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Abstract

Developments over the last 15 years in the areas of materials
and devices have finally delivered competitive Ill-V MOS-
FETs with high mobility channels. This paper briefly reviews
the above developments, discusses properties of the GdGaO/
Ga2O3 MOS systems, presents GaAs MOSFET DC and RF

data, and concludes with an outlook for high indium content
channel MOSFETs. GaAs based MOSFETs are potentially
suitable for RF power amplification, switching, and front-end
integration in mobile and wireless applications while MOS-
FETs with high indium content channels are of interest for
future CMOS applications.

Introduction

Novel device architectures, high-K gate dielectrics, metal
gates, and high mobility channel materials will be required to
continue CMOS device scaling according to Moore's Law and
the International Technology Roadmap for Semiconductors
(1). In the shorter term, high mobility GaAs MOSFET devel-
opment will likely be more driven by RF applications. Devel-
opments over the last 15 years including the discovery of the
device quality, MBE (molecular beam epitaxy) grown Ga2O3/
GaAs interface in 1996 (2), the concept of bilayer dielectric
stacks in 1995 (3), the proposal of heterostructure use to miti-
gate high band-edge interface-state density in 1997 (4), the
realization of bilayer GdGaO/Ga2O3 dielectric stacks on
GaAs in 1999 (5), the concept/fabrication of implant-free
enhancement-mode high-mobility MOSFETs in 2000/2005
(6), (7), and the realization of low R, Ohmic contacts in 2006
(8) have finally delivered competitive GaAs MOSFETs with
effective channel mobilities exceeding 5,500 cm2/Vs. Elec-
tron Hall mobilities of 12,000 cm2/Vs have been measured in
InP based MOSFET structures with In0 75Ga0.25As channel
layers (9). This paper discusses oxide/GaAs interface proper-
ties, presents GaAs MOSFET DC and RF data, and concludes
with an outlook for high indium content channels for future
CMOS applications.

Wafer Manufacturing

MOSFET wafers have been fabricated by MBE using an ultra-
high vacuum (UHV) dual chamber configuration manufac-
tured by DCA Instruments. Fig. 1 shows a dark field TEM
micrograph of a typical GaAs MOSFET layer structure with
an Ino03Ga07As channel. Further fabrication details can be
found in (10).

Results and Discussion

A. Oxide-GaAs Interface Properties

Electrical interface properties of Ga2O3 films and GdGaO/
Ga2O3 dielectric stacks have been determined by a photolumi-
nescence-intensity (PL-I) technique and by capacitance-volt-
age measurements. All investigated materials (Si, AlN, In203,

SiOx, MgO, AlxOy, TixO, TaxO, MoXO, ZrxO, Gd2O3,
LaAlO3, 0, 02) show essentially native oxide behavior on
GaAs (group of high-interface defectivity films) except for
Ga2O3 which provides a device quality interface (Fig. 2). Typ-
ical quasi-static and high-frequency (1 MHz) C-V curves of
the dielectric stack deposited on a MOSFET-like epitaxial
structure of Fig. 1 are shown in Fig. 3.

Fig. 1 Dark field TEM micrograph of a typical MOSFET structure with an
InGaAs channel. The inset shows a high resolution TEM micrograph of the
oxide/semiconductor interface.
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Fig. 2 Normalized GaAs photoluminescence (PL) intensity as a function of
excitation intensity for AlGaAs (solid circles), bulk Ga2O3 (open triangles),

GdGaO/Ga2O3 (solid squares), high interface defectivity films, and native

oxide (solid circles) on GaAs. All materials are deposited on MBE grown sur-
faces under UHV conditions (except for native oxide).
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Fig. 4 Optical micrograph and SEM image of a 1 ,um gate length GaAs MOS-
FET with wrap-around gate design. The source-drain distance is 2.7 ,um.
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Fig. 5 Output characteristics of a 1 ,um GaAs MOSFET.
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Fig. 3 Quasi-static and 1 MHz C-V curves of the GaAs based MOSFET struc-

ture shown in Fig. 1. The midgap interface state density for the dielectric

stack with K = 20 is determined to be _ 2.5x1011 cm-2 eV1.

B. GaAs MOSFETDC andRF Data

Enhancement-mode 1 tm n-channel GaAs MOSFETs with
metal gate (Pt) and a 10 nm high-K dielectric GdGaO/Ga2O3
(K = 20) have been manufactured based on the implant-free
device architecture proposed in (6). A two-level wrap-around
gate design (where the gate encircles the drain) was used to
simplify the device process flow, removing the need for isola-
tion (see Fig. 4). With typical figures of merit including
threshold voltage, Vt = +0.26 V, peak transconductance,

gm,max = 477 mS/mm, on-resistance, Ron = 1.9 Q mm, satura-

tion drive current, ID,sat = 407 mA/mm, gate leakage current,

19 < 60 pA, output conductance, gd 11 mS/mm, and sub-
threshold swing, S = 100 mV/dec (Fig. 5, Fig. 6), our GaAs
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Fig. 6 Transfer characteristics of a 1 ,um GaAs MOSFET. Ion/loff ratio

6.3x104 (Ioff, VG= 0 V, VD= 2 V) (Ion, VG= 2 V, VD = 2 V) and drain-

induced barrier lowering, DIBL _ 0.

enhancement-mode MOSFETs perform as predicted by 2-
dimensional device simulation. In contrast, GaAs
enhancement-mode devices published by other groups over

the last 40 years had typical gm of less than 1 mS/mm with
some recent marginal improvement into the 10-20 mS/mm
range (11), (12). The peak effective channel electron mobility
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Fig. 7 Effective channel electron mobility as a function of sheet carrier den-
sity. The inset shows measured and simulated capacitance as a function of
gate voltage.
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Fig. 8 Current gain h2l and maximum available gain MAG for a 0.8 ,tm GaAs
enhancement-mode MOSFET (W = 2x100 ,tm). ft and fmax are 13 and 42

GHz, respectively.

is _ 5,500 cm2/Vs (Fig. 7) as measured by an advanced split-
CV method (13).
The gate and ohmic modules employed in the wrap-around
gate design have been integrated into a flow for coplanar
devices using oxygen implantation for device isolation. A first
run has resulted in enhancement-mode devices (Vt =_ +0.4 V)
with reduced DC performance of gm = 135-160 mS/mm, Ron
= 7-10 Q mm, and ID,sat = 175 mA/mm. Small-signal parame-

ters have been measured (Fig. 8) and average ft and fmax of 13

GHz and 37 GHz (LG = 1 im), and of 14 GHz and 40 GHz

(LG = 0.8 gim), respectively, have been obtained (2xlO0,
2x200, 2x300 tm width). Preliminary on-wafer load-pull
measurements at f= 900 MHz tuned for maximum power in
class AB operation, provided Pout = 12.4 dBm with a corre-

sponding gain of 11.3 dB and a power added efficiency of
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Fig. 9 Current noise spectral density vs. frequency with log-log scale with
gate voltage bias point as a parameter for a 0.8 ,um GaAs enhancement-mode
MOSFET (W = 2x200 ,tm).
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Fig. 10 DC (solid lines) and pulsed (dashed lines) I-V data of a 0.8 ,tm GaAs
enhancement-mode MOSFET (W = 2x100 tim). The quiescent point for
pulsed I-V iS VD = 3V and 10% ID sat (VG 0.6 V).

45.6% (2x300 gim). Low frequency noise results are indica-
tive of 1/f noise behavior with flicker noise typical of Si based
MOSFETs (Fig. 9). Preliminary pulsed I-V measurements
show small dispersion, with maximum dispersion occurring in
the linear region at small VD and in the threshold region (Fig.
10).

C. Towards CMOS

Preliminary lateral scaling data for 0.3 < LG < 1 gm GaAs

enhancement-mode MOSFETs with Ino 3Ga07As channels are

shown in Fig. 11. To predict the performance of aggressively
scaled Ill-V MOSFETs, we have used a finite element Monte-
Carlo device simulator (14) verified against experimental data
(sheet carrier density and mobility). As shown in Fig. 12, sub-
20 nm gate length MOSFETs with Ino3Ga07As channels

could reach peak drive currents of around 1000 tA/gm at 0.8
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0.5, and 0.3,um GaAs MOSFET with an oxide thickness I
cal layer structure was not scaled. Source-drain

0.3 and 0.5,um, and 2.7,um for LG= 1,um.
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with different sidewall spacer sizes with a fabricated FINF
(supply voltage at the ITRS 22 nm node).

V supply voltages, outperforming the leading

technologies (15). Moving to an In0 75Ga0;

potentially improves the drive current in excess

tm (thecurrent ITRS 22 un technology generat

Summary

All investigated materials on GaAs were found
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a device quality interface. tm GaAs enhan
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been manufactured with Vt, ID,sat, gm,max, Ron,

0.26V, 407 mA/mm, 477 mS/mm, 1.9Q mm,
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