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High Molecular Mass Polyethylene Aqueous
Latexes by Catalytic Polymerization**

Florian M. Bauers and Stefan Mecking*

Emulsion polymerization of olefinic monomers is one of

the most important and also versatile polymerization pro-

cesses.[1] Polymer latexes are obtained, that is, stable aqueous

dispersions of surfactant-stabilized polymer microparticles in

the range of 50 to 1000 nm diameter. Numerous applications

of latexes (for example, in coatings) involve the formation of

films upon evaporation of the dispersing medium, and the

environmental friendliness and nonflammability of water is

particularly advantageous. To date, polymer latexes are

produced by free-radical processes exclusively.[2] Transition

metal catalyzed coordination polymerization has received

comparatively little attention, as the early transition metal

catalysts[3] used commercially for polyolefin production are

extremely sensitive to moisture. Carrying out such reactions in

water is a highly attractive goal, however, as many polymer

microstructures are not available by means other than

catalytic polymerization. We[4] and others[5] have recently

reported the successful polymerization of ethylene in water by

neutral nickel(ii) complexes.[6, 7] However, dispersions consist-

ing of low molecular mass material with a degree of polymer-

ization of less than 100 (Mn values typically 1000 gmolÿ1) were

obtained. The formation of higher molecular mass polymers

(with chain length considerably above the entanglement limit)

is a crucial prerequisite to fully exploit the unique property

profile of latexes. At the same time, the complex steps of

microparticle formation during polymerization must afford

stable dispersions of these high molecular mass polymers.

With complexes [(X
_

O)NiIIR(L)], where X�P (type 1)

or X�N (type 2, N
_

O� salicylaldimine), materials of rela-

tively similar maximum weight-average molecular mass (Mw)

are accessible by traditional ethylene polymerization in apolar

organic media.[8, 9] By contrast, in water, the latter offer access

to polymers with much higher Mw and Mn values than the low

molecular weight materials obtained in water with complexes

of type 1.[4b] In regard to particle formation, a comparison with

free-radical emulsion polymerization is instructive.[10] In

classical emulsion polymerization, water-soluble initiators

are used. Chain growth initially affords water-soluble oligo-

meric radicals, which nucleate particles by collapsing upon

themselves after reaching a certain chain length or by entering

a surfactant micelle. Similar considerations appear reasonable

for the aforementioned emulsion-type catalytic polymeriza-

tion by a hydrophilically modified water-soluble complex of

type 1, which affords stable latexes of low molecular mass

material.[4] However, a certain water-sensitivity[4b, 9c] of sali-

cylaldimine-substituted complexes (type 2) can be problem-

atic to an analogous approach.

As a different concept to enable formation of a large

number of latex particles during polymerization, a very fine

dispersion of the catalyst precursor was achieved in the form

of a solution of a lipophilic complex (2a) in submicron-size

compartments of a hydrocarbon

solvent, dispersed in the continu-

ous aqueous phase.[14] A mixture

of water, surfactant, and a solu-

tion of the complex in a small

amount of hydrocarbon (toluene

and a small portion of hexadecane

as a hydrophobic additive[11]) was

subjected to high shear, generated

either by ultrasound or by means of a modified high-pressure

homogenizer. Mini-emulsions consisting of a large number of

small hydrophobic droplets (diameter about 100 nm, 1016 ±

1017 dropletsLÿ1) containing the catalyst resulted. Exposure

of the mini-emulsions to ethylene in a pressure reactor

resulted in polymerization to form stable polyethylene latexes
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(Table 1). Analysis of the isolated polymer by gel-permeation

chromatography (GPC) reveals these dispersions to contain

only high molecular mass polyethylene with Mw values of up

to 4� 105 gmolÿ1 and narrow molecular mass distributions.

The average latex particle sizes are in the range of 90 to

350 nm, as observed by light scattering measurements.[12] It

should be noted that the polymerization reaction of ethylene

reported here differs from typical free-radical polymerization

in a preformed mini-emulsion of a liquid monomer. Gaseous

ethylene monomer is fed continuously into the reaction

mixture after mini-emulsification of the catalyst solution.

Thus, polymerization of preformed mini-emulsion droplets of

monomer to particles of the same size, as the typical feature of

ªmini-emulsion polymerizationº, does not apply.

The polymer latexes obtained are stable for weeks or

longer. As a surfactant, various anionic and nonionic com-

pounds were found to be suited, that is, compatible with the

catalyst in the mini-emulsion system employed and capable of

forming stable latexes (Table 1). As expected, a decrease in

the surfactant concentration under otherwise identical con-

ditions resulted in an increase in the average size of the latex

particles (entries 2 ± 4). The lower activities observed on

employing the high-pressure homogenizer (entries 7 ± 9) rel-

ative to ultrasonification are probably related to deactivation

of the catalyst precursor, as the former method required more

time for mini-emulsification.

The latex particles were visualized by transmission-electron

microscopy (TEM; Figure 1). In comparison to smooth,

spherical latex particles of amorphous polystyrene, as a

well-studied hydrocarbon polymer prepared by free-radical

emulsion polymerization, the ruggedness of the particles

shown can be rationalized by their high degree of crystallinity

(39 to 51% by differential scanning calorimetry (DSC); Tm�

120 ± 130 8C).[13]

Experimental Section

General: Complex 2a was prepared as described previously.[4b] The

compound was manipulated by standard Schlenk techniques under argon.

Deionized water was degassed prior to use. High-temperature GPC was

performed in 1,2,4-trichlorobenzene at 140 8C using a PL-220 instrument

equipped with mixed-bed PL columns. The data reported was referenced to

polyethylene standards (universal calibration). Dynamic light scattering

measurements on the dispersions were performed on a Malvern particle

sizer after dilution. TEM investigations were carried out on a LEO 912

Omega apparatus using an acceleration voltage of 120 kV. The DSC data

reported were recorded in the second heating cycle at 10 Kminÿ1.

Polymerization: The catalyst precursor was dissolved in the given amount

of toluene and hexadecane (Table 1). The surfactant and about 100 mL of

water were added with mechanical stirring. Homogenization was per-

formed under an argon atmosphere by means of a high-pressure

homogenizer directly connected to the polymerization reactor (modified

version of the EmulsiFlex�-C5 apparatus from Avestin Inc.; 500 ± 1000 bar)

or by ultrasound (Bandelin HD2200 with KE76 tip; 2 min at 120 W). The

resulting mini-emulsion was transferred to a mechanically stirred 250-mL

pressure reactor equipped with a heating/cooling jacket and a constant

ethylene pressure (45 bar) was applied. The reaction temperature was

controlled (30 8C) by means of a thermocouple dipping into the reaction

mixture. After the specified reaction time the ethylene was vented. The

resulting latex was filtered through glass wool. For the determination of

yields and for further polymer analysis a specified portion was precipitated

by pouring into methanol.
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Table 1. Polymerization conditions[a] and results.

Entry n(cat.) Toluene C16H34 Surfactant Emulsification TON[d] Mn Mw Mw/Mn dÅ [e]

[mmol] [vol%] [vol%] type[b] c [mmolLÿ1] method[c] [gmolÿ1] [gmolÿ1] [nm]

1 25 1 2 SDS 17 US 2515 1.4� 105 3.2� 105 2.3 330

2 23 1 0.3 SDS 35 US 1206 1.2� 105 3.3� 105 2.7 220

3 36 1 0.3 SDS 17 US 1135 8.5� 104 2.6� 105 3.1 260

4 29 1 0.3 SDS 5 US 1230 1.0� 105 4.5� 105 4.5 (485)[f]

5 36 1 0.3 Trit 11 US 959 8.9� 104 1.9� 105 2.1 100

6 32 1 0.3 K30 18 US 990 9.0� 104 2.5� 105 2.8 240

7 63 2 1 SDS 17 HP 165 9.5� 104 2.1� 105 2.2 135

8 32 1 0.3 SDS 17 HP 75 2.0� 104 3.4� 104 1.7 90

9 44 4 1 Lut 5 HP 265 1.6� 104 2.4� 104 1.5 250

[a] 30 8C, 45 bar constant ethylene pressure, 2 h reaction time. Total volume of water and organic solvents: 100 mL. [b] SDS� sodium dodecylsulfate, Lut�

Lutensol AT80 (C16 ±C18 fatty alcohol ± ethoxylate with an average of 80 ethylene oxide units; BASF), Trit�Triton X-100 (iso-octylphenololigoethoxylate),

K30: Emulgator K30/40 (Bayer, sodium alkylsulfonates). [c] US� ultrasound, HP� high-pressure homogenizer (for details see Experimental Section).

[d] Mol of ethylene permol of Ni. [e] Average size of latex particles, determined by light scattering. [f] Latex unstable, partial coagulation occured.

Figure 1. TEM micrograph of latex particles.
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