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We discuss various kinds of geometric bremsstrahlung processes in the spatially flat Robertson· 
Walker universe. Despite the fact that the temperature of the universe is much higher than particle 
masses and the Hubble parameter, the transition probability of these processes does not vanish. It 
is also pointed out that explicit forms of the probability possess a new duality with respect to the scale 
factor of the background geometry. 

§ 1. Introduction 

Particles in the early universe undergo severe redshift as a result of the cosmic 

expansion and become decelerated extraordinarily in comoving coordinates. Conse

quently radiation or massless particles may be emitted from the decelerated particle. 

This process induced by the geometry of the universe is regarded as a kind of 

bremsstrahlung. We call this a geometric bremsstrahlung. This effect may bring 

about many sorts of decay and emission processes which are prohibited kinematically 

in flat spacetime. 

Despite its ability to realize such a process in the classical mechanical sense, there 

is a nontrivial aspect of the existence of quantum geometric bremsstrahlung. Tem

perature in many interesting situations of the early universe is much higher than 

particle masses and the Hubble parameter. Since the momenta of the particles are 

comparable with the temperature, one might naively think that we can neglect all the 

mass parameters even in calculation of the transition probabilities. Hence it might 

be expected that the probability of the process is equal to that calculated in massless 

theories in the flat spacetime, and thus exactly zero. However, this naive expectation 

turns out to be wrong under careful analysis. 

In Ref. 1), the first precise analysis was performed in the four dimensional 

Robertson-Walker universe. The authors of that paper showed that even in the high 

momentum limit there remains the nonvanishing probability of photon emission via 

geometric bremsstrahlung. 

In this paper we give an extended analysis of several kinds of processes of 

geometric bremsstrahlung. This includes analyses of the ifi theory in arbitrary 

dimensional spacetimes, the theory with a Yukawa interaction, and the massive 

vector field theory. It will be shown that the high momentum limit, or the high 

temperature limit, does not result in the termination of the geometric bremsstrahlung 

process in a rather wide class of interactions and in arbitrary dimension. It is also 

stressed that a new type of duality can be found in the forms of the transition 

probabilities for renormalizable interactions. 

In § 2 we introduce the spatially flat Robertson-Walker universe with past and 
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1104 M. Hotta, H. Inoue, 1. Joichi and M. Tanaka 

future asymptotic flat regions and explain why we consider it in particular. In § 3 we 

give a review on free fields in our model of the universe. In § 4 the geometric 

bremsstrahlung induced by the Yukawa interaction is analyzed in detail. In § 5 the 

¢} theory in arbitrary dimensional spacetimes is surveyed. In § 6 we give explicit 

forms of the transition probability of the process including a massive vector field. 

§ 2. Robertson-Walker universe with past and future Minkowskian regions 

Here let us comment on our model of the Robertson-Walker universe. In this 

paper only the spatially flat model is discussed, but we believe that our results can be 

extended to open and closed models. The geometry of the spacetime is expressed by 

a metric tensor whose form is written as gp,,=a(t)21jPlJ, where a(t) is a scale factor 

function and 1jPlJ is the Minkowskian metric. The argument of the scale factor, t, is 

conformal time, and proper time r can be defined by dr=a(t)dt. From the metric, 

the Christoffel symbol is easily manipulated as follows: 

r/r= 8/orlna+ orao,slna-1j,sroalna , (1) 

where oa = 1ja,so,s. This yields an explicit form of the scalar curvature 

1 [d 2 (d )2J R=-? 2(n-l) dt21na+(n-l)(n-2) dtlna , (2) 

where n is the dimension of the spacetime. The Hubble parameter is defined as usual 

by the scale factor as 

In later sections we must take account of interactions in the expanding universe. 

Then a well-defined asymptotic free field is required to construct S matrix elements 

rigorously. However, in the construction of general specetimes, we often encounter 

some difficulties.3
) 

For example, the universe accompanied with the big-bang possesses a definite 

birth time and an initial singularity. Near the birth time more pieces of information 

(maybe quantum gravity) are required to specify how to define the asymptotic in-field. 

The simplest prescription to avoid such problems is to restrict ourselves to 

analysis in the universe equipped with Minkowskian past and future regions. Clearly 

this enables us to define both asymptotic in· and out- fields just like those in the flat 

spacetime. It should be emphasized that physically meaningful results derived from 

this model must be independent of artificial detail of the model, that is, how the 

universe gets into and out of the expanding era. It will be found that results obtained 

later satisfy this criterion. 

Owing to the appearance of asymptotic flat regions the scale factor must satisfy 

two constraints. By virtue of the time rescaling invariance, one of these constraints 

is expressed, without loss of generality, as 

a(t~co)=l . 
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High Momentum Behavior of Geometric Bremsstrahlung 1105 

Now let b denote the ratio of initial scale factor to final scale factor. Then another 

constraint is written as 

a(t~ -oo)=b. 

It is useful to grasp the qualitative behavior of Fourier components of a(t)n, 

N ow let (i)~~ < Clh (n) < (i)2(n) < ... < (i)1ri'~x denote typical frequencies characterizing 

detailed evolution of a(t)n with the following condition satisfied: 

It is natural to think that all the (i)/n) are of the order of the Hubble parameter in the 

expansion era. 

For (i)<(i)~1~ it can be shown that 

(3) 

Note that this relation holds for rather arbitrary types of cosmic evolution. 

On the other hand, for (i)~(i)Iri'~x Fn behaves as 

§ 3. Free fields in the Robertson -Walker universe 

In this section free fields in the universe introduced in § 2 are reviewed for later 

convenience. 

Let us first review the free scalar field in the expanding universe. The action 

with the conformal coupling term is written as 

(4) 

N ext let us change the field variable 1> into ¢ = a( t )nI2-1 1>. Then the action is reduced 

to 

(5) 

This is just a free field action with time dependent mass ma(t) in the flat spacetime. 

Boundary conditions for asymptotic fields can be described in terms of the 

rescaled field ¢. It is worthwhile to point out that spatially flat spacetimes possess 

isometry in the spatial section. Consequently, the Fourier transformation can be 

used in the equation of motion derived from Eq. (5). Therefore what we need is a 

solution whose form is such that 

(6) 
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1106 M. Hotta, H. Inoue, I. Joichi and M. Tanaka 

where p is the conserved conformal momentum. Its related physical momentum is 

expressed as PPhYS=p/a(t). It is easily shown that this Up satisfies a Schrtldinger·type 

equation, 

[ 
d2 2 ()2J _ 2 - dt Z - mat up-pup, (7) 

where p=lpl. The in-mode function of this equation is specified with the boundary 

condition 

1 -itJp2+m2b2 

j(2;r)n 12/p2+m2b2 e . 
(8) 

On the other hand, the out-mode function satisfies another boundary condition, 

1 e-itJP2+m2 

.; (2;r )n- 12! p2 + m2 
(9) 

The in-(out-) mode function may have reflection wave terms in t -+oo(t -+ -00) induced 

by the nontrivial potential term - m2a(ty Usually such existence of the reflection 

wave represents particle creation from the vacuum state in the field theoretical 

context. Typical energy of the created particle is of the order of the typical Hubble 

parameter. Hence the energy can be thought to be much smaller than the tempera

ture of the universe. This effect is of some interest, but it is not our target in this 

report. In fact we shall concentrate our attention on particles with high momentum 

nearly equal to the temperature. Consequently the reflection wave term is negligible 

in the following argument. 

Now we can also exhibit results for a soluble example with a step scale factor 

a(t)=be( - t)+ e(t). For example, the analytic form of the in-mode function is 

expressed as 

where 

A= ~ (1+ 

B= ~ (1-

1 -it~ 

j(2;r)n-12/ p2+ m2b2 e , 

(10) 

(11) 

This will be used in § 4. As it should be, the reflection coefficient B vanishes as P-+oo. 

Here we also comment on the WKB amplitudes of Eq. (7). When the high 

momentum condition p3~m2a(da/dt) or p~hYS~m2H is satisfied, the WKB approxima

tion is sufficiently validated in Eq. (7). Then the reflection coefficient can be neglect

ed, and both in- and out-mode functions are written in the same form as follows: 
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High Momentum Behavior of Geometric Bremsstrahlung 1107 

u ~ 1 e-iJdtE(P,t) 

p /(27r)32E(p, t) , 
(12) 

where E(p, t)=/p2+ m2a(t)2. In the early universe situation, this form gives us a 

reliable estimation of the wavefunction. 

Next let us review the free propagation of the spinor field. Writing down the 

action requires a vierbein epa related with the metric tensor like gpV=e,,aeal/. For the 

spatially flat Robertson-Walker universe, the vierbein reads 

epa=a(t)opa, eaP=a(t)-IOaP. 

Then spin connection is obtained from this vierbein such that 

The action of the free spinor field reads 

SSPlnor= ! dnxdet[epa][ ifiiyP[7 plJf - mifilJf] , 

where 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Subsequently, by defining a rescaled field ifr = a(n-l)!2lJf we rewrite the action as 

SSPlnor= !dnx[Wiyaaaifr-ma(t)Wifr] , (20) 

where we have used the relations yaya=n and ya ybYa =(2-n)yb. Thus, like the 

scalar field, the theory can also be reduced into just a free theory with time dependent 

mass in the fiat spacetimes. 

Next let us introduce mode functions more explicitly for n=4. Here we adopt 

the standard representation for the gamma matrices, 

0_ [1 0] _ [ 0 (J] 
y - 0 -1 7- - (J 0 . (21) 

Also we introduce (lh,p and Ph,P defined by the equations 

- .. [ (lh,p(t)~(h, p)] () I I ( ) 
lJf=e,p:r Ph,P(t)~(h,p) , (J.p~ h,p =hp~ h,p , (22) 

where h= ± 1 and h/2 is helicity of the particle. Then (lh,p and (3h,P satisfy equations 

such that 
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1108 M. Hotta, H. Inoue, 1. Joichi and M. Tanaka 

!3h.P(t)= h~1 [i It -mae!) ]ah.i t ) . (23) 

[ft22 +lpI2+ m2a(t)2+ im It a ]ah.p(t)=o. (24) 

The in- and out- mode functions for ah,p are specified by imposing the boundary 

conditions 

j/p2+m2b2±mb +it</P2+m2b 2 

j(2;r)32/p2+ m2b2 e , 
(25) 

j/ p2 + m2 ± m +it</P'+m' 
j(2;r)32/p2+ m2 e , 

(26) 

where the sign + ( -) in a(±) corresponds to the particle (antiparticle) wavefunction. 

For a step evolution like a(t)= M)( - t)+ aCt), exact analysis is possible, and for 

example, the analytic inC + )-mode function is given by 

j/ p2+ m2
b

2 + mb -it</P2+m2b 2 
j(2;r)32/p2+ m2b2 e , 

where 

(27) 

(28) 

For the spinor field, the WKB approximation can also be justified when p-:?>ma or 

PPhYS-:?>m. Then the following amplitude is obtained: 

a~±)(t)~ / p± ma e+i(Pt+(m'12P)J dta(t)Z) . 
,p / (2;r )32p 

(29) 

In will also be useful in later sections to introduce U and V spinors corresponding 

to particle and antiparticle as follows: 

( )
_[ / E(p, a(t))+ ma ~(h, p) ] 

U h,p, a - , 
h-/ E(p, a(t»- ma ~(h, p) 

( )
_[ -h/E(P, aCt»-mar;(h,p)] 

V h,p,a - , 
-/ E(p, aCt» + ma r;(h, p) 

where E(p, a(t»=/ p2+ m2a(t)2 and r;(h, p)= - irf~*(h, p). Using a polar parametr

ization such that 
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High Momentum Behavior of Geometric Bremsstrahlung 1109 

P= P(sin()coscjJ, sin()sincjJ, cos ()) , (30) 

the explicit forms of ~ and 1} are written as 

(31) 

(32) 

Next let us give a review of the massive vector field in the four dimension. The 

original equation of motion is written as 

(33) 

where Fp.v ={7 ~v - (7 vAl' = a~v - avAp.. Now using the conformal flatness gp.v 

=a(t)21}p.v, the equation is rewritten as 

(34) 

The transverse wave solution can be introduced such that 

(35) 

where h= ± 1, and n(h) is a unit vector satisfying p. n(h)=O. The equation of motion 

requires 

On the other hand, the form of the longitudinal wave solution is 

(36) 

Time dependent factors a(L) and /3(L) need to satisfy 

(L) ip d/3(L) 

a p2+ m2a(t)2 dt . (37) 

Rescaling such that 

(38) 

the following SchrOdinger type equation also should hold: 
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1110 M. Hotta, H. Inoue, I. Joichi and M. Tanaka 

In the high momentum situation, p'}J>ma, da/adt, the WKB solution takes the form 

a(L) ~ 1 ~ (l __ l_' da + O(p-2»)e-iJ dt[P+(m2a2/2P)-(!/2Pa)(d2a/dt2)] 

j(27r)32p ma pa dt ' 

Thus the longitudinal component is estimated in the high momentum limit as 

where 

A =_l_eiP,z-iJ dt[P+(m 2a2/2P)-(I/2pa)(d2a/dt 2)] . 

ma 

These solutions will be used in §§ 5 and 6. 

§ 4. Yukawa interaction in the expanding universe 

(39) 

In this section we discuss the high energy limit of transition probabilities via 

Yukawa interaction in the four dimensional universe. The interaction is expressed 

by 

SYUkaWa =;l j d 4xM ¢( iJi,1J12+ ~ lJf,) 

=;l jd
4
x¢( iff,w2+ ij; iiii) , (41) 

where lJf,( 1J12) is a spinor field with mass m, (m2) and ¢ is a scalar field with mass p. 

The tilded fields are the rescaled field of § 2. 

This action generates several types of processes. For a lJf, particle with confor

mal momentum p and helicity 1/2 to decay into a 1J12 particle with q and a ¢ particle 

with k, the amplitude is written as 

Amp'Fl = - zA jd4xei(p-Q-k).zUkout*(t) ij;0ut(hf , q, t) w,ln(hi=l, p, t) , (42) 

where Ukout(t) is an out-mode function of ¢, Win/out is an in-Iout- mode function of W, 

and hf /2 is the helicity of the created spinor particle. In Eq. (42), we have omitted the 

contribution from the Bogoliubov coefficients of the vacuum polarization which is 

suppressed in the high temperature limit. In the following argument we assume that 

m, < m2+ f-/, so no decay occurs in the flat spacetime limit. Even in the expanding 

spacetime, the decay is prohibited, particularly in the past and future flat regions. 

Thus the decay is physically interpreted to occur only in the era of the cosmic 
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High Momentum Behavior of Geometric Bremsstrahlung 1111 

expansion. 

We expect that this assumption, ml < m2 + fJ., is not essential for our results when 

the decay time we obtain is much shorter than that calculated ordinarily in the flat 

spacetimes, El/(m1rflat). 

In the expanding universe, its scale factor is actually time dependent. Hence the 

meaning of probability per unit time seems ambiguous. Therefore we adopt the 

transition probability itself to obtain a clear interpretation. The transition probabil

ity is defined by 

(43) 

where 

(44) 

(45) 

Now our purpose is to analyze the high momentum limit (p-HX) of I:ISI2. As a 

warm-up, let us first calculate a simple case with the scale factor a(t)= b8( - t)+ 8(t). 

It is possible to calculate the limit straightforwardly. Substituting the explicit form 

of mode functions into the definition of I:ISI2, we obtain 

W$'ltep)(1/2~ hf /2) 

=limI:ISI
2 

p-"" 

1· ,,2 fd3 = Im-
64 

3 q 
p-"" 7r 

+ l:dt [(P2:::1~;:;(;:: ;:2+b:;~~~~ q~:~:2'~2)]114 [J2(h f , q, a= b)Ul(l, p, a=b)12, 

where we have used the fact that the reflection component of the wavefunction 

vanishes in the limit. After some tedious manipulation the final analytic forms of W 

turns out to be as follows: 

where 

W£fltep)(1/2~ hf = -1/2)= 3~:2 D ~ %: In t2 -2 J, 

WJ;iteP)(1/2~ hf =1/2)= 8";2 [1 + f~%: ]F(ml' m2, fJ.) , 

(46) 

(47) 

(48) 
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1112 M. Hotta, H. Inoue, I. Joichi and M. Tanaka 

Next we attempt to obtain W for arbitrary aCt), excluding a(oo)=l and a( -00) 

= b. Our strategy comes from the fact that approximate energy conservation holds 

for high momentum reactions, as seen below. We now concentrate on manipulating 

the contribution from the phase space region where p'YPma and q and k=lp- ql are 

of order of p. As a result of this restriction the WKB amplitude can be justified for 

both initial and final mode functions. Consequently, W turns out to possess a factor 

like 

x ex 

(49) 

In case hf = 1 it is very suggestive to roughly estimate it by neglecting masses as 

follows: 

L1(hf=l)~ /(p, q) x jdteit(q+IP-ql-P) 

(50) 

Therefore the following relation must be satisfied at least to this leading order: 

(51) 

where p. q= pqcos 8. This is an approximate energy conservation law and an impor

tant clue for us to calculate W'I',. From this "conservation" law, only the phase space 

region where O<q<p and 8~0 hold can contribute to W'I',. This fact tempts us to 

introduce a tiny but unspecified constant 80~1 and a small constant e satisfying ml, 

m2, f1.~pe~p. Now consider only a portion of the phase space with Pesqsp(l- e) 

and Os 8s 80 • Consequently the following expansions are valid: 

sin8~ 8, 

1-cos8~ ~ 82
• 

Furthermore, as a result of the high momentum limit, we can expand 

(52) 

(53) 

(54) 

From these useful expressions, we obtain for arbitrary aCt) 
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High Momentum Behavior of Geometric Bremsstrahlung 1113 

_. ,,2 lP(1-6) q2 160 3 

W'I', - hm-32 3 dq (p ) dBB 
P_o> 7r PE - q 0 

Next change the integral variables as follows: 

q=py, (55) 

(56) 

(57) 

Then the p dependence appears only in the upper bound of z and the argument of the 

scale factor. In fact, the result is expressed such that 

X d7)exp ----;- d7) a2 ___ 2 2-110> [11~ ( m 2a
2 

-0> Z 0 ml Y 
(58) 

To evaluate Ww, the following relation is worth proving: 

lima = lima( 2P~)= be( -7)+ e(7) . 
P_o> P_o> ml 

(59) 

Actually, in the limit, 2P7J/mI2 approaches 00 when 7»0, while -00 when 7)<0. From 

the fact that a(oo)=l and a( -oo)=b, one can derive easily Eq. (59). By substituting 

(59) into (58) we can proceed with calculation of Ww,. 

Because we take P-->oo, Bop/m can be replaced by 00. Hence no dependence of Bo 

remains in the final form of W!l',. Moreover, we can take e-->O because there is no 

appearance of infra-red divergence in the integral. These replacements yield 

where 

1 [ml Ji ] A(ml; m2,j..l,Y)=-2 --2 (1-Y)+--2y-y(1-y) . 
Y ml ml 

(60) 

After integration with respect to y and z, the right-hand side ends up with the same 
form of w(step): 

(61) 

It is a prominent feature that this relation (61) holds for arbitrary aU). This 

property implies the existence of notable universality of W!l',(hf =l). 
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1114 M. Hotta, H. Inoue, 1. Joichi and M. Tanaka 

For hf = -1 the story changes somewhat. The delta factor in Eq. (49) can be 

estimated roughly as 

~ f'(p, q)F1(LJE) , 

where LJE=q+lp-ql-p and 

F1(LJE) = !dtaCt)e i
I<1E • 

This scale factor contribution comes from 

(62) 

(63) 

(64) 

If O<q<p and 8~1 do not hold, LJE~O(p)'2>(OlJ~x is inevitably satisfied. There

fore, as mentioned in § 2, Fl ~O holds. Thus approximate energy conservation 

becomes valid again: 

(65) 

(66) 

In this case it should be noted that 8 is not so large that LJE becomes larger than (OlJ~x. 

Only the phase space region with 

f(;lf.f; 
8<8o=YT (67) 

contributes to WIlT,. Estimation of WIlT, for hf = -1 is also possible taking Eq. (67) 

into account. Thanks to the high momentum limit, the scale factor can be replaced 

the step factor as a(t)=be(-t)+e(t). After manipulation we can show 

WIIT,(hf = -1)= w~s,tep)(hf= -1). 

Consequently Eqs. (46) and (47) turn out to be correct for arbitrary evolution of 

a(t). Equation (59) is the key point giving birth of the universality. However, in the 

actual universe p does not take an infinite value, but remains finite and is of the order 

of the temperature. It should be noted that for a large but finite value of p the 

replacement of aCt) into the step evolution is valid only when a high momentum 

condition like 

(68) 

is satisfied. Here (Omln denotes the lowest typical frequency of a(t) and is assumed to 

be of the same order as the minimum value of the Hubble parameter. The condition 

(68) enables us to regard aCt) as be(-t)+e(t). The inequality (68) can also be 

rewritten as 
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High Momentum Behavior of Geometric Bremsstrahlung 1115 

l>[!!!J_1 
m P Wm!n' 

(69) 

where l/m represents the Compton length and l/wm!n denotes the maximum radius of 

the Hubble horizon. The factor m/p~ m/E can be interpreted as the Lorentz contrac· 

tion factor. Imagine a particle with Compton length l/m running with high momen· 

tum P in the expanding universe. Also suppose that the universe begins to expand 

when the particle reaches a point A and that the universe ceases to expand when the 

particle arrives at a point B. The length between A and B can be naively considered 

of the order of the maximum Hubble horizon (~l/wm!n). Then the particle can 

receive excitation energy from the gravitational field only while running between A 

and B. Meanwhile as P becomes larger, the length between A and B becomes Lorentz 

contracted as [m/P](l/wm!n) from the particle's viewpoint. Thus when the relation in 

Eq. (69) holds, the particle cannot see details of the way in which the universe has 

expanded. Consequently, this yields the above universality. 

The universality is actually a very powerful tool to estimate the high momentum 

limit of the transition probability. It can be shown that the universality also appears 

in other kinds of interactions and in any dimension of spacetime. However, it should 

be noted that we must take some care of its treatment when the probability grows to 

infinity as P--+oo. Using the universality we can naively manipulate the limit explicit· 

ly. However, it might diverge. In the next section such a phenomenon can be 

observed explicitly, and then we should cut P off at a certain large value of the order 

of the temperature of the universe. 

It is a rather straightforward application to estimate ¢ particle decay probability 

into a WI particle with helicity hi and a lJI2 particle with helicity h2• Here we must 

assume that fl< ml + m2 in order to suppress the transition in the flat spacetime. The 

final forms of the transition probability are listed as follows: 

(70) 

(71) 

where 

( )_ rr mI2(1-y)2-2mlm2y(1-y)+m22y2 
G fl, ml, m2 -)0 dy mI2(1-y)+m22Y-fl2y(1-y) (72) 

Interestingly, it is found that all of these forms of the probabilities possess a 

certain kind of dual symmetry. Changing b to l/b leaves the forms in Eqs. (46), (47), 

(70), (71) unchanged. This implies that physics of the expanding universe is related 

with that of the contracting universe. Note that the symmetry is not merely a time 

reversal summetry, because initial one particle decays into two particles for both 

cases. This might be related with a kind of hidden duality. 

Finally we discuss the decay rate of the particles. For example, let us consider 

the decay of the WI particle. The decay is expected to occur when WWl ~ 1. For 

small b, WWl behaves just as 
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1116 M. Hotta, H. Inoue, I. Joichi and M. Tanaka 

(73) 

where N* is the number of final modes which contribute to the decay. Thus, when the 

universe expands enough so that 

(74) 

is satisfied, the particle decays. Assuming a radiation dominant universe, bean 

satisfy 

(75) 

Consequently, we obtain the decay rate, 

rr _ 1 2 -(32lr2INO'2)H 
l.f--r;~ e i, (76) 

where Hi=I/2Ti is the Hubble parameter at production time of the WI particle. 

§ 5. Decay due to three point vertex in arbitrary dimension 

The geometric bremsstrahlung process is naturally expected to occur in arbitrary 

dimensional spacetimes. Furthermore, its exitence is not considered to depend on 

whether couplings of the reaction have dimension or are dimensionless. Here we 

give a rather simple example showing us this feature. Let us consider the ¢} theory 

with mass m in the n-dimensional spacetimes. The action reads 

n-2 R)A-.2_1..AA3-nIZA-.3] 
4(n-l) 'f' 3! 'f', 

(77) 

where we have introduced a mass parameter A. Hence the coupling constant A is 

dimensionless. In n:~6 the vertex is merely a renormalizable interaction. Mean

while, in n > 6, the interaction is not renormalizable, and then A represents some 

cutoff scale of the theory. The transition probability of a particle decay with 

conformal momentum p is straightforwardly given at the tree level as 

~ISI2=(2Jll(n-l)A2A6-n fdn-Iqlfdta3-nI2u:u~_qIUpr . 

It turns out soon that this expression itself converges for arbitrary fixed p. However, 

taking P-+ 00, this grows to infinity for n >6. This comes from the fact that the vertex 

is nonrenormalizable for n >6. However, there exists no trouble in the real universe, 

because p does not take an infinite value but that of the order the universe tempera

ture. Thus in the following argument we treat p finite but large compared with m 

and the Hubble parameter. Thus the probability is also finite. To obtain a useful 

lower bound of the probability in p-:p m, we again pick up only the contribution from 

the phase space region with o~e~eo<1 and P€~q~p(I-€). This implies that 
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High Momentum Behavior of Geometric Bremsstrahlung 1117 

For n:S::6 other phase space contributions vanishes in the high momentum limit and W 

gives us the probability itself, not merely a lower bound. 

Here assuming that p€'2>m, we can use the WKB wavefunctions for both in· and 

out- mode functions. Replacing the integral variables like 

q=py, (78) 

(79) 

(80) 

we obtain 

By imposing m2 /p4:..aAJI-;,.n/2) the replacement a=b8( -1/)+ 8(1/) is again validated. 

Then the integration with respect to 1/ can be easily performed, and we obtain 

(8o(Plm) n-3[ 1 
x Jo dzz Z2+C (81) 

where C=A(m; m, m, y)=(I- y+y2)/y2. 

Unfortunately, for n=2 this expression is not suitable, and we must calculate 

separately. However, the estimation is also possible analytically, and it results in 

simply 

W(n=2)=0. 

From n=3 to n=6 we can take p-HX) and €~O in Eq. (81). The results are as follows: 

W(n=3)=L (l..-ln3)(A)3[1- 2/b] 
8iT 3 m 1 +b ' 

W(n=4)= 8-1;2 (~arctan( ~)-1)( ~r[ 1 + I! b2lnb2] , 

-12 (5 ) A [ 2/b ] 
W(n=5)= 32iT2 T ln3 - 1 m 1-I+b ' 
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1118 M. Botta, H. Inoue, 1. Joichi and M. Tanaka 

Note that all of these expressions are invariant under the transformation b~ l/b. 

As mentioned previously, W diverges for n>6 in p~oo. Keeping (()~i·;,n/2»m2/p 

in mind, a lower bound with eo=m/p is obtained from Eq. (81). The explicit form 

with b ~ 0 is as follows: 

7rn
/
2
-

l 
,12 ( m )n-6 

W(n>6, b~0)2 (27r)n Ir(n/2-1) (n-3)(n-4)(n-6) Ab . 

Therefore after the universe expands sufficiently to satisfy 

l/b~ o( ,1-2/(n-6) ~), 

the particle decays via the geometric bremsstrahlung. 

After all we arrive at the conclusion that in spite of the high temperature of the 

universe, the transition probability due to the Yukawa geometric bremsstrahlung does 

not vanish even in the n-dimensional spacetimes, except for n=2. 

§ 6. Decay process including massive gauge field 

In this section we survey decay processes including a massive vector particle AJl 

with mass Ii. 

Let us first consider this particle to interact with fermions l[fl and l[f2 with mass 

ml and m2. The interaction term can be expressed as 

S'l''l'A=g !d4x;=;Wl(cv+cAr5)rJll[f2AJl+c.c. 

=g !d
4
xlP'l(cv+cAr

5
)r

a
ijjzJL+c.c., (82) 

where AJl=eJlaAa=aoJlaAa and Aa=a-lAa. In the high momentum limit we can use 

again the WKB approximation of § 2. This enables us to calculate W explicitly. 

Let us first consider decay of a transverse component of AI' possessing conformal 

momentum pinto l[fl and Wi particles. Just as the Yukawa interaction case, we take 

into account only contributions from restricted phase space region as follows: 

_. g2 (P(l-O) k (80 

WT(h, h)-~El327r2 1M dk P(P-k) 10 dee 

x l!dt[Nh, p- k, a)(cV+CAr5)rJl V2(h, k, a)EI'(T)(p, a) 

where 

(±)( )- +_1_ [0 1 +. 0] EJl p, a - - j2 "- t, . (83) 
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High Momentum Behavior of Geometric Bremsstrahlung 1119 

For any combination of (h, h), it can be straightforwardly shown that WT converges 

as P--->oo and €--->O. After a straightforward manipulation we obtain the following 

results: 

where 

H - e d IcV+cAI2m12y2+lcv- cAI2 m22(1- y)2+2(lcvI2-IcAI2)mlm2y(1- y) 
-)0 Y mI2y+ml(1-Y)-tiy(1-y) , 

WT(h=-l, h=-l)=O, 

_ - _ _ g2 2[ 1 + b2 
1 ] 

WT(h-1, h--1)- 247r2Icv-CAI 1_b2In-p--2 , 

(84) 

To obtain W for longitudinal component decay, we assume the photon helicity 

vector satisfies 

k 
€ (L)~-[l 0 ° -1]. 
I' fl.a'" 

(85) 

After some manipulation, we find that WL in fact converges with h=l and h=-l as 

where 

x I cv(ml-m2)-cAml +m2) mil y 
fl. 1-y 

cv(ml-m2): cA(ml + m2) m21 1 ~y -2(cv+cA)fl./y(1- y)r . (86) 

- g2 [ blnb2] 
WL(h=-l, h=l)= 87r2 1+ 1-b2 K(ml, m2, fl., Cv, -CA). (87) 

WL(h=±l, n=±l) is given as 

UT(h=+l h-=+l)=~ IcV(ml-m2)±cA(ml+m2)12 [1+b
2

1 l-2] 
ffL -, - 167r2 fl.2 1- b2 n b2 . 

It is also possible to estimate W when a 1[11 particle with momentum P and helicity 

1/2 decays into a 1[12 particle and a AI' particle. Substituting the wavefunction forms 

in § 2 into W, this is written down explicitly for emission of transverse component 
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1120 M. Hotta, H. Inoue, I. Joichi and M. Tanaka 

such that 

_. g2 (PO-E) k (60 

-~~ 3271"2 )PE dk P(P-k»)o d()() 

x IfdtU2(hf, p- k, a)(cv+ CAy5)rPUl(hi, p, a)€:(T)(k, a)e i! dU/E12 , 

where 

For cases with h i =l and hf =l our WKB results include an infra·red divergence. 

(88) 

(89) 

In spite of the appearance in Eqs. (88) and (89) of the infra· red divergence with 

respect to Pt, we believe that exact form of the probability converges as a result of 

the existence of natural infra-red cutoff fl.. This cutoff works only in the low 

momentum region where the WKB approximation is invalid. Because we have 

discussed only the case where the WKB approximation is valid, our treatment should 

include such a superficial infra-red divergence. From this point of view, it can be 

naively expected that €~ fl./p. 

However, if fl. is exactly zero, no natural infra-red cutoff appears. This infra-red 

divergence really exists owing to the existence of the soft particle. The number of 

soft particles is counted only to the accuracy of observations. Thus for very soft 

particles, one cannot discriminate between virtual emission which contribute to the 

particle mass operator and real emission. This enables us to add a part of the mass 

operator contribution to the emission probability. Then we hope the theory will have 

no real infra-red divergence in the physical interpretation, similar to the fiat 

spacetime case.4
) 

For other cases of transverse emission, W converges, and final results are given 

by 

(90) 

where 

W'I',(1; -1, -1)=0. 

For emission of the longitudinal component, we obtain 
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High Momentum Behavior of Geometric Bremsstrahlung 1121 

. g2 (P(l-E) k (80 

=~1~ 32Jr2 )PE dk p(p-k»)o dee 

x IfdfU2(hf, p- k, a)(cv+ cAy5)y"UI(hi, p, a)€:(L)(k, a)e i! dt(dE+(l/2k)(daladt) 2
1

2 
. 

Note that W".(l: 1, L) possesses an infra-red divergence with respect to €->O. 

where 

Q_ [ldy y(l-y) 
-)E f-l2(1-y)+mly-mI2Y(1-Y) 

x I cv(ml- m2)+ cA(ml + m2) m2 

f-l JI-y 

+ 
cV(ml-m2)-cA(ml+m2) ~ 2( ) /l-Y12 ml"l-YY- CV-CA II -f-l ,.... y , (91) 

and it is expected that €~ f-l/p. 

Finally, it can be shown that W1F(l; -1, L) converges and takes the following 

form: 

Let us next comment on a three-point interaction between the massive vector field 

with mass f-l and complex scalar fields CPI and CP2 with mass ml and m2. The interac

tion is described by 

S oPl"A = g f d 4 x;=g A, . .i( ip 1/7" CP2 -/7" ip 1 CP2) + C.c. 

We can also give in this case explicit forms of W in each process as follows. 

For decay of the transverse component, we have 

W (T)_~ [1 + b
2

1 ..1..- 2J 
- 48Jr2 1 - b2 n b2 , 

and for the longitudinal component decay, 

W(L) =~ (1 + blnb
2

) 

8 Jr2f-l2 1- b2 

x11/2dx 1-4x2 (mI
2
-mi)2+4f-l2(mI

2
-m2

2
)+4f-l4X2 

-1/2 ( ) 2mI2+2m22- f-l2+4(mI2- m22)x+4f-l2X2 . 

For the transverse vector particle emission from a scalar particle, we have 

Wc(T)-LI l [1 +b
2

1 ..1..- 2J 
1". - 8Jr2 no 1- b2 n b2 , 
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1122 M. Hotta, H. Inoue, I. Joichi and M. Tanaka 

and for the longitudinal vector particle emission out of a scalar particle, 

W.(L)-~(l+ blnb
2

) [ldy (1-y)[(m1
2
-m2

2
)y+(2-Y),ti]2 

9'1 -8;r2J.i2 1-b2 )8 y J.i2(1-y)+m22y-m12Y(1-Y) 

Thus the probability of geometric bremsstrahlung does not vanish, even including 

the vector field. 
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