
978-1-4799-2079-2/13/$31.00 c©2013 IEEE

High Level Synthesis: Where Are We?

A Case Study on Matrix Multiplication

Sam Skalicky, Christopher Wood, Marcin Łukowiak, Matthew Ryan

Rochester Institute of Technology, Rochester, NY

{sxs5464,caw4567,mxleec,mvr4997}@rit.edu

Abstract—One of the pitfalls of FPGA design is the relatively
long implementation time when compared to alternative architec-
tures, such as CPU, GPU or DSP. This time can be greatly reduced
however by using tools that can generate hardware systems in
the form of a hardware description language (HDL) from high-
level languages such as C, C++, or Python. Such implementations
can be optimized by applying special directives that focus the
high-level synthesis (HLS) effort on particular objectives, such as
performance, area, throughput, or power consumption. In this
paper we examine the benefits of this approach by comparing the
performance and design times of HLS generated systems versus
custom systems for matrix multiplication. We investigate matrix
multiplication using a standard algorithm, Strassen algorithm,
and a sparse algorithm to provide a comprehensive analysis of the
capabilities and usability of the Xilinx Vivado HLS tool. In our
experience, a hardware-oriented electrical engineering student
can achieve up to 61% of the performance of custom designs
with 1/3 the effort, thus enabling faster hardware acceleration
of many compute-bound algorithms.

I. INTRODUCTION

Compute intensive applications can be time consuming to
the point that implementation in a traditional CPU becomes
impractical. In such cases, alternative implementations, such
as hardware accelerators, need to be considered. FPGAs offer
a highly parallelizable platform that makes it an ideal candidate
for running such accelerators. However, FPGAs have a long
design time driven by factors such as choosing a particular
architecture, optimizing the standard design as needed for the
specific application, while simultaneously handling constraints
such as hardware area and available memory bandwidth.
Recently, new tools have been developed that aim to bridge
the design time gap between hardware and software. This
design methodology, called high-level synthesis (HLS), gen-
erates the hardware description language (HDL) from high-
level programming language source code, such as C, C++, or
Python [1][2][3]. Existing HLS tools are now sophisticated
enough at compiling high-level source code down to HDL
models that the resulting applications can run an order of
magnitude faster [4]. Furthermore, they provide designers with
the ability to optimize for more than just performance; power
consumption or resource utilization can also be optimization
goal during the synthesis process by specifying flags (e.g.
compiler pragmas) in the high-level source code or changing
options of the compiler.

To date, an area yet to be fully explored is the difference
in performance, design time, and resource utilization between
HLS and custom FPGA implementations. In order to obtain
realistic results, it is necessary to choose a medium for compar-
ison between the techniques. Linear algebra computations con-

stitute core of many compute intensive applications and could
benefit from FPGA acceleration. Among these, matrix-matrix
multiplication stands out as an ideal candidate for examination
due to its exploitable parallelism and variety of different
calculation algorithms. The inherent parallelism within the
computation gives incentive to implement it on an FPGA rather
than on a CPU. Analyzing the architectures generated from
different computational algorithms with various optimization
goals provides additional information on how the HLS tools
compile different types of high-level implementations.

In this work, a cost-benefit analysis of utilizing HLS tools
for development of FPGA accelerators versus a custom design
is investigated. This is accomplished through the implemen-
tation of three distinct matrix multiplication algorithms: the
standard algorithm, Strassen algorithm, and a sparse matrix
algorithm. For each of these algorithms an existing, well
researched custom design is compared to a generated and
optimized design using the Vivado HLS tool from Xilinx. Each
algorithm was implemented by a hardware-oriented electrical
engineering student with a general familiarity of HLS tools.
We present resource utilization and performance results for
each algorithm using both HLS tools and custom designs, and
follow up with tabulated design times for each as a means of
cost-benefit analysis to compare the utility gained when using
HLS tools versus designing custom architectures.

II. RELATED WORK

A large variety of HLS tools now exist. These range from
commercial products such as Vivado HLS from Xilinx to open
source tools developed from academic research initiatives, such
as LegUp [5], among others. In [6], Economakos et al. studied
aiding automation experts with no FPGA experience to design
programmable logic using the Catapult C HLS tool to prepare
programmable logic controllers (PLCs) for use in factory au-
tomation and industrial control. The authors experimented with
several optimizations available with Catapult C and compared
the resulting design latency, throughput, and system resource
utilization (e.g. BRAMs, LUTS, etc.) for a variety of different
evaluation boards. Their results enabled them to conclude
that, while HLS tools are often good substitutes for custom
FPGA solutions when exploring the potential design space and
available optimizations, it is often necessary to support design
decisions with the knowledge of an experienced hardware
engineer.

Denolf et al. utilized the Synfora PICO Extreme HLS tool
to investigate the usefulness of HLS in lowering design time
and increasing performance for vision processing kernels [7].
They found that the HLS implementations had similar resource

consumption to their handwritten HDL counterparts with a
much shorter design time. Furthermore, the authors note the
efficacy of using PICO to experiment with various throughput,
operating frequency, and resource consumption tradeoffs for
different designs as a result of high-level HLS optimizations.

The Handel C-language was used by Loo et al. [1] to
develop embedded systems in environments that incorporate
FPGA based co-processor logic. Using the Handel C language
they were able to develop designs that were comparable in
performance to handwritten designs but larger in size. How-
ever, there was also evidence that hardware designers would
need to be retrained if they were to use the language. Impulse
C is another popular HLS tool for prototyping FPGA designs
of existing algorithms written in C. Xu et al. [4] explored
the cost-gain benefits of using Impulse C to create hardware
accelerators for image reconstruction algorithms. Their ex-
perimental data indicated that Impulse C was sophisticated
enough generate HDL that paralleled the custom HDL model
in performance (throughput) by achieving an approximate 155x
speedup over the original software implementation with very
minimal design effort, though the amount of effort is not
formally quantified.

Similar to this work, Cong et al. [8] studied the tradeoffs
between implementation efficiency and designer productivity
using AutoESL’s AutoPilot HLS tool, now the Xilinx Vivado
suite, in the context of a video DSP application and wireless
encoding algorithm. They found that the cost per design
throughput between an AutoESL-generated FPGA design for
an optimal flow algorithm implementation was 30x superior
to an analogous pure-software DSP design. In a similar ex-
periment they observed that the chip resource utilization of an
AutoESL-generated FPGA design for the same optical flow
algorithm implementation subsumed the resource utilization of
a hand-written RTL design. The design time for this particular
application is not discussed. They do, however, study the time
required to design a sphere decoder for a multi-input multi-
output wireless communication system between two RTL
and AutoESL experts (i.e. engineers fluent in the respective
implementation technology). The engineer design time, which
was extracted from source code revision history information
and work logs, indicated that the AutoESL expert surpassed
the RTL expert in development time and design resource (e.g.
LUTs, registers, DSP cores, etc) utilization. In fact, for a
relative comparison, the design time of the AutoESL expert
was 9% less than the the RTL engineer, which was the smallest
percent difference out of all metrics calculated, e.g. the design
from the AutoESL expert required 31% less registers than the
RTL expert’s design.

MyHDL is another emerging HLS tool that breaks away
from the typical C-based languages available on the market.
Written in Python, MyHDL benefits from its ease of devel-
opment; the Python language barrier is much less steep than
that of C or C++. Inggs et al. [9] report that they were able to
generate a custom discrete Fourier transform (DFT) core with
14% greater throughput than the FFT core provided by Xilinx
using MyHDL. The design effort, which is a major contributing
factor to the selection of HLS tools, was not discussed in this
work.

Monson et al. [10] compared the performance of CPU and
FPGA based implementations of a complex optical-flow algo-

rithm. For the FPGA based implementation, the Vivado HDL
synthesis tools were utilized. Using these tools, the designers
were able to develop an implementation of the algorithm
with comparable performance to the CPU implementation that
operated at a fraction of the energy cost. The authors came to
several important conclusions, which we have already seen
with the previously mentioned tools, regarding the use of
the Vivado HLS tools: (1) little modification is necessary to
prepare existing C language designs for conversion using the
HLS tools, (2) it is possible quickly optimize a design for
different goals, and (3) it is easy to compare different versions
of the algorithm in C and determine resource consumption in
performance.

This work improves upon previous work by analyzing
the practicality of utilizing HLS tools and their effectiveness.
In addition to directly comparing the performance of several
different HLS implementations to custom implementations, a
significant portion of this work is devoted to quantifying the
amount of effort required to develop HLS designs and custom
designs for the same computation.

III. MATRIX MULTIPLICATION ALGORITHMS

Matrix multiplication is a fundamental operation of linear
algebra. As such, many algorithms have been created to
optimize and further improve the performance for specific
objectives. Compared to the standard algorithm, shown in
Algorithm 1, the Strassen algorithm attempts to reduce the
number of multiplications in exchange for more additions. A
sparse algorithm, on the other hand, attempts to only handle
the non-zero elements and thus remove any multiplications or
additions with zero to improve performance.

Algorithm 1 Standard Matrix Multiply C = A×B

for i = 0 → rows(A) do ⊲ Rows
for j = 0 → cols(B) do ⊲ Cols

for k = 0 → rows(B) do ⊲ Product
Ci,j = Ci,j +Ai,k ×Bk,j ⊲ Calculation

end for
end for

end for

A. Strassen Algorithm

The Strassen algorithm operates on 2 × 2 matrices and is
designed to reduce the number of multiplications operations
at the expense of requiring more additions as shown in
Algorithm 2. This algorithm requires 7 multiplications and 18
additions to complete a 2× 2 matrix. In contrast, the standard
algorithm would require N3 = 8 multiplications and additions.
So effectively 1 multiplication is exchanged for 10 additions.
To handle the larger matrix sizes, a block based approach
is used. We assume the size of input matrices are multiples
of 2. The algorithm below has been designed to operate on
4×4 matrices. This size was chosen since it used a reasonable
amount of resources on the FPGA while still providing high
performance.

Algorithm 2 Strassen Matrix Multiply C = A×B

for i = 0 → 1) do ⊲ Outer
for j = 0 → 1 do ⊲ Mid

for k = 0 → 1 do ⊲ Inner
A′ = A2i:2i+1,k:k+1

B′ = B2k:2k+1,j:j+1

S1 = (A′

11 +A′

22)× (B′

11 +B′

22)
S2 = (A′

21 +A′

22)×B′

11

S3 = A′

11 × (B12 −B′

22)
S4 = A′

22 × (B21 −B′

12)
S5 = (A′

11 +A′

12)×B′

22

S6 = (A′

21 −A′

11)× (B′

11 +B′

12)
S7 = (A′

12 −A′

22)× (B′

21 +B′

22)

C ′

11 = C ′

11 + S1 + S4 − S5 + S7

C ′

12 = C ′

12 + S3 + S5

C ′

21 = C ′

21 + S2 + S4

C ′

22 = C ′

22 + S1 − S2 + S3 + S6

end for
C2i:2i+1,2j:2j+1 = C2i:2i+1,2j:2j+1 + C ′

end for
end for







0 s1,2 0 0
0 s2,2 s2,3 0

s3,1 0 0 s3,4
s4,1 0 0 0







val s1,2 s2,2 s2,3 s3,1 s3,4 s4,1
col 1 1 2 0 3 1

row 0 1 3 5

val s3,1 s4,1 s1,2 s2,2 s2,3 s3,4
row 2 3 0 1 1 2

col 0 2 4 5

Fig. 1: Sparse matrix (top) in compressed sparse row (CSR)
(mid) and compressed sparse column (CSC) formats (bottom).

B. Sparse Algorithm

When matrices consist largely of zero value elements it is
possible to compact the sparse matrix into a form in which its
sparsity can be easily exploited. In this work, sparse matrices
are stored in the compressed sparse row (CSR) and compressed
sparse column (CSC) formats. A sparse matrix displayed in
CSR format is comprised of three vectors as shown in Figure 1.
The first vector, val, consists of the values of the non-zero
elements of the sparse matrix. The second, col, contains the
column index of each of the non-zero elements of the sparse
matrix. Finally, row stores the index in val of the first non-zero
element of row i. Conversely, CSC format stores the row index
of each non-zero element in the row vector and the index of
the first non-zero element of each column in the col vector.
The sparse algorithm operates by multiplying each non-zero
element in a row of A with every non-zero element in a column
of B and then repeats that process for every row and column
of the matrix as shown in Algorithm 3. For this algorithm, we
assume that the matrix A is stored in CSR format, and matrix
B is stored in CSC format.

Algorithm 3 Sparse Matrix Multiply C = A×B

for i = 0 → rows(A) do ⊲ Top
for j = rowA[i] → rowA[i+ 1] do ⊲ Mid1

for k = 0 → cols(B) do ⊲ Mid2
for m = colB [k] → colB [k + 1] do ⊲ Bottom

if colA[j] == rowB [m] then
Ci,k = Ci,k + valA[j]× valB [m]

end if
end for

end for
end for

end for

IV. AN OVERVIEW OF HIGH LEVEL SYNTHESIS

TECHNIQUES

The overall goal of high level synthesis is to take an
algorithm specified in a high level language, extract the
control logic (i.e. loops, conditionals, etc.) and operations
(add, multiply, divide, etc.) contained therein, and generate
an equivalent hardware accelerator specified in the designer’s
choice of HDL. HLS tools are composed of multiple stages
that iteratively modify and then translate the input source
code towards an equivalent HDL model. Normally, the front-
end compiler tasks consist of a pre-processing and analysis
stage, initial optimization stage, loop unrolling stage, and
secondary optimization stage responsible for applying pipeline
directives. The result of this is modified source code and a
set of internal compiler information necessary to generate the
equivalent HDL.

Loop unrolling will fully (or partially) unfold an iteration
block into a sequence of finite statements that can be later
joined together and executed in parallel. It is important to
note that non-deterministic loops cannot be unrolled, as the
number of iterations cannot be determined at compile-time.
Given the flexibility in how much a loop is unrolled, the user
has direct control over the area consumption of each unrolled
block of code. Unrolling an outer loop completely unrolls any
inner loops. Even though the control logic may vanish as loops
are unfolded and their internal statements are synthesized into
parallel statements, the amount of FPGA resources increases
linearly with respect to the number of iterations of the loop.
Similarly, pipelining is an optimization that inserts registers
between combinational logic for a sequence of code blocks
to enable higher clock speeds for the resulting design. This
technique may be applied to nested loops with the caveat that
doing so will completely unroll the inner loop to a single piece
of combinational logic with corresponding pipeline registers.
This is particularly useful for applications that stream a great
deal of data through the accelerator. Furthermore, since the
pipeline optimization can be selectively applied to any loop,
nested or otherwise, the user is given more control over the
consumption of the FPGA resources.

Control over the memory interface is not as liberal in
modern HLS tools. For example, Vivado HLS provides an
extensive capability for the user to define the memory interface,
however it lacks the complete control that writing custom HDL
provides.

V. RESULTS

The FPGA device chosen for this research was the Xilinx
Virtex 6-475T device due to its large number of DSP slices that
would be able to accommodate all of the multipliers needed for
matrix-matrix multiplication. The three algorithms discussed
in Section III were implemented using the Vivado HLS tool.
Additionally, a well researched custom design from previous
work was also implemented for comparison [11][12][13]. To
evaluate the performance improvement of the HLS generated
designs over software, each algorithm was implemented in
C++ and executed in an Intel Core i7 Sandy Bridge 3.4GHz
processor. Each design operated on integers for simplicity. The
adders and multipliers were implemented as distinct functional
units so that they could be swapped out for any other type
such as floating point. For each algorithm, we will discuss the
architecture that was generated from the HLS tool and compare
its performance to the software implementation. In Section VI
we compare the design times for the HLS and custom designs.

For all of the HLS generated designs, each matrix input
into the compute logic was a standard BRAM interface. The
matrix inputs and outputs for each design were then manually
connected to memory interfaces for off-chip DDR storage.
Then, each design was synthesized and post place and route
statistics such as clock speed and resource utilization were
collected. A number of optimizations were applied to each
algorithm. For the sake of brevity, we only present two
architecture diagrams for the standard and Strassen algorithms
and just one for the sparse algorithm.

A. Standard Algorithm

The architecture diagram for the HLS generated design
for the standard algorithm operating on a 8x8 matrix with
no optimizations is shown in Figure 2a. Table I shows the
percentage of resources utilized in the FPGA and the speedup

(a) Optimization: None.

(b) Optimiation: Cols loop pipelined.

Fig. 2: Architectures generated from HLS tool for standard
algorithm.

TABLE I: HLS and custom results for the standard algorithm.
The utilization is shown as a percentage of the total, and the
speedup is that of the HLS optimized design versus software.

Optimization

Resources [Total]

SpeedupLUTs FFs DSPs

[297760] [595520] [2016]

None 1% 1% 1% 0.2x

Product Pipelined 1% 1% 1% 0.6x

Product Unrolled 1% 1% 1% 3.2x

Cols Pipelined 1% 1% 1% 3.2x

Cols Unrolled 1% 1% 5% 1.5x

Rows Pipelined 1% 1% 2% 2.7x

Rows Unrolled - 2 3% 2% 27% 3.1x

Rows Unrolled - 4 7% 5% 75% 4.8x

Custom 1% 1% 13% 50.6x

that was achieved over the software implementation for a
variety of optimizations applied in the HLS tool as well as
for the custom implementation.

The performance of the HLS tool over the software was
generally a few times faster. Overall, the pipelining optimiza-
tions generally performed better than the unrolling. Especially,
when moving from unrolling an inner loop to pipelining its
outer loop since pipelining a loop unrolls all inner loops.
Initially, the performance of the first two HLS designs didnt
achieve a speedup since they ran at a lower clock speed than
on the CPU in software yet only had a single multiplier and
divider. Once the designs began to become parallelized extra
performance was achieved. Unrolling the Product loop only
produced two multipliers sharing a single adder. However,
we expected that 8 multipliers and adders would have been
generated. Due to the design of the algorithms used within
the HLS tool only two multipliers with a shared adder were
generated. Pipelining the Cols loop also unrolled the Product
loop, but added registers between the various components as
shown in Figure 3b. After unrolling the Cols loop however,
8 of the two multipliers with shared adders were generated,
as we originally expected. The best performance of the HLS
designs was achieved by unrolling the outer Rows loop by a
factor of 4 which consumed 2x the resources of unrolling by a
factor of 2, yet was only 1.7x faster. Perhaps the most notable
discrepancy between this design and the custom was the fact
that the HLS design only reads 2 elements from each input
matrix while the ping-pong buffers used in the custom design
were capable of 8 simultaneous reads. Compared to the custom
design, the fastest HLS design used almost 8x the resources
but only achieved 1/10th the performance.

B. Strassen Algorithm

The Strassen algorithm from Algorithm 2 was analyzed by
the HLS tool and a design generated with no optimizations
as shown in Figure 3a. The basic element (BE) shown in
the architecture diagram represents the adders and multipliers
required for the calculations within the Inner loop of the algo-
rithm for brevity. Table II shows the percentage of resources
utilized in the FPGA and the speedup that was achieved over
the software implementation.

The custom Strassen design consisted of 4 2x2 matrix
multipliers. Disregarding the Outer loop, the trip count of

the Inner loop is equivalent to 4. Thus it is easy to see that
when these two loops are fully unrolled the design should be
equivalent (at least in terms of hardware components) to the
custom design. However, the HLS design has the advantage of
being able to unroll the Outer loop.

This algorithm wasnt able to achieve the same level of
performance improvement as the standard algorithm. Overall,
the HLS designs achieved a few times speedup over the
software implementation with very little extra effort. Just as
with the standard algorithm, once this algorithm’s loops were
unrolled a speedup was achieved. As mentioned above, the
BE computes the matrix multiplication for a 2x2 matrices.
The loop bounds were set for a 8x8 matrix, and so unrolling
the Inner loop produced two BEs and unrolling the Mid loop
produced four BEs as shown in Figure 3b. Additionally, since
in this design more results are being calculated in parallel,
the HLS tool generated a design with a second output port to
allow for this increased bandwidth to be written out to memory.
Pipelining the Outer loop just added pipelining to the unrolled
Mid and Inner loops. This version is architecturally equivalent
to the custom design, yet it only achieved a speedup of 2.0x
compared to the custom’s 4.8x speedup. Further unrolling
produced a larger speedup at the expense of using more
resources than the custom design.

C. Sparse Algorithm

The sparse algorithm from Algorithm 3 is very different
from the other two algorithms in that the bounds on the loops
are non-deterministic. The bounds depend on the sparsity and
distribution of non-zero elements in the matrix. However, the
Top loop is bounded to the number of rows in the matrix,
and so this loop is able to be optimized in the HLS tool.
The design with no optimizations is shown in Figure 4. The
generated design has at its core a multiplier and an adder just

(a) Optimization: None.

(b) Optimiation: Mid loop unrolled.

Fig. 3: Architectures generated from HLS tool for Strassen
algorithm.

TABLE II: HLS and custom results for the Strassen algorithm.
The utilization is shown as a percentage of the total, and the
speedup is that of the HLS optimized design versus software.

Optimization

Resources [Total]

SpeedupLUTs FFs DSPs

[297760] [595520] [2016]

None 1% 1% 1% 0.4x

Inner Pipelined 1% 1% 1% 0.5x

Inner Unrolled 1% 1% 2% 1.0x

Mid Pipelined 1% 1% 2% 2.0x

Mid Unrolled 1% 1% 4% 1.6x

Outer Pipelined 1% 1% 4% 2.0x

Outer Unrolled 1% 1% 8% 2.9x

Custom 1% 1% 6% 4.8x

like the standard algorithm but with extra inputs for the rows
and columns to determine which elements to operate on.

Unfortunately, due to the complexity of this design the HLS
tool was not able to parallelize the algorithm in a beneficial
way. It generated so much control logic that the achievable
clock speeds were so low the performance actually decreased
as shown in Table III. In fact, for the unrolling optimization
of the Top loop the design used 12% of all the LUTs in the
device, much more than all of the other designs. However, the
design with no optimizations did achieve a 1.2x speedup over
the software for matrices with 30% density. Overall, as the
matrix density decreases these implementations becomes less
efficient. The custom design was orders of magnitude faster
than the HLS designs and the 8 processing element (PE) design
was able to parallelize the architecture and use more DSPs
for higher performance. Given these results, HLS tools are
unsuitable for algorithms with this type of non-deterministic
loop bounds.

VI. HLS UTILITY THROUGH DESIGN TIME AND

PERFORMANCE

The design time and performance results of implementing
three matrix multiplication algorithms in software, HLS, and
custom were collected and plotted in Figure 5. These design
times are the result of one of the authors to implement
each particular design as recorded in their own work log.
The HLS design times reflect the time required to achieve
the best performance among all optimizations evaluated. The
performance of each implementation was evaluated in terms of
the number of integer operations completed per second (IOPS).
The custom implementations had significantly longer design

Fig. 4: Architecture generated from HLS tool for Sparse
algorithm with no optimization.

TABLE III: HLS and custom results for the sparse algorithm. The utilization is shown as a percentage of the total, and the
speedup is that of the HLS optimized design versus software using the same sparse matrix density.

Optimization

Resources [Total]
Speedup [Density]

LUTs FFs DSPs

[297760] [595520] [2016] [30%] [20%] [10%]

None 1% 1% 1% 1.2x 1.0x 0.6x

Top Pipelined 1% 1% 1% 0.9x 0.8x 0.5x

Top Unrolled 12% 4% 1% 0.5x 0.4x 0.2x

Custom PE - 4 1% 1% 1% 223.9x 140.4x 56.7x

Custom PE - 8 1% 1% 2% 240.0x 132.0x 43.8x

times when compared to their HLS counterparts. This holds
true particularly for the standard and sparse implementations,
where the HLS source codes were ported directly from estab-
lished software implementations of the algorithms.

The Strassen HLS implementation, which was designed to
mimic the developed custom Strassen design, took significantly
longer to design. However, when comparing the results of the
different implementations it is clear that the Strassen HLS
design performs closest to its custom implementation in terms
of run time. Thus the longer design time of the Strassen
HLS implementation yielded a comparatively shorter run time.
The Strassen custom design had a longer design time than
the standard custom design due to the more complex nature
of the design. While the standard custom implementation
consisted almost entirely of multiply accumulators in parallel,
the Strassen custom implementation required long elementary
operation chains (to form the intermediary matrices) and multi-
plexers on the input buses in order to switch between different
source matrices. The sparse custom implementation fell in
between the standard and Strassen designs in terms of design
complexity, as it required a systolic array architecture that
could easily toggle between different numbers of processing
elements. This led to the sparse custom design time being
substantially longer than that of the standard algorithm, but
not as long as the Strassen implementation.

The utility of a particular HLS tool can be perceived
as the efficiencies it lends its user. It is well established
that measuring the efficiency or productivity of an engineer
or developer is an arduous, if not impossible, task due to
the lack of available metrics with which to quantify such

Fig. 5: Performance (in integer operations per second, IOPS)
of each of the three implementations: SW, HLS, and custom
and the design time (in hours) required to design each.

TABLE IV: Utility calculations for each of the algorithms.

Algorithm US

(

IOPS

hrs

)

UC

(

IOPS

hrs

)

US/UC

Standard 1.57× 10
8

3.43× 10
8

0.46
Strassen 8.27× 10

7
4.73× 10

7
1.75

Sparse 1.71× 10
5

6.83× 10
6

0.03

performance - lines of code, feature points, and the like to
not accurately capture the context in which an application is
developed. However, given the primary use case for HLS tools
in optimizing the performance of a particular algorithm, we
can directly measure and quantify this performance PS with
respect to any metrics (e.g. throughput, power consumption,
area, etc.). Then, using the amount of time TS invested in
the design to achieve this performance, we may quantify the
utility, or gain, of the tool as follows:

US = PS/TS .

We may perform a similar measurement and computation to
derive the baseline performance for the custom component
with which we are comparing against as

UC = PC/TC .

If US > UC then the HLS tool proved to be more effective
than designing a custom accelerator, and vice versa.

The corresponding values of US and UC for the HLS and
custom designs are shown in Table IV for each algorithm. The
utility is represented as the number of integer operations per
second (IOPS) divided by the amount of design time required
in hours. From the utility calculations it is clear that software
to be compiled into corresponding HDL by HLS tools needs to
be worth the time investment. The Strassen algorithm, which
was specifically optimized using directives in the HLS tool to
parallel the custom component design, had more utility than
the other algorithms, which were not modified in any way from
their original form before being compiled. Therefore, if time
and expertise are invested to design the software, then HLS
tools can be greatly beneficial in practice. In fact, as these
tools continue to be developed and improved and engineers
are trained to use them, such utility gains will only increase,
perhaps even enabling software engineers without a rigorous
hardware background to develop high performance designs.

TABLE V: Modified utility calculations for each of the algo-
rithms.

Algorithm U
′

S

(

IOPS

area×hrs

)

U
′

C

(

IOPS

area×hrs

)

U
′

S
/U′

C

Standard 5.38× 10
8

7.09× 10
9

0.08
Strassen 2.34× 10

9
1.37× 10

9
1.35

Sparse 1.45× 10
8

1.08× 10
9

0.13

In addition to our utility comparison based solely on
throughput, we also considered the metric in which throughput
and area were both taken into account. In particular, this new
utility calculation for HLS and custom designs is defined as
U ′ = P/T , where P = (throughput/area). Plots of the
modified metric are shown in Figure 6, with the updated
utility calculations presented in Table V. Clearly, when area
is considered, the performance of the HLS tools decreased
due to the additional area required by the designs. For the
Strassen, which had the most invested time, the utility ratio
was above 1.0, meaning that the HLS design performed better
in combined performance and area than the custom component.
As a result we conclude that, given the current state of these
tools, HLS tools should not be used for critical designs where
area and throughput need to be optimized.

VII. CONCLUSION

In this paper we studied the performance improvements
and design time reductions possible with the use of HLS
tools in lieu of creating custom hardware accelerators for three
matrix multiplication algorithms. We analyzed the architecture
of each design as generated using the Xilinx Vivado HLS
tool with various optimizations applied, such as pipelining and
loop unrolling, and compared them against custom designs for
the same algorithm. We found that the HLS tools achieved
speedups of up to 5x for the standard algorithm and 3x for
the Strassen algorithm compared to their software implemen-
tations. However the sparse algorithm only achieved a speedup
of 1.2x since the loops in the algorithm had non-deterministic
bounds.

Then, cost-benefit analyses for each algorithm empirically
showed that HLS tools are effective when high throughput
is an optimization goal but not so when throughput per unit
of area is a goal. We found that given ample design time of
a particular computational algorithm and proper use of the
optimizations made available by the HLS tool in use, it can
be more cost-effective to opt for an HLS solution instead of
designing a custom component. We expect this effectiveness to
only increase as HLS tools improve and become more usable
by a larger number of engineers.

Fig. 6: Comparing the Throughput/Area metric to design
time for standard, Strassen, and sparse algorithms.

REFERENCES

[1] S. M. Loo, B. E. Wells, N. Freije, and J. Kulick, “Handel-C for
Rapid Prototyping of VLSI Coprocessors for Real Time Systems,”
Southeastern Symposium on System Theory, Mar. 2002.

[2] D. Pellerin and S. Thibault, Practical FPGA programming in C.
Prentice Hall Press, May 2005.

[3] J. Villar, J. Juan, M. Bellido, J. Viejo, D. Guerrero, and J. Decaluwe,
“Python as a Hardware Description Language: A Case Study,” Southern

Conference on Programmable Logic, Apr. 2011.

[4] J. Xu, N. Subramanian, A. Alessio, and S. Hauck, “Impulse C vs. VHDL
for Accelerating Tomographic Reconstruction,” IEEE International

Sympoisum on Field-Programmable Custom Computing Machines, May
2010.

[5] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “LegUp: High Level Synthesis
for FPGA-based Processor/Accelerator Systems,” ACM/SIGDA Interna-

tional Symposium on Field Programmable Gate Arrays, Feb. 2011.

[6] C. Economakos and G. Economakos, “FPGA Implementation of PLC
Programs Using Automated High-Level Synthesis Tools,” IEEE Inter-

national Symposium on Industrial Electronics, 2008.

[7] K. Denolf, S. Neuendorffer, and K. Vissers, “Using C-To-Gates To
Program Streaming Image Processing Kernels Efficiently on FPGAs,”
International Conference on Field Programmable Logic and Applica-

tions, Aug. 2009.

[8] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 30, no. 4, Dec. 2011.

[9] G. Inggs, D. Thomas, and S. Winberg, “Exploring the Latency-Resource
Trade-off for the Discrete Fourier Transform on the FPGA,” Interna-

tional Conference on Field Programmable Logic and Applications, Aug.
2012.

[10] J. Monson, M. Wirthlin, and B. L. Hutchings, “Implementing High-
Performance, Low-Power FPGA-based Optical Flow Accelerators in
C,” IEEE International Conference on Application-Specific Systems,

Architectures and Processors, June 2013.

[11] I. Sotiropoulos and I. Papaefstathiou, “A Fast Parallel Matrix Multi-
plication Reconfigurable Unit Utilized In Face Recognition Systems,”
International Conference on Field Programmable Logic and Applica-

tions, Aug. 2009.

[12] I. Bravi, J. Pedro, J. Luis Lazaro, J. de las Heras, and A. Gardel,
“Different Proposals to Matrix Multiplication Based on FPGAs,” IEEE

International Symposium on Industrial Electronics, June 2007.

[13] C. Yu Lin, Z. Zhang, N. Wong, and H. Kwok-Hay So, “Design Space
Exploration for Sparse Matrix-Matrix Multiplication in FPGAs,” Dec.
2010.

