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Abstract

This paper addresses test generation for design verification of pipe-
lined microprocessors. To handle the complexity of these designs,
our algorithm integrates high-level treatment of the datapath with
low-level treatment of the controller, and employs a novel “pipe-
frame” organization that exploits high-level knowledge about the
operation of pipelines. We have implemented the proposed algo-
rithm and used it to generate verification tests for design errors in a
representative pipelined microprocessor.

Keywords: design verification, sequential test generation, high-
level test generation, pipelined microprocessors.

1. Introduction

Design verification is considered one of the most serious bottle-
necks for multimillion-gate microprocessor designs. There are two
broad approaches to hardware design verification: formal and simu-
lation-based. Formal methods try to verify the correctness of a sys-
tem by using mathematical proofs. Simulation-based design
verification tries to uncover design errors by detecting a circuit’s
faulty behavior when deterministic or pseudo-random tests (simula-
tion vectors) are applied [3, 9, 23]. The effectiveness of verification
test suites is quantified by coverage metrics that include code cover-
age measures from software testing [5], finite-state machine cover-
age [14], architectural event coverage [23], and observability-based
metrics [11]. A shortcoming of all these metrics is that the relation-
ship between the metric and the detection of classes of design errors
is not well specified or understood.

An alternative verification approach draws on the similarity
between hardware design verification and physical fault testing [1,
4, 24]. In this approach, synthetic error models are derived from
empirical design error data, and physical fault testing techniques
are adapted to generate test sets for the synthetic errors. Due to the
gap in abstraction level between the implementation and the specifi-
cation, the test generation problem must be solved for a very large
sequential circuit. Circuits of the size and complexity of pipelined
microprocessors far exceed the capabilities of current gate-level
sequential test generation algorithms.

This paper addresses test generation targeted at synthetic errors
for design verification of pipelined microprocessors, and proposes a
new test generation method that exploits high-level knowledge
about these designs. We review relevant previous work in Section 2.
Our high-level model for pipelined processors is presented in
Section 3. The iterative organization of the proposed high-level test

generation algorithm is described in Section 4. The algorithm
described in Section 5. We present experimental results
Section 6, and give some concluding remarks in Section 7.

2.   Related Work

Design verification of pipelined microprocessors with respect
their instruction set architecture (ISA) specification has been ta
led using formal methods. In some early work [6] the implement
tion and the specification are symbolically simulated and t
outcome is compared using a given mapping that relates co
sponding time points for the outputs. This method assumes that
width of the datapath can be reduced to cope with the state exp
sion problem. Burch and Dill [8] abstract the datapath using a qua
tifier-free first-order logic with uninterpreted functions. Thei
method constructs the next-state functions of the implementat
and the specification, which are then checked for equivalence. L
itt and Olukotun [19] develop a methodology for verifying the con
trol logic of pipelined microprocessors that uses the same datap
abstraction. They iteratively merge the two deepest stages of
pipeline and check whether the newly obtained pipeline is s
equivalent to the previous one. High-level information, similar t
that in our approach, is central to achieving a high degree of au
mation.

A class of hybrid verification techniques [12, 14, 20, 21] tha
combine simulation with formal verification has recently been pr
posed. These techniques construct a reduced FSM model of
implementation. A test set is generated that achieves full state-tr
sition coverage on the reduced FSM model. That test set is tra
formed so that it can be applied to the implementation. Th
implementation and the specification are then simulated for t
transformed test set.

Typical fault-oriented test generation techniques for gate-lev
sequential circuits [10] iteratively apply a test generation algorith
for combinational circuits using the iterative logic array (ILA
model of the circuit. Circuits of the size and complexity of pipe
lined microprocessors still exceed the capabilities of current ga
level sequential test generation methods. One approach to add
this complexity is to perform test generation at a higher level
abstraction. Lee and Patel [18] describe a method to generate t
for microprocessors, modeled as a datapath and a set of con
behaviors. Test generation is split into path selection and va
selection phases. Iwashita et al. [16] describe a technique for ge
ating instruction sequences to excite given “test cases”, such as h
ards, in pipelined processors. Test generation at t
microarchitectural level is presented in [9, 15], but is not suitab
for targeting concrete structural errors.

3.   Pipelined Processor Model

An important element of microprocessor structure is the distincti
betweendataandcontrol. The merits of treating datapaths and con
trollers differently have been recognized in many other domai
such as high-level synthesis, formal verification, etc. In today
design methodologies, controllers are usually described by beh
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ioral HDL code (case statements). These descriptions are then syn-
thesized into gate-level or transistor-level netlists either by CAD
tools or by hand. Most signals appearing in controller descriptions
are unstructured binary signals. Controllers are essentially sets of
interacting finite-state machines. Datapaths, on the other hand,
process structured data words and so can be represented at a higher
level than the gate level, using high-level, multibit modules and
buses. This high-level representation drastically reduces the size of
the design representation.

From a verification point of view, it is also important to distin-
guish machine state that is visible to the specification, typically an
ISA model, from machine state that is specific to the implementa-
tion. In pipelined microprocessors the implementation-specific
machine state consists of the pipeline registers. Much of the com-
plexity of these processors results from the interaction between
multiple instructions in the pipeline. If instructions were to interact
only through the ISA-visible part of the machine state, they could
be treated independently for verification test generation. However,
there is also interaction through the implementation-specific
machine state, and this is intimately related to pipeline hazards.
Hennessy and Patterson [13] define three standard techniques for
dealing with pipeline hazards:stalling, squashingandbypassing.
The signals that control these mechanisms are of interest because
they reveal the essence of instruction interaction in the pipeline.
They provide a means to characterize the control state of the pipe-
line in a much more compact way than by considering all the
instructions in the pipeline simultaneously.

We are developing the model for pipelined processors, shown
in Figure 1, that exposes high-level knowledge that can be used
during test generation. The datapath and controller both exhibit
pipeline structure and interact via status and control signals. The
signals at each stage are classified as:

• primary: interfacing with the environment
• secondary: interfacing with the stage’s pipeline registers
• tertiary: interfacing with another pipeline stage
The tertiary signals introduced here are precisely the signals

needed to describe essential instruction interaction. Typical exam-
ples of tertiary signals in the controller aresquashandstall signals;
typical examples of tertiary signals in the datapath are bypasses.
Imposing the model requires no more than the appropriate labeling
of control signals, status signals, and pipe registers, along with
appropriate high-level modeling of the datapath.

4.   Pipeframe Model

Conventional fault-oriented test generation algorithms for sequen-
tial circuits use the ILA model and iteratively apply test generation
techniques for combinational circuits in one timeframe. In this sec-
tion we describe a different organizational model specific to pipe-
lined processors. Thispipeframeorganizational model exploits
high-level knowledge about pipeline structure that is captured with
the processor model. The advantages of this approach are a reduc-
tion of the search space and the elimination of many conflicts.

Consider the application of a conventional test generation algo-
rithm to a pipelined controller circuit without a datapath. Figure 2a
shows a three-stage pipelined circuit.C0, C1 andC2 are combina-
tional logic corresponding to the three pipe stages. The global
combinational logicCG sources all CPI’s and all CSI’s. In order
not to clutter the figure, the CPI’s sourced byCi and the CPO’s
produced byCi have been omitted. The ILA model for this circuit
is shown in Figure 2b. If PODEM [2] is used as the combinational
test generation algorithm, the decision variables are the CPI’s and
the CSI’s in each timeframe. The state space to be searched during
each iteration is that of the CSI’s and CPI’s. For the controller of

pipelined microprocessors, the number of CSI’s (state bits) is ty
cally much larger than the number of CPI’s. This is because t
primary function of the controller is to decode the incomin
instructions.

Taking into account that the circuit is pipelined and perform
several concurrent, and to a large extent independent, decode

Figure 1. Pipelined microprocessor model.
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different organization of the search, one that is directly in terms of
the CPI’s, is desirable. When the global control logicCG is absent,
it is easy to see how this can be accomplished. In this case, the ILA
consists of unconnected (horizontal) slices spanning a number of
timeframes equal to the number of pipe stages. These horizontal
slices will be referred to aspipeframes. It can be seen that the size
of the circuit to be considered is exactly the same as that in the
conventional time-frame based search, although the depth is
greater. However, in the new approach conflicts due to unreachable
states cannot arise as decisions are made only on the CPI’s.

In general, there is interaction between pipestages through the
global combinational logicCG. To organize the search by pipe-
frame, the tertiary signalsCTIi, i = 0, …, 2, need to be included as
decision variables. The ILA is partitioned into pipeframes by cut-
ting the tertiary signals, also shown in Figure 2b. A complication is
that a pipeframe directly interacts with a number of other pipe-
frames via shared primary inputs and via the tertiary signals feed-
ing the pipeframe. In the conventional organization, each
timeframe depends directly only on the previous timeframe. To
cope with this complication, multiple pipeframes need to be con-
sidered simultaneously during the search. The set of pipeframes
directly relevant to pipeframei is indicated bywindow i in the fig-
ure.

Consider anp-stage pipelined controller with a total ofn1
CPI’s, n2 CSI’s per pipestage, andn3 CTI’s per pipestage. In the
usual timeframe organization, there aren1 + p.n2 decision vari-
ables per timeframe,p.n2 of which need justification. In our pipe-
frame approach, there aren1 + p.n3 decision variables per
pipeframe,p.n3 of which need justification. Our approach is tar-
geted at the circuits withn3 << n2. For such circuits the following
can be observed:

• The size of the search space in the pipeframe
organization is significantly smaller than that in the usual
timeframe organization.

• The size of the circuit to be dealt with in the pipeframe
organization is comparable to that in the conventional
organization, although its depth is greater.

For some pipelined controllers the pipeframe approach does not
reduce the search space. This is the case when CSOi depends on
CSIi+1 (referring to Figure 1) for every pipestage. For such cir-
cuits, all CSI’s are also CTI’s, the pipeframe approach reduces to
the usual timeframe approach.

5.   Test Generation Algorithm

Our high-level test generation algorithm is targeted at localized
errors, such as those described in [24], in the datapath. It follows
the iterative organization described above and decomposes the test
generation problem into three subproblems: 1) path selection in the
datapath, 2) value selection in the datapath, and 3) justification of
control signals (controller). The subproblems are addressed by
DPTRACE, DPRELAX, andCTRLJUST, respectively.

DPTRACE. DPTRACEcomputes a set of justification and
propagation paths in the datapath to activate the error and expose
the error effect at a primary output of the datapath.DPTRACEdoes
not consider the values that need to be justified and propagated.

From the high-level description of the datapath, a controllabil-
ity/observability graph (COG) is derived. Its nodes correspond to
datapath modules, nets with multiple fanout, primary inputs and
outputs, tertiary inputs and outputs, and control and status signals;
its edges correspond to pairs of connected ports (module terminals)
in the datapth. We distinguish three classes of basic datapath mod-
ules:ADD, AND, MUX.

Modules in theADD class have one data output, and one or

more data inputs. They have the property that the output can
justified (to an arbitrary value) by controlling only a single inpu
i.e., regardless of the values of the other inputs, the controlled in
can be assigned a value that will justify the output. Also, if the ou
put is observable than every input is observable as well. Modu
in theAND class have the property that in order to justify the outp
(to an arbitrary value) all inputs need to be controlled. To obser
an input, the output needs to be observable and all side inputs n
to be controlled. Modules in theMUX class have one data output
one or more data inputs, and one or more control inputs. The c
trol inputs are driven by CTRL signals, and determine which da
input is selected. In order to justify the output, the control inpu
need to be assigned and the selected data input needs to be
trolled; the other data inputs are free. In order to observe a d
input, the output needs to be observable, and the control inp
need to be assigned such that the requested data input is sele
Multiple fanout nodes have the property that only one fanout c
be justified by controlling the stem.

Edges in the COG are attributed with symbolic values th
encode controllability information. The attribute, theC-state,
assumes values from the set {C1, C2, C3, C4}. The interpretation
of these values is as follows:

• C1: it is unknown whether the edge can be controlled
• C2: the edge cannot be controlled, but there are still open

decisions in the transitive fanin of the edge
• C3: the edge cannot be controlled and there are no more

open decisions in the transitive fanin of the edge
• C4: the edge is controlled
Similarly, information about an edge’s observability is repre

sented by theO-state, which assumes values from the set {O1, O2,
O3}. The interpretation of these values is as follows:

• O1: it is unknown whether the edge can be observed
• O2: the edge is not observable
• O3: the edge is observable
The path selection problem is that of finding a valid assignme

to theC-state andO-state of all edges, and to the CTRL signals t
the pipeframe such that the edged associated with the error b
controllable (C4) and observable (O3). The path selection problem
can be solved with a PODEM-like directed search with decisio
variables the CTRL lines and variables that are associated w
nets with multiple fanouts.

DPRELAX. DPRELAX determines values for DPI’s that
expose the error effect and justify any STS signals assigned
CTRLJUST. We use a discrete relaxation algorithm, similar to th
proposed in [17], to solve the problem.

CTRLJUST. CTRLJUSTderives an input sequence that, whe
applied to the circuit, and starting from its reset state, makes
controller produce the desired values on the CTRL lines
requested byDPTRACE. CTRLJUSTuses a PODEM-like search
with the CPI, CTI, and STS signals as decision variables. De
sions on CTI signals need further justification. Decisions on ST
signals need to be justified byDPRELAX.

6.   Experiments

We have built a prototype implementation of the proposed test g
eration algorithm. We are using a version of the DLX microproce
sor [13] as a test vehicle. This design implements 44 instructio
has a five-stage pipeline and branch prediction logic, and cons
of 1552 lines of structural Verilog code. The controller has 95 b
of state; the number of tertiary signals in the controller is 43. T
pipeframe approach reduces the number of decision variables
need justification from 95 to 43 compared to the convention
timeframe approach. The datapath has 512 bits of state, not inc
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ing those in the register file. The high-level model of the datapath
consists of 100 combinational modules.

We targeted our test generation system at all bus single stuck
line (bus SSL) errors [7] in the decode, execute, memory and
write-back stages of the datapath. Although our test generation
algorithm can be used in conjunction with other error models pro-
posed in [24], the bus SSL model was chosen for these initial
experiments because it defines a number of error instances linear in
the size of the circuit. The results are summarized in Table 1. A
total of 316 errors were targeted; test generation succeeded for
86% of these errors. The overall algorithm performed only 50
backtracks for the successful errors. Analysis of the 44 aborted
errors revealed that 8 of them are undetectable, 2 failed because
DPTRACEexceeded the maximum number of backtracks, and 14
errors require a non-sequential instruction stream (branches). The
remaining 18 errors require error propagation through STS signals,
which is not yet supported. The current implementation does not
use error simulation, and much re-use of work in the algorithm has
yet to be exploited. Therefore, we can expect that addressing these
issues will significantly improve run times.

We also synthesized a gate-level model of the design, consist-
ing of 10,757 gates and flipflops. We used HITEC [22] to generate
tests for standard SSL errors. For each bus SSL error in the high-
level design, we selected SSL errors corresponding to bits 0, 15, 16
and 31. For some of the signals in the high-level design we were
not able to identify corresponding signals in the gate-level design.
Also, the number of SSL errors in Table 1 is after error collapsing,
which is not the case for the number of bus SSL errors reported. As
can be seen from the table, our method compares favorably with
HITEC. Analysis of the gate-level test generation results revealed
that HITEC has great difficulty generating tests for errors that
require a sequence of instructions with register dependencies.
Gate-level test generation succeeded for only one of a total of 14
forwarding paths.

7.   Discussion

In the experiments described above, the instruction stream has
been modeled by primary inputs. This model is sufficient for gen-
erating test sequences that do not involve branches. However, some
errors can only be exposed through the address used to fetch an
instruction (program counter). A model for the instruction stream
needs to be developed that takes into account the dependency
between an instruction and its address. A related problem is that of
modeling memory arrays that are not part of the ISA, such as
branch target buffers. To handle these structures efficiently, the
model needs to hide the individual memory cells underlying the
structure, while retaining the association of data with addresses.

We are developing a system for automatically generating tar-
geted test sequences for design verification of pipelined micropro-
cessors. To handle the complexity of these designs, our algorithm
integrates high-level treatment of the datapath with low-level treat-

ment of the controller and exploits high-level knowledge abo
pipeline structure. We have developed a model that captures h
level knowledge about pipeline structure. As the analysis he
shows, the pipeframe approach can significantly reduce the sea
space. Our high-level test generation method compares favora
with gate-level test generation in the experiments.
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Table 1. Verification test generation for bus SSL and standard
SSL errors in datapath of DLX implementation.

Parameter
High-level:

our method with
bus SSL errors

Gate-level:
HITEC with

standard SSL errors
Total no. of errors 316 385
No. of errors detected 274 278
No. of errors aborted 42 93
No. of undetectable errors N/A 14
Efficiency [%] 86 75
CPU time [minutes] 17 46


