30.3

High-Level Synthesis of Asynchronous Systems
by Data-Driven Decomposition

Catherine G. Wong
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

wongca@async.caltech.edu

ABSTRACT

We present a method for decomposing a high-level program
description of a circuit into a system of concurrent modules
that can each be implemented as asynchronous pre-charge half-
buffer pipeline stages (the circuits used in the asynchronous
R3000 MIPS microprocessor). We apply it to designing the in-
struction fetch of an asynchronous 8051 microcontroller, with
promising results. We discuss new clustering algorithms that
will improve the performance figures further.

Categories and Subject Descriptors
B.7.1 [VLSI]; B.5.2 [Automatic synthesis|

General Terms
Design

Keywords
Asynchronous VLSI, high-level synthesis

INTRODUCTION

One obstacle to the widespread use of asynchronous VLSI is
the lack of tools that can generate high-performance systems.
The Caltech synthesis method begins by describing circuits
using a high-level language, CHP [1]. Successive semantics-
preserving program transformations are then applied, each
generating a lower-level description of the circuit. The final
output is a transistor netlist. This method is correct by con-
struction, and every chip designed using this approach (in-
cluding a 2M-transistor asynchronous MIPS R3000 micropro-
cessor [8]) has been functional on first silicon.

The most difficult transformation, and one with a large effect
on the speed and energy efficiency of the final system, is the
first: process decomposition. In process decomposition, the
original sequential CHP description of the circuit is broken
up into a system of communicating modules (still expressed
in CHP) that are then individually synthesized at lower lev-
els. The inter-module communications mapped out during this

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2003, June 2-6, Anaheim, California, USA.

Copyright 2003 ACM 1-58113-XXX-X/03/0001 ...$5.00.

508

Alain J. Martin
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

alain@async.caltech.edu

Figure 1: The system on the left is unoptimized while
the one on the right was generated from the same
program using the optimizations for energy efficiency
introduced in this paper.

step consume the bulk of energy in the finished asynchronous
system as data must be not only sent, but also validated and
acknowledged. Designers rely greatly on experience and intu-
ition to create an energy-efficient system.

CAD tools exist for process decomposition but they are
mostly syntax-directed [3, 4, 5], or they begin with a lower-
level specification than CHP [6, 7]. The designers of the
asynchronous MIPS R3000 saw that very fine-grained pipeline
stages were required to achieve high throughput, and aban-
doned the syntax-directed approach because it could not gen-
erate modules that were small enough. The approach de-
scribed in this paper is data-driven decomposition (DDD),
a high-level synthesis technique based not on syntax but on
dataflow [2]. DDD generates modules that are small enough
to be synthesized further into fine-grained pipeline stages; the
decomposed systems are correct under the assumption of slack-
elasticity [12].

This paper presents optimizations to the basic DDD method
that create energy-efficient systems. The data dependency
analysis is now more complex but results in significant im-
provements. A demonstration of the improvements made is
given in figure 1. DDD has been applied to the design of
the instruction fetch unit for an asynchronous 8051 microcon-
troller. The synthesized system runs at 102 MIPS and con-
sumes 178 pJ per instruction. Automated tools implement-
ing DDD are currently under development, and this paper
also discusses new clustering algorithms to improve the perfor-
mance figures further. Although developed for the synthesis
of asynchronous systems, the method can also be useful for
synchronous VLSI and FPGA implementations.

2. ASYNCHRONOUS CIRCUIT TEMPLATES

The fine-grained asynchronous pipeline stages employed in

input validity check

*[A%, B?b, C7c;

[a=1-> X!b
[1a=0 —> Y!(b"c)
11
a.0
A? =H ad
a.e x.0
x1 == X!
b.0 x.e
B? == b
b.e y.(1) .
y. -
C7:= c.0 Ve [
? <J=ei
c.e

output validity check

Figure 2: A simple circuit that fits into the half-buffer template.

The enable nodes (ae, be, ce, xe and ye) are

inverted channel acknowledgment rails that are intially high.

the Caltech design style most commonly belong to the pre-
charge half-buffer (PCHB) family [9]. The name of the circuit
family refers to the specific interleaving of the input and output
four-phase handshakes (set data; wait for acknowledge; reset
data; wait for acknowledge reset) used to synchronize commu-
nications in lieu of a global clock signal. Circuits belonging to
the PCHB family are not limited to simple buffers — they can
be complex and include numerous channels, arithmetic func-
tions, state, and both conditional inputs and outputs. Physical
constraints (e.g., the maximum number of transistors allowed
in series) combined with performance targets (e.g., cycle time)
usually dictate the size of a single pipeline stage.

At the CHP level, all deterministic programs that fulfill the
following conditions can be fit into the PCHB template: no
nested loops; all input communications in the main loop ap-
pear before output communications begin; only one commu-
nication is allowed on each channel during every main loop
iteration'. Communications on the same channel may appear
in different branches of a selection statement (if-statement),
as long as only one branch is ever executed per main loop iter-
ation. If more communications are desired per iteration, state
must be introduced.

An example of a simple process that fits this circuit tem-
plate is given in figure 2. The communication channels are
implemented using dual-rail code. Note that all of the com-
putation in the circuit, including conditions, is handled by ten
transistors in two pulldown networks. The rest of the circuit
(transistors that pre-charge output nodes, check channel va-
lidities, and form completion trees for input enable rails and
the local circuit enable) can be considered the communications
overhead of the computation. It is clear why reducing the num-
ber of communication channels in a decomposed system also
greatly reduces the system’s energy consumption.

3. DATA-DRIVEN DECOMPOSITION

This section outlines the major steps of basic data-driven de-
composition. In an effort to limit the size of the decomposed
modules in DDD, each module implements all of the assign-
ments to a single variable in the sequential program. Input
communications are considered assignments to the input vari-
able, and output communications are considered assignments
to the output channel.

! Circuits repeat their specified behaviour indefinitely, and so
the CHP programs that describe them are enclosed in a non-
terminating loop.

509

3.1 Dynamic Single Assignment Form

The sequential program is first converted to Dynamic Sin-
gle Assignment (DSA) form. This conversion can reduce the
number of operations performed on a single variable and thus
help create DDD modules that fit into the PCHB circuit tem-
plate. A DSA program is one in which each variable is as-
signed a value at most once during a single iteration of the
program’s main loop. Variables may have assignments in dif-
ferent branches of the same selection since only one branch
is executed per iteration. However, if a variable has multiple
assignments within the same branch, it must be split into sep-
arate DSA variables. All CHP programs can be systematically
converted to DSA form.

As an example, a variable z with two assignments in series

(z := a and B?z) will be split into two new DSA variables
(1‘0,1’1):

P =*[A%a;z := a,y := —a; X!z, Yly; B?z;Z!z]

Ppsa =*[A%a;20 := a,y := —a; Xz, Yy, B?zy; Zlz]

Now zo and x1 can each be decomposed into their own PCHB
module.

3.2 Projection

Once the program is in DSA form, the technique of projec-
tion can be applied to break it up into a concurrent system of
smaller modules. This involves assighing every variable and
communication channel in the sequential program to a pro-
jection set. When the program is projected onto a set, a new
module is created containing only the statements involving the
variables and channels of that set.

For example, when the program Ppsa is projected onto
the sets {A? a,z0,y, X!, Y!} and {B?,z1,Z!}, the resulting
modules are Plpsa=*[A%a; 20 := a,y := —a; X!zp, Yyl and
P2psa=+*[B?z1; Z!z1]. The correctness of the projection tech-
nique requires that the program be slack-elastic (i.e., that any
amount of buffering can be added to any channel without af-
fecting correctness). All deterministic programs and many
others meet this criterion. DDD systematically creates in-
termediate channels and chooses projection sets through data
dependency analysis described in [2]. Briefly, if variable z de-
pends upon variable y and is also used in the computation of
variable z, DDD introduces channels to send the value of y
to the module computing z and to send the value of z to the
module computing z. These channels are then included in the
projection set for the module computing z.

To illustrate the mechanics of projection, consider the simple
example program Plpsa. Since we plan on projecting zp out

onto its own module, the projection set for that module (Pxo)
must contain all of the variables upon which the value of zg
depends, including any input channel that inputs a value to zo.
Since both zp and y depend upon a, a must have two copies
so that one can be projected out onto each process. Thus we
rewrite Plpsa as

*[A%a; Qs = @, 0y := a; To = sy, Y := may; Xlzo, Yyl

(We refer to the assignments a., := a and a, := a as pro-
jection assignments since they have been added because of
projection.) Then, we rewrite the projection assignments to
introduce the intermediate channels that will be required be-
tween the modules in the decomposed system:

x[A?a; (Az0!a||Az0%as,), (Ayla||Ay?ay);
T0 1= Gag, Y:i= ay; X'lzg, Yy]

Finally, we can perform projection on the sets {A?, a,Az0!, Ay!},
{Az07?, az,, 0, X!} and {Ay?,ay,y,Y!}. The resulting sys-
tem is functionally equivalent to the original sequential pro-
gram: *[A7a; Az0la, Aylal || *[A20?as; 20 := Gay; X!z0] ||
*[AyTay;y = ay; Yyl.

4. SYNTHESIS FOR ENERGY EFFICIENCY

Reducing the number of communications in a system can
greatly reduce the energy consumption. Of course, the speci-
fication of the original sequential program cannot be changed,
and so the communications on external channels must remain
the same. However, communications on internal channels in-
troduced by process decomposition can be made conditional.
This may decrease energy consumption in three ways: by re-
ducing the wire load that is switched per cycle; by making
entire modules conditional; by decreasing the actual number
of channels in the system.

The first way is obvious. In the second way, if all of the
input and output communications of a module only occur un-
der a certain condition, then the module can stop comput-
ing the condition and simply perform the main computation
when its data inputs all arrive. For example, the program
*[G?g;[g —» X7z;Y!(z + 1)0-g — skip] can be simply
rewritten as *[X?z; Y!(z + 1)1, since z will only be sent when
a computation is required anyways. Finally, the above trans-
formation is also an example of the third way, as the channel
G? has been eliminated from the decomposed system, along
with its validity-check circuitry.

All examples below are simplified versions of situations that
occur in the asynchronous microcontroller currently being de-
signed at Caltech (Section 5).

4.1 Creating Conditional Communications
Consider the following program:

COND =x*[G?g, A?z; Ylz;
[g=0— B?b;z:= fi(z,b); C?c;z:= fa(z,c)
I g=1— B?b; W!b
I g=2— skip
1, Z'z
]

First, when rewriting the program in DSA form, if a variable
z is split within a selection statement into multiple DSA vari-
ables z;, then only the last of these variables actually needs to
have a defined value at the end of the selection. Intermediate
DSA variables can be undefined in guarded commands where
they are not required.

The DSA version of COND is therefore

510

CONDpsa =*[G?g, A?xz; Ylao;
[g =0 — B?b;z1 := fi(20, b); C?¢c; 22 := fo(m1, ¢)
lg=1— B?b; W'b, x2:= 20
lg=2— 22 := a0
1, Zlzs

Variable z> is used outside of the selection statement and there-
fore must always be assigned a value. Intermediate DSA vari-
able z; is only required in the first branch, however, and so
is undefined in the other two branches. Now after applying
projection in the normal fashion, the process implementing
variable z; is

Pzl =x[Gzl?g, X0zxl?z;
[9 =0 — Bzl?b; X1z2!fi(z0,b) 1 else — skip] 1]

We have eliminated communications on intermediate channel
X122 when ¢g#0 with no overhead cost — even if X122 were
to remain unconditional, guard variable ¢ would be required
in both processes Pzl and Pz2.

The next task is to ensure that defined values of variables
are sent only when they are actually used in the receiving
module’s computation. To illustrate, note that in CONDpsa
both z; and W! depend upon b. However, z; is only assigned
a value when ¢ = 0 and W!b is only executed when g = 1.
Therefore, place the projection assignments for intermediate
channels Bzl and BW as follows:

*[G779, A?z0; Ylap;
[g=0— B?b; (Bzl!b||Bxl?bs1);
z1 := fi (0, be1); C?¢; w2 := fo(z1,)
g=1— B?b; (BW!b||BW?bw); Wlbw, z2 := o
g=2— Z2:=2p
s Zlzo

==

After projection, the process implementing assignments to vari-
able b is

Pb =x*[Gb?g;
[g=0— B?b; Bzllb
I g=1— B?b; BWI!b
I g=2— skip
11

4.2 Encoding Guards

The last technique encodes guard conditions (branch condi-
tions of selection statements) in fewer variables. The purpose
of the transformation is to reduce the number and size of phys-
ical channels required in the decomposed system, given that
every variable assigned a value within a selection statement
depends upon the variables in guard conditions. For example,
consider the following process.

ENCezx =*[Go?g0, G17g91, G2?g2, G37g3; A?a, B?b, C7¢;
[f(go,91,92,93) — X!(aAb),Y!(bAc),z:=aAc
1-f(90,91,92,93) — z:=bVe
1; ZY(aV z)

Would there be more or fewer channels in the decomposed
system if the guard conditions were encoded as follows?

*[Go7g0, G17g1, G27g2, G37g3; A7a, B?b, C7c;
h = f(go0, 91, 92, 93);
[h— X!YaAb), Y(bAc), z:=aAc
[-h — z:=bVe
1; ZY(aV z)

The answer depends on the size of the variables g;, the number
of variables assigned a value in the selection (three), and the
number of guarded commands in the selection statement (two).

To begin, encode guards by assigning a communications cost
to every variable in the sequential code. A variable that can
hold K different values can be communicated on a 1ofK inter-
nal channel. (A 1ofK code comprises K data wires encoded in
a one-hot style, and a single acknowledge wire.) For practical
purposes, break large channels up into a group of channels of
manageable size (e.g., 1-byte variables are not communicated
on a 10f256 channel but rather upon four lof4 channels).

Choose some base channel-size 1lofB. Normally, B = 4 but
any reasonable value (say, B<8) can be chosen for this pur-
pose. If a variable x can assume K different values, then define
V(z) = K. The internal channel required to communicate
x can be implemented as [logz K| different lofB channels.
This variable is therefore assigned a communications cost of
C(x) = [logs (V (x))].

In summary, scanning through the sequential program then,
for every selection statement: let G be the set of all guard
variables in the selection; let N be the number of conditions
in the selection; let A be the number of variables assigned a
value within the selection. Let h be the variable that encodes
the guard conditions. Now, compute E (the communications
cost when guard conditions are encoded in k), and U (the cost
when they are left unencoded). Then:

C(G) = ngiec C(g:)
E=C(G)+C(h)xA

If E < U then encode the guard conditions of the selection
in question. If not, leave the selection unencoded. The systems
in figure 1 demonstrate the possible communications savings
when guards using g¢; are encoded in h using the technique
described here.

Returning to our example, N = 2 and A = 3. Let V(g;)
4 for YVg; € G. Then C(G) = 4, C(h) =1, U = 12, and
E = 7. In this case, encoding the guard conditions reduces
the communications cost of the selection by almost half. In
contrast, when V' (a) = V(b) = 4, the process *[A7a, B?b; [a A
b — ztlelse — z£]]] is an example of a selection for which it
is better not to encode the guard conditions (U = 2, E = 3).

V(h) =N
U=C(G)xA

4.3 Summary

The method for process decomposition is: convert the se-
quential CHP into DSA form; where possible, flatten nested
selection statements and then encode guard conditions when
energy consumption can be decreased; create and place projec-
tion assignments, including modifications for conditional com-
munications; analyze data dependencies to create projection
sets; perform projection. Each of these steps can be performed
by an automated tool, and early prototypes (that take CHP
programs as input) exist.

S. EXPERIMENTAL RESULTS

We synthesized the instruction fetch unit of an asynchronous
8051 microcontroller [9] using DDD as outlined in the previ-
ous section. The original CHP program describing this unit
is given in figure 4 and was designed to optimize instruction
throughput. It includes decoding (of variable length instruc-
tions), interrupt handling, and a 16-bit incrementer. The unit
control is complicated by the fact that although instructions
can be one to three bytes in length, they are always fetched

511

from memory two bytes at a time. The unit is the limiting
factor on the instruction throughput of the entire microcon-
troller, and in a custom design consumes roughly 12% of the
energy of the microcontroller core.

This section compares the results of DDD with a decom-
position performed by hand on the same program. The hand
decomposition (which took one month for designers to finalize)
is the one being sent for fabrication, and so every effort was
made to optimize it for both speed and energy. We ran digi-
tal simulations in a 0.18 pm 1.8 V technology using the esim
tool [13]. (Traditional methods of low-level synthesis were ap-
plied to transform the DDD modules into transistor netlists for
simulation.) Historically, esim’s estimates are within 10% of
the performance of the fabricated chip. The simulation results
are summarized in figure 3.

In digital simulations, the system generated by DDD has
roughly half the instruction throughput (102 MIPS) of the sys-
tem designed by hand. With many more modules, the DDD
system consumes roughly 2.74 times more energy per instruc-
tion (178pJ/instr). The DDD results are promising, since ex-
tended DDD is only the first half of high-level synthesis, with
further optimizations to be introduced by clustering modules
(Section 6).

For the purposes of comparison, consider the Philips asyn-
chronous 80C51 microcontroller that was compiled in a syntax-
directed manner. When performance figures are adjusted to
the 0.18 pm technology, the Philips 80C51 runs at 11 MIPS
[10]. We were not able to compare our energy figures to those
of the Philips instruction fetch unit; in any case, the original
specifications of the units are different.

6. IMPROVEMENTS BY CLUSTERING

We envision DDD as the first half of the synthesis method.
The second half is clustering, which recomposes DDD mod-
ules into larger modules to further improve energy and per-
formance. DDD modules can be clustered together with dif-
ferent goals in mind: reducing energy consumption, reducing
forward latency, or reducing the time- and energy-efficiency
metric Et? [11].

Clustering is implemented in two stages. In the first stage,
DDD modules along the critical path of a system are repeat-
edly clustered in series until they are too large to be imple-
mented as single PCHB stages. The second stage requires
a global optimization algorithm (we are considering quadratic
programming, simulated annealing, and genetic algorithms) to
both cluster DDD modules in parallel and add slack-matching
buffers to improve performance.

6.1 How Much Clustering Is Too Much?

The modules produced by DDD are often smaller than nec-
essary, creating concurrent systems with extra communica-
tions overhead. To reduce overhead, therefore cluster modules
together into larger CHP processes that still fit into a sin-
gle PCHB asynchronous pipeline stage. Of course, an entire
microprocessor can theoretically be implemented in a single
pipeline stage by creating one large state machine. But lim-
its both physical (e.g., the number of transistors in series)
and self-imposed (e.g., cycle time) enforce a maximum size for
pipeline stages.

It can be determined from the CHP alone whether a clus-
tered module exceeds the maximum limits using the template
for PCHB circuits. To check whether there will be too many
transistors in series in the pulldown network, we can scruti-

Method || No.Modules || Instr.Throughput | Energy/Instr. || CycleSpeed | Energy/Cycle
Custom 23 208 MIPS 65 pJ 300 MHz 54.6 pJ
DDD 42 102 MIPS 178 pJ 330 MHz 59.0 pJ

Figure 3: Results of digital simulations (0.18um, 1.8V). Ported to the same technology, the Philips asynchronous
8051 microcontroller runs at 11 MIPS. DDD performance can be improved by clustering (section 6).

FETCH =
pc := initpe, IMemPClinitpc, OP!'r, CO0!I0;
*[I?4; iLen :=i.len; DIL!iLen,

[i.newpc — newpc := getpc [i.movCR — newpc :=read [i.movCW — newpc

[pc[l0] =0 —

:= write [else — newpc := false];

[iLen =1 A newpc=false — pc:=pc+1
I ilLen =1 A newpc = getpc — pc:=pc+1, C1X; PtrPCl!pc
I iLen =2 A newpc = false — pc:=pc+2, C1I1
I iLen =2 A newpc = getpc — pc:= pc+ 2, C1HI1; PtrPC'pc
I iLen =3 A newpc = false — pc:=pc+2, C1lI1l; IMemPC!pc, OPl!r; pc:=pc+1, COI2
I iLen =3 A newpc = getpc — pc:= pc+ 2, C11U1l; IMemPC!pc, OP!r; pc:=pc+1, CO01I2, C1!X; PitrPClpc
I newpc = read — pc:=pc+1, C1!X; PtrPClpc
I newpc = write — pc:=pc+ 1, C1!X
]
I pcl0l =1— pc:=pc+1;
[iLen=1 A newpc = false — skip
I iLen=1 A newpc = getpc — PitrPC!pc
I iLen =2 A newpc = false — IMemPC!pc, OP!r; pc:=pc+1, CO!Il
I iLen =2 A newpc = getpc — IMemPC!pc, OP!r; pc:=pc+1, COI1l, C1X; PtrPClpc
I iLen =3 A newpc = false — IMemPCl!pc, OP!r; pc:=pc+2, COIl, C1!2
I iLen =3 A newpc = getpc — IMemPC!pc, OP!r; pc:=pc+ 2, COI1l, C1lI2; PtrPCl!pc
I newpc = read — PtrPClpc
1] newpc = write — skip
]
5
I1G?ig9; DIG'ig, [ig.active — IOK?irpt | else —» irpt := none 1;
[newpc = false — [irpt # none A pcl[0] =0 — newpc := getpc, PtrPCl!pc
I irpt # none A pcl0] =1 — newpc := getpc, PtrPClpc, C1!X

I irpt = none — skip 1]
I newpc = getpc — [irpt # none — Addr?pc;
I newpc =read — Addr?a; IMemPC'!a, OP!r,
[irpt # none — newpc := getpc;

1

[newpc = getpc — Addr?pc [newpc # getpc — skip 1;

]

PtrPC'pc [irpt = none — skip 1]
[al[0] =0 — CO'A, C1IX [al0] =1 — CO!'X, C1lA 1;
PtrPC'pc [irpt = none — skip 1]
I newpc = write — Addr?a; IMemPC'a, OP!w; [irpt # none — newpc := getpc; PitrPCl!pc [irpt = none — skip 1]

pcz := (pcl0] = 1);
[-pcz — IMemPC'pc, OP!r, CO!'I0 1 pcz A newpc # false — IMemPC'pc, OP!r, C0'X, C1'I0 [pcz A newpc = false — C1!10]

Figure 4: Sequential CHP for the fetch unit of the asynchronous 8051 microcontroller.

| i A?
A?‘ Bc ! cluster RN
> o o

X? e !

Y?

Figure 5: Clustering DDD modules in sequence.

nize modules with complicated boolean functions. To check if
the cluster exceeds the specified cycle time, we examine mod-
ules with many wide communication channels. (Such modules
can result in circuits with deep validity-check and completion
trees.)

6.2 Clustering DDD Modules in Sequence

If two DDD modules appear in sequence, clustering them
together may decrease the forward latency of the concurrent
system. We must first check that their combined computation
is simple enough that it fits into a single stage (i.e., count
the transistors in series). Clustering two modules in sequence
also reduces overall energy consumption by eliminating the
channels (and validity checks) in between them.

The asynchronous systems we design achieve peak perfor-
mance when all of the inputs to a module arrive at the same

512

time. This is the motivating principle of “slack-matching,” and
it dictates that all paths from any primary input (external in-
put channel in the sequential code) to a given module traverse
the same number of pipeline stages. Slack-matching therefore
helps determine the optimal number of pipeline stages along
a path. Previous research shows that the Et? efficiency of a
system is highest when there is an equal amount of power dis-
tributed to each pipeline stage [11]. Combining this require-
ment with the results of slack-matching, we see that a path
that optimally has IV pipeline stages is more efficient when
all N stages perform some computation than when only two
stages perform computation and the other N — 2 are simple
buffers there simply to add slack.

We therefore cluster modules together in sequence only if
they appear upon the longest path of the decomposed system
(i.e., if clustering reduces the forward latency of the system as
a whole). There is no point in clustering modules in sequence
along shorter paths, since buffers will be added during slack-
matching to improve performance anyways. When the forward
latency of the system has been decreased, we begin a new
iteration and attempt to cluster modules along the new longest
path. Only when no new clusters will fit in a single pipeline
stage do we slack-match the system.

X?

A1? cluster A1?
B!
A2? ‘ o]
I A2?
Y? : ¢t

Y?

Figure 6: Clustering DDD modules in parallel.

Slack-matching is similar to the retiming problem in syn-
chronous circuits [14], but in our asynchronous design style,
every module combines computation logic and latching instead
of keeping them as separate units. Also, slack-elasticity allows
us to add buffers (the equivalent of retiming registers) on any
channel without worrying about adding an equal number to
each input of a combinational logic block to preserve system
correctness. Finally, since we are slack-matching for Et? effi-
ciency and time is not our only criterion, we must be careful
not to over-slack-match systems.

6.3 Clustering DDD Modules in Parallel

Clustering modules that operate in parallel reduces energy
consumption only when the modules share inputs (when both
their computations depend on the same variable). When such
modules are merged, their separate input communication chan-
nels are collapsed into one. This reduces the number of wires
switched per cycle and eliminates the redundant input validity
trees that used to grace each module. The two modules Pb
and Pc in Figure 6 illustrate such a scenario.

Slack-matching also plays a role here. When we combine
the two modules in parallel, we still want all inputs to the new
module to arrive at the same time. We therefore can think
of the system as a table with columns, where all modules in
the same column are the same number of pipeline stages away
from the primary inputs. For optimal performance, we only
cluster modules that share inputs when they appear in the
same column.

On shorter paths that use simple buffers to match the lengths
of longer paths, we consider swapping the columns of these
buffers with computation modules so that more computation
modules can be clustered together. This is illustrated in fig-
ure 7), where external channels A?, B? and C? are primary
inputs while X! is a primary output. Modules P6 and P7
are in the same column and share inputs from C'P4: as such,
they can be clustered. Modules P2 and P3 both share inputs
from CP1 but are in different columns. If P3 were swapped
with the buffer before it, then it could be clustered with P2.
But if the output channel of P3 is much larger than its input
channel, the swapping and clustering can increase the overall
energy consumption in the system.

It can be seen that the combination of clustering DDD mod-
ules and slack-matching for performance is a global optimiza-
tion problem. Slack-matching systems that contain cycles is
more complicated, and is discussed elsewhere [9].

7. CONCLUSION

We have presented Data-Driven Decomposition (DDD), the
first half of a method for the high-level synthesis of energy-
efficient asynchronous circuits. DDD employs data-dependency
analysis to decompose a sequential program describing the cir-
cuit into a concurrent system of communicating modules. This
is the first high-level synthesis method to target circuits in the

513

Figure 7: A slack-matched concurrent system viewed
as a table of columns.

PCHB family of fine-grain asynchronous pipeline stages. Cir-
cuits from this family were used to build the asynchronous
MIPS R3000 that, when performance figures are ported to
the same technologies, is (to our knowledge) the fastest asyn-
chronous microprocessor to date.

We also introduced the second half of our envisioned syn-
thesis method: clustering DDD modules for further improve-
ments in energy consumption, performance, or both. We set
up the framework for clustering algorithms that target the
same asynchronous PCHB circuits as DDD. Early prototypes
of tools that automatically perform DDD exist, and we are
also developing tools that automatically perform clustering.

Acknowledgements
The research described in this paper was sponsored by the Defense
Advanced Research Projects Agency and monitored by the Air Force
under contract F29601-00-K-0184.

8 REFERENCES

A.J. Martin. “Programming in VLSI: From Communicating
Processes to Delay-Insensitive Circuits,” in C.A.R. Hoare, ed.,
Dewvelopments in Concurrency and Communication, UT Year of
Programming Series, Addison-Wesley, 1990.

C.G. Wong and A.J.Martin. “Data-driven Process Decomposition
For the Synthesis of Asynchronous Circuits,” Proc. ICECS, 2001.
S.M. Burns and A.J. Martin. “Synthesis of Self-Timed Circuits by
Program Transformation,” In G.J. Milne, ed., The Fusion of
Hardware Design and Verification, North-Holland, 1988.

A. Bardsley and D.A. Edwards. “The Balsa Asynchronous Circuit
Synthesis System,” Forum on Design Languages, 2000.
C.H. van Berkel and R.W.J.J. Saeijs. “Compilation of
Communicating Processes Into Delay-Insensitive Circuits,”
ICCD, pp. 157-162, 1988.

J. Cortadella, M. Kishinevsky et al. “Petrify: a tool for
manipulating concurrent specifications and synthesis of
asynchronous controllers,” IEICE Trans. Information and
Systems, Vol. E80-D, No. 3, pp. 315-325, March 1997.
R.M. Fuhrer, S.M. Nowick et al. “MINIMALIST: An Environment
for the Synthesis, Verification and Testability of Burst-Mode
Asynchronous Machines,” Columbia University CS Tech Report
CUCS-020-99, 1999.

A.J. Martin, A. Lines et al. “The Design of an Asynchronous
MIPS R3000,” Proc. ARVLSI, pp. 164-181, September 1997.

A.J. Martin, M.Nystrom et al. “The Lutonium: A Sub-Nanojoule
Asynchronous 8051 Microcontroller,” to appear in Proc. ASYNC,
May 2003.

H. vanGageldonk, K. van Berkel, and A. Peeters. “An
Asynchronous Low-Power 80C51 Microcontroller,” Proc. ASYNC,
April 1998.

A.J. Martin, M.Nystréom, and P.Penzes. “ET2: A Metric For Time
and Energy Efficiency of Computation,” In R.Melhem and
R.Graybill ed., Power-Aware Computing, Kluwer, 2001.

R. Manohar and A.J. Martin. “Slack Elasticity in Concurrent
Computing,” Proc. 4th Intl Conf. on the Math of Program
Construction, Lecture Notes in CS, Springer-Verlag, 1998.

P. Penzes and A.J. Martin. “An Energy Estimation Method for
Asynchronous Circuits with Application to an Asynchronous
Microprocessor,” Proc. DATE, 2002.

C. Leiserson, F. Rose, and J. Saxe. “Optimizing Synchronous
Circuitry by Retiming,” 3rd Caltech Conference on VLSI, 1993.

(2]
(3]

[4]

(5]

Proc.

(6]

(71

(8]

9]

[10]

(11]

(12]

(13]

(14]

