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Abstract—High-level synthesis promises a significant short-
ening of the FPGA design cycle when compared with design
entry using register transfer level (RTL) languages. Recent
evaluations report that C-to-RTL flows can produce results with
a quality close to hand-crafted designs [1]. Algorithms which use
dynamic, pointer-based data structures, which are common in
software, remain difficult to implement well. In this paper, we
describe a comparative case study using Xilinx Vivado HLS as an
exemplary state-of-the-art high-level synthesis tool. Our test cases
are two alternative algorithms for the same compute-intensive
machine learning technique (clustering) with significantly differ-
ent computational properties. We compare a data-flow centric
implementation to a recursive tree traversal implementation
which incorporates complex data-dependent control flow and
makes use of pointer-linked data structures and dynamic memory
allocation. The outcome of this case study is twofold: We confirm
similar performance between the hand-written and automatically
generated RTL designs for the first test case. The second case
reveals a degradation in latency by a factor greater than 30 x
if the source code is not altered prior to high-level synthesis.
We identify the reasons for this shortcoming and present code
transformations that narrow the performance gap to a factor of
four. We generalise our source-to-source transformations whose
automation motivates research directions to improve high-level
synthesis of dynamic data structures in the future.

I. INTRODUCTION

High-level synthesis (HLS) raises the abstraction level
for hardware description promising significant shortening of
the design cycle compared with RTL-based design entry.
To achieve latency and resource utilisation comparable to
handwritten RTL, high-level synthesis often requires extensive
code alterations to ensure synthesisability. These are espe-
cially important for programs with irregular control flow and
complicated data dependencies. In this paper, we use Vivado
HLS as an exemplary state-of-the-art tool to investigate HLS
support for this type of programs. Our test cases are two al-
gorithms for a compute-intensive machine learning application
(K-means clustering). Algorithmically, both implementations
produce exactly the same result, but they differ significantly in
their computational properties: The first is a data-flow centric
implementation with simple control flow, whereas the second
is based on a recursive tree traversal. The latter application
uses dynamic memory allocation to significantly reduce on-
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chip memory requirements. We use hand-written RTL im-
plementations of both algorithms as comparison points. The
contributions of this paper are:

o A comparative case study using a data-flow centric cluster-
ing implementation and an implementation based on recursive
traversal of a pointer-linked tree structure which incorporates
data-dependent control flow and makes use of dynamic mem-
ory allocation. We highlight code transformations necessary
to enable program synthesis.

o An end-to-end QoR comparison between the automatically
generated RTL code for both variants and both functionally
equivalent, hand-written RTL implementations.

o An analysis of how efficiently specific program features
are synthesised into RTL. We provide source-to-source trans-
formations that improve QoR by a factor of eight and propose
research directions aimed to automate these transformations
in the future.

Section II discusses the technical background and describes the
test cases. The C-based HLS implementations are described
in Section IIl. Section IV presents QoR comparisons and
Section V concludes the paper.

II. BACKGROUND

We use Vivado HLS for this case study as an exemplary
state-of-the-art tool which shares many similarities with other
modern C-to-FPGA flows such as LegUp [2] or ROCCC [3].
Similar to LegUp and ROCCC, it is based on an LLVM
intermediate representation. RTL generation is guided by syn-
thesis directives which are manually invoked and configured.
Exploring design options and optimisations using directives
ideally does not require the source code to be altered. The most
important directives we use to control the RTL generation are
loop pipelining and loop unrolling directives. Loop pipelining
overlaps loop iterations in the pipeline. The interval between
the start of two iterations is given by the initiation interval (II).
Loop unrolling is used to force parallel instantiations of the
loop body. In order to remove the bottleneck of an insufficient
number of memory ports in a parallelised application, on-chip
memories can be split into multiple banks using an ‘array parti-
tioning’ directive. Similar to LegUp and ROCCC, the C-based
input is restricted to a synthesisable subset excluding system
calls, arbitrary pointer casting, arbitrary recursive functions and
dynamic memory allocation (new, delete).



Listing 1 Main kernel of Lloyd’s algorithm.

Listing 2 Recursive tree traversal of the filtering algorithm.

1: function LLOYDS(parameters N, K)

2 for all z; € {z1,x2,...,2n} do

3 // find closest centre z” to data point x;
4 for all z; € {z1,22,..., 2K} do

5: tmpDist = ||z; — zi||%;
6
7

8

if tmpDist < minDaist or ¢ = 0 then

minDist = tmpDist;
i" = 4; // index of 2"

end if
10: end for
11: /I update centroid buffer
12: centroidBuffer[i"].wgtCent += z;;
13: centroidBuffer[i"].count += 1;

14: end for
15: end function
16: // update centre positions with information in centroid buffer

Meeus et al. [4], Sarkar et al. [5] and BDTI [1] present
evaluations of state-of-the-art HLS tools. Their work shares the
commonality that the chosen benchmark cases are data-flow
centric stream-based applications with simple control flow. On
the contrary, this work aims to operate an HLS flow on a test
case outside its ‘comfort zone’.

The test cases we chose for this case study are two imple-
mentations of a K-means clustering application, a technique
for unsupervised partitioning of a data set commonly used in
a wide range of applications, such as machine learning, data
mining, radar tracking, image colour or spectrum quantisation.
K-means clustering partitions the D-dimensional point set
X ={z;},j=1,..., N into clusters {S;},i = 1,..., K, where
K is provided as a parameter. Each cluster is represented by
its geometrical centre. We consider two K -means algorithms:
Lloyd’s algorithm exhaustively computes Euclidean distances
between data points and candidate centres to assign a closest
centre to each point, whereas the filtering algorithm [6] uses
a tree data structure (kd-tree, [6]) to prune unfavourable
candidates early in the search process. A detailed description
as well as a case study showing the advantage of the filtering
algorithm in hardware are given in [7]. Simplified versions of
the main kernels are shown in Listings 1 and 2.

To aid in the explanation of this case study, we identify
the most important features of both applications. Lloyd’s al-
gorithm (Listing 1) captures most of the computation in a two-
dimensional regular loop nest, which includes the Euclidean
distance calculation (line 5) and a min-search (lines 6-9). All
loop bounds (N, K) are constant.The key computational parts
of the filtering algorithm (Listing 2) are the closest centre
search (lines 2-6) and the candidate pruning (lines 12-18,
pruningTest, remove centres form the current set). The loops
enclosing closest centre search and candidate pruning have
runtime-variable bounds 2 < k < K. The implementation
uses dynamic memory allocation (line 10, spawning a new
object centreSet,e,,) and de-allocation (lines 21, 27) enclosed
in data-dependent conditionals. Memory space is freed after
traversal. In addition, the implementation uses recursive func-
tion calls (beyond tail recursion) which usually requires the
presence of a stack. The stack is implicitly handled in the
software program, but it needs to be explicitly implemented in
an FPGA application. The data passed between recursive in-
stances are the objects treeNode, centreSet (set of candidate
centres), and the variable k (current set size).

1: function FILTER(variables treeNode, centreSet, k)
2:  // find closest centre z” to treeNode.bndBox.midPoint
3 for all z; € centreSet do

4: /I ... distance calculation and min-search as above

5:  end for

6: I/l 2" = closest centre, i = index closest centre

7 if treeNode is leaf then

8 /I ... update centroid buffer as above

9

: else
10: centreSetnew, = malloc(k centre indices);
11: knew =0;
12: /I prune candidate centres
13: for all z; € centreSet do
14: if !(pruningTest(z”, z;, treeNode.bndBoz)) then
15: knew++;
16: insert z; into centreSetnew;
17: end if
18: end for
19: if knew = 1 then
20: /I ...update centroid buffer as above
21: free(centreSetnew);
22: else
23: // recurse on children
24: FILTER(treeNode.left , centreSetpew, knew);
25: FILTER(treeNode.right, centreSetpew, knew);
26: /I free allocated heap on the way back
27: free(centreSet ew);
28: end if
29:  end if

30: end function
31: // update centre positions with information in centroid buffer

III. HLS IMPLEMENTATIONS

Our goal is to bring the RTL designs produced by the HLS
flow as close as possible to the highly optimised manual RTL
designs in [7]. We distinguish between optimisations using
synthesis directives and manual source code modifications.

A. Lloyd’s Algorithm

The C code for Lloyd’s algorithm corresponding to List-
ing 1 is directly synthesisable and does not contain any
unsupported language constructs. We unroll all for-loops over
the data point dimensionality D which results in a parallel
implementation of the distance computation ||z — z||?. Most
of the computation is contained in the inner for-loop (Listing 1,
lines 4-10) with a bound K. Pipelining this loop (II=1) leads to
performance comparable to hand-coded RTL. For acceleration
beyond pipelining, we control the degree of parallelism just as
in the case of the manual RTL design by partially unrolling
the outer loop to degree P (replicating pipelines). In order
to match the parallelism of computational units and memory
ports, we partitioning the centre positions and centroid buffer
arrays into P banks using the array partitioning directive.
Overall, using synthesis directives and a minor source code
modification to ensure correct indexing of the parallel instances
of the centroid buffer, we are able to produce an RTL design
which is architecturally similar to its hand-written counterpart.

B. Filtering Algorithm

The synthesisability of the main kernel as in Listing 2
requires the removal of the recursive function calls and the
calls to malloc and free (discussed in 1 and 2) and code
transformations to improve QoR (discussed in 3 and 4).
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Listing 3 Iterative replacement for the recursive kernel.

1: push(root, centreSetinitial, K, true);
2: while stack not empty do
. treeNode *u; uint *centreSet; uint k; bool d;

3
4:  pop(&u, &centreSet, &k, &d);
5: ... = *centreSet;
6: if (d == true) then
7: free(centreSet);
8 end if

9:  centreSet,ew = malloc(K centre indices);

10:  //... original body in Listing 2 (contains two sub-loops)
11:  *centreSetnew = ... ;

12:  if (*u is not a leaf) and (knew > 1) then

13: push(u — right, centreSetpew, knew, true);
14: push(u — left , centreSetpew, knew, false);
15:  else

16: free(centreSetnew);

17:  end if

18: end while

1) Recursive Tree Traversal: Recursion is replaced by a
while-loop and a stack which contains pointers to the heap-
allocated tree node and set of candidate centres, as well as the
set size k and a flag d indicating that the centre set can be
de-allocated. Listing 3 shows the rewritten code.

2) Dynamic Memory Allocation: A new centre set is cre-
ated in line 9 in Listing 3 and disposed in line 7 after it
has been read for the second time. The duration for which a
candidate set must be retained in memory depends on the shape
of the (generally unbalanced) tree. In the worst-case the tree is
degenerate (fully unbalanced) and more than one item remains
in all centre sets after pruning. In this case, N — 1 centre
sets must be retained in memory before they can be disposed,
and hence, the heap memory for centre sets must be able to
accommodate N —1 sets to ensure functional correctness in this
worst-case scenario. For N,,,, = 16384 and K,,,, = 256,
this memory then consumes 512 on-chip 36k-Block RAM
(BRAM) resources (~81% in a medium-size Virtex 6 FPGA).
In the average case, however, the tree is unlikely to be
fully degenerate and the instantaneous memory requirement is
significantly lower because centre sets can be disposed earlier.
Dynamic memory allocation allows to exploit this to use the
available memory space more efficiently by freeing unused
space. Our custom implementation of the fixed-size allocator
uses a free-list which keeps track of occupied memory space
and the on-chip heap memory can accommodate an ‘average-
case’ number of centre sets. When inadequate memory is
available to service an allocation request, the algorithm allows
us to abandon the pruning approach and instead consider all
candidate centres [7]. This modification does not compromise
the functionality of the algorithm, but it increases its runtime
(number of node-centre interactions). Fig. 1 shows the result
of profiling the C application clustering 16384 pixels (RGB
vectors) randomly sampled from a benchmark image (Lena).
We select a bound of B = 256 < N,,.. — 1 centre sets (8
BRAMs) which practically causes no runtime degradation in
the scenarios considered here. A generic framework to infer
such an average-case bound (semi-)automatically while still
supporting the worst case requirement would be a valuable tool
to support dynamic memory allocation in an HLS context.

3) Parallelisation: As in the manual RTL design, we split
the tree structure into P independent sub-trees to parallelise the
application by instantiating P parallel processing kernels. Heap
memories for tree nodes and centre set memory are by default
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Fig. 1: Trade-off between heap size and runtime (profiling).

Listing 4 Loop distribution to enable pipelining.

1: while stack not empty do
while (stack not empty) and (queue not full) do
pop(&u, &centreSet, &k, &d);
enqueue(u, centreSet, k, d); // newly introduced queue
end while
while queue not empty do
dequeue(&u, &centreSet, &k, &d);
/l... remaining loop body in Listing 3 (lines 5-17)
/l... (contains two sub-loops with variable bounds)
10:  end while
11: end while

LRI NELN

monolithic memory spaces which need to be divided into P
disjoint regions (sub-trees, and segments for private centre
sets). The access through (dynamically allocated) pointers in
Listing 3, however, hides this disjointness which renders the
array partitioning directive ineffective and does not lead to
parallel execution. In fact, applying automatic partitioning even
leads to a degradation in latency as shown in the following
section. Instead, we manually partition the tree node memory
and privatise heap space for centre sets for each instance.
This ensures that the scheduler recognises the parallelisation
opportunity. Automating this step requires a program analysis
capable of identifying disjoint regions (in terms of access
patterns) in the monolithic heap memory space.

4) Inter-Iteration Dependencies and Pipelining: Apart
from replication, acceleration of the manual RTL design in [7]
is obtained from pipelining the tree traversal. This corresponds
to pipelining the loop nest in Listing 3 which requires to reason
about two (potential) inter-iteration dependencies. The first
is between pop and push statements on the stack and stack
pointer which hinders pipelining. However, because there are
two push statements and one pop statement, the items stored
on the stack (pointers v and centreSet, k and d) accumulate
if the condition in line 12 holds in several iterations. Once
there are multiple pointers on the stack, these do not cause
any read-write dependencies between iterations and hence can
be overlapped in pipelined execution. Listing 4 shows a trans-
formation of the loop in Listing 3 to implement this schedule.
The transformation distributes the execution of the original
loop body over two (pipelineable) inner loops which exchange
data via a newly inserted queue. The second inner loop ensures
that multiple items on stack will be immediately scheduled for
processing. This loop, however, still contains sub-loops with
variable bounds which prevents the tool from pipelining it.
An additional manual loop nest flattening transformation is
required to enable pipelining the loop with II=1.

The other (potential) inter-iteration dependency is due to
the pointer accesses in lines 5 and 11 in Listing 3. This is a
false dependency because, after the loop transformation, the



TABLE I: Performance comparison using the hand-written RTL designs as reference.

Architecture: Noppqr = 32768, Kpmar = 256, D = 3, B = 256; Input data (synthetic): N = 16384, K = 128, D = 3,0 = 0.2

| Lioyds RTL (ref.) [ Lioyds HLS || Filt. RTL (ref. | Filt. HLS (orig., directives only) | Filt. HLS (man. partitioning) | Filt. HLS (man. loop transf.)
P 40 40 2 2 2 2
Slices 25185 | 24103 (x1.0) 6950 6112 (x0.9) 5670 (x0.8) 7054 (x1.0)
LUT 66472 | 68360 (x1.0) 10418 14912 (x 1.4) 13649 (x1.3) 16106 (x 1.5)
REG 62168 | 63878 (x1.0) 19008 13324 (x0.7) 12601 (x0.7) 17013 (x0.9)
DSP 120 120 (x1.0) 40 46 (x1.2) 38 (x1.0) 38 (x1.0)
BRAM 83 89 (x1.1) 448 500 (x1.1) 516 (x1.2) 507 (x1.1)
Clock per. 5.0 ns 9.7 ns (x1.9) 5.0 ns 5.7 ns (x1.1) 5.7 ns (x1.1) 6.3 ns (x1.3)
Cycles/Iter. S3k 66 k (x1.2) 54k 1440 k (x 26.6) 583 k (x10.8) 165 k (x3.0)
Time/Iter. 264 us | 637 us (x2.4) 270 us 8208 us (x30.3) 3323 us (x12.3) 1036 us (x3.8)
AT prod. 6655 | 15361 (x2.3) 1880 50165 (x26.7) 18841 (x10.0) 7305 (x3.9)

pointers centreSet and centreSet,e,, never alias across iter-
ations. Inserting a ‘dependence false’ directive makes Vivado
HLS aware of the non-existence of this dependency. Enabling
automatic pipelining for pointer-based programs thus crucially
depends on an automated analysis capturing the semantics of
malloc and free and reasoning about such ‘pointer-carried’
dependencies which we propose as a promising area to explore
in improving future HLS flows.

IV. PERFORMANCE COMPARISON

We compare the performance of the four designs based
on different metrics: clock cycles count per clustering itera-
tion (through RTL simulations), execution time per iteration
(includes the clock period), FPGA resource usage and area-
time product (AT product, given in logic slices X ms). We
generate point sets of N = 16384 three-dimensional fixed-
point samples (16 bit) which are distributed among K =
128 centres and follow a normal distribution with standard
deviation 0. We implement the HLS designs (Vivado HLS
2012.2) and the hand-written RTL designs on a Xilinx Virtex
7 FPGA (7vx485t-1) using standard synthesis tools (Vivado
2012.2 RTL flow). The FPGA resource consumption is given
by the utilisation of LUT, slice register (REG), digital signal
processing (DSP), and 36k-BRAM resources. All designs are
synthesised for a 200 MHz target clock rate and all results are
taken from fully placed and routed designs. In order to account
for the inherent runtime advantage of the filtering algorithm
due to search space pruning and to compare all designs on a
common basis, we increase the parallelisation degree for the
final implementations of Lloyd’s algorithm to P = 40, which
equalises the cycle count of the hand-written RTL designs.

Table I shows the performance comparison based on the
metrics above. The resource consumption of both HLS designs
compared to their RTL counterparts is remarkably similar. The
cycle count for both implementations of Lloyd’s algorithm is
similar which indicates similar scheduling of operations. The
last three columns show different variants of the HLS designs
for the filtering algorithm. The design in column 5 includes
only code alterations to enable synthesisability (discussed in
1) and 2) above) and uses only synthesis directives to improve
QoR. Columns 6 and 7 show the effect of subsequent source-
to-source transformations discussed in 3) and 4), respectively,
narrowing the performance gap from a factor of 30.3 to a factor
of 3.8 compared to the manual RTL design.

V. CONCLUSION

We present a comparative case study for a C-to-FPGA flow
using Xilinx Vivado HLS as an exemplary tool. Our test cases
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are two alternative algorithms for K-means clustering, referred
to as Lloyd’s algorithm and the filtering algorithm. The former
is data-flow centric and has regular control flow and regular
memory accesses, whereas the implementation of the filtering
algorithm uses dynamic memory management and is based
on recursive traversal of a pointer-linked tree structure. The
performance gap between HLS-derived and hand-written RTL
implementations of Lloyd’s algorithm is approximately a factor
of two in terms of area-time product, which is a remarkable
result given the enormous difference in design time. The
HLS design of the filtering algorithm also consumes a ‘close-
to-hand-written’ amount of FPGA resources, but latency is
initially degraded by a factor of 30x. We apply manual code
transformations to partition and privatise data structures ac-
cessed through pointers in order to promote parallelisation and
to enable pipelining of the loop traversing the pointer-linked
data structure which results in an overall 8 x-improvement of
latency. We conclude that design automation optimisations for
code using dynamic data structures are currently limited. We
propose an analysis for finding tight bounds on the dynamically
allocated heap memory, an automated analysis of dependencies
carried by data structures accessed through pointers, and an
automated analysis to identify and privatise disjoint regions in
the monolithic heap memory as research directions to improve
the HLS support for (widely used) programs operating on
dynamic, pointer-based data structures.
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