 20nm high-K metal-gate heterogeneous 64b quad-core CPUs
and hexa-core GPU for high-performance and energy-efficient mobile appli-
cation processor. In ISSCC, pages 420–421, Feb. 2015.

[29] W. Qadeer et al. Convolution engine: balancing efficiency & flexibility in
specialized computing. In Proc. of ISCA, pages 24–35, June 2013.

[30] R. Saleh et al. System-on-chip: Reuse and integration. Proc. of the IEEE,
94(6):1050–1069, 2006.

[31] A. Sangiovanni-Vincentelli. Quo vadis SLD: Reasoning about trends and
challenges of system-level design. Proc. of the IEEE, 95(3):467–506, 2007.

[32] O. Shacham et al. Rethinking digital design: Why design must change.
IEEE Micro, 30(6):9–24, Nov.-Dec. 2010.

[33] Y. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. The Aladdin approach to
accelerator design and modeling. IEEE Micro, 35(3):58–70, May 2015.

[34] G. Venkatesh et al. Conservation cores: reducing the energy of mature
computations. In Proc. of ASPLOS, pages 205–218, Mar. 2010.

[35] Y. Yoon, N. Concer, and L. P. Carloni. Virtual channels and multiple physical
networks: Two alternatives to improve NoC performance. IEEE Trans. on
CAD, 32(12):1906–1919, Dec. 2013.

[36] V. Zyuban and P. Strenski. Unified methodology for resolving power-
performance tradeoffs at the microarchitectural and circuit levels. In Proc.
of ISLPED, pages 166–171, 2002.

3S-2

211

