High-Level Test Generation for Design Verification of Pipelined Microprocessors
David Van Campenhout, Trevor Mudge, and John P. Hayes

Department of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, Ml 48109-2122, USA
{davidvc, thm, jhayes}@eecs.umich.edu

Abstract generation algorithm is described in Section 4. The algorithm is

This paper addresses test generation for design verification of piPEQesc_rlbed Ind S_ectlon 5. Wel p()jr_esent exkpe_rlmentgl results i

lined microprocessors. To handle the complexity of these designs€Cction 6, and give some concluding remarks in Section 7.

our algorithm integrates high-level treatment of the datapath with

low-level treatment of the controller, and employs a novel “pipe-2. Related Work

frame” organization that exploits high-level knowledge about the pesign verification of pipelined microprocessors with respect to

operation of pipelines. We have implemented the proposed algqeir instruction set architecture (ISA) specification has been tack-

rithm and used it to generate verification tests for design errors in ag g using formal methods. In some early work [6] the implementa-

representative pipelined microprocessor. tion and the specification are symbolically simulated and the
outcome is compared using a given mapping that relates corre-

Keywords: design verification, sequential test generation, high-Sponding time points for the outputs. This method assumes that the

sion problem. Burch and Dill [8] abstract the datapath using a quan-
1. Introduction tifier-free first-order logic with uninterpreted functions. Their

. e . . method constructs the next-state functions of the implementation
Design verification is considered one of the most serious bottleynq the specification, which are then checked for equivalence. Lev-
necks for multimillion-gate microprocessor designs. There are tWGt and Olukotun [19] develop a methodology for verifying the con-
broad approaches to hardware design verification: formal and simugo 1ogic of pipelined microprocessors that uses the same datapath
lation-based. Formal methods try to verify the correctness of a sySypstraction. They iteratively merge the two deepest stages of the
tem by using mathematical proofs. Simulation-based designipeline and check whether the newly obtained pipeline is still
verification tries to uncover design errors by detecting a CIrCUIt’Sequiva|ent to the previous one. High-level information, similar to
faulty behavior when deterministic or pseudo-random tests (simulagat in our approach, is central to achieving a high degree of auto-
tion vectors) are applied [3, 9, 23]. The effectiveness of verificationyation.
test suites is quantified by coverage metrics that include code cover- . e .
age measures from software testing [5], finite-state machine cover- A class of hybrid verification techniques [12, 14, 20, 21] that

age [14], architectural event coverage [23], and observability-baseﬁomtgnﬁ_f‘immaﬂoﬂ with formal verificatior;l has drelfgl\r}lﬂy b%err p;o-h
- ) R . osed. These techniques construct a reduce model of the

metrics [11]. A shortcoming of all these metrics is that the relation-; - . .
ship bet\[/ve(]an the metric angd the detection of classes of design errOlrrn_plementatlon. A test set is generated that achieves full state-tran-
is not well specified or understood GRion coverage on the reduced FSM model. That test set is trans-
P ) formed so that it can be applied to the implementation. The

An alternative verification approach draws on the similarity implementation and the specification are then simulated for the
between hardware design verification and physical fault testing [1yansformed test set.

4, 24]. In this approach, synthetic error models are derived from Typical fault-oriented test generation techniques for gate-level

empirical design error data, and physical fault testing technique L - : X .
arepadapted toggenerate test sets ?orythe synthetic errgrs. Dueqto t%%quentla_l circuits [10] iteratively apply a test generation algorithm
gap in abstraction level between the implementation and the specif|9r combinational circuits using the iterative logic array (ILA)

cation, the test generation problem must be solved for a very IargFmOdel of the circuit. Circuits of the size and complexity of pipe-

IR : : 2 ined microprocessors still exceed the capabilities of current gate-
sequential circuit. Circuits of the size and complexity of plpellnedI vel seque%tial test generation methods.pOne approach to agdress

microprqcessors far e).<ceed thg capabilities of current gate-lev% is complexity is to perform test generation at a higher level of
sequgntlal test generation algorlthms.‘ . abstraction. Lee and Patel [18] describe a method to generate tests
This paper addresses test generation targeted at synthetic errqgs microprocessors, modeled as a datapath and a set of control
for design verification of pipelined microprocessors, and proposes Behaviors. Test generation is split into path selection and value
new test generation method that exploits high-level knowledgese|ection phases. Iwashita et al. [16] describe a technique for gener-
about these designs. We review relevant previous work in Section Zing instruction sequences to excite given “test cases”, such as haz-
Our _hlgh-level_mod_el for plpellned processors is p_resented iNrds, in  pipelined processors. Test generation at the
Section 3. The iterative organization of the proposed high-level tesicroarchitectural level is presented in [9, 15], but is not suitable

for targeting concrete structural errors.

Permission to make digital/hardcopy of al or part of this work for personal or 3. Plpellned Processor Model

?lassrotqu useisgranteg V;ciithOLitfee tphrovided ,thﬁi COI;{ieS ét‘L e Tﬁ mafdfh‘)f diglf_ibal;_ted An important element of microprocessor structure is the distinction
or profit or commerci vantage, the copyright notice, the title of the publication : . _
and its date appear, and notice is given that copying is by permission of ACM. Inc. betweerd_ataandcontrol. The merits of_treatl_ng datapaths and con

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires  trollers differently have been recognized in many other domains
prior specific permission and/or afee. such as high-level synthesis, formal verification, etc. In today’s
DAC 99, New Orleans, Louisiana design methodologies, controllers are usually described by behav-

(c) 1999 ACM 1-58113-109-7/99/06..$5.00



ioral HDL code (case statements). These descriptions are then syn- DPIi DPOI
thesized into gate-level or transistor-level netlists either by CAD DATAPATH
tools or by hand. Most signals appearing in controller descriptions Stage i
are unstructured binary signals. Controllers are essentially sets of DPR(i-1) / DPRi
interacting finite-state machines. Datapaths, on the other hand, DSli DSOi
process structured data words and so can be represented at a higher ) é&%’é‘é’f i
level than the gate level, using high-level, multibit modules and from other —|- 211 |modules [PTO! to other
buses. This high-level representation drastically reduces the size of stages stages
the design representation. k

From a verification point of view, it is also important to distin- - -
guish machine state that is visible to the specification, typically an STSi CTRLI
ISA model, from machine state that is specific to the implementa- . CONTROLLER
tion. In pipelined microprocessors the implementation-specific N
machine state consists of the pipeline registers. Much of the com- Stage i
plexity of these processors results from the interaction between CPR(-1) ( CPRi
multiple instructions in the pipeline. If instructions were to interact CSli CSOi
only through the ISA-visible part of the machine state, they could D %g?gb‘ to other
be treated independently for verification test generation. However, . stages
there is also interaction through the implementation-specific k L cmi ”
machine state, and this is intimately related to pipeline hazards. !
Hennessy and Patterson [13] define three standard techniques for Global
dealing with pipeline hazardstalling, squashingand bypassing from other ———s| ﬁgg}g'
The signals that control these mechanisms are of interest because stages ——|
they reveal the essence of instruction interaction in the pipeline.
They provide a means to characterize the control state of the pipe- CPOi+ | CPIi

line in a much more compact way than by considering all the
instructions in the pipeline simultaneously.

We are developing the model for pipelined processors, shown
in Figure 1, that exposes high-level knowledge that can be used
during test generation. The datapath and controller both exhibit
pipeline structure and interact via status and control signals. The
signals at each stage are classified as:

primary: interfacing with the environment
secondaryinterfacing with the stage’s pipeline registers
tertiary: interfacing with another pipeline stage

The tertiary signals introduced here are precisely the signals
needed to describe essential instruction interaction. Typical exam-
ples of tertiary signals in the controller asguashandstall signals;
typical examples of tertiary signals in the datapath are bypasses.
Imposing the model requires no more than the appropriate labeling
of control signals, status signals, and pipe registers, along with NP
appropriate high-level modeling of the datapath.

Dxx: data signal

Cxx: control signal

xPI (PO): primary input (output)
xSI (SO): secondary input (output)
XTI (TO): tertiary input (output)

STS: status signal

CTRL: control signal
DPR: data pipe register
CPR: control pipe register

Figure 1. Pipelined microprocessor model.

a)

b)

4. Pipeframe Model

\
Conventional fault-oriented test generation algorithms for sequen- |
tial circuits use the ILA model and iteratively apply test generation |
techniques for combinational circuits in one timeframe. In this sec- ‘
\
\

tion we describe a different organizational model specific to pipe- Cplpef
lined processors. Thipipeframe organizational model exploits ( :
high-level knowledge about pipeline structure that is captured with Pipef
the processor model. The advantages of this approach are a reduc- )
tion of the search space and the elimination of many conflicts. \Window i

Consider the application of a conventional test generation algo-
rithm to a pipelined controller circuit without a datapath. Figure 2a  window i+1
shows a three-stage pipelined circ@0, C1 andC2 are combina-
tional logic corresponding to the three pipe stages. The global
combinational logicCG sources all CPI's and all CSl's. In order
not to clutter the figure, the CPI's sourced 6y and the CPO's  pipelined microprocessors, the number of CSI's (state bits) is typi-
produced byCi have been omitted. The ILA model for this circuit  cally much larger than the number of CPI's. This is because the
is shown in Figure 2b. If PODEM [2] is used as the combinational primary function of the controller is to decode the incoming
test generation algorithm, the decision variables are the CPI's andjnstructions.

the CSlI's in each timeframe. The state space to be searched during  4inq i L e ninali
: 9 5 3 aking into account that the circuit is pipelined and performs
each iteration is that of the CSI's and CPI's. For the controller of several concurrent, and to a large extent independent, decodes, a

Figure 2. a) Pipelined controller; b) iterative array



different organization of the search, one that is directly in terms of more data inputs. They have the property that the output can be
the CPI's, is desirable. When the global control 10GiG is absent, justified (to an arbitrary value) by controlling only a single input,
it is easy to see how this can be accomplished. In this case, the ILAI.e., regardless of the values of the other inputs, the controlled input
consists of unconnected (horizontal) slices spanning a number ofcan be assigned a value that will justify the output. Also, if the out-
timeframes equal to the number of pipe stages. These horizontalput is observable than every input is observable as well. Modules
slices will be referred to agipeframeslt can be seen that the size  in theAND class have the property that in order to justify the output
of the circuit to be considered is exactly the same as that in the (to an arbitrary value) all inputs need to be controlled. To observe
conventional time-frame based search, although the depth isan input, the output needs to be observable and all side inputs need
greater. However, in the new approach conflicts due to unreachableto be controlled. Modules in theux class have one data output,
states cannot arise as decisions are made only on the CPI’s. one or more data inputs, and one or more control inputs. The con-
In general, there is interaction between pipestages through thetrol inputs are driven by CTRL signals, and determine which data
global combinational logi€G. To organize the search by pipe- input is selected. In order to justify the output, the control inputs
frame, the tertiary signal§Tli,i =0, ..., 2 need to be included as  Need to be assigned and the selected data input needs to be con-
decision variables. The ILA is partitioned into pipeframes by cut- trolled; the other data inputs are free. In order to observe a data
ting the tertiary signals, also shown in Figure 2b. A complication is input, the output needs to be observable, and the control inputs
that a pipeframe directly interacts with a number of other pipe- Need to be assigned such that the requested data input is selected.
frames via shared primary inputs and via the tertiary signals feed- Multiple fanout nodes have the property that only one fanout can
ing the pipeframe. In the conventional organization, each be justified by controlling the stem.
timeframe depends directly only on the previous timeframe. To Edges in the COG are attributed with symbolic values that
cope with this complication, multiple pipeframes need to be con- encode controllability information. The attribute, th@-state,
sidered simultaneously during the search. The set of pipeframesassumes values from the s&@X, C2, C3, C4}. The interpretation

directly relevant to pipeframieis indicated bywindow iin the fig- of these values is as follows:
ure. e C1:itis unknown whether the edge can be controlled
Consider anp-stage pipelined controller with a total of; ¢ C2:the edge cannot be controlled, but there are still open
CPI's, n, CSlI's per pipestage, anty CTI's per pipestage. In the decisions in the transitive fanin of the edge
usual timeframe organization, there arg+ p.n, decision vari- « Ca3: the edge cannot be controlled and there are no more
ables per timeframey.n, of which need justification. In our pipe- open decisions in the transitive fanin of the edge
frame approach, there are; + p.ng decision variables per e C4:the edge is controlled
pipeframe,p.nz of which need justification. Our approach is tar- Similarly, information about an edge’s observability is repre-
geted at the circuits withz << n,. For such circuits the following sented by th®-state, which assumes values from the €2t {02,
can be observed: 03}. The interpretation of these values is as follows:
« The size of the search space in the pipeframe ¢ OLl:itis unknown whether the edge can be observed
organization is significantly smaller than that in the usual e O2: the edge is not observable
timeframe organization. ¢ 0O3: the edge is observable
» The size of the circuit to be dealt with in the pipeframe The path selection problem is that of finding a valid assignment
organization is comparable to that in the conventional to theC-state andD-state of all edges, and to the CTRL signals to
organization, although its depth is greater. the pipeframe such that the edged associated with the error both

For some pipelined controllers the pipeframe approach does notcontrollable C4) and observabled3). The path selection problem
reduce the search space. This is the case when @&@nds on can be solved with a PODEM-like directed search with decision
CSli+1 (referring to Figure 1) for every pipestage. For such cir- Vvariables the CTRL lines and variables that are associated with

cuits, all CSl's are also CTI's, the pipeframe approach reduces to Nets with multiple fanouts.

the usual timeframe approach. DPRELAX. DPRELAX determines values for DPI's that
expose the error effect and justify any STS signals assigned by
5. Test Generation Algorithm CTRLJUSTWEe use a discrete relaxation algorithm, similar to that

Our high-level test generation algorithm is targeted at localized proposed in [17], to solve the problem:

errors, such as those described in [24], in the datapath. It follows ~ CTRLJUST. CTRLJUSTderives an input sequence that, when
the iterative organization described above and decomposes the tesiPPlied to the circuit, and starting from its reset state, makes the
generation problem into three subproblems: 1) path selection in thecontroller produce the desired values on the CTRL lines as
datapath, 2) value selection in the datapath, and 3) justification of féquested byDPTRACE CTRLJUSTuses a PODEM-like search
control signals (controller). The subproblems are addressed by"‘{'th the CPI, C_:Tl’ and STS S|gna_ls as de_C|S|0n va_lrl_ables. Deci-
DPTRACE DPRELAX andCTRLJUSTrespectively. sions on CTI signals need further justification. Decisions on STS

DPTRACE. DPTRACE computes a set of justification and signals need to be justified BPRELAX
propagation paths in the datapath to activate the error and expos
the error effect at a primary output of the datap&RTRACEdoes
not consider the values that need to be justified and propagated. We have built a prototype implementation of the proposed test gen-

From the high-level description of the datapath, a controllabil- €ration algorithm. We are using a version of the DLX microproces-
ity/observability graph (COG) is derived. Its nodes correspond to SOr [13] as a test vehicle. This design implements 44 instructions,
datapath modules, nets with multiple fanout, primary inputs and has a five-stage pipeline and branch prediction logic, and consists
outputs, tertiary inputs and outputs, and control and status signa|s;0f 1552 lines of structural \(erllog_ COde._The controller haS 95 bits
its edges correspond to pairs of connected ports (module terminals)of state; the number of tertiary signals in the controller is 43. The
in the datapth. We distinguish three classes of basic datapath mod®ipeframe approach reduces the number of decision variables that
ules:ADD, AND, MUX. need justification from 95 to 43 compared to the conventional

Modules in theAbp class have one data output, and one or timeframe approach. The datapath has 512 bits of state, not includ-

e6. Experiments



Table 1. Verification test generation for bus SSL and standard
SSL errors in datapath of DLX implementation.

High-level: Gate-level:
Parameter our method with HITEC with
bus SSL errors standard SSL errors
Total no. of errors 316 385
No. of errors detected 274 278
No. of errors aborted 42 93
No. of undetectable errors N/A 14
Efficiency [%)] 86 75
CPU time [minutes] 17 46

ing those in the register file. The high-level model of the datapath
consists of 100 combinational modules.

We targeted our test generation system at all bus single stuck
line (bus SSL) errors [7] in the decode, execute, memory and
write-back stages of the datapath. Although our test generation
algorithm can be used in conjunction with other error models pro-
posed in [24], the bus SSL model was chosen for these initial

ment of the controller and exploits high-level knowledge about
pipeline structure. We have developed a model that captures high-
level knowledge about pipeline structure. As the analysis here
shows, the pipeframe approach can significantly reduce the search
space. Our high-level test generation method compares favorably
with gate-level test generation in the experiments.
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