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Abstract

With increasing FPGA chip density, it is possible to implement more sophisticated algorithms on
FPGA. However, programming an FPGA using a register transfer level (RTL) language is time-
consuming and error-prone. To make use of the re-programmability of FPGAs for fast design space
exploration and fast time-to-market it becomes more and more necessary to raise the abstraction
level from structural design to behavioral design. High level synthesis (HLS) seems a promising
solution for this issue.

The sequential nature of C as input specification is an issue in HLS and code transformations
are often necessary to produce better quality of results. The question is if HLS can compete with
handwritten RTL designs, with regard to several performance metrics such as resource utilization,
execution time and design time. If HLS can compete with handwritten RTL design, the question
is which code transformations are required to achieve good quality of results.

Using the HLS tools AutoESL and Synphony, two image processing kernels are benchmarked
for an in-depth analysis of HLS performance. To avoid performance pitfalls by using only small
toy examples, a real application called Fast Focus on Structures (FFoS) is ported to FPGA to
investigate performance with regard to a comparable handwritten RTL design.

The benchmarks using two image processing kernels have shown that it is possible to efficiently
mimic a datapath from a reference manual RTL design. However, the analysis also shows that in
HLS it is impossible to describe fine-grained interface and memory control. Both AutoESL and
Synphony are capable of producing a design similar to the reference design. AutoESL requires 5%
less flip flops and 4% more LUTs whereas Synphony requires 62% more flip flops and 61% more
LUTs. Design time, for both tools, is reduced by a factor 6 and the latency stays within 2% of
the reference. The explored code transformations, in combination with an existing algorithm clas-
sification and source-to-source compiler, are used to create a skeleton library for HLS to decrease
design time by a factor 15 compared to handwritten RTL design.

From the two HLS tools, AutoESL seems the most promising although Synphony might produce
better results in a different application domain. Furthermore, it is shown that small modifications
at behavioral level can have a large positive impact on the performance results without requiring
time-consuming and error-prone RTL modifications. The code transformations show that in many
cases tool specific code optimizations need to be done to achieve good results, making it debatable
if it can be automated.
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Chapter 1

Introduction

Embedded systems come in many shapes and sizes, offering solutions for a wide variety of problems
in many different application domains. Their presence ranges from mobile phones and washing
machines to avionics and medical equipment. The complexity of an embedded system varies from
single core processors to multi-core and even many-core architectures, including a wide variety
of possible peripherals. With the diminishing returns on more instruction level parallelism and
a stall in uniprocessor performance increase, the community has moved to multi-core designs [1].
Although multi-core solutions offer more parallelism and look promising for general purpose pro-
cessing, they might not be efficient in performance and flexible enough for certain specific tasks
(for example real-time systems) within an embedded system. Reconfigurable computing plat-
forms can overcome this problem by offering efficiency, performance and flexibility, often wanted
in for example the image processing domain. One of the major problems with reconfigurable
computing platforms is the design time necessary to get the required efficiency and performance.
This chapter introduces a possible solution for the time-consuming design time and presents the
problem description and contributions. The design time can be reduced by the acceptance of high
level synthesis (HLS), a compiler for reconfigurable computing platforms, in the design flow. A
requirement for its acceptance is that state-of-the-art HLS tools should be capable of producing
high performance designs. Section 1.1 introduces reconfigurable computing platforms and sec-
tion 1.2 discusses some history in compiling for reconfigurable platforms. Section 1.3 introduces
high level synthesis as a new form of compiling for reconfigurable architectures, including a brief
discussion about its history and covering several aspects of the high level synthesis design flow.
In section 1.4, the image processing domain and algorithmic skeletons are introduced. Readers
already known with previously mentioned concepts can skip to section 1.5 and section ?? for the
problem description and contributions of the thesis.

1.1 Reconfigurable Computing Platforms

The idea of reconfigurable computing has been there since the 60’s. While general purpose proces-
sors or microprocessors have a fixed architecture, reconfigurable computing architectures contain
reconfigurable processing units (RPUs). In a normal processor, the data path and handling of
control flow is fixed, but with a reconfigurable architecture the designer has the possibility to
design a data path and control flow. There is many interest in reconfigurable platforms as they
can be used to accelerate computations or even complete algorithms by use of parallel hardware
structures which can be completely customized. General purpose processors have a fixed data path
which may not be optimal for a certain computation. On the other side there’s application specific
integrated circuits (ASIC) and application specific instruction set processors (ASIP). ASIPs have
a specially designed instruction set targeting a specific application, such a processor is a trade-off
between the (application) flexibility of a general purpose processor and the performance of an
ASIC which is a specially designed integrated circuit executing a specific functionality or appli-
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cation. The gap between flexibility and performance can be filled with reconfigurable computing
platforms. The goal of reconfigurable computing is to fill the gap between hardware and software,
aiming for more performance than a software implementation of an algorithm on a general purpose
CPU while maintaining flexibility in hardware.

Reconfigurable computing platforms come in many different granularities. A platform might
consist of a completely customizable reconfigurable architecture or it might be a hybrid form
consisting of a (reduced) general purpose processor coupled with a reconfigurable array of recon-
figurable processing units. The task of the general purpose processor in such an architecture is
to control the hardware accelerator custom build in the reconfigurable part and to supply the
accelerator with data to operate on. The reconfigurable part of the architecture consists of re-
configurable processing units which also come in many different granularities, ranging from coarse
grained to fine grained RPUs. An example of a coarse grained RPU architecture is the KressArray
[2], consisting of a reconfigurable data path array laid out as a rectangular grid of 32-bit ALUs with
three levels of interconnect (nearest neighbor, row/column back-buses and a global bus). Field
programmable gate arrays (FPGAs) are an example of reconfigurable platforms with fine-grained
RPUs. Usually the RPUs in an FPGA, also called configurable logic blocks (CLB), contain one or
two flip flops to temporarily store data and a lookup table used to implement a boolean function.
By organizing these CLBs in a certain fashion, the designer is able to implement any digital circuit
(as long as the design can be routed and there are enough resources). FPGA architectures can also
contain, for example, distributed multiplier and memory blocks, creating a mix of coarse-grained
and fine-grained configurable blocks. These kind of reconfigurable architectures are not only in-
teresting because of their flexibility and their possibilities to exploit parallelism for specific tasks,
they also provide a platform for design space exploration to test different architectures without
major production costs.

1.2 Compiling for Reconfigurable Computing Platforms

The evolution of silicon technology and the ever increasing complexity of applications has given
rise to a need for higher abstraction levels in programming architectures. Since the 1950’s raising
the abstraction level has been an evolving process as with each improved technology, enabling more
complex applications, it became more and more difficult to generate and validate designs. This
raise has been seen in both the software and the hardware community. In the software community,
complex and diverse architectures resulted in the need for a raise in abstraction level from machine
code (different for each architecture) to assembly language (instruction-set dependent) and later
followed by even higher level languages such as C (architecture and instruction set independent)
because of the ever increasing code complexity. The hardware community faced a similar evolution
in the design process. As chips were growing in size it became harder to hand-craft complete
designs with the increasing transistor count on chips. To exploit the increasing chip density,
designers needed to raise the abstraction level from transistor level design to gate-level design,
effectively reducing the amount of hardware components to deal with during the design process.
The increase in transistor count did not stop however, resulting in the introduction of hardware
description languages (HDL) such as Verilog and VHDL and the logic synthesis tools to synthesize
(transform to gates) the design written in a HDL which is comparable to the compiler which
translates the high level programming language to a specific target device.

The latest trend in hardware design is electronic system level design (ESL), which moves from
behavioral or structural hardware description using an HDL to behavioral system modeling us-
ing languages such as C, SystemVerilog and SystemC. Reason for this is the large gap between
hardware designers programming in VHDL for FPGAs and software designers programming in,
for example, C. Programming an FPGA using a register transfer language such as VHDL can be a
time-consuming and error-prone process for someone lacking the skills of experienced hardware de-
signers (and often even for an experienced HDL programmer) [3] [4]. RTL descriptions are usually
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Figure 1.1: Design flow using HLS

heavily tweaked for a particular device (analogous to assembly language software programming),
the cycle by cycle behavior needs to be specified for every register inside the design and because of
FPGA hardware flexibility every aspect of the hardware needs to be designed. Moreover, design-
ers need to meet specific timing requirements, often requiring several design iterations to achieve
timing closure. All of this makes it hard for an experienced designer to use an FPGA as massive
multi-core device to speed up applications, as for software engineers who think in a higher level
language and not in hardware it will often be impossible to achieve an efficient design without
a significant HDL learning curve. ESL design decreases the gap between software and hardware
design and enables co-design and easier reuse of IP cores as cores written in RTL suffer from less
flexibility and timing and performance constraints. Figure 1.1 presents the design flow including
HLS, giving the designer the possibility to either implement the functional description on FPGA
directly using HLS or manually coding using an RTL. The driving force for these developments
are the increasing transistor count on chips and the fast-time-to-market driven companies who
want to maintain or improve productivity [5].

1.3 High Level Synthesis

Raising the abstraction level from assembly to programming languages like C have enabled software
engineers to develop more complex applications with improved productivity. This raise in the
abstraction level resulted in languages which are platform independent and follow rules of the
human language easing the design process. Hardware design is undergoing a similar process.
High level synthesis tools, electronic design automation (EDA) tools supporting ESL design, try
to bridge the hardware/software gap by supporting automatic transformations from high level
programming models to RTL hardware descriptions, redirecting the time consuming HDL work
to the compiler instead of the programmer.

High level synthesis is the process of transforming a behavioral untimed description of an
application written in a high level language such as C, C++ or SystemC to a hardware description
in a HDL. High level synthesis thus transforms untimed specifications to timed specifications
which can then, automatically, be synthesized into gates. The power of high level synthesis is
that it enables system-level design space exploration and reduces design and verification efforts.
Architectural decisions on the hardware/software design (the partitioning), power consumption,
area usage and speed can be made at system level. The same system level specification can be
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used to explore, and verify, a wide range of architectures on a wide range of different technologies
such as a wide variety of FPGAs and ASICs [6]. Another powerful property of high level synthesis
is the possibility to introduce behavioral IP cores, which are completely architecture independent,
by applying source code transformations and tool specific constraints different architectures can
be quickly generated and explored.

This section introduces the evolution of high level synthesis for a historical view, the general
compilation flow used in current high level synthesis tools, the common way of specifying a design
followed by the concept of interface synthesis and design verification.

1.3.1 Evolution

Compiler technology for high-level languages has been in practice since the 1950s, enabling re-
searchers to use this technology in relation with high level synthesis. The high level synthesis
concept started with CMU-DA [7] in the 1970s, before FPGAs started to emerge. The tool used
an instruction set processor specification (ISPS) language to specify a design, targeting ASIC
design. Many common code-transformations from compiler technology were already used at this
time, such as dead-code elimination, constant propagation, sub-expression elimination and code
motion. After this first step towards high level synthesis, many HLS tools emerged mainly for
research and prototype purposes. Next to academic efforts in HLS tools such as ADAM [8], HAL
[9] and MIMOLA [10], the industry started to show interest as well in the 1980s and ealy 1990. An
examples of industry efforts is Cathedral-II [11], one of the first domain specific silicon compilers
based on the idea that there is no generalized silicon compiler which can perform well for all types
of applications. Cathedral focuses on the digital signal processing domain and they use a language,
called Silage, optimized for high-level description of signal processing algorithms.

At this point, most HLS tools already decomposed synthesis tasks. Code transformation, mod-
ule selection, scheduling, datapath and control path generation were typical steps in the synthesis
process. Fundamental algorithms for scheduling in high level synthesis were developed during this
time, such as list scheduling to solve resource constraint scheduling, force-directed scheduling to
optimize resource utilization with a performance constraint and path-based scheduling to optimize
conditional branch performance. Although both academic as industrial research was being done
to high level synthesis, several generations of tools have failed to be accepted by the industry
[12] for several reasons. As RTL synthesis was just emerging, it was not widely accepted yet and
schematic design was still the optimal solution. RTL synthesis still had to improve before high
level synthesis would become interesting to place in the front-end of RTL synthesis. Although
HLS tools were developed prior to good RTL synthesis tools, the HLS tools themselves also lacked
performance. Results from the tools were often variable and unpredictable, requiring an intensive
learning process to get good results. The lack of formal verification to verify generated designs
and the use of new languages increasing the learning curve also resulted in rejection of high level
synthesis in the design flow.

When RTL synthesis tools were improved and widely adopted in RTL design flow during the
1990s, high level synthesis would become more practical and semiconductor design companies and
EDA vendors would jump in on the high level synthesis effort. Companies such as IBM [13],
Philips with the PHIDEO tools [14], Synopsys with the Behavioral Compiler [15], and Cadence
Visual Architect based on SYNT [16], started developing and providing HLS tools. Although
tools from now on started receiving wide attention, they did not yet replace manual RTL design.
Still, designers were relying on manual RTL work for better performance and the use of behavioral
HDLs as HLS input languages was not considered popular as it required a steep learning curve
and designers were more comfortable with the VHDL/Verilog language.

The progress made in the 1990s influenced the new generation of HLS tools developed by
academia and industry since 2000. As a major change, input languages for HLS tools would now
include C/C++ or C-like languages such as SystemC to describe the design making the tools
more accessible for algorithm and system designers and enabled software/hardware co-design and
verification. The use of C-like languages also enabled HLS tools to incorporate the newest compiler
technology which had undergone vast improvements in parallelization and optimization techniques.
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Besides these advantages of the use of C-like languages, there is still no common language which
serves as input for high level synthesis tools and there is even discussion if C-like languages are
even suitable for HLS [17] [18]. To address short comings in C/C++, HLS tools introduce language
restrictions and extensions to tailor the specification language towards hardware synthesis. Besides
language restrictions and extensions to solve input language problems for synthesis, many tools
use directives or pragmas to address concurrency (aiding the compiler) in the sequential input
specification.

With the improved capacity and speed of state-of-the-art FPGAs, many HLS tools specifically
target FPGAs and following the Cathedral approach many tools focus on a specific application
domain to improve quality of results. Since 2000, many HLS tools have been designed to tar-
get FPGAs, such as C2H [19] from Altera, GAUT [20], ROCCC [21], AutoESL from Xilinx [22],
Cadence C-to-Silicon Compiler [23], Forte [24], Catapult-C from Mentor [25] and Synopsys C-
Compiler [26]. Current HLS tools solve many of the problems which caused previous generations
to fail. The use of high level programming languages such as C/C++ overcomes the learning
curve of behavioral HDL and enables reusable portable designs as a large subset of C/C++ is
completely portable across HLS tools and the C/C++ language is independent of the target ar-
chitecture. Many tools have extended their accepted input languages with SystemC, although not
in the toolbox of most algorithm designers, which has more advantages in expressing concurrency.
Furthermore, tools put effort in interface synthesis solving system integration problems and can
make use of DSP blocks and on-chip memories which have vastly increased FPGA performance
over the last decade.

1.3.2 General Compilation Flow

The general compilation flow for high level synthesis is shown in figure 1.2. The input to the
front-end is a high level language such as C/C++ or SystemC, such languages usually adhere
to the imperative programming model and do not explicitly address concurrency. To overcome
this programming model problem, the front-end typically transforms the input description into a
formal model. This formal model, the intermediate representation (IR), should explicitly address
the notion of concurrency which is natural for reconfigurable architectures. Typically, the IR
is represented using a control and data flow graph (CDFG), which is an extension to the DFG
model which is only capable in addressing data flow. The nodes inside a CDFG are basic blocks
of computations without any control statements and thus can be transformed to a DFG. The
edges between the nodes represent the control flow. For each basic block, parallelism can be easily
extracted by analyzing data dependencies. This is not the case for extracting parallelism across
multiple basic blocks by uncovering the data-dependencies. To extract concurrency across basic
blocks, compilers need to have the ability to transform a CDFG to other representations such as
the hyperblock representation or the hierarchical task graph representation. Although a CDFG
seems a good solution to represent concurrency not every high level synthesis tool uses a CDFG
as the intermediate representation, extracting concurrency is still a hot research topic and there
is no widely adopted standard input language [17] or intermediate representation. However, the
front-end of high level synthesis will always involve some behavioral high level language as input
and a formal model expressing the concurrency as output.

If the high level synthesis tool permits software/hardware co-design, it is likely that in the
middle-end of the compiler decisions should be made upon the partitioning of the hardware/soft-
ware. That is, by estimation and modeling the user receives feedback from the compiler about how
to partition the original application into a software part running on a traditional processor and a
part to be accelerated by hardware. Metrics involving the choice of the partitioning might include
power consumption, resource utilization and latency of the application. For traditional acceler-
ator generation, from an algorithm description, with a separate design path for the controlling
processor this partitioning is ignored and the entire application is transformed into a hardware
accelerator. Often the user has control over the applied optimizations, next to some automatic
optimizations such as constant folding and subexpression elimination[27], applied in the middle-
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Figure 1.2: Generic compilation flow for high level synthesis [4]

end of the compilation. There are numerous tools which for example enable the user to apply
directives to let the compiler apply loop transformations, pipelining and resolving memory colli-
sions by increasing bandwidth (splitting BRAMs or mapping to flip flops). Such optimizations,
and others, can also be achieved by manually applying source code transformations, on which will
be elaborated in the next section. The basic functionality of the middle-end is to apply spatial
and temporal partitioning on the computations in the application. Temporal partitioning refers
to isolating computations which should be executed by the same RPU, for example sequentially
executing a loop with a multiplication in the body to save area while sacrificing latency (there is
only one multiplier). Spatial partitioning refers to isolating computations which should be exe-
cuted in parallel using multiple RPUs, for example by unrolling a loop with a multiplication in the
body to decrease latency while increasing area (since more multipliers are needed). Mapping data
structures to memories involves a bandwidth versus area trade-off. Memories have only one or
two read/write ports and accesses to memory form a bandwidth bottleneck when many memory
operations need to be executed in parallel, in such cases it might be better to bind the data to flip
flops as storage units which can be accessed in parallel. The architecture description informs the
partition process about the available resources in order to increase the chances for design closure.

The back-end performs the scheduling of operations, effectively distributing the clock cycles
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among the operations to be executed. The operations are mapped to functional units, the RPUs,
and the control FSM and data path are generated. In many cases the high level synthesis tools
provide the option to use commercial tools to performs mapping, placement and routing. Most
of the tasks involved in high level synthesis are interdependent and the order in which they are
executed is not fixed. Each compiler uses their own algorithm to produce a design and this can
range from an iterative approach applying small steps at a time or a complex interplay of many
tasks all communicating with each other to generate the final design.

1.3.3 Design Specification

The C/C++ and SystemC specifications give the user an extensive set of constructs to write a
design specification. High level synthesis poses several restrictions on this input language and adds
several extensions which are a direct result of the target architecture. Next to the restrictions and
extensions, an untimed specification in C/C++ potentially gives bad performance results when
directly used for HLS. Often, several optimization steps need to be made (sometimes as a result
of the limitations and extensions of the specification language) in order for HLS to produce an
efficient design. The following sections discuss common restrictions/extensions and the common
’tools’ provided by the HLS tool to optimize the input specification.

Limitations and Extensions

The most commonly supported input specifications for HLS are C/C++ and SystemC. High level
synthesis imposes several restrictions on the supported constructs from the modeling language.
Dynamic memory allocations is not supported as a synthesizable hardware implementation must
be fully self-contained specifying all required resources. For that same reason, recursion often
poses a problem if the recursion can be endless, in such cases tools might be unable to determine
the required resources and the latency of the design. Although pointers are often supported, as
long as the size of the structure pointed to is known, many tools discuss limitations or pitfalls
during synthesis when using pointers such as multi-access pointer use in which a pointer in accessed
multiple times in the same function or pointer casting to ensure correct bit-widths in the hardware
design.

Next to the restrictions on the design specification language, high level synthesis tools often
extend the set of native data types from an input language by supplying a library or directives
to use arbitrary precision data types to take advantage of the possibility of arbitrary bit-width
operations and signals in RTL which can vastly improve performance. The availability and extend
of arbitrary precision integer and fixed point is highly HLS tool dependent as it is not part of the
C/C++ specification. The support for floating point is also dependent on the HLS tool and the
target technology which needs floating point cores to assign the floating point operations to. In
general, HLS tools make their own choice of the provided support with regard to bit accuracy and
support for native data types (integer/floating). Next to the scheduling and allocation performance
of a high level synthesis, in other words the performance of the generated designs, the availability
of functional libraries to support bit-level operations and support multiple data types is a part of
high level synthesis tool performance as arbitrary precision and integer/floating implementations
can have a big impact on design performance.

Besides the input specification limitations and supported extensions some tools use a specific
architecture template, possibly posing limitations to the input specification and performance of the
design, to which they map the input specification. The use of multiple clock domains, often only
available with a SystemC input specification, streaming support and parallelization techniques
are usually dependent on the target architecture template. Although is seems to be a drastic
limitation when using architecture templates, it is often a choice by HLS tool designers to be
able to generate predictable designs and target specific application domains. These are all design
choices which influence tool performance but have a positive effect on predictability and make
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source-to-source transformations easy as the designer will be able to know in advantage what kind
of transformations to apply to improve the design.

Design Optimization

The optimization process of a design using HLS involves source-to-source transformations and
the use of directives and tool-libraries to direct the compiler to a specific design. In many cases,
directives or architecture settings inform the compiler to pipeline or unroll particular loops in the
input specification. Pipelining and unrolling often improves the throughput/latency of a design
but in loops with multiple array accesses the pipelining or unrolling will bring bandwidth problems
to light which prevent or limit the performance gain of pipelining and unrolling. In such cases,
manual source-to-source transformations or directives can be used to enable performance gain of
loop unrolling and pipelining. Some tools support automatic array, which are implemented in
BRAM, partitioning or reshaping to increase bandwidth while in other cases the tool supports a
certain coding style (possibly using tool libraries) to ensure an increase in bandwidth. Architec-
ture settings, coding styles or pragma’s/directives can be available to map operations to specific
functional units, limit the number of used functional units at the cost of latency and map variables
to BRAM with a certain amount of read/write ports or simply to registers.

The optimization process usually focuses on the available bandwidth. The compiler will take
care of pipelining and unrolling, informing the designer about limiting factors in the design such as
multiple BRAM accesses which need to be spread out across multiple clock cycles due to limited
resources. It is up to the user to either increase bandwidth, by use of directives or a different coding
style, or decrease the number of BRAM accesses by recoding the input specification (particularly
useful when aiming for a streaming implementation). Each tool has its own approach to design
optimization, from requiring many source transformations by the user to source transformations
in combination with directives to take advantage of the transformations and to fully automated
input specification optimization requiring the user to inform the compiler to partition, pipeline or
unroll parts of the input specification.

As with manual RTL design, there’s an area/latency trade-off for the designer to take into
account. With an increasing unroll factor, more resources and bandwidth is needed to execute
operations in parallel. Many factors influence the design performance and the difficulty of design
optimization, such as the pipeline initiation interval parameter, the unroll factor, the difficulty
of creating more bandwidth by packing data elements into wider vectors or distributing them
across multiple storage elements, parameters to limit the use of certain functional units, stream-
ing/interface support and the use of arbitrary precision types. All the discussed optimizations are
summarized and combined in an optimization process in [28].

1.3.4 Basic Source Code Transformations

As mentioned in the previous section, it is up to the compiler to extract concurrency from the input
program. Since the input is written according to the imperative programming model the compiler
might not be able to extract all the possible parallelism from the input, since writing sequential
programs is quiet different from explicitly specifying concurrency. Depending on the high level
synthesis tool of choice, although it might even hold for every tool currently available, the coding
style of the input program can drastically influence the end result of the generated design [29] [30].
Raising the abstraction level from HDLs like VHDL or Verilog to HLLs like C and SystemC does
not mean the designer can ignore hardware completely. The designer still needs to be aware of the
underlying hardware to understand the proper coding style to achieve a particular architecture.
Some examples follow to illustrate this important fact of high level synthesis, these examples
are taken from the High-Level Synthesis Blue Book written by Michael Fingeroff[31]. The book
illustrates coding styles to obtain certain architectures, including the area/latency trade-offs which
come with the design choices. Only two small examples are presented, as it is outside the scope
of this report to elaborate on the vast amount of possible trade-offs in the coding style.

8



Example 1: Bit accuracy

When targeting coarse grained reconfigurable architectures containing programming arrays of 32-
bit ALUs or general purpose processors with standard 8, 16 or 32-bit architectures, the bit-width of
variables may not affect performance. When targeting fine-grained architectures such as FPGAs,
the use of native types in C/C++ will drastically affect performance. The size and delay of
functional units (adders, barrel shifters, floating point cores) can be substantially reduced by using
bit accurate data types, in contrast to general purpose processors who’s functional units cannot
be customized. The control logic, the generated FSM, can also be substantially reduced by correct
use of bit accurate types. While many compilers are able to extract bit-width information from
the input code, there are situations where the user has to inform the compiler about properties of
data types.

Listing 1.1 shows a code example for an accumulator, including a control variable in the
interface to control the number of accumulations. As there exists a static upper loop bound,
the loop counter in the control hardware is fixed to three bits. The control variable ’ctrl’ on the
interface however consists of 32 bits and the compiler will not be able to reduce the number of bits
as the variable is on the control interface and theoretically can take up any value up to 32 bits.
High level synthesis only reduces bit-width if it can prove that it is possible without changing the
functionality. The left side of figure 1.3 shows an approximation of the resulting hardware after
synthesis, it can be seen that the generated control logic (FSM) includes a 33-bit subtracter to
test the conditional statement in the loop resulting in a larger area than required.

void accumulate ( int din [ 4 ] , int &dout , int c t r l ){
int acc = 0 ;
ACCUM: for ( int i = 0 ; i < 4 ; i++){

acc += din [ i ] ;
i f ( i >= ct r l −1)

break ;
}
dout = acc ;

}

Listing 1.1: simple accumulate loop with control

Not only is it possible to reduce the bit-width of the subtracter, a minor code change can also
eliminate the subtracter completely. Listing 1.2 presents this solution. Because the user puts a
constraint on the interface variable ’ctrl’, only a 4-bit subtracter would be needed if the conditional
check would be done as in listing 1.1. By using a comparison between the current loop iteration
and the previous loop iteration, only a 3-bit comparator would be needed. The right side of figure
1.3 shows an approximation of the resulting hardware after synthesis. For a small example such
as this, area will not be reduced drastically, but such minor changes will result in a noticeable
decrease in area when synthesizing larger applications.

void accumulate ( int din [ 4 ] , int &dout , a c in t <3, false> c t r l ){
int acc = 0 ;
int i o l d = 0 ;
ACCUM: for ( int i = 0 ; i < 4 ; i++){

i f ( i o l d == c t r l )
break ;

acc += din [ i ] ;
i o l d = i ;

}
dout = acc ;

}

Listing 1.2: optimized accumulate for simplified control hardware
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Figure 1.3: Generated architecture of listing 1.1 (left) and listing 1.2 (right)

Example 2: Pipelining and unrolling of loops in combination with memory accesses

Pipelining is a well known approach to exploit instruction level parallelism (ILP). By dividing an
operation in several steps and creating a pipeline, different parts of the operation can be executed
simultaneously and thus increasing throughput at the cost of area. There are various forms of
pipelining such as resource pipelining, memory access pipelining and loop pipelining. Memory
access pipelining is less interesting for FPGA as accessing a BRAM takes just one clock cycle.
Resource pipelining involves the creation of functional units which usually have a large latency
such a multipliers and dividers, some tools offer the possibility to create constraints on the created
multipliers such as the number of stages within the unit. This is however not something which
can be controlled with the source code. Loop pipelining, and function pipelining, allows multiple
loop iterations to be overlapped, increasing throughput.

Loop unrolling is a common practice to increase parallelism within a design [32]. By decreasing
loop overhead and increasing ILP opportunities, the scheduler is able to schedule more operations
in parallel at the cost of area. Loop unrolling differs from pipelining in the sense that a fully
unrolled loop can, theoretically, be executed in a single clock cycle whereas pipelining a loop, again
theoretically, results in a start of a new loop iteration each clock cycle and pushing instructions
through the pipeline just like water flows through a pipe.

The performance increase of both these optimization methods depends heavily on the loop
body, in particular the memory accesses within a loop. There are many possible ways to code
an application in a way that memory accesses prevent a gain in performance when using loop
pipelining or unrolling. The fundamental problem however is always the same, if one tries to
access the same memory multiple times in the same clock cycle the scheduler needs to insert
an extra clock cycle to separate these memory accesses. Listing 1.3 gives a simple example to
illustrate the problem.

void accumulate ( int din [ 4 ] , int &dout , bool f l a g [ 4 ] ){
int acc = 0 ;
i f ( f l a g [ 0 ] )

acc += din [ 0 ] ;
i f ( f l a g [ 1 ] )

acc +−=din [ 1 ] ;
i f ( f l a g [ 2 ] )

acc += din [ 2 ] ;
i f ( f l a g [ 3 ] )

acc += din [ 3 ] ;
dout = acc ;

}

Listing 1.3: accumulate with memory access bottleneck
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The body of this function is basically a fully unrolled loop. If ’din’ is mapped to a BRAM
without any further optimizations, each element of ’din’ will be placed in a single entry in the
BRAM. Accessing 4 entries in a BRAM in the same clock cycle is not possible, so the expected
parallelism will not be achieved. To overcome this problem, one might try to pipeline the function
(the top level function can be seen as a main loop) to speed up the design and start a new iteration
of the accumulator each cycle. Again, the memory access to ’din’ prevents pipelining because it
is impossible to schedule multiple reads in a single cycle. Listing 1.4 presents a possible code
transformation to overcome the above mentioned problems. An internal copy of the input data is
created. By completely unrolling the DIN loop and mapping the input data to a single entry in a
BRAM or separate registers it is possible to read the input data in a single cycle. The ACCUM
loop can now be fully unrolled to compute the sum of the elements in a single cycle, assuming
the delay of the adders does not exceed the clock cycle time. The latency of the design has been
reduced from 6 cycles to 4 cycles in this solution, moreover it is now also possible to pipeline the
accumulate function. Note that it is assumed all other variables are stored in internal registers
instead of BRAMs.

void accumulate ( int din [ 4 ] , int &dout , bool f l a g [ 4 ] ) {
int acc=0;
int d i n i n t [ 4 ] ;
DIN : for ( int i =0; i <4; i++)

d i n i n t [ i ] = din [ i ] ;
ACCUM: for ( int i =0; i <4; i++){

i f ( f l a g [ i ] )
acc += d i n i n t [ i ] ;

}
dout = acc ;

}

Listing 1.4: accumulate with faster memory access pattern

This example only highlights a small portion of the memory access problem, and only presents
one of many solutions to this particular problem. Other solutions involve the removal of conditional
statements, reshaping of memories (changing bit-widths of the entries) or partitioning a single
memory into multiple memories to increase access possibilities. Although the memory access
problem is a general problem because of the hardware implementation of memories in an FPGA,
the solutions necessary to increase performance might differ among high level synthesis tools
depending on the influence the user has on the mapping and resource choices.

1.3.5 Interface Synthesis

High level coding languages such as C make it easy to connect multiple blocks together to create a
complete algorithm or application. The interface between these modules is automatically generated
during synthesis by extracting the information from the function parameters, depending on the
HLS tool capability the user can have an influence on synthesized interface between modules and
the between the design and its environment. It is up to the designer to set constraints on the
interface between modules by adding synchronization variables, such as start/stop/reset wires, or
mapping the data to FIFOs or BRAMs. The interface to the environment is also an important
design aspect, if the high level synthesis tool or environment only supports a single slow interface
it is not useful to optimize the latency beyond the interface bandwidth bottleneck. The positive
aspect of having untimed C as input for the high level synthesis is that it leaves the tool completely
free to create a top level interface for the design. The amount of possible interfaces is dependent
on the tool of choice, and it is up to the compiler to generate the proper streaming buffers,
memories and handshaking. It is important that the designer recognizes the fact that designing
an accelerator makes no sense if the designer puts no thought in the interface, as eventually the
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accelerator will have to be controlled by an external processor and have its data fed by some
external source. Although not every HLS tool supports general interface protocols, it is possible
to write a top level interface wrappers using a HDL which wraps around the generated design.

1.3.6 Verification

One of the time consuming tasks when designing an accelerator using a HDL such as VHDL is
the verification. Tools such as ModelSim (Mentor) and Vsim (Xilinx) exist to help the designer
validate the design. It is up to the designer to validate the cycle-by-cycle behavior of the design
by either verifying the generated waveform showing internal and external values of the design
or by implementing a test-bench supplying the design with data and verifying the output data.
Care has to be taken that all possible inputs to the design are tested to ensure correct behavior.
For high level synthesis to be successful, it is important that it overcomes the cumbersome task
of verifying the design ’by hand’. There exist many different approaches to solve the verification
problem, from supporting down-flow verification tools such as ModelSim and Vsim to simulate the
design using automatically generated test-benches based on the C/C++ testbench used to verify
the functional description, to intermediate SystemC models to simulate cycle-accurate behavior
and formal verification using model checking methods.

1.4 Domain Specific Approach

Based on the lessons learned from decades of research, the research community is taking the
domain-specific approach towards parallel computing [33] [34]. This approach explores patterns
within, and across, application domains. The goal is to provide an easy way to write applica-
tions which can execute on highly parallel architectures. To avoid the programmer to have vast
knowledge of the underlying hardware, programming models should be high-level and separate
the programmer from the hardware itself while still supporting parallelism. The main goal is to
make parallel computing productive, energy efficient, scalable, portable, performant and verifi-
able. Applications often contain naturally parallel parts and hardware is naturally parallel. Now
we have access to multi-core, many-core and reconfigurable highly parallel platforms there is a
need to simplify the programming model to efficiently program these parallel platforms. The high
level synthesis section already indicated that raising the abstraction level to a high level language
such as C does not mean the designer can ignore the underlying hardware. High level synthesis
does speed up the design trajectory, but still requires that the designer is able to reason about
what is going on in the underlying synthesis steps. Having an even higher abstraction level, by
introducing a framework on top of high level synthesis might be a good solution to enable the soft-
ware engineer to develop applications without understanding details of the underlying platform.
Many applications contain specific patterns which can be mapped to parallel architectures in many
different ways, depending on the underlying platform and the aimed performance. An application
is a combination of many different computational patterns. Letting the software engineer develop
applications in a functional manner, without having to apply code transformations to efficiently
implement the application on hardware, might even further increase productivity and re-usability.
The domain of interest, the image processing domain, is explained next as it will be the application
domain used in this research.

1.4.1 Image Processing Domain and Skeletons

Modern day image processing applications become more and more computationally intensive, re-
quiring special purpose hardware solutions to be created. The image processing domain is a hot
research topic, especially within the parallel computing community as enormous speedup can be
achieved by parallelizing such applications and implementing them on reconfigurable architectures
maintaining the advantages of custom hardware solutions while enabling fast design space explo-
ration (using HLS) and re-programmability. According to [35] most image processing applications

12



can be divided and categorized into three different IP task categories:

• Pixel to pixel operations: an operation is performed on a single pixel in the input image to
produce a single pixel in the output image.

• Neighborhood to pixel operations: the operation is performed on multiple input pixels to
produce a single output pixel.

• Global operations: operations done on the complete image to produce either a single scalar
value such as the maximum, or a vector such as a histogram.

Although this is a very global class definition, many image processing tasks can be easily
recognized to fit in one of the three. The ease of distinguishing image processing tasks into IP
classes makes the image processing domain an interesting research domain with regard to high
level synthesis and identifying common code structures for certain IP classes. Skeletons can be
introduced to capture certain memory access patterns such as neighborhood access or single-
pixel access and the re-use of accessed data across several iterations of the operator performed
on the data. Such a skeleton classification can be used to instantiate a particular parametrized
code structure (theoretically in any imaginable programming language) while maintaining the
functionality of the IP core which has been classified. Essentially, a high level coding language
as C/C++, which is sequential, can be classified and transformed into a parallel description for
a specific platform while maintaining functionality. Care has to be taken however that the used
skeleton classification does not contain as much skeletons as there are image processing kernels (i.e.
each kernel is a skeleton), while at the same time ensuring there are enough skeletons to capture
all possible patterns of memory accesses such that each processing kernel can be classified.

Related to high level synthesis, a skeleton classification might include a class for window-based
operations such as an erosion kernel removing noise from an image. High level synthesis requires
a certain coding style, or a certain memory access pattern in the C-code, to generate a specific
architecture. Using parameters as the image size, window size and a certain parallelization factor,
the skeleton could automatically be instantiated by replacing the parameters in the skeleton code
(the certain coding style for particular architectures) with the parameters available with the kernel
classification.

1.5 Problem Description, Contributions and Overview

In figure 1.4, several design flows for the implementation of an algorithm on FPGA are shown. The
current standard in design for FPGA is manually coding the application using RTL such as Verilog
or VHDL, which is becoming more and more difficult and time consuming with technology scaling
and increasing application complexity. This approach requires a designer to manually implement
the algorithm using an RTL language, often based on a reference functional description (possibly
in C/C++/SystemC) which is used to verify the correctness of the algorithm.

Using high level, behavioral, synthesis the RTL can be generated directly from the functional
description, drastically reducing the design effort. However, the sequential nature of functional
descriptions in C/C++ potentially results in bad performance of the generated design by HLS
and the designer has to put effort into optimizing the functional description. These optimizations
involve structural changes to separate the functional description in smaller computational kernels,
optimizing and re-ordering memory accesses for parallelization, selecting internal memory/vector
widths and sizes and tune interfaces between each computational kernel. The figure represents this
optimized description as the optimized C’ specification. The main question is if state-of-the-art
high level synthesis is capable of competing with manual RTL designs and if source transformations
at C/C++ level are sufficient enough to produce good quality of results. If high level synthesis pro-
duces good quality of results, the next step in the design process is to alleviate the designer from
manually optimizing the design specification. If the source transformations result in good HLS
quality of results, algorithmic skeletons, based on common patterns in the embedded vision applica-
tion domain, can be introduced to enable automatic code optimizations/transformations to generate
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Figure 1.4: Design trajectories for FPGA implementation

C’ level descriptions. The algorithmic skeleton, based on a certain algorithmic classification, de-
scribes a structural body representing the datapath to be generated by HLS. By classifying parts
of the design specification, algorithmic skeletons can be instantiated automatically to produce
C/C++ resulting in good quality of results using HLS.

If the HLS quality of results is poor compared to manual design, another design flow remains a
possibility. The hardware skeletons design path is at a lower abstraction level, closer to the hard-
ware, and might produce better results. Although not part of this thesis, this path is mentioned
for completeness. Just as with algorithmic (software) skeletons, hardware skeletons describe the
structural body for a specific architecture and a front-end needs to take care of instantiating the
skeleton with the proper parameters and operations to generate a computational kernel. The dif-
ference with algorithmic software skeletons is that hardware skeletons describe the structural body
in an HDL such as VHDL or Verilog, being a lower abstraction level closer to the logic synthesis
back-end. It is well-known that the lower the abstraction level, the better the performance can be
but the more time consuming the design trajectory usually is.

The contributions of this work include the following:

• Benchmark of two small image processing kernels using two HLS tools, with as goal to mimic
two RTL designs, which are common in handwritten RTL design, and observe performance
metrics between different HLS tools and handwritten RTL.

• Benchmark of an application closely matching a handwritten RTL implementation observing
HLS performance and highlighting issues.

• Implementation of a scope of designs for an application using two HLS tools to observe HLS
performance.
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• A design space exploration on two image processing kernels, showing parameterization of
HLS input specifications and achievable scope and scalability of designs.

• An introduction towards algorithmic skeletons for HLS to shorten design time by enabling
automatic source-to-source transformations for high quality of results.

• Coding styles for high level synthesis.

To analyze HLS performance, two small image processing kernels are ported to FPGA using two
promising state-of-the-art HLS tools. This analysis serves as means to observe hardware generation
in relation to the input specification, i.e. how to optimize the source code for good QoR. A complete
application is ported to FPGA using the same HLS tools to analyze the performance (area, latency,
design time). This complete application is required to use HLS for what it is intended for, the
automatic generation of RTL for complex or large applications without the need for manual RTL
coding. This HLS analysis, in combination with a design space exploration performed on two
small kernels, will show several coding styles for good and predictable QoR. These coding styles,
in combination with an algorithm classification, are then used to reason about the possibility for
the introduction of algorithmic skeletons for HLS to decrease design time.

Acceptable performance metrics for the acceptance of HLS in the design flow are hard to
express and are dependent on the designer’s requirements. This work will show however that
significant code transformations are required for good QoR, requiring hardware knowledge by the
designer. For this reason, algorithmic skeletons are proposed and it is vital that coding styles can
be related to a specific algorithm classification. This will be shown in the final part of this thesis.

This thesis will first focus on the HLS quality of results compared to manual RTL design, based
on an in-depth datapath analysis of two small image processing kernels followed by a case study
in which an algorithm is mapped to FPGA and compared to a reference manual implementation.
Chapter 2 introduces related work on all design trajectories visualized in figure 1.4 and chapter 3
introduces the tools and platform used throughout this work. Chapters 4 and 5 discuss high level
synthesis performance based on an in-depth comparison of two small computational kernels and
a complete algorithm. In chapter 6, the process and power of design space exploration using
high level synthesis is described. Chapter 7 introduces algorithmic skeletons for HLS based on
conclusions from the high level synthesis performance investigation. Finally, chapter 8 presents
an overall conclusion and future work of this thesis.
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Chapter 2

Related Work

This work covers a large scope, ranging from algorithmic skeletons and it’s classification to back-
end RTL implementation. Although this research does not focus on creating a new algorithmic
classification or improving high level synthesis tools itself, this chapter will present related work
done in the entire scope of the design flows as shown in figure 1.4. Section 2.1 introduces related
research done in the pattern based approach field for reasoning about and implementing for parallel
computing platforms, section 2.2 discusses related work to each of the design flows in figure 1.4
and finally section 2.3 presents multiple branches of HLS related research.

2.1 Pattern Based Approach

The pattern based approach involves pattern matching and recognition during synthesis, referred
to as pattern mining in [36]. Pattern mining does not focus on a specific domain, but tries to
extract patterns across application domains. The following sections present related work done
related to algorithmic classes, pattern and idioms. In general, these definitions are coarse-grained,
used to reason about parallel computing rather then moving towards a higher implementation
abstraction level. Most of these classifications do talk about memory access patterns, but refer to
multiple applications domains and do not refer to specific parallel architectures but reason about
the concept of parallel architectures in general.

2.1.1 Dwarfs

Berkeley has introduced ’Dwarfs’ in a try to raising the abstraction level from standard applications
to patterns of computation [33]. They reason that one of the biggest obstacles in parallel computing
is the unclarity in how to express parallel computation in the best way. They claim it is unwise
to let current benchmark applications, based on an imperative programming model, drive an
investigation to parallel computing. The introduction of dwarfs, which capture certain patterns
of computation and communication common to important applications, lets them reason about
hardware requirements instead of focusing on individual applications and how to map them to
certain hardware platforms. The claim is that the design community should focus on higher
level abstractions instead of focusing on parallelizing legacy applications based on the imperative
program model. The work of Berkeley is inspired by the definition of 7 particular computational
methods by Phil Colella [37]. Next to these 7 dwarfs, Berkeley extends this list with 6 more
dwarfs they feel are not included yet. The dwarfs do not identify parallelism but they identify
computational and communication classes which are regarded as important for current and future
applications such as database software, computer graphics, graph traversal and linear algebra.
As applications in most cases will consist of a combination of several dwarfs, focus is not on the
performance of individual dwarfs but on the composition of them.
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2.1.2 Idioms

An idiom is a pattern of computation that a user may expect to occur frequently in certain
applications. They have been used to classify which portions of C-code can benefit from being
ported to hardware accelerators such as GPUs [38]. In [39] several common idioms are discussed
such as a stream idiom describing the sequentially reading and writing of arrays in C-code. Other
examples are so called gather and scatter idioms which describe the gathering of data in a random
access order in memory and writing data to memory in a random order respectively. These idioms
are very coarse-grained and besides indicating regions of C-code which could potentially benefit
from parallelization, they do not describe or include properties which can be used for automatic
code parallelization.

2.1.3 Algorithm Classifications

There are many variations of algorithm classifications used for code generation, reasoning, analysis
and performance prediction, examples of which can be found in [40], [41], [42], [43] and [44]. This
work will not focus on developing a new classification but will make use of an internally developed
modular and parameterizable algorithmic classification [45]. This work includes a comparison
with existing work as well as a new classification including well-defined grammer and vocabulary.
The main advantages of this classification are the fine granularity and modularity to support
construction of classes by use of the existing grammar and vocabulary.

The used classification is not final and the completeness and correctness of the classification is
researched with the use of an internally developed source-to-source compiler called Bones [46]. The
compiler currently generates high-performance CUDA and OpenCL code using the algorithmic
skeleton technique. The goal is to generate code based on skeletons of parallel structures, or
simply a library of parameterizable implementations for a particular target and algorithm class.
It is already shown that the tool delivers better performance compared to other C-to-CUDA
tools for a small set of image processing kernels. The tool is build in a way that makes it easy
to add a target architecture such as an FPGA. The tool generates readable code allowing fine-
tuning after code generation and requires minor modifications to the original C-code. Future
work includes the implementation of more skeletons (and more target architectures), fine-tuning
existing skeletons, applying kernel fusion of two algorithm classes if its gains performance and
automatically identifying algorithm classes from the source code relieving the programmer of
classifying the input code.

2.2 FPGA Implementation Approaches for the Image Pro-

cessing Domain

There are several possible approaches to get to an FPGA implementation of an image processing
algorithm. The, up till now, usual approach is the manual approach. Perhaps high level synthesis
will be able to match the performance of the manual work. For high level synthesis there are
still several possible design trajectories, such as manual C optimization to aim for a particular
performance/architecture, parameterizable skeletons as input for the high level synthesis removing
the need for manual code optimizations or hardware skeletons to directly go to an RTL imple-
mentation. The following sections explain these design trajectories, elaborating on existing work
being done with regard to the design trajectories introduced in figure 1.4.

2.2.1 Manual RTL Implementation

Manually implementing algorithms on reconfigurable platforms has for long been the usual design
approach. Although manually implementing RTL is a time-consuming and error-prone approach,
it is possible to design high performance accelerators by completely specifying the architecture of
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choice. Experienced digital hardware designers create their design at gate-level using hard descrip-
tion languages (HDLs), while less experienced designers can make use of a module library with
common interfaces to compose their design [47]. A lot of research has been to done in optimizing
very specific algorithms and doing design space exploration for manual RTL implementations, such
as can be found in [48] [49]. In the image processing domain, Donald Bailey is one of the leading
researchers as group leader of the image and signal processing research group at Massey university.
His work involves algorithm transformation for FPGA implementation [50] [51], efficient vision al-
gorithms on FPGA [52] [53] [54] and the introduction of design patterns to overcome mapping
problems due to processing mode dependent parallelization [55]. This last work is already a step
towards pattern matching, limiting the number of design patterns applicable to the porting of an
algorithm to FPGA based on a processing mode such as streaming, offline (data to operate on is
available in memory) or a hybrid form.

2.2.2 Straightforward High Level Synthesis

Doing efficient high level synthesis, using either a commercial or open source HLS tool, is not
as easy as just pushing a button to generate code. As is explained in section 1.3, the coding
style of the application can significantly influence the performance of the generated design. The
straightforward high level synthesis approach does not imply an efficient design and requires re-
coding to be done depending on the performance goal and the HLS tool of choice. Such code
modifications might not be a problem for someone who is experienced with FPGA RTL design or
has general knowledge of processor architectures, as they are assumed be able to find performance
bottlenecks of C/C++ input code such as memory access collisions. For someone working in the
software domain it might be harder to come up with an efficient design by re-coding the application
for efficient hardware generation. In essence, sequentially written programs for a CPU will generate
bad results in high level synthesis. This is not a problem of high level synthesis however, as
it simply schedules operations based on the input specification which essentially describes the
resulting architecture to be generated. This design approach is normally not acceptable, unless
an algorithm’s portability needs to be verified or there are no design constraints at all (proof of
concept designs).

2.2.3 Algorithmic Software Skeletons for High Level Synthesis

The research of Wouter Caarls addresses the domain specific approach, in particular the embed-
ded image processing domain [40]. The aim of the research is to bring the programming language
closer to the algorithm instead of the architecture. Porting applications to new architectures is
a time-consuming task if the application is programmed in a general-purpose language or an ar-
chitecture specific language. Architecture independence is claimed to be resolved by the use of
algorithm-specific languages (ASLs). The execution models of general-purpose languages such as
C is sequential. Although it is possible to compile the application to different architectures, it
still involves a restricted set of architectures adhering to the sequential execution model. Porting
such applications to parallel architectures requires significant changes to the application/algo-
rithm. Languages enabling writing parallel applications such as OpenMP, MPI and Handel-C
are available but still pose restrictions on certain hardware features which have to be available
and their performance differs among architectures. Algorithmic skeletons are introduced, which
are higher-order functions written in an algorithm-specific language. These skeletons are then
source-to-source translated (compiled) to an operation written in a target-specific language.

Input to a skeleton is a kernel definition, specifying inputs and outputs and the operation to be
performed. The skeleton itself specifies the structure of the algorithm, for example a neighborhood
to pixel operation or pixel to pixel transformation, directly classifying memory access patterns and
data re-use patterns. The skeleton can be compiled to different architectures, generating different
implementations depending on the target architecture. Code has to be generated in a specific
structure to make optimal use of the target architecture, an interface has to be generated to,
for example, make use of the target’s memory organization and the kernel language has to be
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transformed to the language accepted by the compiler for the target architecture. The definition
of algorithmic skeletons is abstracted at a lower level than the dwarf specification of Berkely. While
dwarfs focus on applications, algorithmic skeletons focus on different patterns of communication
and computation of an image processing algorithm and already focus on a general architecture
independent language. The classification of skeletons is thus finer grained than the classification
of the 13 dwarfs in previous section.

As discussed in section 2.1.3, the work of Cedric Nugteren addresses algorithmic skeletons
for automatic parallelization to a parallel architecture using the Bones source-to-source compiler.
The classification is finer-grained than the classification proposed by Wouter Caarls, furthermore
the Bones source-to-source compiler has been released to encourage research on the algorithmic
classification and the implementation of skeletons for different target architectures. As an FPGA’s
architecture is customizable and finer-grained than the architecture of GPUs, different skeleton
implementations will be required. Analysis of coding styles for certain processing kernels related
to the algorithmic specification will be done to reason about the completeness of the classification
and the applicability of the classification to an FPGA based architecture.

2.2.4 Hardware Skeletons for Automatic RTL Generation

Besides having algorithmic software skeletons, research has also been done to the creation of hard-
ware skeletons for automatic RTL generation. In [35] and [56], hardware skeletons are introduced.
It is stated that behavioral synthesis tools might perform better in this last decade, but having
more structural design information often still results in designs which are smaller and faster. The
work presents a framework for developing efficient architectures for image processing applications,
still representing the framework in a high level programming model without significantly sacrificing
performance. Hardware skeletons are a parameterized description of an algorithm-specific archi-
tecture. Parameters can be values, functions or other skeletons to compose a higher level skeleton.
Implementations of a skeleton can be generated for specific target architectures. There exists a
library of hardware skeletons, each with a set of different implementations such as bit-serial and
bit-parallel architectures. The library consists of 3 layers, an arithmetic core library at the lowest
level, followed by a basic image operation library at the middle level and high level compound
skeletons at the highest level. Rule based optimizations are applied for core-specific optimizations,
often not performed by HLS tools. This approach differs from algorithmic software skeletons, as
with hardware skeletons target-specific and a multiple of implementations are already available.
It is up to the designer to compose the application from a set of hardware skeletons to come up
with a design achieving the performance constraints.

2.2.5 Alternative Approaches

New programming models such as OpenMP, OpenCL and CUDA have been introduced to explic-
itly code coarse-grain parallelism to overcome the sequential semantics of languages such as C.
FCUDA [57] is an FPGA design flow included in the multilevel granularity parallelism synthesis
framework [58]. FCUDA performs source-to-source transformations on CUDA thread blocks, ex-
posing coarse and fine grained parallelism, to generate C code which can be parallelized by the
high level synthesis tool AutoESL. Using such a tool flow can be used to avoid reprogramming
the initial C source code to be used across different platforms such as GPUs and FPGAs, but
programming in CUDA requires knowledge of GPU hardware to achieve efficient results. OpenCL
is a framework for task and data-based parallel computing on heterogeneous platforms consisting
of CPUs and GPUs. OpenCL, as does CUDA, enables programmers to use the GPU for gen-
eral purpose processing. Current research is done to OpenCL for FPGA and Altera has recently
announced the first OpenCL program for FPGAs. The OpenCL distinction between host code
and kernel code to be accelerated makes it possible for system designers to pick kernels which
have to be accelerated in the FPGA. The host code is programmed with a standard programming
language like C and the kernels are programmed using the parallel computing language OpenCL.
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The advantage of using OpenCL for FPGA is that it is already focusing on parallel computing,
explicitly expressing parallelism to the compiler for better performance results.

2.3 Related Work in High Level Synthesis

The newest generation of HLS tools have resulted in a wide interest in high level synthesis. Much
research is done in order to improve performance of high level synthesis. In [59] it is observed that
downstream power saving features such as clock-gating are not known during high level synthesis.
An automated solution is presented to facilitate clock-gating at a number of granularities at a
high level C description, including high level synthesis in the process of power optimization. In
[60] an RTL power estimator for FPGAs is presented in combination with a low power high level
synthesis system showing reduced power consumption compared to Synopsys Behavioral Compiler
by introducing two power consumption reduction algorithms. Next to power aware scheduling,
research is still being done in other objective-aware scheduling such as [61] introducing a new
technique to perform interconnect-sensitive synthesis to reduce communication and multiplexer
cost. [62] presents a technique for multi-objective optimization during high level synthesis to
optimize power, area and delay simultaneously. The design space to be explored is vast and a
weighted sum algorithm using a graded penalty cost function is used to provide the user with a
large number of alternative datapath designs all meeting the user design constraints.

Because of increasing design complexity, enabled by technology scaling, high level synthesis can
be used to solve the complexity problem. The routability problem due to technology scaling can
potentially be solved by HLS as well according to [63]. They show that many interconnect problems
can be avoided by adopting a layout friendly architecture generated by high level synthesis tools.
Next to standard HLS tool estimates such as resource utilization, clock frequency and latency they
introduce metrics which can be used to estimate routability impact of design decisions during high
level synthesis design space exploration.

Next to research being done in further improving high level synthesis performance in different
area’s, there’s also a branch of research being done on high level synthesis performance analysis
to see if we are at a turning point to start adopting the HLS design methodology. High level
synthesis performance is for example analyzed in [64] [65] based on a sphere decoder case study,
[66] based on a stereo matching case study, [67] based on several case studies such as edge detection
and matrix multiplication and in [68] by BDTI who do independent technology analysis and have
a certification program for high level synthesis tools. With the increased interest in high level
synthesis, [69] argues for a benchmark set for high level synthesis and [70] argues for the tipping
point of high level synthesis explaining the need for high level synthesis and the reasons for its
near acceptance.

There is a vast history of research being done to code optimizations, specifically with regard to
the optimization of the memory hierarchy and required bandwidth by the application. Minimizing
the required bandwidth by improving data locality, or improving available parallelism, is usually
achieved by applying loop transformations, either manually or by the compiler [71] [72]. For
code optimizations of applications to run on a CPU, the polyhedral model is a well known tool
for efficient code generation by applying code transformations to the polyhedral representation
and then generating code cohering to that polyhedral representation, an optimization flow often
combined with existing compilers such as Open64 [73] [74] [75]. Loop transformation techniques
often aim at a particular goal with a particular cost function, [76] identifies and evaluates different
cost components and the trade-offs among them to direct the loop transformations to a particular
platform with a certain datapath and memory hierarchy. In the field of high level synthesis,
recognizing the importance of platform-dependent modeling, researchers also notice the importance
of loop transformations for bandwidth and locality optimizations [77] [78] [67].

The topics in this work differ with previous mentioned work in the following ways:

• Previous work tends to focus on one HLS tool in particular whereas this work cross compares
results between two state-of-the-art HLS tools and comparable manual designs.
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• The commercially available HLS tool AutoESL, used in numerous HLS performance papers,
is now part of Xilinx and has been updated numerous times already. The HLS tool has also
been incorporated in their newest design suite, Vivado, which is an IP and system-centric
design environment including all aspects of design integration and implementation. The
commercially available HLS tool Synphony C-Compiler, also used for experiments, has also
experienced some revisions, ensuring a performance research of state-of-the-art tools.

• An in-depth analysis is performed with regard to the possible spectrum of synthesizable
architectures, exploring the scope of design space exploration and limiting factors of the
design space.

• Extensive datapath analysis for small computational kernels is included in this work to search
for possible improvements or drawbacks in high level synthesis, not limited to reporting the
percentage of area and design time gain.

• Ideas are presented to raise the abstraction level to algorithmic skeletons to further ease the
design flow.
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Chapter 3

Methodology

This chapter describes the methodology, the HLS tools, the platform and the application used in
the experiments. Section 3.1 shortly introduces the platform used for verifying the correctness of
designs and the FPGA device used as target for logic synthesis, section 3.2 shortly discusses the
logic synthesis and implementation tool of choice. In section 3.3, the high level synthesis tools
used in this research are introduced, discussing relevant properties which are used throughout this
work. Finally, section 3.4 shortly introduces the kernels and application used for the performed
experiments.

3.1 Platform

The platform used for implementing and verifying all design is the ML605 Evaluation kit from
Xilinx 1. The target device on the development board is the Virtex-6 LX240T FPGA containing
the MicroBlaze soft-core processor to supply hardware accelerators with data and verify the results
coming back from the hardware accelerator.

3.2 Logic Synthesis and Implementation

Performance results presented throughout this work will be either logic synthesis and implemen-
tation results from the Xilinx ISE design suite embedded edition version 12.4 or from Synopsys
Synplify premier version 2011-09.1. All resource utilization results are after logic synthesis unless
stated otherwise and when needed the critical path will be extracted after implementation for
an accurate maximum achievable clock frequency after routing and placement. In most cases,
resource utilization results will be from the Xilinx toolsuite to keep the cross comparison as close
as possible. In the case dividers are included in a design produced by Synphony (introduced in
section 3.3, Synplify Premier Pro is used for synthesis and implementation as the generated di-
viders are not synthesizable by Xilinx ISE. A design including dividers is encountered in chapter
5.

3.3 High Level Synthesis

Because of the numerous high level synthesis tools available nowadays [79], the first goal is to focus
on the most promising tools. An HLS meeting with the Parallel Architecture Research Eindhoven
group (PARsE) was organized to establish a view of which HLS tools at that time were the most
promising.

1http://www.xilinx.com/products/boards-and-kits/EK-V6-ML605-G.htm
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Covering several aspects of high level synthesis, such as automatic parallelism extraction,
supported data types and verification possibilities, the list was narrowed down. The following
sections introduce two of the remaining tools of interest, AutoESL2 from Xilinx and Synphony C
Compiler3 from Synopsys.

3.3.1 AutoESL

Xilinx’s AutoESL High-Level Synthesis supports C, C++ and SystemC specifications as input
language (with mainly restrictions on dynamic memory and pointers) and extends this by providing
arbitrary precision data types libraries in C and C++, next to the native C data types, and
supporting SystemC arbitrary data types. AutoESL synthesis starts with control and datapath
extraction based on loops and conditional branches and the loop body’s. Scheduling and binding
is the core process during synthesis and in this step it is determined in which cycle operations
are scheduled and it binds the operation to a resource. The user is able to override or assist the
default synthesis behavior of AutoESL by use of design constraints and directives. Depending on
the performance and area goals of the designer, directives can be applied to pipeline or unroll
loops and several memory optimizations like array partitioning and reshaping enable concurrency
by increasing the memory bandwidth. With the use of design constraints the user can specify the
target clock frequency, specific target latencies across functions and loops and limit the number
of a certain resource used in the design. AutoESL supports various kinds of interface types, such
as FIFO’s, FSL link, bus, memory, simple valid signals or user specified protocol blocks to enforce
specific IO behavior.

Without going into too much detail, figure 3.1 presents AutoESL’s input and output. Both
the design and the test-bench are described at a high level language, either C, C++ or SystemC.
Constraints and directives are supplied either by a script or by use of the user interface. Generated
RTL is in the form of VHDL, Verilog and SystemC including a script containing logic synthesis
constraints for the down-flow logic synthesis tool based on the user supplied constraints and
directives. RTL simulation is possible using the RTL output of AutoESL, in combination with
the automatically generated RTL wrapper for the design under test enabling the use of high level
test-benches written in the same language as the design specification. Simulation is possible using
either the SystemC RTL simulation, requiring no third party RTL simulator or by use of the third
party tool Synopsys VCS or Mentor Graphics ModelSim. Besides Xilinx’s own logic synthesis tool
ISE, third party tool Synopsys Synplify Premier/Pro is also supported. The target technology
library of AutoESL is limited to Xilinx-only FPGA devices, but being a leading company in FPGA
design this poses no problem.

AutoESL will automatically apply certain optimizations, which can be turned off by the user.
Each function is treated as a hardware block. Without user interaction, AutoESL will sequentially
schedule these blocks without pipelining or exploiting data parallelism automatically. To execute
independent loops or functions simultaneously, the user has merge them or can specify to execute
them in a streaming fashion if the blocks operate as consumer-producer. An internal function of
the design can either be in-lined to be in the same hierarchy as the top-level design or not in-lined
to be in a separate hierarchy. By specifying separate functions and calling them from the top-
level function, the same function specification can be used to generate multiple hardware blocks
executing the same functionality in parallel reducing code overhead. In-lining a function into
the caller function results in multiple hardware blocks being generated, even if they are executed
sequentially.

3.3.2 Synphony C Compiler

Synopsys’s Synphony C Compiler supports a restricted set of C and C++, with restrictions mainly
on dynamic memory and pointers. Besides the native C/C++ data types up to 64 bits, the user
can supply pragmas or use SystemC data types to ensure particular bitwidths up to 64 bits.

2http://www.xilinx.com/products/design-tools/autoesl/index.htm
3http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx

23



Figure 3.1: AutoESL use model [80]

Besides the SystemC data types, Synphony C Compiler does not accept other SystemC syntax.
The compiler treats each top-level loop nest as a hardware block and will analyze dependencies
between the blocks. Loop are automatically pipelined with the best possible initiation interval,
the user can override the initiation interval to a higher value if necessary or has to apply source
transformations or pragmas to improve the initiation interval. Synphony will automatically build
control logic to run hardware blocks sequentially or in parallel, something which has to be done
manually in AutoESL. The architecture, together with architectural parameters such as the ar-
chitectural pipelinability enable Synphony to build task overlap capable hardware allowing the
top-level hardware block to be pipelined.

Pragmas are supplied to specify optimizations such as loop unrolling, resource selection and
block RAM reshaping to enable a higher bandwidth. A fundamental difference with AutoESL,
regarding block RAM, is that partitioning an array over multiple RAMs or reshaping an array to
have a wider bitwidth (pack array element in single block RAM entries) requires source-to-source
transformations in Synphony whereas AutoESL automatically performs these actions using user
supplied directives. Interfaces supplied by Synphony include a system interface for clock and
resets, a raw signal host and data interface to connect with other hardware components, a three-
signal handshake stream interface for external input/output and a FIFO interface for internal
hardware blocks and a local memory interface to interface with block RAM/ROM not internally
synthesized. Standard interfaces such as an FSL link are not supported and RTL wrappers need
to be manually included to support such interfaces.

The design flow contains the usual high level synthesis steps such as preprocessing to transform
the C/C++ to an intermediate representation, scheduling, allocating resources and actual RTL
generation. After each step in the design flow it is possible to perform simulation at that level
in order to verify correctness or trace the origin of errors. A golden C simulation is used to
verify correctness after each synthesis step, with verification ranging from bit accurate SystemC
simulation to RTL simulation using third party RTL simulators. The C/C++ test-bench can be
re-used across all levels of simulation. Both Xilinx and Synplify synthesis tools are supported as
down-flow EDA tools, RTL verification can be done using Synopsys VCS, Mentor ModelSim or
Cadence NC-Verilog. The target technology can be either Xilinx or Altera FPGA devices.
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Figure 3.2: Example of library driven image processing

Synopsys identifies the importance of top-down template-based IP design. By applying archi-
tecture based coding styles for memory accesses, streaming data-flows or hardware sharing and
mapping common types of processing from the reference algorithm to these architecture based
coded template designs. Figure 3.2 shows the main idea with the purple blocks being template
designs written in C/C++ for good quality of results using HLS and the orange blocks being
kernels from the algorithm specification. This way, the modeling can happen at an algorithmic
level reducing the programming effort to ensure good quality of results.

Architecture Template

Synphony maps C/C++ source code to flexible pre-defined hardware architectures for understand-
able and predictable synthesis. Although the resulting architecture generated by AutoESL is also
understandable and predictable, Synphony includes pre-defined logic for control of the design. By
default, Synphony will inline all functions at the point of the function call and handles all outer
loops as hardware blocks, called processing arrays. A processing array (PA), shown in figure 3.3,
is a low level template and each processing array in a design corresponds to a top-level loop nest.
This case be seen as the instantiation of a hardware accelerator (processor) for each particular
loop nest. The template corresponds to a simple processor, containing functional units, memory
and memory access units all wired together with an interconnect. The interconnect consists of
multiplexers controlled with a phase signal and control predicates, with the phase signal being the
pipeline stage controlling which data goes to which functional unit. During synthesis, a modulo
scheduler does resource and cycle binding for each operation in the PA. The registers in the PA
come in two flavors. Rotating registers store multiple instances of the same variable for different
iterations, a single variable rotating register for pipelined loops with an initiation interval of one
or a so called shiftq rotating register chain for storage of one or more variables when the initiation
interval is larger than one in order to share registers among variables. Second, static registers are
used for static variables and include logic to control multiple writes to the register.

The stream access and memory access units are used for data accesses from memory or stream
in the PA. The memory access unit is a separate logic block containing a replay buffer or FIFO
to allow stalling of the PA. By allowing each PA to run or stall independently of other PA’s, the
throughput of the top-level design can be maximized, for example by allowing an other PA to
access the block RAM until the stalled PA can run again.
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Figure 3.3: Low level template for a processing array

The high level template is a pipeline of processing arrays (PPA), containing the PAs of the
design and control logic. Because each PA is in its own stall domain, allowing it to start or stop
independently, the design allows FIFO flow control between PAs and a highly parallel design for
mutual-exclusive hardware blocks. Figure 3.4 shows a top-level view of a PPA. The high level
architecture template includes communication logic such as streams, shared memories or scalars
used to let PAs communicate with each other. A global timing controller implements the control
to start or stop PAs, the control is not static as control signals depends on stall signals coming
from the PAs. A host interface is used to communicate with the environment, getting data from
the environment or sending output data to other hardware accelerators or processors.

The PPA template architecture is used to try to achieve the highest possible throughput for
a certain input description, allowing complex designs to be efficiently synthesized. In the vision
domain, algorithms often are simple hardware pipelines of computational kernels executing after
each other or with certain kernels executing in a streaming fashion. Synphony allows one or more
functions to be synthesized as a tightly coupled accelerator block (TCAB) to avoid control logic
for each individual stall domain. A TCAB can be used as standalone module or can be used as
building block for high level designs, for example by importing a TCAB into a higher level PPA
allowing hierarchical modular designs. In essence, a TCAB designs is a PPA with a single PA
inside generated by wrapping an outer control loop over all loop bodies in the input specification.
TCABs can be used for enhanced data path sharing. For a 2D-DCT kernel implemented as two
1D-DCT’s in the PPA architecture template, each 1D-DCT is a separate hardware block. When
build as TCAB the data-path of a 1D-DCT kernel can be shared in the 2D-DCT kernel at reduced
area cost.
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Figure 3.4: High level template for a pipeline of processing arrays

3.4 Kernels and application

An application called Fast Focus on Structures (FFoS) is used to perform the experiments regarding
HLS performance and the introduction of algorithmic skeletons. From the application, two small
image processing kernels are taken to perform the in-depth HLS analysis. These kernels are
histogram and erosion, which will be discussed in more detail in chapter 4. In chapter 5, the
complete FFoS application is mapped to FPGA using two HLS tools. The application is intended
for finding centers in OLEDs on OLED wafers, and will be discussed in more detail in chapter 5.
The two kernels histogram and erosion will be used again in chapter 6 to perform a design space
exploration using HLS.
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Chapter 4

HLS: A Kernel Comparison

In this chapter, two small image processing kernels are mapped to FPGA using AutoESL and
the Synphony C Compiler. Goal is to mimic manual implementations of the kernels, which are
taken from a manually written application in RTL which is later completely mapped to FPGA
using HLS. The manually written RTL kernels are written by an experienced designer with vast
knowledge of the application and RTL design. The kernel descriptions for HLS are written in C++,
each kernel having a specific performance issue which can easily be solved when the kernels are
manually implemented using RTL languages. This chapter evaluates the possibilities to solve these
performance issues at C++ level using HLS and cross-compares different HLS tool implementations
and the HLS implementations with the reference manual implementations. The following issues
will be addressed regarding HLS performance compared to manual implementations:

• Latency

• Resource utilization

• Clock frequency

• Readability of the RTL

• High level synthesis early resource estimations

• Design time

Section 4.1 presents the analysis done for a histogram implementation, section 4.2 for an erosion
implementation and finally section 4.3 summarizes the results to form a conclusion about RTL
generation for small image processing kernels using HLS.

4.1 Histogram

Histogram is a common operation performed in the image processing domain. The histogram
of an image is a representation of the distribution of the pixel values contained in the image.
A gray-scale image for example contains 8-bit pixel values each of which can have 256 different
possible intensities, the histogram contains 256 bins with each bin containing the number of pixels
in the input image having the particular bin value. An example algorithm using histogram is
Otsu’s method [81], which uses a gray-level image histogram to calculate an optimum threshold
separating foreground and background pixels to transform a gray-level image to a binary image.

A naive histogram implementation in C++ is shown in listing 4.1, which is histogram code as
it would usually be programmed on a CPU. The performance issue for this kernel when targeting
an FPGA is the random access on the bins array, which in FPGA design is usually implemented
in a block RAM. Since the address of the memory access is dependent on the value of the input
pixel, a compiler can not make the assumption that each access to the histogram bins is mutually
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exclusive, resulting in a high latency as the block RAM storing the histogram bins needs to be read
and written before the next input pixel can be processed. In other words, there is a read-after-write
(RaW) hazard requiring at least 3 clock cycles to execute the loop body.

for ( x = 0 ; x < WIDTH∗HEIGHT; x++){
bins [ image [ x ] ] ++;

}
}

Listing 4.1: Reference C code for a histogram kernel

Sections 4.1.1, 4.1.2 and 4.1.3 present the manual, AutoESL and Synphony implementation
respectively. The approach to solve the RaW hazard at C++ level using HLS and the efficiency
of the generated data-paths compared to the manual implementation will be discussed.

4.1.1 Manual Implementation

The manual RTL implementation solves the RaW hazard by the introduction of an accumulation
register and a data comparison to verify if the RaW hazard is true or false. Since the RaW hazard
is only true when two succeeding read addresses on the histogram block RAM are the same,
the data comparison result can trigger a multiplexer to increment in an accumulation register
instead of reading data from the block RAM. Figure 4.1 shows the architecture of the manual
implementation. The design is a 2-stage pipeline with a streaming input for the image pixels, a
new pixel being available each clock cycle.

The histogram bins are 16 bit wide to support images up to 65536 pixels, with 8 bit input
pixels for a total of 256 histogram bins. Although the mem data register is absorbed by the block
RAM it is shown for clarity. The number of cycles required for the complete histogram operation,
including initialization, is (N+1)+256, with N being the number of input pixels, 256 the number
of cycles required for initialization and an extra cycle for filling the 2-stage pipeline. The path
colored red in figure 4.1 is the critical path, resulting in a minimum clock period of 5.321 ns.
Table 4.1 presents the logic distribution for the data-path of the histogram kernel and table 4.2
presents a top-level summary of the performance results.

Figure 4.1: Main histogram datapath in manual implementation
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Table 4.1: Logic distribution of the manual histogram implementation

Flip flops LUTs

16-bit updated data 16-bit adder
8-bit write address 8-bit comparator
3-bit control 2x 16-bit mux
8-bit upcounter 2x 8-bit mux

9x 1-bit control mux
8-bit adder

Total: 35 Total: 69

Table 4.2: Summary performance results histogram implementation

Implementation Flip flops LUTs BRAM Latency Clock period Design time

Manual 35 69 1 N+1+256 5.321 2 days

4.1.2 AutoESL Implementation

This section discusses the results achieved with AutoESL, separated in the input specification,
generated datapath and performance issues.

Input Specification

Just as with RTL, to improve performance the accumulation register and data comparison need
to be explicitly coded but at a higher abstraction level (C++). By applying such source-to-source
transformations and making use of optimization pragmas a similar architecture as the manual
implementation (figure 4.1) is achieved. The source code which results in AutoESL generating
the architecture of choice is shown in listing 4.2, leaving out some initialization and declaration
statements for clarity. By conditionally executing the block RAM access, the designer can be sure
a RaW hazard will not occur as each time the block RAM is accessed the read and write addresses
differ. Although the code ensures mutual exclusive read and write addresses during block RAM
accesses, the compiler does not automatically recognize this. The dependence pragma informs the
AutoESL compiler that the RaW hazard it encounters on variable bins within each loop iteration
is a false dependency, allowing the scheduler to schedule the read and write operations in any order
and thus also in parallel. The pipeline pragma tells AutoESL to pipeline the loop to allow loop
iterations to overlap. Variables are declared using the arbitrary precision library, with bit-widths
equal to the manual design.

for ( j = 0 ; j<WIDTH∗HEIGHT+1; j++){
#pragma AP PIPELINE
#pragma AP dependence va r i a b l e=bins i n t r a RAW fa l se

index = image [ j ] ;
i f ( o ld index == index ){

accu = accu + 1 ;
} else {

bins [ o ld index ] = accu ;
accu = bins [ index ] + 1 ;

}
o ld index = index ;

}

Listing 4.2: Optimized source code for the histogram kernel
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Datapath

Figure 4.2 shows the generated datapath based on listing 4.2, with simplified control logic for
clarity. The pipeline generated is a 3-stage pipeline. The pipeline is one stage deeper compared
to the manual pipeline, a result of the use of for-loops in the high level programming language.
Next to a pixel load operation scheduled in the first pipeline stage, loop control is executed in
the first pipeline stage involving loop variable incrementing and exit condition checking. Block
RAM initialization is separated from the histogram module because it is impossible to describe
fine-grained multiplex behavior at C/C++ level without breaking the AutoESL imposed rules
with regard to the dependence pragma. Combining initialization and the histogram module would
involve changes to the loop bound and coding non-mutual exclusive block RAM access causing
the dependency pragma to be invalid, reducing performance. Note that AutoESL generates an
additional multiplexer compared to the manual design.

Figure 4.2: Main histogram datapath in AutoESL implementation

Table 4.3 presents the logic distribution for the datapath of the histogram kernel and table 4.4
presents a top-level summary of the performance results. From the results it can be seen that it is
possible to re-create the data-path from the manual design with slightly more resource utilization.
A few extra registers and LUTs are used for loop control, unavoidable at a high abstraction level
like the C/C++ programming language.

Table 4.3: Logic distribution of the AutoESL histogram implementation

Flip flops LUTs

16-bit updated data 16-bit adder
8-bit write address 8-bit comparator
13-bit loop counter 3x 16-bit mux
6-bit control 13-bit adder
2-bit FSM
9-bit initialization counter
Total: 54 Total: 92
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Table 4.4: Summary performance results histogram implementation

Implementation Flip flops LUTs BRAM Latency Clock period Design time

Manual 35 69 1 N+1+256 5.321 2 days
AutoESL 54 92 1 N+2+256 4.829 0.5 days

Performance

In summary, using source transformations, a RaW hazard can be resolved at C++ level. The
cost for using C++ and HLS instead of VHDL/Verilog is a small area overhead for increased
multiplexing and static control logic for generated pipelines such as pipeline stage enable signals
and exit conditions. Loop counters are common in manual RTL descriptions as well, however
this implementation shows we can connect the manual histogram module to an FSL link and
use an FSL control signal to enabled/disable the histogram module. Since AutoESL allows the
designer to describe protocol regions, such a design appears to be feasible as well, however with
the algorithmic skeletons and algorithm classification in mind the choice is made to continue with
high level loop descriptions. Execution of the histogram kernel requires one extra cycle, resulting
from the extra loop iteration for the delayed write to the histogram block RAM. The minimum
clock period is 4.829 ns, the critical path being the path from a block RAM read to a store. The
latency for this design is (N+2)+256 cycles.

The generated RTL by AutoESL is readable and modifiable. If the designer does not in-line
functions in the main calling function (top-level design), AutoESL generates separate RTL files for
each function. Generated RTL contains comments indicating the functionality of the code block,
indicating for example the datapath assign process and the pipeline stage control assign processes.
Wire and register names are related to the input specification whenever possible and AutoESL
only introduces unrelated names when scheduling requires components to be introduced. These
registers or wires can always be tracked down using the AutoESL schedule viewer or by tracing
them through the generated RTL manually.

With regard to area estimation performed by AutoESL, register estimation is 100% accurate
besides logic synthesis properties such as register duplication. The estimation of utilized LUTs is
less accurate because logic synthesis is a complex operation which can introduce or remove logic
based on its set of optimization algorithms. The estimation will however give a fairly accurate
estimation of the number of arithmetic operations required and the level of multiplexing required
to route signals through the datapath. In the end, AutoESL is a high level synthesis tool and
not a logic optimization tool such as Xilinx ISE. AutoESL will leave room for optimizations as
not to constrain logic synthesis too much, possibly enabling logic synthesis to find additional
optimizations, and therefore the estimations are more of use during design space exploration. In
the same way, the estimated clock frequency is based on the generated schedule and a library of
component delays not taking into account logic optimizations in downflow tools. If clock frequency
and resource utilization are hard constraints during the design, it is obvious that the designer
should not base conclusions on HLS performance estimates.

4.1.3 Synphony Implementation

This section discusses the results achieved with Synphony, separated in the input specification,
generated datapath and performance issues.

Input Specification

Besides from some tool-specific properties such as bit-width specification, memory properties and
interface specification, the input specification to the tool is the same as for AutoESL as is shown
in listing 4.2. A pragma can be used again to inform the compiler that there is no RaW hazard in

32



the histogram description as it is not automatically recognized after the source transformation. In
the case of Synphony, this pragma completely disables memory analysis allowing parallel read and
writes. The tool performs memory tracing which logs all memory accesses during simulation after
scheduling. To get the required latency/throughput, it is up to the user to verify the absence of
access collisions on the block RAM throughout the entire algorithm. In AutoESL, the compiler is
informed that the RaW hazard is a false dependency within a single loop, requiring the designer to
only verify that this is indeed the case for the loop in question. Furthermore, Synphony does not
support standard interfaces such as an FSL and streams have to be coded manually to generate
them on the interface. To connect the design via an FSL interface with a Xilinx MicroBlaze, a
separate wrapper needs to be written in RTL requiring some extra logic. This FSL wrapper is not
included in this implementation.

Datapath

The architecture template chosen is a TCAB, as explained in section 3.3, as the design is just
a simple hardware pipeline. The histogram kernel only contains an initialization and process
loop, removing the need for complicated control logic for each loop as the dataflow is known
beforehand. The TCAB design wraps a loop around all generated datapaths from inner loop
bodies and introduces control to select in which stage the pipeline is, selecting the correct datapath
to execute. In this case, the first stage initializes the histogram BRAM, the second stage performs
histogramming and the last stage writes the result to the output using the output stream. The
TCAB design, to reduce control logic, forces us to include hardware to write the histogram data to
the output in order for Synphony to synthesize the design. All these datapaths are now within the
same loop with control logic ensuring the correct inner data-path is enabled and controlling the
counter to keep track of the state. The design is, just as the AutoESL design, a 3 stage pipeline
of which a high level overview is shown in figure 4.3. A detailed datapath is not given because the
generated RTL is unreadable, containing component/wire/register names with no correlation to
the input specification. Using an RTL schematic viewer in combination with Synphony’s operation
schedule viewer a top-level overview can be presented. Generated designs have a deep modularity
with unclear signal names, making it difficult to trace through the datapath. Each instantiated
component is in a deeper part of the design hierarchy and possibly contains more instantiated
components.

Figure 4.3: Histogram top-level design overview

In figure 4.3, the first pipeline stage implements top-level control for selection of inner data-
path to be executed and depending on the state a FIFO read is performed. The second pipeline
stage contains the datapath for block RAM initialization, the first pipeline stage of histogram-
ming (loading and storing from and to the histogram bins), or a FIFO write to the controller of
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next IP. The final stage performs addition when the histogram kernel is executed, accumulating
either in the accumulation register or on loaded bin data from block RAM. It should be noted
that although just as in AutoESL the final histogram pipeline stage performs the addition, the
Synphony implementation requires two adders to either increment in the register or on the block
RAM data. This confirms the hardware architecture template approach, which limits the amount
of resource sharing.

Table 4.5 presents the macro statistics for the datapath of the histogram kernel and table 4.6
presents a top-level summary of the performance results. Table 4.5 shows macro statistics extracted
after elaboration and table 4.6 presents the post-synthesis results. Macro statistics are used to
get a feeling of the area utilization, information which is lost after logic synthesis because the
number of components is simply too large and results are untraceable caused by no correlation in
component names and input description.

Table 4.5: Macro statistics of the Synphony histogram implementation

Flip flops LUTs

36x 1-bit 1-bit adder
1x 13-bit 13-bit adder
2x 16-bit 2x 16-bit adder
1x 17-bit 2-bit adder
1x 2-bit 6x 1-bit comparator
2x 8-bit 2x 13-bit comparator

5x 2-bit comparator
2x 5-bit comparator
1x 8-bit comparator
8x 1-bit mux
2x 14-bit mux
2x 16-bit mux

Total: 116 Total: 320

Table 4.6: Summary performance results histogram implementation

Implementation Flip flops LUTs BRAM Latency Clock period Design time

Manual 35 69 1 N+1+256 5.321 2 days
AutoESL 54 92 1 N+2+256 4.829 0.5 days
Synphony 109 231 1 N+2+256 6.089 0.5 days

Two 16-bit adders are used for the histogram bin and accumulation register incrementing. The
16-bit multiplexers, extra registers and small adders are used in FIFO and block RAM load/s-
tore units. These load/store units are always synthesized, even if the design does not need to
stall the logic it is still included and sharing capabilities for functional units is limited. Whereas
AutoESL implements most loop control with simple and gates, Synphony includes more com-
parators, registers and adders for control. Overall, table 4.5 shows a large area overhead for the
TCAB architecture template and extra overhead in the histogram datapath (extra adders and
registers) because of less sharing capabilities. A case-study later on will show if this area overhead
is scalable with the application or not, and section 4.2.3 discusses a kernel implemented in the
PPA architecture template.
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Performance

The design latency is N+2+256 cycles, with N being the number of input pixels, one extra cycle for
pipeline ramp up, one extra cycle for the delayed write and 256 cycles for block RAM initialization.
The design latency is identical to the AutoESL implementation. The minimum clock period is
6.089 ns, higher compared to AutoESL as could be expected with the area overhead. The critical
path in this case is not caused by a block RAM access, but is in fact a control path in the design.

The generated RTL is not readable and therefore also not easily modifiable. In the TCAB
design, the functionality is implemented in one file with wrappers to control the processor. Since
there is some information about the scheduled time of functional unit instantiations, mappings
to source code and pseudo code (generated during scheduling), it is possible to track certain
statements down to the RTL but due to the deep hierarchy changes and full understanding are
impossible in a reasonable amount of time. Area estimation by Synphony is more extensive than in
AutoESL. A separate register report is generated explaining the use and location of each register
bit. A cost report gives a complete resource utilization estimate. Register estimation is only off
by 17% as again HLS is not logic synthesis and does not take logic optimizations into account.
Synphony has made the choice to estimate small components such as and gates and xor gates to
use zero LUTs as it is dependent on the logic synthesis process. AutoESL estimates these small
components to use one LUT each. For this reason, LUT estimations in Synphony are usually
under-estimated.

4.2 Erosion

Erosion is a typical example of a morphological operation in which the value of each pixel of the
output image is determined based on the corresponding input pixel and a set of neighbors. The
operation involves a structural element, for example an NxN window for 2D erosion, which ’slides’
over the input image. The value of the output pixel in an erosion kernel is the minimum value
of all pixels in the structuring element, meaning that the image does not necessarily has to be
in binary format. The algorithm thus removes pixels on the boundaries of objects of interest,
removing noise.

A naive erosion implementation in C/C++ is shown in listing 4.3. When targeting this code to
FPGA, the main performance issue is the structural element which has overlapping image accesses.
If the image is stored in block RAM, the loop iterating across the width of image requires 9 input
pixels each iteration of which 6 pixels could potentially be re-used. When no optimizations are
applied, and the input image being in a single block RAM, at most 2 input pixels can be loaded
each cycle resulting in a poor design.

Sections 4.2.1, 4.2.2 and 4.2.3 present the manual, AutoESL and Synphony implementation
respectively. The approach to solve the limited bandwidth issue at C++ level using HLS and the
efficiency of the generated data-paths compared to the manual implementation will be discussed.
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int cond i t i on ;
for (h=0;h<he ight ; h++){

for (w=0;w<width ;w++){
i f ( h<1 | | h>= height−1 | | w<1 | | w>=width−1){

cond i t i on = 0 ;
}
else {

cond i t i on = 1 ;
for ( a=−1;a<=1;a++){

cond i t i on = cond i t i on & image [ h−1] [w+a ]
& image [ h ] [w+a ]
& image [ h+1] [w+a ] ;

}
}
output [ h ] [w] = cond i t i on ;

}
}

Listing 4.3: Reference C code for an erosion kernel

4.2.1 Manual Implementation

The manual implementation improves the performance by increasing bandwidth to the input
image. Performance in increased by fetching a complete line from the input image each cycle,
exploiting fine-grained parallelism available in the FPGA. Figure 4.4 shows the architecture of the
manual implementation. The design is implemented for a 120x45 input image but can be easily
parameterized. Input to the design is a 120-bit vector, being a complete line from the input image,
from external block RAM. The output is also a 120-bit vector, going to an external block RAM.
Counters are used to keep track of the block RAM read and write addresses, intermediate shift
registers are used to buffer 3 input lines. Buffering 3 lines implies a window size of 3x3 and the
shift registers are extended with zero-bits to handle the borders of the image when calculating
horizontal erosion. A bit-wise and operation is performed in the vertical direction on the shift
registers, followed by a horizontal bit-wise and operation for the horizontal erosion operation.

Figure 4.4: Main erosion data-path in manual implementation

The number of cycles required for the complete erosion operation, with an input image of
120x45 and a window size of 3x3, is 48. Initialization takes one cycle, followed by two prefetch
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cycles to load data in the shift registers. In total, 44 cycles are required for the calculation of
output and a final cycle is used to write the last delayed output line. The critical path in the design
is a control path from FSM to shift register control, indicating a small and balanced datapath is
generated. The minimum clock period is 5.139 ns. Table 4.7 presents the logic distribution for
the datapath of the erosion kernel and table 4.8 presents a top-level summary of the performance
results.

Table 4.7: Logic distribution of the manual erosion implementation

Flip flops LUTs

1-bit ready 2x 6-bit adder
6-bit read address 1-bit mux
6-bit write address
1-bit write enable
3x 120-bit line buffers
3-bit one-hot FSM
Total: 377 Total: 258

Table 4.8: Summary performance results erosion implementation

Implementation Flip flops LUTs BRAM Latency Clock period Design time

Manual 377 258 0 48 5.139 2 days

4.2.2 AutoESL Implementation

This section discusses the results achieved with AutoESL, separated in the input specification,
generated datapath and performance issues.

Input Specification

Listing 4.4 presents optimized source code for an erosion kernel using AutoESL. The AutoESL
arbitrary precision library is used to vectorize the input and output and access specific bits within
vectors. Some initialization is not shown for clarity, such as initializing borders of the row buffers to
zero to handle the borders of the image. Because of the large vectors, the numbers of multiplexers
is kept to a minimum by padding the input data with an extra line to prevent a conditional input
read statement which results in generation of wide multiplexers.

As mentioned in section 3.3, AutoESL supports pragmas for automated block RAM reshaping
and partitioning. Applying these pragmas to the original input specification for erosion gives
unexpected results, showing the limitation of automatic internal transformations by AutoESL and
showing that manual re-coding is required for better quality of results. The unexpected results
include the generation of a large number of DSP units to calculate bit-indexes in the output
vectors as the compiler does not recognize the inner unrolled loop writes to complete reshaped
output vectors, eliminating the need for DSPs to calculate bit positions. The large amount of area
overhead and the cycles required for DSP calculations result in both a large area overhead as a
large latency overhead.

The code shown in listing 4.4 implements vertical and horizontal (inner loop) erosion, with the
inner loop unrolled to achieve line-by-line processing just as in the manual implementation.
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void e r o s i on ( ap uint<120> ∗ data , ap uint<120> ∗ output ){
unsigned int i , j ;
ap uint<120> row1 ;
ap uint<120> row2 ;
ap uint<120> row3 ;
ap uint<120> tmp ;

for ( i =0; i<HEIGHT+1; i++){
#pragma AP PIPELINE

row1 = row2 ;
row2 = row3 ;
row3 = data [ i ] ;
tmp = row1 & row2 & row3 ;
i f ( i >0){

for ( j =1; j<WIDTH−1; j++){
#pragma AP UNROLL

output [ i −1] . s e t b i t ( j , ( tmp [ j −1] & tmp [ j ] & tmp [ j +1 ] ) ) ;
}

}
}

Listing 4.4: Optimized source code for the erosion kernel

Datapath

Figure 4.5 shows the generated datapath based on listing 4.4, with simplified control logic for
clarity. The pipeline generated is a 3-stage pipeline. The first stage loads the input vector and
output vector. The output vector is loaded in this stage because AutoESL implements a read-
modify-write operation for block RAMs which data elements are written using arbitrary precision
library bit accurate operations. The implementation requires that the input block RAM needs one
extra 120-bit element to represent a zero line to prevent the use of conditional statements in the
input specification. The read-modify-write arithmetic operation requires the output block RAM
to be dual ported to facilitate a read and write operation in the same cycle. Next to calculation of
read and write addresses in the first pipeline stage, outer loop control is also executed in this stage
although it is not shown for clarity. The second stage implements row shifting through the row
buffers and the final stage performs vertical and horizontal erosion by applying the and operator
and writes the result to the output.

Table 4.9 presents the logic distribution of the erosion kernel after logic synthesis and table 4.10
presents a top-level summary of the performance results. Only a few extra registers are required,
mainly for the read-modify-write behavior of the 120-bit vectors and automatically generated
pipeline enable and exit bits.
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Figure 4.5: Main erosion data-path in AutoESL implementation

Table 4.9: Logic distribution of the AutoESL erosion implementation

Flip flops LUTs

4x 1-bit pipeline enable 2x 6-bit adder
2x 1-bit pipeline exit conditions 1-bit mux
2x 6-bit read address
6-bit write address
3x 120-bit line buffers
1-bit conditional statement control
2-bit one-hot FSM
Total: 387 Total: 277

Table 4.10: Summary performance results erosion implementation

Implementation Flip flops LUTs BRAM Latency Clock period Design time

Manual 377 258 0 48 5.139 2 days
AutoESL 387 277 0 48 5.482 0.5 days

Performance

The latency of the design is 48 cycles, calculated as 46 iterations with a pipeline ramp-up of 2
cycles. The minimum period for the design is 5.482 ns, with the critical path being just as with
the manual design in the control path of the design. Code readability becomes more complex with
large designs including unrolled loops, but the main functionality and control is still implemented
in separate processes making it easy to make small modifications or understand the generated

39



RTL. Analysis of generated RTL made it possible to trace the origin of the generated multiplexers
back to the C++ description and solve the issue by adding a single block RAM entry and loop
iteration. The resource estimation with regard to flip flops is again 100% accurate and the LUT
estimation suffers from lack of logic synthesis knowledge estimating a single 6-input LUT required
for implementation of an and gate. After synthesis, the number of LUTs required decreases
because of logic optimizations applied at this design level.

4.2.3 Synphony Implementation

This section discusses the results achieved with Synphony, separated in the input specification,
generated datapath and performance issues.

Input Specification

Listing 4.5 and 4.6 present optimized source code for an erosion kernel using Synphony. Listing
4.5 shows the approach to vectorize data in Synphony beyond its 64 bit limit, although Synphony
allows this approach the tool is running in a beta mode when using such large vectors. By
declaring arrays with the struct type declared in listing 4.5 it is possible to use vectorized 120-bit
data. Synphony calls this packed data, and the tool puts certain constraints on the use of packed
data. Packed memory reads return the entire struct contents, and writes to single struct fields is
not legal. This means for the erosion kernel that an extra 120-bit buffer is required to explicitly
write to the entire struct, something which was not necessary in the AutoESL implementation.
In listing 4.6, the internal fast pragma is used to indicate that the 120 element array containing
single-bit elements needs to implemented in flip flops instead of a block RAM in order to support
the parallel operation. The use of an array representation of vectors requires an extra inner loop
to do vertical erosion and the use of an extra output buffer, required by packed memories, requires
a slightly different C++ implementation compared to AutoESL.

typedef struct{
unsigned int l i n e [ 1 2 0 ] ;
#pragma b i t s i z e l i n e 1

} image l i n e ;

Listing 4.5: Vectorize data in Synphony

Datapath

The chosen architecture template is a PPA, or pipelined processing array as explained in sec-
tion 3.3. Since the focus is on the erosion kernel in isolation, it is required to have a modular
design to separate the erosion kernel from the data-preparation in hardware. The binary input
to the design is first parallelized and after the erosion kernel serialized to communicate with the
test-bench and these kernels would all be merged in a TCAB design. By applying the PPA ar-
chitecture template it is possible to separate the erosion kernel for further analysis while keeping
it comparable to the manual and AutoESL implementations as all PPA control logic is at the
top-level design and both a processing array as a TCAB design always includes the stall domain
logic.
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void e r o s i on ( image l i n e ∗ data , image l i n e ∗ output ){
unsigned int i , j ;
image l i n e row1 ;
#pragma i n t e r n a l f a s t row1 . l ine

image l i n e row2 ;
#pragma i n t e r n a l f a s t row2 . l ine

image l i n e row3 ;
#pragma i n t e r n a l f a s t row3 . l ine

image l i n e tmp ;
#pragma i n t e r n a l f a s t tmp . l ine

image l i n e tmp out ;
#pragma i n t e r n a l f a s t tmp out . l ine

for ( i =0; i<HEIGHT+1; i++){
#pragma AP PIPELINE

row1 = row2 ;
row2 = row3 ;
row3 = data [ i ] ;
#pragma un r o l l
for ( j =0; j<WIDTH; j++){

tmp . l i n e [ j ]=row1 . l i n e [ j ] & row2 . l i n e [ j ] & row3 . l i n e [ j ] ;
}
i f ( i >0){

#pragma un r o l l
for ( j =1; j<WIDTH−1; j++){

tmp out . l i n e [ j ]=tmp . l i n e [ j−1]&tmp . l i n e [ j ]&tmp . l i n e [ j +1] ;
}
output [ i −1] = tmp out ;

}
}

Listing 4.6: Optimized source code for the erosion kernel

Table 4.11 presents the macro statistics for the datapath of the erosion kernel and table 4.12
presents a top-level summary of the performance results after synthesis. Again, macro statistics
are shown to highlight area consumption in Synphony as most information is lost after synthesis
due to unrelated functional unit and register names.

Table 4.11: Macro statistics of the Synphony erosion implementation

Flip flops LUTs

3x 120-bit line buffer 1-bit adder
2x 6-bit address buffer 6-bit adder
1x 7-bit 7-bit adder
16x 1-bit 7-bit subtracter

6-bit comparator
7-bit comparator
8-bit comparator
120-bit mux
7x 1-bit mux
2x 6-bit mux

Total: 392 Total: 449
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Table 4.12: Summary performance results erosion implementation

Implementation Flip flops LUTs BRAM Latency Clock period Design time

Manual 377 258 0 48 5.139 2 days
AutoESL 387 277 0 48 5.482 0.5 days
Synphony 392 449 0 47 6.037 0.5 days

Although Synphony requires the explicit coding of an extra line buffer to write to a packed
memory, the RTL generation process maps it to a wire which is similar to the AutoESL imple-
mentation. Compared to AutoESL, only two block RAM address registers are needed because
Synphony does not implement the read-modify-write operation. Similar to the histogram imple-
mentation in Synphony, more functional units are generated as they are part of the architecture
template. Figure 4.6 shows the main idea of the erosion datapath. The architecture is now a
two-stage pipeline instead of a 3-stage in the case of AutoESL. Reason for this is the absence of a
read-modify-write operation. Again, most storage is used for row buffers and the and gates take
up most of the LUTs.

Figure 4.6: Main erosion data-path in Synphony implementation

Performance

The latency is 47 cycles, 46 cycles for the number of loop iterations and an extra cycle for pipeline
ramp-up. The minimum clock period is 6.037 ns, with the critical path again being in the control
part of the design. The critical path is slightly longer because of a longer combinatorial path,
indicating again that Synphony’s architecture template does not generate optimal datapaths for
these kind of vision kernels.

As an indication of the effort required to manually debug, change or analyze the generated
RTL, the erosion kernel consists of more than 12000 lines of code compared to 1100 lines in the
AutoESL RTL and 300 lines in the manual implementation. The resource estimation is comparable
to the histogram implementation. The estimated number of flip flop is overestimated by only 5
as the RTL generation process is unaware of logic synthesis optimizations and leaves room for
further optimizations. Lookup-table estimation is vastly underestimated again, in this case by
153% caused by the large number of and gates which are estimated as zero-cost by Synphony.
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4.3 Conclusion

Overall, AutoESL performs better with regard to resource utilization compared to Synphony.
The stall domain logic, including the logic to control the stalling architecture template, cause an
area overhead in Synphony. Latencies of all discussed designs are comparable, although AutoESL
tends to include a separate pipeline stage for loop control increasing the end-to-end delay with one
cycle. The most important observation about the design latencies is that for both designs a similar
datapath with similar latency can be achieved, and an extra few cycles for loop control seems an
acceptable cost for moving to C/C++ instead of using RTL. Next to comparable latencies, there is
also no shocking difference in minimum achievable clock period, although Synphony tends to have
a higher minimum clock period because of longer combinatorial paths caused by area overhead of
the architecture template.

After this comparison, the first indication is that Synphony works with an architecture template
which can be suitable for a wide range of applications but performs worse (in area utilization)
compared to AutoESL when dealing with mentioned image processing kernels (simple pipelines).

The generated RTL from Synphony is hard to read, removing the possibility of modifications
and further fine-tuning. The tool however does supply the user with a very complete schedule
viewer and intermediate pseudo code related to the generated RTL. The kernel description in C
can be highly tool dependent, as was seen in the erosion comparison. The tools both support
important optimization pragmas to steer the design in the right direction. It should be noted that
AutoESL provides pragmas for automatic memory reshaping and partitioning, which can aid the
user by requiring minimum source transformations. However, in the case of erosion, these pragmas
fail to result in the expected datapath and care has to be taken during the optimization process
of the input specification.

In conclusion, HLS seems to have become a promising design tool. Especially with the increas-
ing chip densities and shortening time-to-markets, some area overheads become more acceptable
with as trade-off a much shorter design time and the introduction of IP re-use at C level. This last
factor enables designers to make large architectural changes by applying just a few changes to the
source code (think of re-coding 10 lines of C++ compared to 100/200 lines of RTL code), while
still being close to the performance of manual RTL implementations. The kernels can be manually
implemented using RTL in one or two days, whereas the HLS designs can be implemented in just
a few hours or even less when the naive C description for the kernels is already available. Fur-
thermore, architectural changes at the C behavioral level are implemented faster once the initial
design is finished.
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Chapter 5

HLS: Application Mapping

In this chapter a complete application is mapped to FPGA using HLS. In the previous chapter it
is shown that it is possible to generate highly parallel solutions from sequential C++ and solve
a RaW hazard. Area overheads may become excessive area overheads when multiple kernels are
combined to form a complete application. It could also be that resources encountered in the single
kernel HLS will be shared across kernels and therefore ’hidden’ in the end result. As seen in
section 2.3, other comparisons are based on preliminary commercial HLS tools and do not cross-
compare between HLS tools. Next to serving as an evaluation purpose, the progress of optimizing
the kernels has shown various code transformations for different datapath styles on which will be
elaborated in a later chapter in an attempt to automate the code transformation process.

Section 5.1 presents the application of choice to be implemented on FPGA. Section 5.2 in-
troduces the manually written design followed by sections 5.3 and 5.4 discussing the AutoESL
and Synphony implementations respectively. Section 5.5 contains a discussion about the observa-
tions done during the process. The analysis will mainly focus on the end-result of the application
implementation. Section 5.6 presents some alternative solutions implemented in AutoESL and
Synphony, based on observations from the earlier discussion. Finally, section 5.7 presents a con-
clusion on HLS regarding AutoESL and Synphony based on the application mapping. This section
will also conclude with a global overview of generated designs and their performance related to
each other.

5.1 The Application

The application used is Fast Focus on Structures (FFoS) and was manually implemented by Yifan
He, a PhD student at the electronic system group. The application is a typical vision application,
fitting the domain specific approach. The algorithm is intended to find the centers of OLEDs, as
during fabrication organic materials have to be injected into the OLEDs. For improved quality
and yield it is important to find these centers fast and accurately. The vision pipeline for this
application is shown in figure 7.2.

At the start of the pipeline, the OTSU algorithm is applied to the grey level input image to find
the optimal threshold for binarization. In the following stage, binarization creates a binary image
based on the threshold result of the OTSU algorithm. Erosion then removes the noise from the
image, leaving the binary representation of the OLEDs intact. Row and column projection then
counts the number of OLED pixels in each direction and finally the center is found by thresholding
the row and column vectors. The center of each remaining line segment is the center of an OLED,
with the y position in the row vector and the x position in the column vector.
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Figure 5.1: The vision pipeline for the fast focus on structures application

5.2 Manual Implementation

The handwritten RTL implementation is explained next as it is the reference for the HLS imple-
mentation. The sections are separated into a section explaining the input specification, a section
discussing the resource utilization and a final section about the latency of the design.

5.2.1 Input Specification

The manual RTL implementation is based on a reference C++ description of the application which
is also the starting point for the high level synthesis implementations. The histogram and erosion
kernels discussed in chapter 4 are taken from this reference implementation. Next to the data
parallel erosion kernel and the histogram implementation the following modules are part of the
design:

• Interface: A FIFO interface compatible to the FSL V20 FSL bus protocol and a PLB inter-
face.

• FSM: A finite state machine controlling the kernels.

• Grey image copy: Copies the input pixels to a block RAM for later use. Step is executed
together with histogram.

• Pixel sum: Calculates the sum of all pixels for use in the OTSU step. Step is executed
together with histogram.

• OTSU: A computational intensive kernel calculating the optimal threshold.

• Binarization: Converts 8-bit input pixels to a binary value based on the optimal threshold.
The output bits are placed in 120 bit wide vectors to support the parallel execution of
erosion.

• Projection: Performs data-parallel horizontal and vertical summations over the binarized
image.

• Estimated center: Searches for OLED centers in the projection vectors.

The reference design is written in Verilog and the parallel nature of the language makes it easy
to separate all the kernels and introduce a top level FSM to control the design. It should already
be noted that such high modularity is not achievable with HLS. Depending on the tool used, each
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loop will have its own FSM generated by the tool (AutoESL) or will not include an FSM at all
(Synphony) and the design is controlled by control signals in the data-path. To enable parallel
execution of the histogram, image copy and pixel sum in HLS, loop merging will need to applied
disabling the possibility of analysis of separate kernels. Therefore, the logic distribution in the
HLS implementation discussions differs from the manual distribution.

5.2.2 Resource Utilization

Figures 5.2 and 5.3 present the logic distribution across the application kernels. The distribution
is based on an image resolution of 120x45 and a 3x3 window operation in the erosion kernel. From
the seven block RAMs, four are used for image storage. An image copy kernel copies incoming
pixels from the FSL to the image block RAMs, requiring two block RAMs for the 5400 8-bit pixels.
Binarization prepares 120-bit vectors also requiring 2 block RAMs because of the large bandwidth
required in the erosion kernel. The histogram is stored in a separate block RAM and prior to
the OTSU kernel, a CH/CIA kernel computes the cumulative histogram and cumulative intensive
area and stores it in 2 block RAMs. Note that this is not a fully optimal implementation as OTSU
could use a cumulative value of both the CH and CIA, removing the need for the two block RAMs.
After synthesis the CH and histogram block RAMs are merged into a single BRAM.

Figure 5.2: BRAM and DSP utilization by manual FFoS implementation

The only kernel requiring DSPE48s is the OTSU kernel, which can be separated in a CH/CIA
part and the main threshold calculation. The cumulative histogram computation requires a 19x8
multiplier, the threshold calculation uses two 19x13 bit multipliers and one 21x21 multiplier. Here
too, the implementation is not fully optimized. The DSPE48s multipliers support up to 25x19
multipliers, meaning an extra DSPE48 is used for the 21x21 multiplier while this can be avoided
by implementing two bits of the multiplication in logic.

Flip flop utilization is dominated by the OTSU kernel, with as main bottleneck the two 19/13
bit dividers in the design. The projection kernel also requires a significant amount of flip flops
due to its parallel implementation. LUT utilization is dominated by the same two kernels, the
OTSU kernel as a result of the two dividers and the projection kernel due to the massive data
parallelism requiring many adders to accumulate a 120-bit line in a single cycle and bitwise adding
two 120-bit lines in a single cycle.

A complete overview is given in table 5.1, presenting a summary of the FFoS application after
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Figure 5.3: Flipflop and LUT utilization by manual FFoS implementation

logic synthesis. This summary table will be gradually updated for each HLS implementation.
Note that after logic synthesis of the complete design (instead of modules synthesized separately),
more optimizations might be available, or more logic for signal routing might be necessary and
the result can slightly differ from the total resource utilization shown in figures 5.2 and 5.3.

Table 5.1: Summary performance results FFoS implementation

Implementation Flip flops LUTs BRAM DSP Latency Clock period Design time

Manual 6131 4042 6 5 11895 7.556 30 days

5.2.3 Latency

Figure 5.4 shows a latency breakdown for the FFoS implementation. The histogram generation,
image copy and sum of pixel values are executed in parallel. The implementation leaves room for
several optimizations, such as merging CH/CIA and Sigma calculation, using dual ported block
RAM for the image storage to half the number of cycles required for binarization and the use of
streaming to overlap kernel execution. The erosion kernel, using a 3x3 window, is executed twice
to achieve the result of a 5x5 window while keeping the resource utilization reduced.

5.3 AutoESL Implementation

The AutoESL implementation is explained next. The sections are separated into a section ex-
plaining the input specification, and two sections discussing the resource utilization and latency
of the design. The design is made to match the manual design as close as possible with regard
to the architecture of each kernel. A later section deals with possible modifications to improve
performance issues highlighted in this section.
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Figure 5.4: Latency distribution for the manual FFoS implementation

5.3.1 Input Specification

As explained in section 5.2, creating modularity in HLS is more complicated. In the case of
AutoESL, histogram, image copy and pixel sum are all operations written in a separate function
each containing a loop iteration over the number of pixels to process. To enable the parallel
execution of these kernels, AutoESL requires the loop bodies to be in a single loop requiring
the user to merge all loops and implement the 3 kernels as a single function. AutoESL will not
automatically extract inter-task parallelism, and modifications by the user are required to enable
parallelism. Next to this parallelization issue, AutoESL generates an FSM for each loop instead
of one top-level FSM.

The input specification is written in C and involves a main function which calls all intermediate
kernels. The interface is specified with pragmas to inform AutoESL that the input and output
of the design should be synthesized in such a way that it is compatible with FSL. With regard
to figure 5.4, each block in the horizontal direction is implemented as an outer loop possibly
containing inner loops.

5.3.2 Resource Utilization

Figures 5.5 and 5.6 present the logic distribution across the application kernels. The architecture
of the manual kernel implementations is mimicked as close as possible, implementing the same
amount of parallelism and expensive functional units such as dividers and multipliers.

From the nine block RAMs, six are used for image storage. The read-modify-write operation
in erosion, as explained in section 4.2.2, requires the block RAM to be dual ported and disables
to possibility to use the same block RAM for the dual execution of erosion. This implementation
approach for erosion thus requires four block RAMs, compared to two block RAMs in the reference
design. Note that it is important that the designer selects the proper block RAM description to
be generated in order to limit the number of synthesized block RAMs. Selecting the wrong block
RAM properties results in more latency due to a limitation on the ports or the introduction of
more block RAMs than expected. Logic synthesis of the complete application can reduce the
required number of block RAM due to merging.
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Figure 5.5: BRAM and DSP utilization by AutoESL FFoS implementation

Figure 5.6: Flipflop and LUT utilization by AutoESL FFoS implementation

Again, the only kernel requiring DSPE48s is the OTSU kernel, which can be separated in
a CH/CIA part and the main threshold calculation. The cumulative histogram computation
requires a 19x9 multiplier, one bit more compared to the manual implementation because the
second operand is based on a loop iterator which requires an extra bit to prevent overflow during
the exit condition check. The sigma (threshold) calculation is optimized using bit-casting to
use two 19x13 multipliers and one 21x21 multiplier. Since the arbitrary precision library from
AutoESL allows the access of specific bits and supports bit-casting, the 21x21 multiplier can be
reduced to occupy just one DSPE48.

Flip flop utilization is again dominated by the OTSU kernel, although requiring less flip flops
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compared to the manual design. The two dividers in AutoESL, also implemented as 19/13 bit,
require much more LUTs compared to the dividers in the manual which are generated by CoreGen.
A complete overview is given in table 5.2, presenting a summary of the complete FFoS application
after logic synthesis. To achieve a logic distribution graph, each kernel needs to be synthesized
separately requiring the option in AutoESL to not inline the kernels in the top function and
thus limit resource sharing. The overall trend is visible that less flip flops but much more LUTs
are required. Section 5.5 discusses these issues in more detail and section 5.6 will present some
solutions to this issue. It can also be observed that indeed the number of required block RAMs
reduces by one because of more room for optimizations when synthesizing the complete design.

Table 5.2: Summary performance results FFoS implementation

Implementation Flip flops LUTs BRAM DSP Latency Clock period Design time

Manual 6131 4042 6 5 11895 7.556 30 days
AutoESL 4967 7187 8 5 12073 7.832 5 days

5.3.3 Latency

Kernel latency in AutoESL consists of three parts. First, the actual latency of the loop itself is
based on the number of loop iterations, pipeline initiation interval and schedule length. Secondly
each loop which is not pipelined, usually the outer loop when dealing with a 2-nested loop, requires
one loop entry and one loop exit cycle adding two cycles to the kernel latency. Finally, when a
kernel (function) is not inlined in the top-level design, two extra cycles are required for function
entry and exit. This can be compared to the caller/callee principle in CPU programs where some
overhead is encountered to store information such that the program returns to correct point in
the caller once the callee is done executing.

Figure 5.7 shows a latency breakdown for the FFoS implementation. The breakdown includes
2 cycles for each kernel as a result of the loop entry and exit. In total, four kernels in the final
implementation are not inlined to either enable the re-use of that hardware block (executing the
same erosion hardware block twice) or to prevent resource duplication because the tool inefficiently
shares resources. This means the final latency includes 8 more cycles for function entry and exit
for the non-inlined functions. The observations done in section 5.2.3 with regard to possible
optimizations remain valid and will be further explored in section 5.6.

A latency issue is shown in the binarization kernel, requiring 181 cycles more compared to the
manual implementation. This issue is explained using the input specification shown in listing 5.1.
A dual nested loop is shown, with the inner loop specified as pipelined with an initiation interval
of 1. The result of this input specification is a 2-stage pipeline for the inner loop which is in turn
controlled by the outer loop. Being a 2-stage pipeline, the inner loop has an iteration count of
120 and will require 121 cycles to complete. In the case the specification would be a perfectly
nested loop, the loops would automatically be flattened for a total latency of (45*120)+1 cycles.
However, the loop is now imperfect as the outer loop also contains a loop body. Even worse, the
loop body of the outer loop involves a store to a wide block RAM to support enough bandwidth
to the erosion kernel. As seen in section 4.2.2, this requires a read-modify-write operation using
3 clock cycles. As a result the latency for this binarization kernel is (45*121)+(45*3) cycles, a
total of 5580 when ignoring the loop entry/exit cycles. As suggested before, a possible solution to
improve this latency is to unroll the inner loop twice and use a dual ported block RAM as input.
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for ( y=0;y<HEIGHT; y++){
for ( x=0;x<WIDTH; x++){
#pragma AP PIPELINE I I=1

tmp . s e t b i t (x , ( img [ y∗WIDTH+x]>=thre sho ld ) ) ;
}
bin img [ y ] = tmp ;

}

Listing 5.1: Binarization source code with data preparation

Figure 5.7: Latency distribution for the AutoESL FFoS implementation

5.4 Synphony Implementation

The Synphony implementation is explained next. The sections are separated into a section ex-
plaining the input specification, and two sections discussing the resource utilization and latency
of the design. The design is made to match the manual design as close as possible with regard
to the architecture of each kernel. A later section deals with possible modifications to improve
performance issues highlighted in this section.

5.4.1 Input Specification

Synphony has an identical problem to AutoESL with regard to design hierarchy. Each loop is im-
plemented as a hardware block, enabling a designer to separately analyze functions. Interface and
control (FSM) however is at top-level containing all hardware blocks and can not be synthesized
separately. Although Synphony is able to automatically schedule kernels (PAs) in parallel if there
are no data dependencies, histogram, image copy and pixel sum are merged into a single loop to
enable parallel execution since the stream interface disables automatic parallelization of the PAs.
Note that connecting a stream interface to multiple parallel execution modules is possible at RTL
level, but coding stream accesses in C++ limits the number of stream accesses per input to one
and thus requiring the kernels to be implemented in the same loop. The interface again differs
slightly from the reference as FSL is not supported in Synphony. The data input and output are
streams however with identical bit-widths.

The input specification is written in C and optimized to approach the same kernel latencies
as the manual and AutoESL designs. The structure of the input specification is identical, but
Synphony requires a different way of describing parallelism and has limits on bit-casting which
reduces the performance of the OTSU kernel. Wide vectors are described using the packed data
construct as discussed in section 4.2.3. Because of lack of time and the proper SystemC package,
bit-casting is not applied in the OTSU kernel, resulting in dividers and multipliers which could
potentially be optimized in area. Synphony does not support standard interfaces such as FSL
and requires the user to describe a stream function in combination with pragmas to synthesize
the input and output of the design as streaming. Finally, since Synphony is able to extract inter-
task parallelism and schedules PAs simultaneously whenever there are no data-dependencies, the
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estimated center kernel is left as two separate loops each iterating over a projection vector to find
the X and Y location of the centers.

5.4.2 Resource Utilization

Figures 5.8 and 5.9 present the logic distribution across the application kernels. Note that these
results are from separate kernel synthesis and do not include top-level control and interface. For
synthesis the tool Synplify from Synopsys has been used, as the generated dividers can not be
synthesized by Xilinx ISE. The implementation with regard to amount of parallelism and number
of expensive functional units such as dividers and multipliers is identical to the AutoESL and
manual implementation.

In total, nine block RAMs are utilized. Although erosion is not implemented using a read-
modify-write operation, extra block RAMs are still used for this kernel. The input and ouput for
erosion can be the same block RAMs, however Synphony implements the storage as 4 block RAMs
with shorter word width as the AutoESL and manual implementation. The AutoESL block RAMs
are implemented as 72-bit wide and the Synphony block RAMs in this case are implemented as 36
bit word size, requiring twice the amount of block RAMs for the same binarized image. Although
Synphony provides control over the number of read and write ports, this had no influence on the
logic synthesis results. After logic synthesis of the complete application, no more block RAMs are
merged and the number of utilized RAMs remains 9, indicating a throughput oriented architecture
template.

Figure 5.8: BRAM and DSP utilization by Synphony FFoS implementation
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Figure 5.9: Flipflop and LUT utilization by Synphony FFoS implementation

A factor two more DSPE48s are used by this implementation, not limited to the OTSU kernel
compared to the manual and AutoESL design. Binarization now requires a DSP, used for the
address calculation to access the image. The image index is calculated as y*WIDTH+x, with
WIDTH a statically defined value. Although this statement could be calculated with a simple
adder, Synphony uses a multiplier to calculate this index when the loops are not perfectly nested
even though the compiler can theoretically optimize the index calculation. Note that AutoESL
is able to extract this information for in-perfectly nested loops. The lack of bit optimizations in
the threshold calculation results in the usage of extra DSPs. Using the correct SystemC library
in Synphony can prevent this issue.

The computationally intensive OTSU kernel again dominates the flip flop utilization. The
large differences between this design and the AutoESL design are contributed by the divider
implementations in both tools. Section 5.5 will elaborate further on this as it is an issue observed
in both HLS tools. The second largest kernel in LUT utilization is the projection kernel, which
requires many parallel adders. The figure shows a large decrease in flip flop utilization, but this
is due to the architecture template in which large vectorized data (such as used in the projection
kernel) is implemented in the top-level design and can not be observed at kernel level.

A complete overview is given in table 5.3, presenting a summary of the FFoS application
after logic synthesis. To achieve a logic distribution graph, each kernel needs to be synthesized
separately ignoring top-level control logic and top-level instantiations of register based memories.
The overall trend is visible that even less flip flops are required but much more LUTs are required
compared to both manual and AutoESL designs. Section 5.5 discusses these issues in more detail
and section 5.6 will present some solutions to solve them.

Table 5.3: Summary performance results FFoS implementation

Implementation Flip flops LUTs BRAM DSP Latency Clock period Design time

Manual 6131 4042 6 5 11895 7.556 30 days
AutoESL 4967 7187 8 5 12069 7.832 5 days
Synphony 4727 9646 9 10 11886 19.197 5 days
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5.4.3 Latency

Synphony does not require loop and function entry/exit cycles and the latency is simply the latency
of all kernels combined. Figure 5.10 shows a latency breakdown for this FFoS implementation.
Histogram includes copying the image from the stream interface and calculating the sum of pixels.
The automatic choice by Synphony to use multi-cycle multipliers, which can be overridden by
the user when required, results in small latency differences in the OTSU implementation. The
binarization kernel does not suffer from a read-modify-write operation and can be more effectively
pipelined even though it uses a DSP for the multiplication in the address calculation. Erosion and
projection both operate on complete binarized image lines and each takes 47 cycles to complete.
The estimated center kernel is separated into two processing arrays executing in parallel, one for
searching through the vertical and one for searching through the horizontal projection vectors. The
latency for the estimated center kernel is dominated by the search through the vertical projection
vector which is 120 elements big.

Figure 5.10: Latency distribution for the AutoESL FFoS implementation

5.5 Discussion

In the previous sections, two HLS implementations have been created using the HLS tools AutoESL
and Synphony C Compiler. The designs have been kept as identical as possible to the manual
implementation. This section summarizes and elaborates on some performance issues encountered
in the HLS designs.

5.5.1 Flip flops and LUTs

Previous sections have shown it is not always possible to extract accurate information from syn-
thesis of separate kernels. Reasons for this vary from the RTL generation style of Synphony and
the optimization pragma in AutoESL to enable or disable function inlining. Besides this issue,
table 5.3 has shown clear differences in utilized area. The most expensive operation throughout
the application is the division.

The OTSU algorithm is implemented using two dividers, and since there are many different
divider implementations possible with each it’s own trade-off figure 5.11 presents resource utiliza-
tions for several divider implementations. Note that lack of bit-width optimizations in Synphony
results in the use of a 32/32 bit divider in the actual design. Latency of all dividers is 34 cycles.
Although Synphony allows the user to specify a latency for the divider, the number of pipeline
stages for the actual division remains 8 resulting in the use of less flip flops but a very high
minimum clock period because of a longer combinatorial path.
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Figure 5.11: Resource utilization for divider implementations

Because of the large differences in the divider component, figure 5.12 presents the flip flop and
LUT utilization with the divider resources subtracted. The manual and AutoESL implementations
now converge with regard to resource utilization. With AutoESL, different levels of resource
sharing can be quickly explored to find the best solution by inlining functions into the top-level
design and selecting between three different levels of effort to share resources. Of course, too
much resource sharing will result in an increase of resources because of the multiplexer costs and
inlining functions which are executed multiple times will result in hardware duplication. In this
case, ignoring divider costs and taking extra interface cost for the reference design into account,
AutoESL achieves a design requiring around 5% less flip flops and 4% more LUTs. The Synphony
design requires 62% more flip flops and 61% more LUTs.

Figure 5.12: Resource utilization for FFoS with and without divider resources
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The Synphony implementation still requires more area, which is a result of several factors.
First, the area overhead resulting from the PPA architecture has a significant effect on the resource
utilization as less resource sharing is applied and each processing array has logic included to
support stalling even though stalling is not necessary. The separated estimated center kernel,
which is implemented in two processing arrays, results in extra area for an extra processing array.
To solve this, a minor source transformation can merge the loops processing the horizontal and
vertical projection vectors at the cost of a comparator. The comparator prevents the index of the
horizontal projection vector to go out of bound as it is smaller than the vertical projection vector.
Next to this, each call to the erosion kernel results in a separate processing array for the erosion
kernel, meaning this implementation will have two copies of the erosion hardware block. This can
be avoided by building the erosion kernel separately as a TCAB design and instantiate the TCAB
in the FFoS application. This requires more effort though compared to disabling inlining on the
erosion function in AutoESL. And finally, the most computationally intensive kernel OTSU has a
longer pipeline depth and lacks SystemC bit-casting resulting in more and wider pipeline registers.

5.5.2 DSPs

The number of DSPs used in the manual and AutoESL implementation are equal and can both be
reduced by one by limiting the second operand of the 21x21 bit multiplier. The same number of
DSPs is achievable with Synphony but is not implemented because of lack of time and the improper
SystemC package. Note that the register and LUT count will also decrease in the Synphony design
when variables are correctly cast to the correct bit-width.

5.5.3 BRAM

Both HLS designs use more block RAMs. In AutoESL, the erosion kernel requires multiple block
RAMs to separate input from output to be able to pipeline the design with an initiation interval
of 1. Having the same block RAMs assigned both for input as for output would slow down the
design as the read-modify-write operation for the output would require more than two ports.
Although Synphony is able to use the same block RAMs for the binarization and erosion kernels
it implements block RAMs with smaller word size due to limited porting, still requiring the same
amount of block RAMs for the binarization and erosion implementation. Logic synthesis by
Xilinx ISE of the AutoESL implementation shares one more block RAM to achieve 8 block RAM
utilization instead of 9, whereas less block RAMs are shared in the Synphony implementation.

5.5.4 Latency

Besides the slightly slower binarization implementation in AutoESL, latencies between different
implementations are just off by a few cycles. Differences are caused by loop/function entry and
exit cycles in AutoESL and differences in pipeline depths between all implementations. The depth
of the pipeline in HLS designs can not be set manually and is dependent on the loop body in the
C description and the component libraries from the HLS tool in question. The depth is mainly
dependent on number of block RAM accesses (on the same RAM) and the functional units which
are required in the data-path. Although in AutoESL the preparation of the 120-bit words in the
binarization kernel results in a slightly slower design, the problem can be solved by either reducing
the width of the word size or unrolling the loop which iterates over the width of the image. The
second optimization can be made with almost no area cost, processing two input pixels at the
same time requires a dual ported block RAM and some logic to access the data and compare the
pixel value. This optimization has no influence on kernels further in the vision pipeline, whereas
limiting the degree of parallelism does.
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5.5.5 Clock Period

The minimum clock period of the AutoESL design remains within 4% of the reference. The 8-stage
divider in Synphony to operate on 32-bit wide operands result in an unacceptably high minimum
clock period. Feedback on this issue is given to Synopsys but so far no cause and/or possible
solutions is received.

5.6 Alternative Implementations

Issues encountered so far are the costly divider implementations, the CH/CIA computation which
can be done more efficiently, the bad performance of binarization in AutoESL due to in-perfect
nested loops in combination with the read-modify-write operation and the separate PAs for the
finding of the centers in the projection vectors using Synphony. In section 5.6.1 an alternative HLS
implementation is presented to solve these issues. Section 5.6.2 introduces the notion of streaming
implementations, using streams to improve throughput limiting the degree of data parallelism
while increasing instruction level parallelism (or inter-task parallelism).

5.6.1 Resolving Highlighted Issues

Several issues were highlighted in the previous HLS implementations. This section shortly de-
scribes the performance gain which can be achieved with simple source modifications to resolve
several of the mentioned issues. For both AutoESL and Synphony the same changes are made to
observe the performance gain. With regard to the reference implementation, the following changes
are made:

• The number of dividers is limited to one, trading decreased area for increased latency.

• The CH/CIA block RAMs are removed by merging the cumulative CH/CIA calculations
inside the Sigma (threshold) computation.

• The binarization loop is unrolled twice to exploit the advantage of a dual ported block RAM.
It is expected that this will improve the latency at a small area cost.

• In Synphony, the estimated center loops are merged to be implemented in a single processing
array. The loops are already merged in the AutoESL implementation.

Note that the first two optimizations will influence each other. While the latency increases
because the number of functional units is limited in the threshold calculation, the latency can
expected to remain stable because the second optimization removes 256 loop iterations which
are merged in the threshold calculation. The latency for the OTSU kernel will depend on the
pipeline-ability of the threshold calculation with only one divider in the datapath. Although
binarization does not perform bad in the Synphony implementation, the image block RAM is
made dual ported and the binarization kernel will process two pixels at the same time to keep
both HLS design comparable. Note that the optimizations made will have great influence on the
performance results but the effort needed to apply the changes involve only minor code changes
or even simple code movement such as the loop merging in estimated center.

Figure 5.13 presents the reduced area in flip flops and LUTs compared to previous HLS designs.
An average reduction of 30% is observed with regard to flip flops and LUTs which is mainly
contributed by the reduced number of dividers. The threshold kernel itself however includes more
registers compared to the previous threshold kernel as now the CH/CIA values need to forwarded
through the pipeline stages, whereas previously they were already stored in block RAM. By moving
the CH/CIA computation into the threshold calculation, each implementation requires one less
block RAM.
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Figure 5.13: Comparison of reference HLS implementation and optimized implementations

The binarization and OTSU latencies are visualized in figure 5.14. As expected, the binariza-
tion latency is nearly halved because the kernel processes two pixels per loop iteration and thus
the number of iterations is halved. The dual ported block RAM supports enough bandwidth to
efficiently pipeline the binarization kernel. More surprisingly is the small reduction in OTSU la-
tency. Both threshold calculation pipelines now have an initiation interval of 2 because the number
of dividers is reduced. The reduction in latency is because of the decreased pipelineability is ab-
sorbed by the merging of CH/CIA in the threshold pipeline. This way, the AutoESL design gains
2 cycles caused by the reduction of a loop entry and exit cycle. The Synphony design improves by
4 cycles, caused by the removal of the CH/CIA loop which contained a 4 cycle multiplier which is
now merged into the threshold calculation. Note that latency of other kernels is not affected by
the changes applied in this implementation.

Using minor source modifications and tool specific architectural parameters, area has been
reduced significantly compared to the previous HLS designs. Next to area reduction, there is a
small decrease in latency as well with as main contributor the binarization kernel. The increased
processing time for threshold calculation could be hidden by moving the CH/CIA computation
inside the threshold computation, simultaneously reducing latency by removing the cycles required
for CH/CIA computation beforehand and increasing latency by reducing the threshold calculation
pipelineability. In the end, there is a gain of just a few cycles for the OTSU optimization but the
main advantage of the optimization is the significant reduction in area without sacrificing latency.
The speedup of the binarization kernel is almost free, as the operation performed on the input
pixels is simply a comparison. The extra area required only involves a comparator and block RAM
related logic to address and access the data on the second port.

5.6.2 Streaming

Previous implementations of the FFoS application did not contain inter-task parallelism by ap-
plying streaming communication between kernels. This section shortly describes a streaming
implementation made for AutoESL and Synphony. Because many vision algorithms are simple
hardware pipelines where kernels operate on image data, often these kernels can be implemented
in such a way that each kernel can produce and consume a data element each cycle to enable a
succeeding kernel to start execution as soon as it receives the data on its input. In the case of
FFoS, there are 3 kernels which can be implemented in a streaming fashion. The binarization,
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Figure 5.14: Binarization and OTSU reduced latencies

erosion and projection kernel can all be implemented to fetch one pixel per cycle and produce one
pixel per cycle. Such an implementation allows the three kernels to run in parallel to increase
throughput without requiring massive data parallelism to speed up the design. However, a combi-
nation of data parallelism and streaming can also be implemented in which the FIFOs connected
between the kernels contain wider words to support the kernel to operate on multiple pixels at
the same time.

The next sections present different aspects of two streaming designs. One design streams 8-bit
pixels and the other design streams complete lines (120 bit wide FIFOs).

Input Description

Enabling the possibility of streaming requires a bit more effort to transform the code in such a
way that the streaming kernels consumption and production rates match. The erosion kernel is
re-written to support a 5x5 window instead of a 3x3 window. In the previous AutoESL design
the erosion kernel, based on the 3x3 window, could be implemented as a separate hardware block
enabling re-use of that hardware block. In a streaming implementation, a 5x5 window operation
implemented as two executions of 3x3 window operations would require two instantiations of the
3x3 hardware block. The new erosion description is re-written to use line buffers and a window
buffer, similar as shown in figure 5.15.

Both AutoESL and Synphony can implement a streaming design in which binarization, erosion
and projection are connected with FIFOs using 8-bit elements as communication tokens. The
input descriptions for AutoESL and Synphony are similar, besides some tool specific notations
for expressing the use of FIFOs and resource selection. It is also possible to replace the erosion
and projection kernel descriptions which should operate in streaming fashion with the parallel
descriptions of these kernels. Although theoretically possible, Synphony is the only tool able to
correctly synthesize this design. Such a design is not yet implemented in AutoESL, but seems
feasible. The architecture of the remaining kernels is identical to the implementation discussed in
section 5.6.1. The parallel description of erosion is similar to the one discussed in section 4.2.3,
only extended to support a 5x5 window by introducing two extra line buffers.

59



Figure 5.15: Architecture to support streaming in window based operations

Resource Utilization

Figures 5.16 and 5.17 show the resource utilization after logic synthesis for the 8-bit streaming
implementation in AutoESL and Synphony and the 120-bit streaming implementation in Synphony
which has a parallel implementation of erosion and projection. All designs include one divider to
limit the amount of resources.

Figure 5.16: Comparison of different streaming implementations: flip flops and LUTs
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Figure 5.17: Comparison of different streaming implementations: DSP and BRAM

Again it is shown that AutoESL has the most efficient implementation of the two HLS tools,
even though the divider in Synphony uses 30% less flip flops and only 18% more LUTs. Although
the intermediate binarized image storage before and after erosion are now replaced by FIFOs,
block RAMs in the 8-bit streaming implementation are now used for line buffering. Depending on
the constraints set, these line buffers can also be implemented in either flip flops or distributed
RAM. The streaming implementation with parallel kernels uses less block RAMs as the line buffers
can no longer be implemented in block RAM, hence the increase in flip flops.

Latency

To highlight the principle, figures 5.18 through 5.20 show the latency distribution for the streaming
implementations. The streaming process denotes the overlapped execution of binarization, erosion
and projection. The 8-bit streaming AutoESL performs slightly worse because of an imperfect
nested loop in the projection implementation similar to the binarization latency issue discussed
in section 5.3. The imperfect nested loop causes the inner loop pipeline to stall, causing the
other kernels to stall as well. An imperfect loop is scheduled more efficiently in Synphony. In
both pipelines of kernels (the stream process), the bottleneck limiting throughput is the erosion
implementation which needs to prefetch several lines of the binarized image before it can start
with producing outputs. The streaming 120-bit implementation has a better throughput, only
now it is limited by the limited amount of parallelism in the binarization kernel as the input
data there is too wide to heavily parallelize. The erosion and projection kernels each take 47
cycles in this implementation, and binarization processes two pixels at the same time to limit the
bottleneck. Observe that each purple and green block represent the erosion and projection kernel
in figure 5.20. The erosion and projection kernels each iteration process a line, and then block
until the binarization kernel is finished with the production of a line. It depends on the constraints
if such an implementation is an acceptable approach, as producer and consumer rates differ a lot
due to the large difference in number of communication tokens.
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Figure 5.18: Latency distribution streaming 8-bit in AutoESL

Figure 5.19: Latency distribution streaming 8-bit in Synphony

Figure 5.20: Latency distribution streaming 120-bit in Synphony

5.7 Conclusion

In previous sections, several implementations for the FFoS application have been created. The
first implementation mimicked the manually written design as close as possible, including as much
expensive functional units such as dividers and multipliers and exploiting as much parallelism as in
the manual design. Several bottlenecks were encountered such as the divider cost both in area for
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Synphony and AutoESL and in clock period for the Synphony implementation and the capability
of pipelining for improved throughput in AutoESL when dealing with imperfect nested loops.

A new solution was presented to increase performance by tackling these bottlenecks. Using only
minor code modifications, a different implementation resulted in less resource utilization with even
a minor latency gain. Next to this, several streaming implementations based on the optimized
AutoESL and Synphony implementations have been created, exploiting both data parallelism
inside kernels as well as parallelism across kernels by allowing the overlapping of kernel execution.
The performance results for all implementations, relative to the reference manual implementation,
are shown in figure 5.21.

Figure 5.21: Different FFoS implementations and their performance metrics

The key observations which can be made from this graph are:

• The no div implementations only compare flip flop and LUT utilization. There are no
changes in DSP, BRAM and clock period results compared to the implementation mimicking
the manual reference. Flip flop and LUT utilization in the AutoESL design stays within 5%
of the reference.

• The clock period in Synphony is extremely high compared to the reference. This is caused by
the divider implementation, and this performance might increase depending on the feedback
of Synopsys.

• The optimized implementations are faster due to two times speedup in the binarization
kernel.

• The AutoESL 8-bit streaming implementation achieves approximately the same latency with
less resources due to its streaming implementation of the binarization, erosion and projection
pipeline. This implementation contains more task parallelism and less data parallelism.
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• DSP usage in Synphony is due to the lack of optimized bit-widths which can be resolved.

Based on the kernel comparison and the application comparison, the following conclusions can
be made:

• AutoESL better suits the vision application domain which are often simple hardware pipelines
with vision operations executing after each other. Synphony’s architecture template sup-
ports multiple application domains by improving throughput with the introduction of stall
domains. The resource utilization for Synphony is therefore, in each experiment conducted,
higher compared to AutoESL while there is little gain in latency.

• Synphony does support design hierarchy and IP re-use, although it requires more effort
compared to AutoESL in which a simple pragma can be used to re-use certain IP blocks.
Without effort, Synphony will duplicate all hardware related to a function which is called
multiple times from the top-level. Note however that Synphony is capable of instantiating
TCAB IP blocks in different designs, whereas this is not possible in AutoESL.

• Both tools are capable of accurately mimicking datapaths which are usual in handwritten
RTL designs.

• There are still issues to resolve, including costly functional units such as dividers (both
tools).

• To achieve good QoR, source code transformations based on application and

platform knowledge are required

Just as with RTL, there are many optimization possibilities and different implementations
with different trade-offs. Depending on the design constraints, the designer can use a set of
optimizations and coding styles to achieve the aimed-for datapath. Without clear goal, and
without knowledge of the underlying hardware, a designer could end up in an endless optimization
effort. With a clear goal and knowledge of underlying hardware, the designer can quickly modify
sequential C code to generate predictable and efficient hardware using HLS. The tools explored
support a large set of C/C++, allowing the use of specifications usually used to verify correctness
of an algorithm (with minor changes for HLS tool compatibility). The case-study has shown that,
at least in the case of AutoESL, performance gain is possible and the design time is significantly
shorter. In the rest of this report, AutoESL will be used as HLS tool of choice for the following
reasons:

• AutoESL appears to better suit the vision application domain. Note that this conclusion is
only based on the FFoS application in combination with results from related work. It could
still be that Synphony outperforms AutoESL for other vision application, although this is
not yet shown.

• Synphony so far has no floating point support and appears to run in beta mode when dealing
with large vectorized data.

• Even although the divider implementation is a bottleneck in area consumption, it has been
shown that simple modifications at C/C++ level and the use of HLS tool architectural
settings can optimize the design.

• Better code readability enables manual changes to the generated RTL itself, and a better
analysis.
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Chapter 6

Design Space Exploration

One of the benefits of HLS is the possibility to perform fast design space exploration (DSE), which
is more time consuming at RTL level as it often requires a complete rewrite of the specification.
High level synthesis supports source to source transformations at a higher abstraction level and of-
ten uses synthesis constraints to generate datapaths with specific properties. This chapter presents
a quick overview of the DSE capabilities of AutoESL, based on the histogram and erosion kernels.
Sections 6.1 and 6.2 show DSE results on the histogram and erosion kernel respectively. The goal
is not to search through the entire design space, as it is very large, but to explore a range of
possible datapaths which are common in RTL design to observe the effectiveness and limitations
of DSE using HLS. Each DSE starts with a naive C description as it would be usually coded when
targeting a CPU, followed by optimizations with regard to the interface bandwidth and degree
of instruction parallelism (optimizations to improve pipelineability) and data parallelism (loop
unrolling). Finally, section 6.3 gives a short summary of the results.

6.1 Histogram Design Space Exploration

We treat the histogram design as a single IP block, calculating the histogram bins and notifying
the next IP with a done signal when the computation is done. Initialization of the block RAM
is ignored by declaring the histogram array as a static variable meaning it well be implemented
as set-to-zero on reset. Several designs are created, with as parameters the interface for the input
pixels (external block RAM or FIFO), and the unroll factor to determine how many pixels to
process at the same time. The unrolling itself has two different implementation options, either
packing the input pixels into wider vectors exploiting the 32-bit FSL interface and block RAM
widths, or sequentially loading new 8-bit input pixels from the interface. When using an FSL
interface, the data-width of each input can be extended to 32 bits supporting up to 4 pixels. If a
block RAM is used for the input pixels it is assumed to be external and therefore not included in
the results. The advantage of a block RAM is that we can improve bandwidth beyond loading 4
pixels per cycle, by either using wider block RAMs (the target device supports up to 9 pixels per
cycle per read port without extra block RAM cost) or distributing the pixels over multiple block
RAMs or distributed RAM. Furthermore, block RAMs can be dual ported, potentially improving
unroll performance compared to using a FIFO which can only support one read per cycle unless
multiple links are used.

The DSE starts with two baseline implementations, shown in listing 6.1 and 6.2 and referred
to as base-1 and base-2 respectively. The naive base-1 implementation will result in a slow design
caused by a RaW hazard on the histogram bins and base-2 solves this issue by comparing the read
and write addresses. The following two sections will highlight interesting observations based on an
FSL and block RAM interface respectively. The designs are analyzed based on flip flop and LUT
utilization, block RAM utilization for internal histogram bin storage is ignored, but it should be
noted that no more than 4 block RAMs are used for partitioning of histogram data.
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for ( x = 0 ; x < WIDTH∗HEIGHT; x++){
bins [ image [ x ] ] ++;

}
}

Listing 6.1: Base-1 description of the histogram kernel

for ( x = 0 ; x<WIDTH∗HEIGHT+1; x++){
index = image [ x ] ;
i f ( o ld index == index ){

accu = accu + 1 ;
} else {

bins [ o ld index ] = accu ;
accu = bins [ index ] + 1 ;

}
o ld index = index ;

}

Listing 6.2: Base-2 description of the histogram kernel

6.1.1 FSL Interface

As histogramming can usually performed at the start of an image processing pipeline, connecting
it directly to a MicroBlaze using a Fast Simplex Link is a common approach. The FSL is 32 bits
wide and supports up to four 8-bit pixels as communication elements, enabling a parallelization
factor of 4 in both the base-1 and base-2 implementation. Figure 6.1 shows the explored design
points in latency and flip flop trade-off, figure 6.2 shows latency and LUT trade-offs.

Figure 6.1: Latency versus flip flop utilization for the histogram kernel
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Figure 6.2: Latency versus LUT utilization for the histogram kernel

The names corresponding to the design points relate to the implementation. A manually
unrolled implementation is referred to as unrolled with the given unroll factor and has an 8-bit FSL
interface. Manually unrolled implementations with packed data on the FSL (extending the number
of pixels communicated per FSL token) are referred to as unrolled packed with the given unroll
factor. As a reference, parameterized versions of the input descriptions for these implementations
are given in Appendix A. As an example, the base-1 description presents parameterized manual
unrolling without data packing whereas the base-2 description shows the approach with data
packing. These parameterized descriptions can be used for automatic DSE, however they need
manual modifications if the parallelization factor is one (no data parallelism) to prevent histogram
bin merging. Data packing has the advantage of requiring less reads from the interface, whereas
the absence of data packing requires more reads from the interface. With manual unrolling the
RaW latency can be hidden by increasing pipeline depth and overlapping multiple histogram
operations at the same time. Colors are used to group design points to certain implementation
styles, the lines between design points however do not represent intermediate results but are used
for visualization only.

In both figures, 4 design points are Pareto optimal, each corresponding to the same four
base-2 implementations. Several interesting observations can be made. The first observation is
the large jump in area when either the base-1 or base-2 implementation is unrolled. This jump is
caused by the extra loop required to combine the separated histogram data into a single histogram
block RAM. Once the unroll factor increases beyond 2, the area increase is less as the hardware
to combine histogram data is already there (only a multiplexer and adder are required to add
another sub-histogram).
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Figure 6.3: Pipeline initiation interval dominated by block RAM read-modify-write

The absence of an unrolled implementation without data-packing in the base-2 implementation
can be explained by the maximum bandwidth available. The base-2 implementation already
processes 1 pixel per cycle, and reading more pixels per cycle from a FIFO is not possible without
duplicating the number of FSLs. In the base-1 implementation, there are 3 pipeline stages and the
initiation interval is equal to the pipeline depth, which is the read-modify-write operation on the
histogram block RAM requiring 3 cycles. This enables latency improvement when unrolling the
loop without the need to pack data on the interface, up to unroll factor 3 the latency bottleneck is
the 3 cycles required for the histogram bin read-modify-write. By unrolling, AutoESL increases the
pipeline depth increasing the pipeline delay but improving instruction parallelism. When unrolled
three times, the bottleneck is both the RaW hazard as well as the input bandwidth. If the unroll
factor becomes 4, the bottleneck is no longer the read-modify-write operation but latency is limited
by the input bandwidth. Example schedules in figures 6.3 through 6.5 highlight this issue, clearly
showing the 3-cycle load-add-store operation and the 4-cycle input reads in the implementation
with an unroll factor of 4. The 4 input reads cause a worse pipelineability of the histogram loop.
Table 6.1 presents this observation in summary. In the table, δ represents the overhead required
for the combining of separated histogram bins, a result of the unrolled implementation.

The computational bandwidth is defined as pixels processed per iteration
initiation interval of the pipeline

.

Whereas the initiation interval in packed implementations remains equal with increasing unroll
factor, it increases in the base-1 unrolled implementation without packing. This indicates the limit
in input bandwidth. The base-2 implementation has a static initiation interval of one, resulting
in a computational bandwidth equal to the unroll factor.

Table 6.1: Summary performance results FFoS implementation

Implementation Input bandwidth Computational bandwidth Overall bandwidth

Base-1 1 1/3 1/3
Base-1 unroll 2 1 2/3 2/3 + δ

Base-1 unroll 3 1 3/3 3/3 + δ

Base-1 unroll 4 1 4/4 4/4 + δ

Base-1 unroll 2 packed 2 2/3 2/3 + δ

Base-1 unroll 3 packed 3 3/3 3/3 + δ

Base-1 unroll 4 packed 4 4/3 4/3 + δ

Base-2 1 1 1
Base-2 unroll 2 packed 2 2 2 + δ

Base-2 unroll 3 packed 3 3 3 + δ

Base-2 unroll 4 packed 4 4 4 + δ
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Figure 6.4: Pipeline initiation interval turning point

Figure 6.5: Pipeline initiation interval dominated by FIFO access

Although the base-1 implementations are not optimal, design constraints might require the
use of one of these implementations. It is then important to note the flipflop-LUT trade-off
occurring between packed and non-packed implementations. Packed implementations require more
flip flops compared to non-packed implementations with the same unroll factor. When data is
packed on the FSL, registers are used to store the unpacked data, resulting in more flip flop
utilization compared to unrolled implementations with an 8-bit FSL input. As a result, in packed
unrolled implementations, less LUTs are required to route input pixels to the correct histogram
block RAM address, whereas in unrolled implementation without packing more LUTs are required
to route/multiplex the inputs to the correct block RAM address lines. The increasing pipeline
initiation interval occurring once the unroll factor exceeds 3 in non-packed implementations (caused

69



by limited input bandwidth) is no longer an issue in packed implementations as only one input
read per cycle is required. Therefore, unrolling 4 times in the packed implementation still results
in a latency improvement.

Counter-intuitively, the base-2 reference implementation requires less area compared to the
base-1 reference implementation. This is a result of the bad pipeline-ability in the base-1 imple-
mentation, resulting in multiple copies of the loop iterator being needed in the datapath. After
unrolling, the base-2 implementation requires more flip flops though caused by the need of storage
for older indexes to compare read and write addresses. The base-2 implementation is faster and
less expensive compared to the base-1 implementation and only requires a change code which an
experienced HLS user could implement in minutes. As can be expected, the latency gain becomes
increasingly smaller with increased unroll factor. The base-2 implementations are the Pareto
points of the explored designs, but is limited by an unroll factor of 4 because of the 32-bit width
of the FSL. Note that each unrolled design includes 256 overhead cycles for the combining of the
manually unrolled histogram bins which are in multiple block RAMs after manually unrolling the
process loop. In the next section, a block RAM is used as interface for the input pixels and will
move the latency bottleneck from the width of the interface to the overhead of 256 cycles caused
by unrolling.

6.1.2 BRAM Interface

When the image is already stored in external block RAM, the unroll factor is no longer limited
to 4 as is the case when using a single FSL. As a side-effect, the manually unrolling of the base-2
implementation by a factor of 2 is now possible (with latency performance gain) by using a dual
ported block RAM to increase input bandwidth and prevent the pipeline from stalling. Figure 6.6
shows the explored design points in latency and flip flop trade-off, figure 6.7 shows latency and
LUT trade-offs.

Figure 6.6: Latency vs. flip flop utilization for the histogram kernel

The Pareto optimal points are again resulting from the base-2 implementation. There are more
Pareto points with this base implementation as it is now possible to continue the loop unrolling
beyond the factor 4 limit when using an FSL. Note however that with increased data word size in
block RAMs, the data will be eventually be distributed across multiple block RAMs to facilitate
the required throughput. The base-1 implementation requires an unroll factor of 3 to get close
to the latency of the base-2 reference implementation, resulting in an area overhead compared to
the base-2 reference. For more parallel base-1 implementations even more area would be required,
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Figure 6.7: Latency vs. LUT utilization for the histogram kernel

making base-2 the optimal solution, allowing the user to constraint the unroll factor according to
the design constraints.

Again it can be observed that in the base-1 implementations, unrolling without packing requires
more LUTs and less flip flops compared to unrolling with packing. As mentioned, the unroll factor
can be increased beyond 4. The base-2 design points clearly show that resource utilization keeps
increasing significantly compared to latency decrease when scaling up the unroll factor, and the
latency will gradually go to the 256 cycle limit needed for the combination of the partitioned
histogram block RAM.

A similar design issue occurs in the base-1 unrolled implementations. As with the FSL link the
bottleneck occurred at an unroll factor of 3, caused by the limited input bandwidth, the bottleneck
now occurs at an unroll factor of 6 resulting from an increased bandwidth by the use of a dual
ported block RAM. Once the parallelism goes beyond factor 6, the latency bottleneck moves from
the 3-cycle read-modify-write operations to the cycles required to supply the pipeline with data.

6.2 Erosion Design Space Exploration

The erosion operation is assumed to require a 5x5 window to achieve the correct results. This win-
dow size can be achieved by either implementing the 5x5 window operation directly, or by splitting
up the window operation into smaller sized window operations, executing a smaller erosion kernel
multiple times. The DSE is performed on both a 5x5 implementation as a 3x3 implementation
executed twice, exploring a few basic optimizations such as pipelining, streaming and unrolling.
The input data is assumed to be in external block RAM as the initial input description requires
pixels to be fetched from the input multiple times due to the shifting window.

Listing 6.3 presents the naive reference erosion description based on a 3x3 window. The 5x5
description simply extends the 3x3 rectangle to a 5x5 rectangle and increases the border size by
one to prevent out-of-memory accesses.

From the reference design, both 3x3 and 5x5 can be expected to produce bad QoR caused
by a large amount of reads on the same input array which is implemented in block RAM. The
optimizations applied involve source modifications to let the erosion kernel fetch and produce
one pixel per cycle, enable interleaved execution of two 3x3 kernels consuming and producing
one pixel per cycle, apply unrolling to improve throughput by exploiting dual ported block RAM
and implement fine-grained data parallelism to process image lines instead of image pixels. For
reference, example input descriptions for a pixel-streaming and a data-parallel driven design can
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be found in Appendix B.

for ( y = 0 ; y<HEIGHT; y++) {
for ( x=0; x<WIDTH; x++) {

i f ( ( i < 1) | | ( i>=HEIGHT−1) )
output [ i ∗WIDTH + j ] = 0 ;

else i f ( ( j < 1) | | ( j>=WIDTH−1) )
output [ i ∗WIDTH + j ] = 0 ;

// 3x3 r e c t an g l e
else

output [ i ∗WIDTH + j ] = ( img [ ( y−1)∗WIDTH+x−1] &
img [ ( y−1)∗WIDTH+x ] &
img [ ( y−1)∗WIDTH+x+1] &
img [ ( y )∗WIDTH+x−1] &
img [ ( y )∗WIDTH+x ] &
img [ ( y )∗WIDTH+x+1] &
img [ ( y+1)∗WIDTH+x−1] &
img [ ( y+1)∗WIDTH+x ] &
img [ ( y+1)∗WIDTH+x+1] ) ? 1 : 0 ;

}
}

Listing 6.3: Naive description of the erosion kernel using a 3x3 window

Figure 6.8 shows the explored design points in latency and flip flop trade-off, figure 6.9 shows
latency and LUT trade-offs. For the 3x3 window based implementation, the erosion hardware
block is only duplicated when applying streaming to speed up the dual execution of the kernel.
There is a clear correspondence between the LUT and flipflop design points, except for the two par-
allel implementations. In the parallel implementation, the 5x5 implementation uses significantly
more flip flops which are used for line buffering. The LUT utilization in the 3x3 implementation
is slightly less because of the reduced window size, requiring less and gates. Note however that
the latency for the 5x5 implementation is twice as small as for the 3x3 design, since the smaller
implementation needs to execute twice to achieve the same result. The hardware block dupli-
cation in the 3x3 streaming implementation results in a less optimal design point compared to
the 5x5 throughput optimized design which read and writes one pixel per cycle. Note that more
implementations are possible, for example by applying packing to create multiple granularities
of parallelism. Packing is not implemented due to time constraints, but better performance is
achievable by applying packing in the 3x3 throughput optimized unroll 2 implementation.

6.3 Discussion

The design space exploration on both kernels took only one day to perform, including the gathering
of the results and coding the input descriptions. The parameterized input description for the
histogram kernel has shown it is possible to automatically perform DSE on specific kernels by
the use of scripts. Even if HLS is not accepted in the design flow, it could still be used to do
fast proof of concept or just to produce an initial design which can serve as reference for an RTL
designer. The DSE on the histogram and erosion kernel has shown it is both fast and easy to
produce different trade-offs in the design process.

This DSE has shown that AutoESL can produce a wide range of possible datapaths, including
highly parallel and streaming design which are common in FPGA design. The results for the two
kernels show that resource utilization and latency can be easily related to the input coding style
and knowledge about hardware specifics such as block RAMs and FSLs.
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Figure 6.8: Latency vs. flip flop utilization for the erosion kernel

Figure 6.9: Latency vs. LUT utilization for the erosion kernel
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Chapter 7

Algorithmic Skeletons for High

Level Synthesis

During the design space exploration of the histogram and erosion kernel in chapter 6, several ex-
amples of optimized C-code were presented. These code optimizations resulted in higher quality
of results when performing high level synthesis, compared to naive C descriptions. For the his-
togram kernel, it is also shown that the optimized C-code could be easily parameterized to support
different degrees of parallelism without requiring any code modifications. The optimized C-code
is written in a way to optimize the memory accesses and is independent of the operation which
needs to be performed on the data.

This chapter will use and elaborate on these observations and will use the algorithm (FFoS)
from the case study in chapter 5 as a leading example towards the introduction of algorithmic
skeletons. Goal is to search for parameterizable code structures, the algorithmic skeletons, which
can automatically be instantiated for good quality of results in HLS. The question which arises is
whether or not these code structures exist and if they can be linked to the algorithm classification
as can be found in [45]. This algorithm classification allows fine-grained classification of algorithms
while using a limited vocabulary, enabled by the use of parameters and modularity. The focus on
the classification is for automated use in compilers and tools, making it a suitable candidate to be
included in the high level synthesis design trajectory.

Section 7.1 shortly introduces the existing Bones source-to-source compiler, written by Cedric
Nugteren at the Embedded Systems Group. This tool will be used to investigate the usability
and applicability of algorithmic skeletons for HLS. Section 7.2 introduces the algorithm classifica-
tion, on which Bones is based, with regard to the FFoS application. In section 7.3 certain code
structures will be related to the algorithm classification for the FFoS example. In section 7.4 sev-
eral example skeletons for the FFoS algorithm are implemented using the Bones source-to-source
compiler targeting AutoESL high level synthesis. Finally, section 7.5 includes a discussion on the
findings presented in this chapter.

7.1 Source-to-Source Compiler

The Bones source-to-source compiler will be used to transform highly sequential C code to in-
stantiations of parameterizable skeletons for higher HLS performance and faster design space
exploration. Bones is an open-source tool developed by Cedric Nugteren and is written in the
Ruby language. The compiler is based on CAST, which parses the input C-code into an abstract
syntax tree (AST). Transformations are applied to the AST and is eventually transformed back
to C-code by CAST. The tool is open source and supports and encourages users to modify or
extend the skeleton library or target library. This work is a first attempt to extend the tool with
an FPGA as target platform. Input to the tool is C-code annotated with class information, the
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output is parallelized target code. Figure 7.11 presents a high level overview of Bones. The origi-
nal code and skeleton code are transformed to an abstract syntax tree. Based on a user supplied
transformation list, containing basic transformations such as variable renaming, the skeletons are
instantiated. Class specific skeletons can be added by using a number of parameters which are
instantiated by Bones, enabling the user to code a specific structure at skeleton level while Bones
instantiates the loop body (possibly with basic transformations such as variable renaming).

Figure 7.1: High-level overview of the Bones source-to-source compiler

Current targets for code generation include NVIDIA GPUs, AMD GPUs and x86 CPUs using
skeletons based CUDA, OpenCL and OpenMP respectively. Bones relies on a new algorithmic clas-
sification [45] and generates code based on a skeleton library containing parameterizable skeletons
based on the classification. Using a transformation list in combination with the parameteriz-
able skeletons, classified kernels in the input code are transformed and instantiated, replacing the
original input description with accelerated versions of the classified kernels.

Figure 7.2 shows the final design flow for the use of algorithmic skeletons in combination with
high level synthesis. Bones instantiates skeletons based on manually specified algorithm classes in
the algorithm description. Based on parameters in the algorithm class and parameterized skeletons
an accelerated algorithm description is generated which results in predictable and understandable
high level synthesis results which can be passed down to logic synthesis tools. This design flow
can be further extended by automatically analyzing the algorithm specification and inserting the
algorithm classes, with the possibility of automatic optimization steps such as kernel fusion.

1parse.ele.tue.nl/tools/bones/bones0.9manual.pdf
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Figure 7.2: Complete design flow using algorithmic skeletons and HLS

7.2 Algorithm Classification

To introduce the algorithm classification used as reference throughout this work, figure ?? shows
the same vision pipeline used for the HLS case study in chapter 5. The work of Cedric Nugteren
captures the memory access behavior in the classes. To explain this sort of classification and give
an intuitive feel of the classification without requiring further reading, we give four small examples
based on the FFoS application. The used vocabulary is in research and may not be up to date,
the examples in this case serve as an educational example to highlight the main idea behind the
classification.

Table 7.1 summarizes the classification for the four kernels discussed in the following sections.

Table 7.1: Algorithm classification for the Fast Focus on Structures application

Kernel Classification

Histogram Element to shared
Binarization Element to element
Erosion Neighborhood to element
Projection Tile to element

Histogram Otsu Binarization

Erosion Projection Find Center

ROI of
OLED
wafer

Coordinates
of Centers

Figure 7.3: The vision pipeline for the fast focus on structures application
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7.2.1 Histogram

This kernel reads image data and depending on the pixel values increments a certain histogram bin.
Listing 7.1 shows a code example implementing the histogram kernel behavior. The classification
in this case implies that the input is two-dimensional of size HEIGHT * WIDTH and is processed
per element, meaning that each iteration a different element is required as input to produce an
output. The output in this case is an array containing 256 element, but it is being written in a
random order and is therefore of the type shared.

The term shared in this case implies that multiple iterations of the loop can write to the
same location of the output array and thus the output location is shared across the iterations.
Note that this classification already enables reasoning about parallelism. The term shared output
already indicates that parallelizing the computation is not a simple matter of distributing the
computations across multiple processing units as multiple of those units might be writing to the
same memory location.

HEIGHT x WIDTH| element −> 256 | shared
for ( y = 0 ; y < HEIGHT; y++){

for ( x = 0 ; x < WIDTH; x++){
bins [ image [ y ] [ x ] ]++;

}
}

Listing 7.1: Histogram behavior and classification

7.2.2 Binarization

This kernel reads image data and depending on the pixel value and the threshold value the output
is either one or zero, reducing the required storage for the image. Listing 7.2 shows a code example
implementing the binarization behavior. The classification describes the memory access behavior,
in this case each input element corresponds to one output element, classifying the kernel as an
element to element algorithm. In this case the operation, a data comparison, is straightforward
but since no notion of operation is captured by the classification this operation can be anything
as long as each input element eventually corresponds to one output element in the loop body.

Since each iteration requires a single input element, which is not re-used in other iterations,
and writes a single output element which is not accessed in other iterations the computation can
be easily parallelized and the degree of parallelism will be limited by the available bandwidth on
the target platform. In this case, each output element is only one bit wide, whereas the input
bit-width is dependent on the number of bits per pixel and will be the limiting factor with regard
to bandwidth.

HEIGHT x WIDTH| element −> HEIGHT x WIDTH| element
for ( y = 0 ; y < HEIGHT; y++){

for ( x = 0 ; x < WIDTH; x++){
out [ y ] [ x ] = ( in [ y ] [ x ] > th r e sho ld ) ? 1 : 0 ;

}
}

Listing 7.2: binarization behavior and classification

7.2.3 Erosion

This kernel removes noise from an image, based on a particular window size which slides over
the input image. Listing 7.3 shows a code example implementing the erosion behavior. The
classification describes a neighborhood algorithm, requiring a 3x3 window (9 elements) from a 2-
dimensional input of size HEIGHT * WIDTH. The classification indicates that for each 3x3 input
window, a single output element is written. Again, there is no notion of the operation in the
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classification. It is only identified as a kernel which requires 3x3 input elements, which overlap
across loop iterations as indicated by the keyword neighborhood. Each output element is based
on 9 input elements from the neighborhood window and each output index ia only accessed once
across all iterations.

Parallelization of this kernel is more complicated as the sliding window has overlapping elements
across loop iterations, meaning multiple iterations requires the same input elements to write an
output element. This classification indicates that the input will be the performance bottleneck,
and care has to be taken to efficiently manage the loading of the input elements.

HEIGHT x WIDTH| neighborhood (3 x3 ) −> HEIGHT x WIDTH| element
for ( y=0;y<he ight ; y++){

for ( x=0;x<width ; x++){
i f ( y<1 | | y>= height−1 | | x<1 | | x>=width−1){

cond i t i on = 0 ;
}
else {

cond i t i on = 1 ;
for ( a=−1;a<=1;a++){

cond i t i on = cond i t i on & in [ y−1] [ x+a ]
& in [ y ] [ x+a ]
& in [ y+1] [ x+a ] ;

}
}
out [ y ] [ x ] = cond i t i on ;

}
}

Listing 7.3: Erosion behavior and classification

7.2.4 Projection

The projection kernel maps the two dimensional image to a vector. In this case, as shown in listing
7.4, horizontal projection is performed by horizontally adding the input element and storing them
in a vector. The classification includes the keyword tile, indicating that for each output element a
tile of 120 elements is required. The tile classification differs from the neighborhood classification
in the sense that tile operations do not have overlapping elements across loop iterations. This
means that each output element is based on 120 elements (the tile) which are not needed anymore
after the production of that particular output element. In total, HEIGHT elements are produced,
requiring the same amount of tiles to be fetched from memory.

The classification again describes the memory access pattern for this kernel. If for example the
inner loop needs to be fully parallelized, the classification informs the designer that it is necessary
to read 120 elements from memory in parallel.

HEIGHT x WIDTH| t i l e (1 x120 ) −> HEIGHT | element
for ( y=0;y<he ight ; y++){

acc = 0 ;
for ( x=0;x<width ; x++){

acc += in [ y ] [ x ] ;
}
out [ i ] = acc ;

}

Listing 7.4: Projection behavior and classification
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7.2.5 Discussion

The previous sections have shown some simple examples of algorithms and the way they are
classified. It should be noted that these classifications might be obvious in the examples given,
but can be hard to extract manually when the algorithm is more complex. The projection kernel for
example can be a merged algorithm which calculates both the horizontal and the vertical projection
in the same loops, resulting in a mixture of classes. These small examples however already show
the usefulness of the classification, as the designer can extract the main latency bottleneck when
targeting the code to high level synthesis from the classification alone without requiring knowledge
about the operation(s) in the loop body. In fact, the kernel comparison in chapter 4 and the case
study in chapter 5 have shown that the most time consuming code transformations are related
to the memory access patterns and memory hierarchy. Memory optimizations in HLS input
specifications are the most common way of optimizing the quality of results. This indicates that
it is useful to have a classification based on the memory access patterns, but does not yet confirm
that we do not need knowledge about the actual operation to be performed. The following section
will discuss the code transformations applied to several kernel in the FFoS algorithm and will
relate them to the algorithm classification as was presented in this section.

7.3 Code Structures in FFoS

Throughout this work, several code optimizations for the kernels of interest have been shown. This
section will summarize these optimizations in relation to the algorithm classification. Section 7.4
will discuss the integration of these structures in the Bones source-to-source compiler, highlighting
the advantages, usability and limitations of the algorithm classification and Bones tool for high
level synthesis.

7.3.1 Element to Shared

The element to shared example in FFoS is the histogram kernel, for which several implementations
have been discussed in section 6.1. Listing A2 in section A presents the parameterized source
code for the optimal design points explored during the design space exploration. The basic code
structure involves address comparisons to remove to the randomness in the block RAM access
to improve latency. The random array access on the shared vector results in a RaW hazard,
causing high level synthesis to produce a badly pipelined datapath, removing the randomness in
the memory accesses enabled high level synthesis tools to produce better quality of results.

The code structure is completely based on the memory access pattern and assumes the op-
eration is performed on a single input, i.e. the operation does not require data from any other
memory locations.

7.3.2 Element to Element

The element to element class is a fairly simple class as there is no data re-use across loop iterations
or data dependent memory accesses such as in the element to shared class. Listing 7.5 shows a
code example of the basic code structure for AutoESL. By supplying an unroll factor it is possible
to create different degrees of parallelism. The operation performed in the loop body can be any
operation as long as the code adheres to the classification, consuming one input element and
producing one output element per loop iteration. Since AutoESL supplies the user with pragmas
for automatic memory optimizations, the loop body can be directly inserted in this code structure.
Note that compared to the element to shared example previously discussed, the loop body for
the algorithm specification can remain unchanged, which will be an important issue when the
structures are integrated into Bones.
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#pragma AP array re shape va r i ab l e=in f a c t o r=UNROLLFACTOR dim=2
#pragma AP array re shape va r i ab l e=out f a c t o r=UNROLLFACTOR dim=2
for ( y = 0 ; y < HEIGHT; y++){

for ( x = 0 ; x < WIDTH; x++){
#pragma AP p i p e l i n e
#pragma AP un r o l l f a c t o r= UNROLLFACTOR

<loop body>
}

}

Listing 7.5: Code structure for an element to element class algorithm

7.3.3 Neighborhood to Element

The neighborhood to element example in FFoS is the erosion kernel, for which several implemen-
tations have been discussed in section 6.2. The listings in section B show two example of possible
code structures. The first code, listing B1, solves the input memory performance bottleneck by se-
quentially loading input elements and storing them in internal row and window buffers to prevent
re-used elements to be loaded multiple times from the same memory. The interesting notion of
this structure is that the sizes of row and window buffers, number of loop iterations and conditions
of the conditional statements can all be extracted from the classification. The loop body of the
naive description in listing 7.3 is the same as in the code structure in listing B1, except for the
renaming of the input memory, which is now an internal local memory. This indicates that the
code structure for a neighborhood classification is operation independent.

Listing B2 shows a different structure, one that operates on the image data in parallel. Al-
though the operation is still the and operation, it is important to notice that the loop body is
now completely different from the naive description. This indicates that some knowledge about
the operation needs to be available if the code structure needs to be instantiated automatically, as
the original loop body can no longer be copied into the code structure. Note that this is identical
in the case of the element to shared code structure.

7.3.4 Tile to Element

The tile to element class is in a sense similar to the element to element class. In high level synthesis,
tile to element algorithms can be efficiently pipelined due to the memory access pattern. If parallel
behavior is required, care needs to be taken provide enough bandwidth on the input (and possibly
output) memory. Listing 7.6 shows example code for a parameterizable horizontal projection
kernel. In this example there is a significant difference with the element to element class. Because
a tile is needed to produce an output, the loops are no longer perfectly nested loops. This means
that the loop body is not just found in the most inner loop, but actually starts after the first
loop. Because the pragmas are inserted inside the inner loop, the loop body is modified and we
no longer have a code structure in which the functionality of the naive implementation can be
inserted without modifications.

#pragma AP array re shape va r i ab l e=in f a c t o r=UNROLLFACTOR dim=2
for ( y=0;y<he ight ; y++){

acc = 0 ;
for ( x=0;x<width ; x++){
#pragma AP p i p e l i n e
#pragma AP un r o l l f a c t o r=UNROLLFACTOR

acc += in [ y ] [ x ] ;
}
out [ i ] = acc ;

}

Listing 7.6: Projection behavior and classification
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7.3.5 Discussion

Previous sections have shown a few examples of code structures for better quality of results in
high level synthesis compared to naive input descriptions. It is shown that mainly the element
to shared and neighborhood to element classes require significant code modifications for optimized
performance. The element to element and tile to element classes appeared to be very similar,
however the tile to element class required code modifications inside the loop body whereas the
modifications in the element to element class required modifications before the occurrence of the
loop body. A similar issue was encountered in the element to shared and neighborhood to shared
class, where in some cases the loop body in the naive input description needs to be modified to fit
in the optimized code structure. This is an important observation with regard to the introduction
of algorithmic skeletons for HLS in combination with the Bones tool. The following sections will
elaborate on the integration of these skeletons in the Bones tool to target HLS design for FPGA,
showing the limitations caused by these observations.

7.4 Algorithmic Skeletons for HLS in Bones

Several skeleton classes have been implemented in the Bones tool to target HLS using AutoESL.
Some issues will be addressed in this section regarding the use of Bones for skeleton instantiation
for HLS and the usability and feasability of algorithmic skeletons for HLS.

7.4.1 Element to Shared

The skeleton of the element to shared class is similar to the implementation shown in listing A2
in appendix A, only there are some minor implementation differences. In the skeleton imple-
mentation, the choice is made to support loop unrolling to duplicate the loop body and process
multiple pixels at the same time. As a result, the user is responsible for the creation of a memory
throughput which matches the degree of parallelism required. The parallelization factor is for
now only selectable in the skeleton itself, but should eventually be tuned by a parameter inserted
with the input specification. Overhead compared to a manually written design occurs when no
parallelism is required and user selects an unroll factor of 1. An extra loop with the number of
iterations equal to the size of the histogram memory is now required to copy internal histogram
data to the output of the skeleton. This can easily be overcome by smarter code generation based
on analysis of the parallelization parameter, since the loop is not required to be generated when
the parameter is set to 1.

Since the loop body is completely rewritten compared to the naive implementation, the oper-
ation for the histogram kernel is hard-coded in the skeleton implementation. Reason for this is
the current operation of Bones, which does not perform loop body transformations besides some
basic transformations such as variable renaming. This essentially makes the element to shared
skeleton a histogram template function for now. To make the skeleton generic, supporting every
operation, a way needs to be found to instantiate the operation in the skeleton as well. This can
be done by feeding the operation as an argument to the Bones tool, but this will limit the number
and complexity of the operations as it is not possible to capture every imaginable operation in a
parameter. Furthermore, the replacement of native C data-types by arbitrary precision data-types
is required to optimize resource utilization on FPGA as AutoESL is not always able to reduce
bit-widths automatically.

Summarized, the observations done mean that for HLS, a source-to-source compiler is required
which is able to extract operation information and somehow instantiate this operation in the
skeleton of the considered class.

Next to this histogram template skeleton, a skeleton for the element to one-shared class has
been made. This class operates on N elements to produce a single output element. Examples
of such kernels are a calculation of the sum of all pixel values in an image and the search for a
maximum or minimum. With the addition of a parallelization parameter all degrees of parallelism
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can be generated for kernels like the sum-of-pixels. The maximum or minimum kernel can not be
fully parallelized with this skeleton as AutoESL is not able to extract the commutative property
of the operation and requires significant loop body changes to achieve the same result as loop un-
rolling does for addition. Listing 7.7 presents a simplified example of the skeleton implementation.
Parameters instantiated by bones are surrounded by brackets. The code1 parameter is replaced
with the loop body by Bones.

#pragma AP re sou r c e va r i ab l e=<in 1 name> core=RAM 2P
#pragma AP a r r a y p a r t i t i o n va r i ab l e=<in 1 name>

c y c l i c f a c t o r=UNROLLFACTOR dim=1
for ( k=0; k<<in 1 dim >; k++){

#pragma AP PIPELINE I I=1
#pragma AP UNROLL f a c t o r=UNROLLFACTOR
<code1> // i . e sum = sum + k∗ in [ k ]

}

Listing 7.7: Element to one-shared skeleton

The reason why maximum does not fit this skeleton description is explained by use of listing
7.8. In this example, the maximum of 8 input elements is searched in a single clock cycle. Writing
this kernel as a loop and applying loop unrolling in AutoESL results in a chain of comparisons
executed in multiple clock cycles, not gaining the maximum possible performance. Again, such an
implementation requires loop body transformations.

max1 = ( in [0]> in [ 1 ] ) ? in [ 0 ] : in [ 1 ] ;
max2 = ( in [2]> in [ 3 ] ) ? in [ 2 ] : in [ 3 ] ;
max3 = ( in [4]> in [ 5 ] ) ? in [ 4 ] : in [ 5 ] ;
max4 = ( in [6]> in [ 7 ] ) ? in [ 6 ] : in [ 7 ] ;

max5 = (max4 > max3) ? max4 : max3 ;
max6 = (max2 > max1) ? max2 : max1 ;

max = (max6 > max5) ? max6 : max4 ;

Listing 7.8: Optimized code for maximum kernel

7.4.2 Element to Element

The element to element class is the simplest class in HLS as it requires almost no changes. Par-
allelization of such easy kernels is supported by AutoESL by use of pragmas. Again, parame-
terization of the skeleton classification is required to automatically parallelize with any degree.
Currently, the skeleton implementation requires the user to select the proper unroll factor in the
skeleton itself. With no parallelism required, an unroll factor of 1 selected, the throughput is
improved by automatically selecting the pipelining optimization in AutoESL. Since the loop body
of the input description requires no change, all operations are supported.

7.4.3 Neighborhood to Element

For the neighborhood to element class, a skeleton is implemented which optimizes throughput on
a pixel-by-pixel basis. Listing B1 in appendix B has been fully parameterized, but again does not
optimize for reduced bit-widths and fully parameterizable parallelism. Similar to the histogram
template, data type replacement and operation extraction is required to support automatic par-
allelization in a way such as shown in listing B2 in appendix B.

The skeleton implementation requires the user to handle border cases of the image in the loop
body, thus requiring the loops to iterate over the complete image.
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7.4.4 Tile to Element

The tile to element skeleton has limited performance due to issues similar to the issues encountered
in the histogram implementation and erosion implementation. To support more latency/area
trade-off points, loop body modifications are necessary, such as pragma insertion in the inner
loop to enable a higher throughput at low area cost and unroll parameterization and partitioning
in the inner loop to enable the use of multiple degrees of parallelism. Currently, the skeleton
only supports complete parallelization of the inner loop, thus loading the tile in a single cycle for
improved latency but at large area cost.

7.5 Discussion

In this chapter it is shown that the algorithm classification is suitable for HLS in the image
processing domain. In HLS, most code optimizations are based on the memory access patterns
to optimize throughput and the classification has shown particular code optimizations for several
classifications such as the neighborhood to element, element to shared, element to element and tile
to element classes. However, several limitations have been found which will be summarized next.

The programming style for HLS is different from programming GPUs and CPUs. In GPUs and
CPUs, the computation is distributed across hardware processing units which are already there
waiting to be utilized. This makes index calculations after loop and array flattening acceptable,
whereas it would be costly in FPGA design because of the required area utilization for divider
and modulo operations. However, by applying loop flattening the skeletons can be made generic
to fit any N-dimensional data structure. In this work, skeletons are based on two-dimensional
data structures whenever the input or output of the algorithm is based on an image, which should
therefore be represented as two-dimensional in the input specification. AutoESL has problems
with dealing with flattened data structures, caused by its automatic bit-width optimization. Once
an array is flattened and a pointer is used to access the array, AutoESL looses track of the array
dimensions and generates incorrect address line bit-widths without the use of explicit bit-casting.

To exploit parallelism or remove memory bandwidth bottlenecks on an FPGA, the loop body
often needs to be fully rewritten to exploit arbitrary precision data type usage, in order to keep
the resource utilization at an acceptable level. The complete rewrite based on operation and
data-types is not included yet in the Bones tool, as so far it supports basic transformations such
as variable renaming to, for example, exploit shared memory on the GPU (a transformation also
used in neighborhood to element skeleton for HLS).

Although some skeletons have been implemented, the full range of datapaths which could
potentially be generated is not exploited yet. To achieve this, an approach more focused towards
HLS is needed. To prevent the skeletons from becoming function templates (such as the element
to shared skeleton), there is a need for the following:

• Data type renaming to enable fine grained data parallelism.

• A notion of the operation next to the memory access pattern to be able to produce generic
skeletons supporting any operation.

• A parameter describing the degree of parallelism required. For example an unroll factor
parameter to instantiate multiple copies of the generated data-path. With this, a smarter
tool is required to only instantiate useful code based on the parallelization parameter.

• A smarter tool which can apply source transformations on the loop body depending on the
classification.

The first and third item can be easily implemented in Bones, but the second and last items
pose the largest bottleneck for the introduction of algorithmic skeletons for high level synthesis.
AutoESL supports all the necessary arbitrary precision functionality to recode naive C implemen-
tations to C descriptions generating efficient datapaths (with any degree of parallelism). However,
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since no notion of operation exists in the algorithm classification, automatically instantiating
skeletons is infeasible so far. The data bit-widths and arbitrary precision functionality required is
dependent on the operation and this operation can be anything from a simple bit-wise and to a
complicated datapath containing multipliers and dividers. Furthermore, experiments have shown
unexpected HLS behavior when using flattened data structures (used to keep skeletons generic)
and optimizations such as arbitrary precision have an influence on all the occurences of the variable
(thus are not limited to the classified kernel).

With a tool able to perform the requires code transformations, table 7.2 presents the lines
of code required at the different specification levels, justifying the use of algorithmic skeletons
for HLS. In the table, C is the lines of code required as input for the tool that instantiates the
skeletons, C’ is the lines of code after code transformations for high quality of results in HLS
and Verilog is the lines of code for a manual RTL design. The lines of code in C’ and Verilog
are related to similar designs and it is shown that design time can be significantly reduced by
an average of a factor 3 (assuming LOC as design time metric) in the case of the four example
kernels.

Table 7.2: Total lines of code

Kernel C C’ Verilog

Histogram 3 20 120
Binarization 3 7 160
Erosion 9 18 160
Projection 6 10 240
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Chapter 8

Conclusion and Future Work

This chapter contains a short overview of this work, summarizing results and observations, and
suggestions for future work. The conclusion is presented is section 8.1, suggestions for future work
can be found in section 8.2.

8.1 Conclusion

Two small image processing kernels are ported to FPGA using two HLS tools. Both tools were able
to mimic the datapath of handwritten RTL designs serving as reference. The latency constraint
set by the reference designs was met using both tools. AutoESL appeared to have the best
performance for these image processing kernels. The architecture template in Synphony infers
components which are often not necessary in the image processing domain, as it is mainly the stall
domain logic which causes area overhead in Synphony. AutoESL uses more area for the histogram
kernel, which is a result of the absence of fine grained interface control when specifying FSL as
the interface in AutoESL. The handwritten design is optimized to use an interface control bit to
start or stop kernel execution, whereas in AutoESL HLS kernel execution is controlled by a loop
and the accompanying hardware. Design time for such small kernels differ from one to two hours
in HLS to one to two days in RTL.

The Fast Focus on Structures application was successfully ported to FPGA using both HLS
tools. The absence of floating point in Synphony can, in this case, be overcome by conversion of a
floating point kernel to an integer kernel. Note that this can not be done for all image processing
kernels, for example due to accuracy constraints, and the lack of floating point in Synphony can
be a big issue. Large fluctuations in the cost of dividers generated by CoreGen, AutoESL and
Synphony resulted in a difficult comparison. When ignoring divider cost in the best comparable
designs, differing only slightly in interface cost, AutoESL uses 5% less flip flops and 4% more
LUTs whereas Synphony required 62% more flip flops and 61% more LUTs. Latencies for both
HLS designs are within 1% of the reference. It is also shown that small modifications to the input
specification, requiring only minutes of work, have large positive effects on the performance results.
With just a few small changes, both latency and area cost were reduced. Several designs were
explored within a day, where a limitation in AutoESL was encountered regarding wide vectorization
in combination with the use of FIFOs. This indicates that the tool is still under development
and can not yet generate as fine grained designs as can be achieved in handwritten RTL. When
experienced with the tool, design time was reduced by a factor 6 compared to the handwritten
RTL design.

Following the performance analysis, two design space explorations on image processing kernels
are performed. The results have shown that using parameterizable input descriptions, a large
scope of designs can be explored within a day. Resource utilization and execution time could
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be related to the input specification, and generated schedules by AutoESL visualize performance
bottlenecks to supply the designer with the necessary information for design optimization.

During the kernel comparison, application mapping and design space exploration, several code
structures were identified which could be related to an existing algorithm classification. An at-
tempt was done to automate the code optimization process using the Bones source-to-source
compiler. During this attempt, several issues were encountered. The main issue is the HLS tool
specific input specifications which are required by AutoESL and the need for extensive loop body
transformations. The Bones tool so far only performs basic loop body transformations such as
variable renaming, which have been successfully used in several skeleton implementations for HLS.
However, the code structures identified also require more complicated loop body transformations.
The skeleton implementation for HLS differs in so many ways from skeletons implemented in
Bones for GPU and CPU, that it might be more effective to introduce a separate tool to perform
the automated tasks. Furthermore, it is debatable whether or not automatic code transforma-
tion is worth the effort as many limitations were encountered. Optimized code instantiation at
kernel level results in the need for code transformations at application level, such as data type
conversion and changes in memory sizes and layout. Loop and array flattening to support generic
skeletons supporting multiple dimensions results in area overhead for address calculation by the
use of dividers and modulo operations and bit-width optimizations issues in AutoESL.

To summarize, the results of the high level synthesis analysis look promising regarding the
application which was used and the covered scope of generated datapaths. Although several
performance issues still exist, HLS seems to have matured enough to be included in the design
process. If performance issues are encountered, it is always possible to fall back to handwritten
RTL and the generated RTL by HLS can even be used as reference as it is readable and visualized
by a schedule viewer. The use of automated code transformation is debatable as extensive loop
body transformations are required and have effects on required transformations in the entire
application scope. Furthermore, optimized C descriptions heavily depend on tool specific libraries
and coding styles imposed by the HLS tool. It is shown however that design time decreases even
further when using algorithmic skeletons, and the designer can ignore the underlying hardware to
achieve good quality of results.

8.2 Future Work

Next to this work, several other papers exist in which good quality of HLS results is observed (refer
to section 2.3). However, since some issues still exist in HLS, such as divider cost and vectorization
issues in AutoESL, a different approach could be research to a combination of HLS design and
manual design. An application in which a performance bottleneck is observed might be replaced
by a design mixture containing both HLS design and handwritten RTL. This is similar to a C
program in which a portion of code is accelerated by the use of inlined assembly. The question
is how much effort is required to separate HLS and manual design and how to efficiently combine
them.

More work needs to be done on the feasibility and usability of automatic source transformations
using algorithmic skeletons for HLS. More applications need to be analyzed in order to see if other
code structures for high quality of results exist and if they match the algorithm classification.
The results so far indicate that tool specific skeleton libraries are required and that extensive loop
body transformations are required to achieve good quality of results. A good approach would be to
design a separate tool for HLS skeleton instantiation, starting with automatic code transformations
based on the code structures explored in this work and gradually extend to tool to support more
complicated applications.

A different design trajectory with regard to skeleton instantiation can also be explored, being
the hardware skeleton trajectory. Using this approach, skeletons will not be HLS tool dependent
but most likely be logic synthesis tool dependent. The question is if higher or similar quality of
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results can be achieved compared to HLS and handwritten RTL and if design time can be reduced
compared to manual code transformations for HLS.
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Appendix A

Parameterized Histogram

Descriptions for DSE

void histogram ( ap uint<8∗UNROLL FACTOR> ∗ image , ap uint<16> ∗ pi ){
ap uint<13> j ;
ap uint<UNROLLFACTOR+1> a ;
stat ic ap uint<16> pi tmp [UNROLLFACTOR] [ 2 5 6 ] ;
#pragma AP a r r a y p a r t i t i o n va r i ab l e=pi tmp complete dim=1
#pragma AP re sou r c e va r i ab l e=pi tmp core=RAM 2P
stat ic ap uint<16> tmp ;

for ( j = 0 ; j<(WIDTH∗HEIGHT) ; j+=UNROLLFACTOR){
#pragma AP PIPELINE

for ( a=0;a<UNROLLFACTOR; a++){
#pragma AP UNROLL

pi tmp [ a ] [ image [ j+a ] ]++;
}

}
for ( j =0; j <256; j++){
#pragma AP PIPELINE

for ( a=0;a<UNROLLFACTOR; a++){
#pragma AP UNROLL

tmp += pi tmp [ a ] [ j ] ;
}

pi [ j ] = tmp ;
}

}

Listing A1: Base-1 description of the histogram kernel
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void histogram ( ap uint<8∗UNROLL FACTOR> ∗ image , ap uint<16> ∗ pi ){
ap uint<13> j ;
unsigned int a ;
stat ic ap uint<16> pi tmp [UNROLLFACTOR] [ 2 5 6 ] ;
#pragma AP re sou r c e va r i ab l e=pi tmp core=RAM 2P
ap uint<8∗UNROLL FACTOR> packed ;
#pragma AP a r r a y p a r t i t i o n va r i ab l e=pi tmp complete dim=1
ap uint<8> o ld index [UNROLLFACTOR] ;
#pragma AP a r r a y p a r t i t i o n va r i ab l e=o ld index complete dim=1
ap uint<8> index [UNROLLFACTOR] ;
#pragma AP a r r a y p a r t i t i o n va r i ab l e=index complete dim=1
ap uint<16> accu [UNROLLFACTOR] ;
#pragma AP a r r a y p a r t i t i o n va r i ab l e=accu complete dim=1

for ( j =0; j<UNROLLFACTOR; j++){
#pragma AP UNROLL

accu [ j ] = 0 ;
o ld index [ j ] = 255 ;

}
for ( j =0; j <(5400/UNROLLFACTOR)+1; j++){
#pragma AP PIPELINE
#pragma AP dependence va r i a b l e=pi tmp i n t r a RAW fa l se

packed = image [ j ] ;
for ( a=0;a<UNROLLFACTOR; a++){
#pragma AP UNROLL

index [ a ] = packed . range ( a+(a∗7)+7 ,a ∗8 ) ;
}
for ( a=0;a<UNROLLFACTOR; a++){
#pragma AP UNROLL

i f ( o ld index [ a ] == index [ a ] ) {
accu [ a ] = accu [ a ] + 1 ;

}
else {

pi tmp [ a ] [ o l d index [ a ] ] = accu [ a ] ;
accu [ a ] = pi tmp [ a ] [ index [ a ] ] + 1 ;

}
o ld index [ a ] = index [ a ] ;

}
}
ap uint<16> tmp = 0 ;
for ( j =0; j <256; j++){
#pragma AP PIPELINE

for ( a=0;a<UNROLLFACTOR; a++){
#pragma AP UNROLL

tmp += pi tmp [ a ] [ j ] ;
}
pi [ j ] = tmp ;

}

}

Listing A2: Base-2 description of the histogram kernel
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Appendix B

Erosion Descriptions for DSE

.

void e r o s i on ( ap uint<1> ∗ img , ap uint<1> ∗ out ){
unsigned int i , j ;
ap uint<1> t i l e b u f f e r [ 3 ] [ 3 ] ;
#pragma AP ARRAY PARTITION va r i ab l e=t i l e b u f f e r dim=0 complete
ap uint<1> row1 [ 1 2 0 ] ;
ap uint<1> row2 [ 1 2 0 ] ;
ap uint<1> row3 [ 1 2 0 ] ;
ap uint<1> temp data ;
ap uint<1> output ;

for ( i = 0 ; i < (HEIGHT+1); i++) {
for ( j = 0 ; j < (WIDTH+1); j++) {
#pragma AP PIPELINE

output = 0 ;
i f ( i<HEIGHT && j <WIDTH){

row1 [ j ] = row2 [ j ] ;
row2 [ j ] = row3 [ j ] ;

temp data = data [ i ∗WIDTH+j ] ;
row3 [ j ] = temp data ;
t i l e b u f f e r [ 0 ] [ 0 ] = t i l e b u f f e r [ 0 ] [ 1 ] ;
t i l e b u f f e r [ 0 ] [ 1 ] = t i l e b u f f e r [ 0 ] [ 2 ] ;
t i l e b u f f e r [ 1 ] [ 0 ] = t i l e b u f f e r [ 1 ] [ 1 ] ;
t i l e b u f f e r [ 1 ] [ 1 ] = t i l e b u f f e r [ 1 ] [ 2 ] ;
t i l e b u f f e r [ 2 ] [ 0 ] = t i l e b u f f e r [ 2 ] [ 1 ] ;
t i l e b u f f e r [ 2 ] [ 1 ] = t i l e b u f f e r [ 2 ] [ 2 ] ;
t i l e b u f f e r [ 0 ] [ 2 ] = row1 [ j ] ;
t i l e b u f f e r [ 1 ] [ 2 ] = row2 [ j ] ;
t i l e b u f f e r [ 2 ] [ 2 ] = row3 [ j ] ;
}
i f ( i>0 && j >0){

i f ( ( i >= 2 | | i < HEIGHT) && ( j >= 2 | | j<WIDTH) ){
output= ( t i l e b u f f e r [ 0 ] [ 0 ] & t i l e b u f f e r [ 0 ] [ 1 ] &

t i l e b u f f e r [ 0 ] [ 2 ] & t i l e b u f f e r [ 1 ] [ 0 ] &
t i l e b u f f e r [ 1 ] [ 1 ] & t i l e b u f f e r [ 1 ] [ 2 ] &
t i l e b u f f e r [ 2 ] [ 0 ] & t i l e b u f f e r [ 2 ] [ 1 ] &
t i l e b u f f e r [ 2 ] [ 2 ] ) ? 1 : 0 ;

}
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else {
output = 0 ;

}
pbuf erode [ ( i −1)∗WIDTH+j −1] = output ;

}
}

}
}

Listing B1: Pixel-streaming erosion description based on a 3x3 window
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void e r o s i on ( ap uint<120> ∗ img , ap uint<120> ∗ out ){
unsigned int i , j ;
stat ic ap uint<120> row1 ;
stat ic ap uint<120> row2 ;
stat ic ap uint<120> row3 ;
stat ic ap uint<120> tmp ;
stat ic ap uint<120> out ;

for ( i =0; i<HEIGHT+1; i++){
#pragma AP PIPELINE

row1 = row2 ;
row2 = row3 ;
i f ( i<HEIGHT){

row3 = data [ i ] ;
}
else {

row3 = 0 ;
}
tmp = row1 & row2 & row3 ;
i f ( i >0){

for ( j =1; j<WIDTH−1; j++){
#pragma AP UNROLL

output [ i −1] . s e t b i t ( j , ( tmp [ j −1] & tmp [ j ] & tmp [ j +1 ] ) ) ;
}

}
}

}

Listing B2: Parallel erosion description based on a 3x3 window
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