

High-Level Synthesis through Transforming VHDL Models

Anatoly Prihozhy
Belarusian State Polytechnic

aprihozhy@bspa.unibel.by

Abstract

In this paper a method of transforming a behavio-

ral VHDL-model to a functionally equivalent

model with one basic block is proposed. High-level

synthesis techniques including scheduling,

allocation, and binding are modified for the model.

These reduce the number of control steps, FSM

states, state transitions, functional and storage

units in an RTL-structure.

1. Introduction

Usually, the designer starts by describing the
required behavior and specifying the optimization
goal and design constraints. Capturing this input, a
high-level synthesis tool generates a structure at
the register transfer level (RTL) [1-5]. If the
designer is not satisfied with the synthesis result,
she/he can modify the behavioral description,
optimization criterion, or design constraints and try
again. Nowadays the path-based high-level synthe-
sis method is widely and successfully used in
efficient synthesis tools [1-5,10,11]. It constitutes a
theoretical basis for performing data-control flow
graph (DCFG) analysis, scheduling, allocation,
and binding for the whole behavior. At the same
time, the method has the drawbacks as follows:
• The number of paths on the CFG can increase

exponentially depending on the number of nodes
(up to millions of paths are possible for real
designs [10])

• Reordering of statements in a path is not allowed
• During scheduling, allocation and binding very

complex combinatorial tasks have to execute for
each path and the obtained results have to be
combined.

In this paper we prove that any behavioral
description can be equivalently transformed to a
one basic block model (OBBM) allowing more
powerful synthesis results than the traditional
approaches allow. Section 2 presents the idea of
transformational synthesis. In sections 3 and 4
transformation rules and techniques for inferring
OBBM are described. Scheduling, allocation, and
binding techniques for OBBM are presented in
sections 5 and 6. Section 7 gives some results.

2. Transformation-based synthesis

Starting from a behavioral VHDL-description, we
generate a number of equivalent descriptions [6-9]
by applying transformations (Fig.1). The technique
extends the set of design alternatives and supports
an efficient design space exploration (Fig.2). In
this paper we propose a method of transforming a
behavioral VHDL-model to a functionally
equivalent model constructed of one basic block.
The existing scheduling, allocation and binding
techniques can’t be directly applied to the model.
We modify the techniques by means of using
several relations on the sets of variables and
statements in order to improve parameters of the
generated RTL-structure.
 Behavioral

VHDL-description

Transformations

VHDL-model_1 VHDL-model_n

High-Level

Synthesis

Tool

RTL-structure_1 RTL_structure_n

Optimization
goal and
design

constraints

Figure 1. Synthesis through transformation

T

 S

Initial set of

designs

Extended
set of

designs

Figure 2. Design space exploration

3. Transformation of original model

We transform a behavioral sequential synchronous
VHDL model with flexible or specified cycle
behavior in order to obtain a VHDL-model that is
more suitable for efficient high-level synthesis.
Several types of useful transformations are used in
the existing HLS tools [1-11]. We propose deeper
transformations leading to significant reorganizat-
ion of the source VHDL-model and its CFG: split-
ting statements, inserting statements, extracting
computations, attaching statements, eliminating
loops, eliminating exit- and next-statements, and
others. The algebraic methods of transforming
Boolean expressions will be intensively used as
well. We will avoid multiple assignments to the
same variable. Through the paper the following
notations will be used: V,V1,…,C,C1,… are
Boolean variables and expressions, Q,Q1,… are
sequential statements, S,S1,… are sequences of
statements, and L,L1,… are labels of loops.

3.1. Wait-statements

In the sequential synchronous behavioral model a
sequence of statements may describe a specified
cycle behavior or a flexible cycle behavior [1]. The
VHDL-statement

wait until C and Clock’Event and Clock=’1’; (3.1)

is used to control the specified cycle behavior,
where Clock is the signal triggering the state
transition. The fragment is equivalent to the loop-
statement:

loop wait until Clock’Event and Clock=’1’; (3.2)
exit when C; end loop;

3.2. Loop-statements

Our transformation rules are significantly based on
using loop-statements without an iteration scheme:
L: loop S end loop L;. The VHDL loop-statements
while and for with ascending and descending
ranges as follows:

while C loop S end loop;

for I in L to R loop S end loop; (3.3)
for I in L downto R loop S end loop

may be replaced with

loop V:=not C; exit when V; S end loop;

I:=L; loop V:=I>R; exit when V; S I:=I+1; end loop; (3.4)
I:=L; loop V:=I<R; exit when V; S I:=I-1; end loop;

Very often a loop-statement can be under an if-
then-statement as in the following fragment:

if C then loop S end loop; end if; (3.5)

Inserting the if-statement into the loop-statement

yields:

V:=true; loop V1:=V and not C; V:=false; (3.6)
exit when V1; S end loop;.

3.3. Exit-statements

An exit-statement works together with a loop: L:

loop S1 exit L when C; S2 end loop;. If an exit-
statement is under an if-statement:

if C1 then exit L when C2; end if; (3.7)

then the two statements may be merged as

V:=C1 and C2; exit L when V; (3.8)

If an exit-statement exit L when C; S is followed
by a sequence S of statements that does not update
the value of C, then the two statements may be
reordered as:

if not C then S end if; exit L when C; (3.9)

Two exit-statements with the same loop-label:

exit L when C1; exit L when C2; (3.10)

may be merged as:

V:=C1 or C2; exit L when V; (3.11)

3.4. Next-statements

All the next-statements are eliminated from the
VHDL-behavioral description. If a next-statement
is under an if-statement:

if C1 then next L when C2; end if; (3.12)

then the two statements may be merged as

V:=C1 and C2; next L when V; (3.13)

The most general situation with a next-statement
and two nested loops can be represented as:

L1: loop S1 L2: loop S2 (3.14)
next L1 when C; S3 end loop L2; S4 end loop L1;

Replacing the next-statement with exit- and if-
statements yields:

V:=false; L1: loop S1 L2: loop S2 V:=C; (3.15)
exit L2 when V; S3 end loop L2;
if not V then S4 end if; end loop L1;

The same transformation can be performed on an
arbitrary number of nested loops. It can imply
introducing a label for an unlabeled loop.

3.5. Return-statements

The return-statements are used to exit from VHDL
functions and procedures. We eliminate the
statements from models and replace them with
variable assignment, exit- and if-then-statements.

3.6. If-statements

An if-statement in VHDL selects no more than one
sequence of statements and is represented in the
following form:

if C1 then S1 elsif C2 then S2 x x x (3.16)
elsif Cn-1 then Sn-1 else Sn end if;

The if-statement may be split to the following
sequence of variable assignment and if-then-
statements:

V1:=C1; V2:=not C1 and C2; x x x (3.17)
Vn-1:=not C1 and not C2 and … and Cn-1;
Vn:=not C1 and not C2 and … and not Cn-1;
if V1 then S1 end if; if V2 then S2 end if; x x x
if Vn-1 then Sn-1 end if; if Vn then Sn end if;

The if-then-statement if V then Q1;…Qk; end if;
containing a sequence of other statements may be
split to a sequence of if-then-statements each of
them with one statement inside:

if V then Q1; end if; … if V then Qk; end if; (3.18)

This transformation is eligible if V is not
reassigned in Q1, …,Qk-1. If one if-statement is
inside of another if-statement then the described
splitting procedure can yield if V1 then if V2 then

Q; end if; end if; that is reduced to

V:=V1 and V2; if V then Q; end if; (3.19)

In special case if V1 then V2:=E; end if; the if-
then-statement may be replaced with a variable
assignment statement:

V2:=(V1 and E) or (not V1 and V2); (3.20)

Very often two VHDL-fragments as follows will
appear during transformations:

V2:=false; if V1 then V2:=E; end if; (3.21)
V2:=true; if V1 then V2:=E; end if;

These may be replaced with:

V2:=V1 and E; (3.22)
V2:=E or not V1;

If E implies V1 in (3.20), that is E→V1 holds for
all the values of primary variables, and the
previous value of V2 is not determined, then (3.20)
is reduced to V2:=E;. Here ‘→’ is the logical
implication operation. Similarly, if the implication
V2→V1 holds then (3.19) is reduced to:

if V2 then Q; end if;. (3.23)

3.7. Case-statements

In VHDL the case statement has the

following form:

case E is when H11|…|H1k1 => S1 x x x (3.24)
when Hr1|…|Hrkr => Sr when others => Sr+1 end case;

where E is an expression of a discrete type and Hij
is a choice defining a value or a range of values.
The case-statement is equivalently transformed to
the following if-statement:

V:=E; if R11 or … or R1k1 then S1 x x x (3.25)
elsif Rr or … or Rrkr then Sr else Sr+1 end if;

where V is a variable of the type associated with
the expression E and Rij is a relational operator
(expression) associated with the choice Hij. The if-
statement is split as it was described in section 3.6.

3.8. Variable and signal assignments

A variable assignment statement with an aggregate
in the left part is split into a sequence of
assignment statements with a variable in the left
part. If an assignment statement contains an
expression E in the right part constructed of more
than one operator, it is split implying the addition
of variables of appropriate types. A signal
assignment statement using operators in the right
part is replaced with a signal assignment statement
without operators by means of introducing an
additional variable and variable assignment
statement.

3.9. Procedure and function calls

All the transformation rules that are considered in
the paper may be applied to the processes and
subprograms. In particular, we can represent the
subprogram body as one basic block. Two
approaches to processing the subprograms during
high-level synthesis are possible: performing high-
level synthesis separately for each subprogram and
merging the process and subprograms before
synthesis. A drawback of the first approach is that
it is not easy to optimize the design cost. A
drawback of the second approach is that it is
desirable to avoid multiple attaching the
subprogram body to the process body because the
VHDL-code can extend significantly when a lot of
calls of the same subprogram exist. In order to
unify the merging algorithm, all the functions are
replaced with procedures and assignment
statements U:=F(P); are replaced with procedure
calls F(P,U) where U is a variable, F is a function
name, and P is a list of actual parameters.

4. VHDL-model with one basic block

The number of paths on CFG significantly depends
on the number of basic blocks. In this section we
prove that any VHDL-process may be represented
as one basic block in the statement part:

P: process Declars (4.1)
begin Basic_Block end process P;

where Declars are local declarations and
Basic_Block is a sequence of wait, variable and
signal assignment statements either covered or not
covered with if-then-statements. An if-then-
statement describes a condition of operation
execution and variable/signal assignment. The
process parenthesis ”begin” and ”end” describe an
infinite loop. The proposed transformation
technique consists of the key steps as follows:
inserting statements located after a loop into the
loop, inserting statements located before a loop
into the loop, merging neighbor nested loops,
eliminating loop- and exit-statements, and
eliminating subprogram calls.

4.1. Inserting statements into loop

We assume that all the loop-statements are labeled
and all the exit-statements refer a loop-label. While
inserting statements located after a loop, the
number of exit-statements in the loop has to be
taken into account as in the following VHDL-
fragment:

L: loop S1 exit L when V1; S2 (4.2)
exit L when V2; S3 end loop L; S4

where S4 is a sequence of statements that do not
update the value of variables V1 and V2 (otherwise
we can use additional variables). Inserting S4 into
the loop yields:

L: loop S1 if V1 then S4 end if; exit L when V1; S2 (4.3)
if V2 then S4 end if; exit L when V2; S3 end loop L;

The drawback is that two copies of S4 appear in
the loop-body. In order to have one copy we begin
with reordering and merging the exit-statements:

L: loop S1 if not V1 then S2 end if; V3:=V1 or V2; (4.4)
exit L when V3; S3 end loop L; S4

and then the sequence S4 is inserted into the loop:

L: loop S1 if not V1 then S2 end if; V3:=V1 or V2; (4.5)
if V3 then S4 end if; exit L when V3; S3 end loop L;

The technique is eligible for an arbitrary number of
exit-statements in one loop. When statements
located before a loop are inserted into the loop, the
exit-statements are not used, so we consider the
VHDL-fragment as:

S1 L: loop S2 end loop L; (4.6)

that is functionally equivalent to:

V:=true; L: loop (4.7)
if V then S1 end if; V:=false; S2 end loop L;

If the loop-statement is under an if-then-statement:

S1 if C then L: loop S2 end loop L; end if; (4.8)

then the inserting yields:

V:=true; L: loop if V then S1 end if; (4.9)
V1:=V and not C; V:=false; exit when V1; S2 end loop L;

Inserting of statements located after a loop is
cheaper than inserting of statements located before
the loop.

4.2. Generating nested loops

Usually a VHDL-process or subprogram contains
a hierarchy of loops. In the hierarchy pairs of loops
exist that either execute sequentially or one loop is
in the body of other loop. For the both cases we
prove that an equivalent system of nested loops
may be constructed. First, we transform the
VHDL-fragment:

L1: loop S1 if C1 then L2: loop S2 exit L2 when C2; (4.10)
S3 end loop L2; end if; S4 end loop L1;

where the loop L2 is in the body of the loop L1 and
is covered by an if-then-statement. After inserting
the sequences S1 and S4 into the loop L2 and
attaching the exit-statements we have:

L1: loop V1:=true; L2: loop (4.11)
if V1 then S1 end if; V2:=V1 and not C1;
V1:=false; V3:=not V2; if V3 then S2 end if;
V4:=V3 and C2; if V4 then S4 end if;
V5:=V2 or C2; exit L2 when V5; S3

end loop L2; end loop L1;

Second, we transform the sequence of two loops:

L1: loop S1 exit L1 when C1; S2 end loop L1; (4.12)
S3 L2: loop S4 exit L2 when C2; S5 end loop L2;

After inserting the loop L2 into the loop L1 and
inserting the statements located before L2 into the
loop we have:

L1: loop V1:=true; L2: loop (4.13)
if V1 then S1 end if; V2:=V1 and C1;
if V2 then S3 end if; V3:=V1 and not C1;
V1:=false; exit L2 when V3; S4 exit L2 when C2; S5

end loop L2; exit L1 when C1; S2 end loop L1;

Merging two exit-statements referring label L2 and
insert-ing the statements located after L2 into the
loop yields:

L1: loop V1:=true; L2: loop (4.14)
if V1 then S1 end if; V2:=V1 and C1;
if V2 then S3 end if; V3:=V1 and not C1;
V1:=false; V4:=not V3; if V4 then S4 end if;
V5:=V3 or C2; V6:=V5 and C1; exit L1 when V6;
if V5 then S2 end if; exit L2 when V5; S5

end loop L2; end loop L1;

Consecutively applying the described
transformations to pairs of hierarchical and
sequential loops, we can transform any VHDL-
process with an arbitrary number and structure of
loops to a process with nested loops.

4.3. Eliminating loop- and exit-statements

Two nested loops:

L1: loop V1:=true; L2: loop S1 exit L2 when C1; (4.15)
S2 end loop L2; end loop L1;

may be replaced with one loop:

L1: loop S1 if C1 then V1:=true; end if; (4.16)
V2:=not C1; if V2 then S2 end if; end loop L1;

if the variable V1 used during inserting statements
takes initial value true. The exit-statement is
replaced with a conditional (C1) assignment of
value true to the control variable V1. The sequence
S2 also executes conditionally, but with the
condition not C1. Applying the rule to nested loops
(4.11) inferred from two hierarchical loops (4.10)
and using rules (3.20) to (3.23) , we obtain one
loop as follows:

L1:loop if V1 then S1 end if; V2:=V1 and not C1; (4.17)
V3:=not V2; if V3 then S2 end if;
V4:=V3 and C2; if V4 then S4 end if;
V1:=V2 or C2; V5:=not V1; if V5 then S3 end if;

end loop L1;

Similarly, nested loops (4.14) inferred from seq-
uential loops (4.12) are transformed to one loop:

L1: loop if V1 then S1 end if; V2:=V1 and C1; (4.18)
if V2 then S3 end if; V7:= not C1;
V3:=V1 and V7; V4:=not V3; if V4 then S4 end if;
V1:=V3 or C2; V6:=V1 and C1;
exit L1 when V6; if V1 then S2 end if;
V5:=not V1; if V5 then S5 end if;

end loop L1;

Given a process with k nested loops the loops may
be eliminated step by step. Finally, a process with
one basic block is inferred. The process statement
part is a loop that is suspended and resumed by
events on the Clock signal.

4.4. Eliminating subprogram calls

We assume that a subprogram is called for more
than once in a process (another subprogram) body.
Let the bodies of subprogram and process be
represented as one basic block. If each subprogram
call is replaced with the subprogram body of
significant size, the VHDL code can extend
significantly. Our goal is to construct the process
body in such a way to attach one copy of the
subprogram body. The goal is achieved through
using additional control Boolean variables and if-
statements. We illustrate our approach with the
following abstract VHDL-like fragment:
process x x x (4.19)

procedure F(Pi, Po) is Declars begin B end F;
begin S1 F(P1i,P1o); S2 F(P2i,P2o); S3 end process;

where F is a procedure name, Pi and Po are
descriptions of input and output formal parameters,
Declars is a list of declarative items, B is a

procedure body represented as one basic block,
and P1i, P1o, P2i, and P2o are input and output
actual parameters of first and second procedure
calls. After inserting the declarations Pi, Po, and

Declars into the process declarative part, inserting
the procedure body B into the process statement
part, and reorganizing the statement part, the
fragment is as follows:
process x x x Pi, Po, and Declars modified (4.20)

variable V1,…,V7: Boolean; begin
V3:=V1 or V2; if V3 then B end if;
V4:=not V3; if V4 then S1 end if;
if V4 then Pi’:=P1i; end if; V5:=V1 and not V2;
if V5 then P1o:=Po’; end if; if V5 then S2 end if;
if V5 then Pi’:=P2i; end if; V6:=not V1 and V2;
if V6 then P2o:=Po’; end if; if V6 then S3 end if;
V7:=V1 xor V2; V2:=V1; V1:=not V7;

end process;

where Pi’ and Po’ are local variables representing
the input and output formal parameters of
procedure. In the process, all the variables that are
used in B have to be unique. Increase in the
number of procedure calls requires additional
control variables, although the transformation
method remains the same.

4.5. An example

Now we demonstrate the proposed transformation
technique on a simple VHDL behavioral
description. An original GCD algorithm is
presented in Fig.3. First, we split all the control
structures and remove the iteration scheme from
the loop (Fig.4). Three additional Boolean
variables C1, C2, and C3 are introduced. Then,
according to (4.5) and (4.7) we insert the
statements that precede and succeed the loop into
the loop (Fig.5). An additional variable C0 is used.
After that the loop is eliminated, the exit-statement
is replaced with an if-statement, and the variable
C0 takes the initial value true (Fig.6). Finally, two
statements that assign a value to variable C0 are
merged and the resulting variable assignment
statement proves that C0=C1. The variable C1 is
removed and replaced with C0 (Fig.7). The
waveforms of input and output signals are the
same for all the VHDL-models (Fig.8). Any
behavioral VHDL-description can be transformed
in the similar way.

entity GCD is
port(Clock, Reset: in Bit; XP, YP: in Bit_Vector(15 downto 0);

Ready: out Bit; Res: out Bit_Vector(15 downto 0));
end GCD;
architecture Behavior1 of GCD is begin

process variable X,Y: Bit_Vector(15 downto 0); begin

wait until Clock’Event and Clock=’1’; Ready<=’0’; X:=XP;
Y:=YP; while (X/=Y) loop wait until Clock’Event and
Clock=’1’; if (X<Y) then Y:=Y-X; else X:=X-Y; end if;
end loop; Ready<=’1’; Res<=X; end process;

end Behavior1;
Figure 3. Original VHDL-model of GCD

architecture Behavior2 of GCD is begin

process variable X,Y: Bit_Vector(15 downto 0);
variable C1,C2,C3: Boolean; begin
wait until Clock’Event and Clock=’1’; Ready<=’0’; X:=XP;
Y:=YP; loop C1:=X=Y; exit when C1;
wait until Clock’Event and Clock=’1’;C2:=X<Y;C3:=not C2;
if C2 then Y:=Y-X; end if; if C3 then X:=X-Y; end if;
end loop; Ready<=’1’; Res<=X; end process;

end Behavior2;
Figure 4. Transformed VHDL-model (step 1)

architecture Behavior3 of GCD is begin process

variable X,Y: Bit_Vector(15 downto 0);
variable C0,C1,C2,C3: Boolean; begin C0:=true; loop

if C0 then wait until Clock’Event and Clock=’1’;end if;
if C0 then Ready<=’0’; end if; if C0 then X:=XP; end if;
if C0 then Y:=YP; end if; C0:=false; C1:=X=Y;
if C1 then Ready<=’1’; end if; if C1 then Res<=X; end if;
exit when C1; wait until Clock’Event and Clock=’1’;
C2:=X<Y; C3:=not C2; if C2 then Y:=Y-X; end if;
if C3 then X:=X-Y; end if; end loop; end process;

end Behavior3;
Figure 5. Transformed VHDL-model (step 2)

architecture Behavior4 of GCD is begin process

variable X,Y: Bit_Vector(15 downto 0);
variable C0,C1,C2,C3: Boolean:=true; begin
if C0 then wait until Clock’Event and Clock=’1’; end if;
if C0 then Ready<=’0’; end if; if C0 then X:=XP; end if;
if C0 then Y:=YP; end if; C0:=false; C1:=X=Y;
if C1 then Ready<=’1’; end if; if C1 then Res<=X; end if;
if C1 then C0:=true; end if; if not C1 then wait until
Clock’Event and Clock=’1’; end if; C2:=X<Y; C3:=X>Y;
if C2 then Y:=Y-X; end if; if C3 then X:=X-Y; end if;

end process; end Behavior4;
Figure 6. Transformed VHDL-model (step 3)

architecture Behavior5 of GCD is begin process

variable X,Y: Bit_Vector(15 downto 0);
variable C0,C2,C3: Boolean:=true; begin
if C0 then wait until Clock’Event and Clock=’1’; end if;
if C0 then Ready<=’0’; end if; if C0 then X:=XP; end if;
if C0 then Y:=YP; end if; C0:=X=Y;
if C0 then Ready<=’1’; end if; if C0 then Res<=X; end if;
if not C0 then wait until Clock’Event and Clock=’1’; end

if; C2:=X<Y; C3:=X>Y; if C2 then Y:=Y-X; end if;
if C3 then X:=X-Y; end if; end process;

end Behavior5;
Figure 7. Transformed VHDL-model (step 4)

Figure 8. Signal waveforms for GCD

5. Scheduling for OBBM

Scheduling aims at introducing control steps and
FSM states, distributing statements on the steps,
and either minimizing the number of steps or
minimizing the design cost. The scheduling results
in generating a high-level state machine HLSM.
The known scheduling techniques that process a

traditional basic block are [1-5]: as soon as
possible ASAP, as late as possible ALAP, list
scheduling, integer linear programming
formulation ILPF, freedom-based scheduling,
force-directed scheduling, dynamic loop
scheduling, scheduling for pipelines and other
techniques. The path-based scheduling technique
processes the whole CFG consisting of several
basic blocks.

5.1. Scheduling methodology

In a traditional basic block all statements execute
unconditionally. In the OBBM a statement may
execute conditionally or unconditionally. Our
scheduling methodology includes: analyzing data
dependencies, generating orthogonal, implication,
and equivalence relations on the set of control
signals and variables, generating a set of pairs of
orthogonal statements, analyzing operator
compatibility and operator proximity, generating a
statement precedence relation, performing a
modified scheduling technique (ILPF, list
scheduling, ASAP, and ALAP). The generated
schedule is optimized due to orthogonal operations
are mutually exclusive and may execute on the
same functional unit concurrently without
additional resources. As a result, the statements are
reordered, grouped, and an optimized HLSM is
generated.

5.2. Relations on the set of variables

Signals and variables (mostly variables) of
Boolean type control the execution of if-then-
statements. Relations on the set of control
variables define in which manner the operators and
assignments that are under an if-then-statement
execute. Two control variables V1 and V2 are:
• Orthogonal (#) if the variables take never value

true simultaneously
• Variable V1 implies variable V2 (→) if V2 takes

never value false when V1 equals true
• Variable V2 implies variable V1 (←) if V1 takes

never value false when V2 equals true
• Equivalent (↔) if the variables can’t take

different values simultaneously
• Independent (−) if neither of the previous cases

takes place.
There are two main sources for inferring the
relations. First, the VHDL relational operators are
analyzed. Given two assignment statements V1:=X

R1 Y; and V2:=X R2 Y; with the same operands
where R1,R2∈ {=, /=, <, <=, >, >=} are relational
operators, the relations #, →, ←, and ↔ between
V1 and V2 are inferred through using Table 1. The
similar table is used for a pair of statements V1:=X

R1 L1; and V2:=X R2 L2; where L1 and L2 are

Inferring relations between V1 and V2 Table 1
N Operator

R1
Operator

R2
Relation between

V1 and V2
1 = = ↔

2 = /=, <, > #

3 = <=, >= →

4 /= = #

5 /= /= ↔

6 /= <, > ←

7 < =, >, >= #

8 < /=, <= →

9 < < ↔

10 <= =, < ←

11 <= <= ↔

12 <= > #

13 > =, <, <= #

14 > /=, >= →

15 > > ↔

16 >= =, > ←

17 >= < #

18 >= >= ↔

Inferring relations using logical operators Table 2
Statement Existing relations Inferred relations

A:=B and C; − A→B and A→C

 B→D or C→D A→D

 D#B D#A

 D#C D#A

A:=B or C; − B→A and C→A

 D→B or D→C D→A

 B→D and C→D A→D

 D#B and D#C D#A

 B→C B→A

 C→B C→A

A:=B xor C; B#C B→A and C→A

 B→D and C→D A→D

 D→B and D→C A#D

A:=B nand C; D→B and D→C A#D

 D#B or D#C D→A

 B→C A#B

 C→B A#C

A:=B nor C; − A#B and A#C

 D→B A#D

 D→C A#D

 B#D and C#D B→A

− A#B

D→B A#D

A:=not B;

B#D D→A

− A→B and B→C A→C

literals for which one of the relations =, /=, <, <=,

>, >= holds. Second, the VHDL logical operators
are analyzed (Table 2) to infer additional relations
between other pairs of control variables. In the
table, A, B, C, and D are Boolean variables. There
are similar rules for pairs of variable assignment
statements and for pairs of relations.

5.3. Orthogonal statements

All the sequential statements in OBBM may be
considered as an if-then-statement. If a statement
Q is not conditional one, it may be replaced with if
true then Q end if;. Two if-then-statements if V1

then Q1 end if; and if V2 then Q2 end if; are
defined to be orthogonal if the variables V1 and V2
are orthogonal. One orthogonal statement cannot
precede another orthogonal statement. The
orthogonal statement bodies are mutually
exclusive and may execute on the same functional
unit concurrently in the same control step. VHDL-
like fragment (4.20) uses seven Boolean variables
V1,…,V7. The relations on the set of variables are
described by the matrix:

 V1 V2 V3 V4 V5 V6 V7
 V1 ↔ # → # ← # →
 V2 # ↔ → # # ← →

V3 ← ← ↔ # ← ← ←
R= V4 # # # ↔ # # #

 V5 → # → # ↔ # →
 V6 # → → # # ↔ →
 V7 ← ← → # ← ← ↔

The orthogonal variables graph is presented in
Fig.9. The following pairs of control variables are
orthogonal: (V3,V4), (V4,V5), (V4,V6), (V5,V6). As
a result the pairs of statement sequences as follows
are mutually exclusive: (B,S1), (S1,S2), (S1,S3),

(S2,S3).
 V1

V7 V2

V6 V3

 V5 V4

Figure 9. Orthogonal variables graph

5.4. Operators compatibility and proximity

There are two cases for operators to be compatible
within one control step: the operators belong to
orthogonal statements and may execute on the
same type of functional unit and the operators are
relational and have identical operands. The
compatible operators may execute within one
control step without additional resources. The
operator proximity is used to select compatible
operators to be merged. We estimate the proximity
of two operators as the number of common inputs
and outputs. Maximizing the proximity of
operators leads to minimizing the cost of
interconnect units in resulting RTL-structure.

5.5. Precedence of statements

The statement precedence relation PRE=VL∪US∪
WT is a union of three sub-relations:
• A statement i precedes a statement j ((i,j)∈VL) if

i and j are not orthogonal and i has an output
variable that is an input variable for j

• A statement i precedes a statement j ((i,j)∈US) if
i and j are not orthogonal and i uses a value of an
input variable to be assigned a new value by j

• A statement i precedes a statement j ((i,j)∈WT) if
a wait-statement w exists such that the pairs (i,w)
and (w,j) of statements are not orthogonal and i
precedes w and j succeeds w in the VHDL-text.

The relation PRE can be represented as a statement
precedence graph. Statements i and j are sequential
if a path exists between i and j on the graph,
otherwise, the statements are concurrent. The
statement precedence graph PRE and its sub-
graphs VL, US, and WT for the GCD including 12
statements (Fig.7) are shown in Fig.10.

VL US

 1 2 3 4 1 2 3 4

 5 9 10 5 9 10 7

6 7 8 11 12 6 11 12 8

WT PRE

 1 1

 2 3 4 5 2 3 4

 6 8 7 5

 9 10 11 12 6 8 7

 9 10

 11 12

Figure 10. Statement precedence graphs for GCD

5.6. Extending scheduling techniques

All the traditional techniques [1-11] scheduling a
basic block assume that the sequential statements
may not be an if-then-statement and, therefore,
may not be orthogonal. Our method allows the
orthogonal statements to execute in the same
control step in parallel without additional
resources. This implies increase in the average
number of statements in a step and decrease in the
total number of steps. As a result, the number of
values computed in one control step and used in
another step is reduced as well as the number of
registers. The extended ASAP and ALAP being
feasible-constrained techniques use the statement
precedence graph at input. The modified list
scheduling being a resource-constrained technique
uses a status of each statement:
• All the predecessors have been already scheduled
• There is a predecessor has not been scheduled
• The statement may be scheduled on an existing

functional unit using the orthogonal relation
• Addition of a functional unit is required and
others. The modified time-constrained scheduling
problem ILPF can be formulated as minimizing

 m

 ∑ (sk * Mk) (5.1)
k=1

subject to
 c

 ∑ zr,j,k ≤ Mk for 1≤j≤s, 1≤k≤m
r=1

zr,j,k = min(1, ∑ yr,i,j) for 1≤r≤c, 1≤j≤s, 1≤k≤m

 i∈FUk

yr,i,j ≤ Ci,r * xi,j for 1≤r≤c, 1≤i≤n, 1≤j≤s

 c

 ∑ yr,i,j = 1 for 1≤i≤n, 1≤j≤s
r=1

 Li

 ∑ xi,j = 1 for 1≤i≤n
j=Si

 Li Lk

 ∑ (j * xi,j) − ∑ (j * xk,j) = 1 for all i→ k
j=Si j=Sk

where n is the number of statements; s is the
number of control steps; Mk and sk are the number
and cost of functional units of type k; m is the
number of functional unit types; C is the set of
cliques of the orthogonal statements graph; c is the
number of cliques in C; Ci,r equals 1 if statement i
belongs to clique r; zr,j,k is an integer variable that
equals 1 if at least one statement of clique r is
associated with the type k of functional unit and
executes in step j, otherwise, equals 0; yr,i,j is a
variable that equals 1 if statement i executes in
step j and is associated with clique r, otherwise,
equals 0; xi,j is a variable that equals 1 if statement
i executes in step j, otherwise, equals 0; Si and Li
are the earliest and latest possible time of
statement i; i→ k denotes i precedes k.

5.7. High-level state machine

The HLSM initially includes a sequence of states
and a set of control variables (Fig.11). Each state
has exactly one transition. To speed up the HLSM
operation, additional direct transitions are added.
Thus, the HLSM for GCD (Fig.12) initially
included two sequential states s0 and s1. All the
statements in state s0 where covered by an if-then-
statement with the condition C0. There was a sense

 s1
FSM:
 sk s2

 sk-1 s3

Control
variables

 • • • s4
 s5

Figure 11. Control part of RTL-structure

architecture HLSM of GCD is type State_Type is (s0,s1);
signal State: State_Type; begin process (Clock,Reset)
variable X,Y: Bit_Vector(15 downto 0);
variable C0,C2,C3: Boolean:=true; begin

if Reset=’0’ then State<=s0; elsif Clock’Event and Clock=’1’
then case State is

when s0 => Ready<=’0’; X:=XP; Y:=YP; State <= s1;
when s1 => C0:=X=Y; if C0 then Ready<=’1’; end if;

if C0 then Res<=X; end if; C2:=X<Y; C3:=X>Y;
if C2 then Y:=Y-X; end if; if C3 then X:=X-Y; end if;
if C0 then State <= s0; else State <= s1; end if;

end case; end if; end process; end HLSM;
Figure 12. High-level state machine for GCD

to come to state s0 if and only if C0 equals true.
We have added a direct transition from s1 to s1
and replaced the statement Next_State<=s0; in the
end of case-statement with the if-statement as
shown in Fig.12.

6. Allocation and binding for OBBM

The RTL-structure being an output of high-level
synthesis consists of two parts: a data path (DP)
and a finite state machine (FSM). Allocation aims
at minimizing the DP cost and defining the set of
functional, storage, and interconnect units in the
RTL-structure. Binding aims at mapping the
elements of behavioral description to the structure
components. A lot of allocation and binding
techniques have been developed [1-7]: path-based,
rule-based, branch and bound, clique partitioning,
integer linear programming, simulated-annealing,
graph coloring, and other algorithms. The OBBM
being a purely data flow representation supports an
efficient allocation and binding:
• Analysis of variable lifetime on one basic block
• Generating the variables compatibility relation
• Generating the operators compatibility and

proximity relations
• Deriving and folding the DP from the DFG.

6.1. Variable lifetime analysis

Assuming that all the statements are distributed on
the sequence of HLSM states, a variable v lifetime
is represented as an interval lv=[s

b
v, s

e
v] where sb

v,
and se

v are the earliest and latest states in which the
variable is alive. In order to compute the interval
we use the function Inc: V×S→{∅, {in}, {out},

{in,out}} mapping the pairs variable/state to
subsets of the set {in,out}. It is easy to derive from
the function the first state sv

first in which v is used
as output and the last state sv

last in which v is used
as input. The values sb

v, and se
v are computed from

the values sv
first and sv

last taking into account the
fact that the basic block is a body of an infinite
loop. The function Inc for the GCD represented as
the HLSM in Fig.12 is described in Table 3. The
variable lifetimes are lX=lY=[s0,s1] and
lC0=lC2=lC3=[s1,s1].

Function Inc for GCD lifetime analysis Table 3
Variable State

X Y C0 C2 C3
S0 {out} {out} ∅ ∅ ∅

S1
{in,
out}

{in,
out}

{in,
out}

{in,
out}

{in,
out}

6.2. Variable and operator compatibility

A variable v∈VW which is alive within one HLSM
state is implemented as a wire. A variable v∈VM
which is alive in several HLSM states is mapped to
a register, RAM, or ROM. Two variables v1 and v2
of VM may be mapped to the same storage unit if
they are compatible. The variables are compatible
if either their lifetime intervals are not intersected
or each statement using v1 is orthogonal to each
statement using v2. We describe the variable
compatibility as a binary relation CV. The operator
compatibility is represented by a binary relation CO
that is computed using the formula:

CO=(UO∩~(SO\OO))∪RO, (6.1)

where ‘\’ is a set subtraction operation; ~A is
complementation of set A; UO is the set of pairs of
operators executed on the same type of functional
unit; SO is the set of pairs of operators executed in
the same HLSM state; OO is the orthogonal
relation; RO is the set of pairs of relational
operators which execute in the same HLSM state
and use the same operands. The operator proximity
is estimated as it was described in section 5.4 and
represented with a relation PO. Five operators are
used in the GCD HLSM shown in Fig.11:
{‘=’,’<’,’>’,’-’,’-’}. The relations CO, UO, SO, OO,
and RO on the set are presented in Fig.13.

 = < > - - = < > - -
 = 0 1 1 0 0 = 0 1 1 1 1
 < 1 0 1 0 0 < 1 0 1 1 1
Uo= > 1 1 0 0 0 So= > 1 1 0 1 1
 - 0 0 0 0 1 - 1 1 1 0 1
 - 0 0 0 1 0 - 1 1 1 1 0

 = < > - - = < > - -
 = 0 0 0 0 0 = 0 1 1 0 0
 < 0 0 0 0 0 < 1 0 1 0 0
Oo= > 0 0 0 0 0 Ro= > 1 1 0 0 0
 - 0 0 0 0 1 - 0 0 0 0 0
 - 0 0 0 1 0 - 0 0 0 0 0

 = < > - -
 = 0 1 1 0 0
 < 1 0 1 0 0
Co= > 1 1 0 0 0
 - 0 0 0 0 1
 - 0 0 0 1 0

Figure 13. Compatibility relations for GCD

6.3. Folding data flow graph (data path)

Folding the DFG and DP aims at minimizing the
design cost. The folding scheme is shown in
Fig.14. Two types of optimization algorithms have
been developed:
• Global optimization that merges the variables,

 F O L D I N G

 Data dependences

Variables • Operators
 •

(Storage • (Function
units) (Interconnect

units)
units)

 D F G (D P)

Relation CV Relations CO
 and PO

Figure 14: Folding DFG and DP

operators, and data dependencies in parallel
• Local optimization that separately merges the

variables, operators, and data dependencies.
The algorithms of the first type find a cheaper
design, while of the second type are faster.

7. Results

A software has been developed that

implements the high-level synthesis techniques
based on transformation of VHDL-models.
Experimental results have been obtained on several
benchmarks. Some advantages and drawbacks of
the proposed method are listed in Table 4. Table 5
presents experimental results for three VHDL-
models of the Bubble benchmark [5]. In model 1
all the expressions and conditional statements are
split and the iteration scheme of loops is removed.
In model 2 the statements located between and
after loops are inserted into the loops. In model 3
the loop- and exit-statements are eliminated. The
number of control steps is decreased twice due to
the transformations. A non-significant increase in
the register cost is due to scheduling for minimum
register count has not been used. Table 6 proves
that the proposed transformations lead to
additional possibilities of operations execution in
parallel. The use of 2 adders for the original
VHDL-model of the Pid benchmark [5] has not
decreased the number of control steps. The use of
2 adders for a transformed model has decreased the
number of steps from 23 to 16.

Advantages and drawbacks of OBBM Table 4

Advantages Drawbacks
Reduction in the number of:
• Basic blocks in CFG
• Control steps and FSM states
• State transitions
• Storage units
• Functional units

The transformed
behavioral VHDL-
model differs from
the initial VHDL-
specification

More opportunities for pipelining,
chaining, multi-cycling, and
asynchronous high-level synthesis

Extending the set of
control variables

Bubble benchmark Table 5
Behavioral VHDL-model

Parameter Bub_1 Bub_2 Bub_3
Loops 9 9 0
Control steps 20 15 10
Registers 7 9 10
Register width (bits) 104 106 107
Multiplexers 4 4 6
Multiplexer width (bits) 68 68 70
Multiplexer inputs 13 14 18
RAM 1 1 1

Pid benchmark Table 6
Model 1 Model 2

Parameter 1-2 adds 1 adder 2 adds
Control steps 23 22 16
Registers 13 16 15
Register width (bits) 389 423 422
Multiplexers 8 8 10
Multiplexer width (bits) 227 227 291
Multiplexer inputs 33 34 40
Collectors 9 9 9
ROM 1 1 1

8. References

[1] R.A.Bergamaschi, ”High-Level Synthesis in a
Production Environment”, Fundamentals and
Standards in Hardware Description Languages, J.P.
Mermet, ed., Kluwer Academic Publishers, Norwell,
Mass., 1993, pp.195-230.

[2] R.Camposano and W.Rosensteil, ”Synthesizing
Circuits from Behavioral Descriptions”, IEEE
Trans. CAD, Vol.CAD-8, Feb. 1989, pp.171-180.

[3] D.D.Gajski et al., ”High-Level Synthesis:

Introduction to Chip and System Design”, Kluwer
Academic Publishers, Norwell, Mass., 1992.

[4] T.Hwang, J.Lee, Y.Hsu, "A Formal Approach to the
Scheduling Problem in High- Level Synthesis",
IEEE Trans.on CAD, Vol.10, No.4, 1991.

[5] A.A.Jerraya, I.Park, and K.O’Brien, ”Amical: An

Interactive High-Level Synthesis Environment”,
Proc. European Design Automation Conf.93, IEEE
Computer Society Press, Los Alamitos, Calif., 1993.

[6] A.Prihozhy, ”Net Scheduling in High-Level

Synthesis”, IEEE Design & Test of Computers,
Spring, 1996, pp.26-35.

[7] A.Prihozhy ”Asynchronous Scheduling and Allocat-
ion”, Proc. DATE 98, IEEE CS Press, CA, 1998.

[8] A.Prihozhy and F.Buijs ”Transformations of
Behavioral VHDL-Descriptions”, National Academy
of Sciences, Belarus, 1994.

[9] A.Prihozhy, ”Methods for Logical Algorithm

Equivalent Transformation in VLSI CAD”, Trans.
Physics & Mathematics, National Academy
Sciences, Belarus, 1992, N 2, pp.86-92. (in Russian).

[10] W.Rosensteil, ”Experiences with High-Level
Synthesis from VHDL-Specifications”, Proc.
Workshop on Design Methodologies for
Microelectronics and Signal Processing, Gliwice-
Cracow, 1993, pp.405-412.

[11] E.Villar and P.Sanches, ”Synthesis Applications of
VHDL”, Fundamentals and Standards in Hardware
Description Languages, J.P. Mermet, ed., Kluwer
Academic Publishers, 1993, pp.231-262.

