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With growing multiplicity, the pp and pA collisions enter the domain where the macroscopic
description (thermodynamics and hydrodynamics) becomes applicable. We discuss this situation,
first with simplified thought experiments, then with some idealized representative cases, and finally
address the real data. For clarity, we don’t do it numerically but analytically, using the Gubser
solution. We found that the radial flow is expected to increase from central AA to central pA,
while the elliptic flow decreases, with higher harmonics being comparable. In the second part of the
paper we approach the problem from the opposite side, using a string-based Pomeron model. We
extensively study the magnitude and distribution of the viscous corrections, in Navier-Stokes and
Israel-Stuart approximations, ending with higher gradient re-summation proposed by Lublinsky
and Shuryak. We found those corrections growing, from AA to pA to pp, but remaining at the
manageable size even in the last case.

I. INTRODUCTION

High energy heavy ion collisions are theo-
retically treated very differently from pp and
pA ones. While the former are very well de-
scribed using macroscopic theories – thermo-
dynamics and relativistic hydrodynamics – the
latter are subject to what we would like to call
the “pomeron physics”, described with a help
of microscopic dynamics in terms of (ladders
of) perturbative gluons, classical random gauge
fields, or strings. The temperature and entropy
play a central role in the former case, and are
not even mentioned or defined in the latter case.
The subject of this paper is the situation

when these two distinct worlds (perhaps) meet.
In short, the main statement of this paper
is that specially triggered fluctuations of the
pp and pA collisions of particular magnitude
should be able to reach conditions in which the
macroscopic description can be nearly as good
as for AA collisions. While triggered by experi-
mental hints at LHC to be discussed below, this
phenomenon has not yet been a subject of a sys-
tematic study experimentally or theoretically,
and is of course far from being understood. So
on onset let us enumerate few key issues to be
addressed.

• How do the thermodynamical and hy-
drodynamical (viscosities, relaxation time

etc) quantities scale with the change in
the system size R and the multiplicity N?
What are the criteria for macroscopic (hy-
drodynamical) behavior ?

• What are the consequences of the fact
that the sQGP phase of matter is approx-
imately scale invariant ?

• Do high multiplicity pp and pA collisions
in which the (double) “ridge” has been
recently observed at LHC [6–8] fit into the
hydrodynamical systematics tested so far
for AA collisions?

• What is the expected magnitude of the
radial flow in pp and pA collisions, and
how is it related to that in AA? What
are the freezeout conditions in these new
explosive systems?

• How do amplitudes of the second and
higher angular harmonics vn scale with
n,R and η/s? In which pt region do we
expect hydrodynamics to work, and for
with vn?

The major objective of the heavy ion col-
lision program is to create and study prop-
erties of a new form of matter, the Quark-
Gluon Plasma. Among many proposed signa-
tures proposed in [2], the central role is played

ar
X

iv
:1

30
1.

44
70

v4
  [

he
p-

ph
] 

 6
 A

ug
 2

01
3



2

by production of macroscopic fireball of such
matter, with the subsequent collective explo-
sion described by the relativistic hydrodynam-
ics. Its observable effects are include radial and
elliptic flow, supplemented by higher moments
vm,m > 2 . At RHIC and LHC the AA colli-
sions has been studied in detail by now, with
multiple measured dependences, with excellent
agreement with hydrodynamics in a wide do-
main, for n < 7 and in the range of pt < 3GeV .
Let us start with a very generic discussion

of applicability of hydrodynamics. The basic
condition is that the system’s size R should be
much larger than microscopic scales such as e.g.
the correlation lengths or the inverse tempera-
ture T−1. The corresponding ratio is one small
parameter

1

TR
≈ O(1/10) ≪ 1 (1)

where the value corresponds to well studied
central AA collisions. Another important small
parameter which we seem to have for strongly
coupled Quark-Gluon Plasma (sQGP) is the
viscosity-to-entropy-density ratio

η

s
= 0.1..0.2 ≪ 1 (2)

This tells us that viscous scale – the mean
free path in kinetic terms – is additionally sup-
pressed compared to the micro scale 1/T by
strong interaction in the system. The product

of both parameters appearing in expressions (to
be specified below) suggests that one can hope
to apply hydrodynamics with about percent ac-
curacy.
The reason why the fireballs produced in

AuAu collisions at RHIC and PbPb at LHC
behaves macroscopically is related to the large

size of the colliding nuclei used. Yet smaller
size systems occurring in pp or pA should also
be able to do so, provided certain conditions
are met. Let us thus start to define such a
comparison, starting with our thought experi-

ment 0, in which two systems (see a sketch in
Fig.1) A and B have the same local quantities
– temperatures, viscosities and the like – but
different sizes RA > RB . (For example, think
of AuAu and CuCu collisions at the same colli-
sion energy, as in experiments done at RHIC.)
The equations of ideal hydrodynamics

∂µT
µν = 0 (3)

R

T

A

D

C

B

E

Tc

ex.0

ex.1

FIG. 1: (color online) Temperature T versus the
fireball size R plane. Solid blue line is the adiabate
S = const, approximately TR = const for sQGP.
Example 0 in the text corresponds to reducing R,
moving left A → B. Example 1 is moving up the
adiabate A → C. Example 2 corresponds to adi-
abatic expansion, such as A → E,C → E. If in
reality C corresponds to pA, the freezeout occurs
at the earlier point D.

include derivatives linearly and therefore simul-
taneous rescaling of the size and the time xµ →
λxµ does not change them. So, ideal hydrody-
namics will produce the same solution for fire-
ball of any size, provided other parameters are
unchanged. Yet the viscous terms have more
gradients, and thus there is no such symmetry.
Going from a large AA fireball to smaller pA..pp
systems would increases the role of visous terms
(scaled as powers of 1/R) , eventually invalidat-
ing hydrodynamics. (The boundary of which is
shown in Fig.1 by red long-dashed line.)
However if local quantities such as T are

changed as well, as is indeed the case in exper-
imental conditions we will discuss, the conclu-
sion may change. Consider instead the thought

experiment 1, in which we compare two systems
on the same adiabate A and C. For conformally
invariant sQGP – such as exists in the N=4 su-
persymmetric theory without running coupling
– S ∼ (TR)3 = const and the points A,C are
related by the scale transformation

RA/RC = ξ, TA/TC = ξ−1 (4)
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If the scale transformation is a symmetry, all
densities – e.g. the energy densities – scale
with the naive dimensional powers of the tem-
perature ǫ/T 4 ∼ const, viscosities do the same.
Thus the absolute scale plays no role. A small
(but hotter) plasma ball C will behave exactly
in the same way as the large (but cooler) A,
provided all dimensionless quantities like TR
or total entropy/multiplicity are held constant.
Let us now proceed to the thought experi-

ment 2, which is the same as above but in QCD,
with a running coupling. In the sQGP regime it
leads to (very small, as lattice tells us ) running
of s/T 3, of (unknown) running of η/T 3 etc. The
most dramatic effect is not the running coupling
per se, but the lack of supersymmetry, which
induces chiral/deconfinement phase transition
out of the sQGP phase at T = Tc. The end
of the sQGP explosion D thus has an absolute

scale, not subject to scale transformation!
So let us consider two systems A,C of the

same total entropy/multiplicity, initiated in
sQGP with conditions related by scale trans-
formation and left them explode. The sQGP
evolution would be related by nearly the same
set of intermediate states (modulo running cou-
pling) till T ≈ Tc, after which they go into
the “mixed” and hadronic stages, which are not
even close to be scale invariant! Thus the result
of the explosions are not the same. In fact the
smaller/hotter system will have an advantage
over the larger/cooler one, since it has larger
ratio between the initial and final scales Ti/Tf .
(In the language of holographic models the

scale is interpreted as the 5-th coordinate x5,
and evolution is depicted as gravitational falling
of particles,strings, fireballs etc toward the AdS
center. The ratio of the scales is the distance
travelled in the 5-th coordinate: thus in this
language two systems fall similarly in the same
gravity, but smaller system starts “higher” and
thus got larger velocity at the same level given
by Tc.)
The hydro expansion does not need to stop at

the phase boundaryD. In fact large systems, as
obtained in central AA collisions are known to
freezeout at Tf < Tc, down to 100 MeV range
(and indicated in the sketch by the point E.
However small systems, obtained in peripheral
AA or central pA seem to freezeout at D, as we
will show at the end of the paper.
Short summary of these thought experi-

ments: not only one expects hydro in the
smaller/hotter system to be there, it should be
similar to the one in larger/cooler system, due
to approximate scale invariance of sQGP. Fur-
thermore, in fact smaller systems are expected
to produce stronger hydro flow, as they evolve
“longer” (not in absolute but in dimensionalless
time).
If one wants to make comparison along such

lines, the question is how one can increase the
temperature of the system in practice. One ob-
vious way to do so is to increase the collision
energy: taking a pair of lighter nuclei A′A′ at
LHC one can compare it to collision of heavier
nuclei AA at RHIC tuning the energy so that
the multiplicity and centrality of the collisions
be the same, reproducing our thought experi-
ment 2. Yet energy dependence of multiplicity
is very slow, RHIC and LHC have different de-
tectors etc: so it is not very practical. Another
option is to rely on rare fluctuations, selecting
events with a larger entropy/multiplicity. This
is very expensive[30], but this is what is done
in practice.
Let us now briefly outline the history of the

subject of collective flow effects in pp collisions.
The radial flow effects in were searched for in
the minimum-bias pp collisions at CERN ISR
more than 30 years ago by one of us [3], with
negative results. Indications for some radial
flow have been found in specially triggered p̄p
collisions by the FERMILABMINIMAX exper-
iment [4], but the data remained inconclusive
and, more importantly, the magnitude of the
flow was small, below of what the full-fledged
hydro would give. (We are not aware of any
actual comparison with these data.)
With the advent of the LHC era of extremely

high luminocities and short-time detector ca-
pabilities, a hunt for strong fluctuations in
the parton multiplicity became possible. Al-
ready during the very first run of LHC in 2010,
the CMS collaboration was able [5] to collect
sufficient sample of high multiplicity pp colli-
sions occurring with the probability ∼ 10−6.
CMS found the “ridge” correlation in the high-
est multiplicity bins, an angular correlation in
the azimuthal angle between two particles at
∆φ < 1 which extends to large rapidity range
|∆y| ≥ 4. More recently the same phenomenon
was seen in pPb collisions as well, now by the
CMS [6], ALICE [7] and ATLAS [8] collabora-
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tions, as well as by PHENIX [9] in dAu colli-
sions at RHIC. Larger number of “participant
nucleons” and higher average multiplicity sub-
stantially weaken the cost of the trigger: the
“ridge” is seen at the trigger level of few per-
cents higher multiplicity events. It is shown
in those works that in pp and pA collisions,
the same threshold in terms of multiplicity is
needed to start showing the “ridge”.
Angular correlations naturally appear in a

hydrodynamical explosion of a non-azimuthally
symmetric objects. The spatial shape is then
translated to momentum space and is observed.
For example, in the comments on the CMS dis-
covery written by one of us [10] it was illus-
trated by a string placed outside of an (axially
symmetric) stick of explosive. While the basic
wind blowing is isotropic in φ, an extra string
may move in a preferred direction. In central
AA collisions it is similar to that. A symmet-
ric explosion has perturbations in the form of
localized “hot spots”. But in general, any suffi-
ciently deformed initial collisions for the fireball
would be sufficient to create ridge-like correla-
tions.
Furthermore, the subtraction of the so called

“back-to back recoil” (a peak at φ ∼ π) (eval-
uated from some perturbative (e.g. HIJING)
or color glass models [29] or seen experimen-
tally in smaller multiplicity bins) reveals that
a ridge is “doubled on the away side. The re-
maining correlation function is found to be [7, 8]
nearly symmetric with x → −x, φ → π−φ. Fur-
thermore, the second angular harmonics com-
pletely dominate the correlator – unlike the
central AA, in which the strongest harmonics
is the third. The first attempts to describe
this phenomenon hydrodynamically are quali-
tatively consistent with these data. For the pA
case, it is Ref. [11], which starts from Glauber-
inspired initial conditions similarly to what is
done in the AA case.
A nucleon propagating through the diame-

ter of the Pb nucleus “wounds” up to 20 nu-
cleons. Similar number of “wounded nucleons”
and multiplicity can be found for very periph-
eral PbPb collisions. Since these two systems
have different transverse area, they approxi-
mately correspond to our “thought experiment
2” (modulo different shape, which can be ac-
counted for, see below).
The objective of this paper is to extend hy-

drodynamical studies, using instead of a com-
plicated “realistic models” with huge number
of details and heavy numerics (the “event-by-
event” hydrodynamics) an analytic approach.
As we will see, this will allow us to focus on
generic dependences of the predictions on the
parameters of the problem.

The structure of the paper is as follows. In
the next section we discuss the radial flow us-
ing Gubser’s solution. After putting AA,pA,pp
representative cases into common dimension-
less units, we see that they are in fact not
so far from thought experiments just dis-
cussed. We will then study viscous effects,
from the Navier-Stokes term, to Israel-Stuart
equations and Lublinsky-Shuryak higher gradi-
ent re-summation in section IID. We found an
artifact of Gubser solution –large corrections on
the space-like part of the freeze out surface, but
other than that all viscous effects seem to be
reasonabley under control, in all cases consid-
ered. We then turn to the harmonics of the
flow vm in the next section, with m=2,3 and
higher. We start with “acoustic damping” for-
mula, outlying dependence on the parameters,
and then proceed to solving the equations for
Gubser flow perturbations in AA,pA and pp
cases. The last section is devoted to compar-
ison to the experimental data. Only very re-
cently spectra of the identified secondaries for
high-multiplicity pA had allowed to confirm our
main point: the increase of the radial flow, and
even determine more quantitatively the freeze
out conditions.

II. HYDRODYNAMICS OF THE

RADIAL FLOW

A. Ideal hydrodynamics and the Gubser’s

flow

Since we are interested in comparison of dif-
ferent systems, it is important not to have too
many details which can be different and in-
duced some variations in both. In particularly,
one should keep the matter distribution of the
same shape. It is sufficient for this purpose to
use a relatively simple analytic solution found
by Gubser [18], see also [19]. This solution has
two symmetries: the boost-invariance as well
as the axial symmetry in the transverse plane.
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It is obtained via special conformal transforma-
tion, and therefore, the matter is required to be
conformal, with the EOS

ǫ = 3p = T 4f∗ (5)

where the parameter f∗ = 11 is fitted to repro-
duce the lattice data on QGP thermodynamics
(not too close to Tc).
The coordinate sets used are either the usual

proper time -spatial rapidity - transverse radius
- azimuthal angle (τ̄ , η, r̄, φ) set with the metric

ds2 = −dτ̄2 + τ̄2dη2 + dr̄2 + r̄2dφ2, (6)

or the comoving coordinates we will introduce
a bit later.
The shape of the solution is fixed, and the

absolute scale is introduced by a single param-
eter q with dimension of the inverse length. We
call the dimensionful variables τ̄ , r̄ with the bar,
which disappears as we proceed to dimension-
less variables

t = qτ̄ , r = qr̄ (7)

In such variable there is one single solution of
ideal relativistic hydrodynamics, which for the
transverse velocity and the energy density reads

v⊥(t, r) =
2tr

1 + t2 + r2
(8)

ǫ

q4
=

ǫ̂02
8/3

t4/3 [1 + 2(t2 + r2) + (t2 − r2)2]
4/3

The specificity of the system considered is re-
duced to a single dimensionalless parameter

ǫ̂0 = (9)

related to macro-to-micro ratio (1) or multiplic-
ity, plus of course different freezeouts to which
we turn shortly.
Let us crudely map the AA, pA and pp col-

lisions to these coordinates, guessing the scale
factors in fm to be

q−1
AA = 4.3, q−1

pA = 1, q−1
pp = 0.5 (10)

The energy density parameter can be related to
the entropy-per-rapidity density of the solution

ǫ̂0 = f
−1/3
∗

(

3

16π

dS

dη

)4/3

(11)

which in turn is mapped to multiplicity density
per unit rapidity

dS

dη
≈ 7.5

dNch

dη
(12)

defined at freezeout. We use for central LHC
AA=PbPb collisions

dNAA
ch /dη = 1450 (13)

The pp and pA data are split into several mul-
tiplicity bins: for definiteness, we will refer to
one of them in the CMS set, with the (corrected
average) multiplicity Nch = 114 inside |η| < 2.4
and pt > 0.4GeV acceptance. We thus take

dNpA
ch /dη = dNpp

ch /dη = 1.6
114

2 ∗ 2.4 (14)

where the factor 1.6 approximately corrects for
the unobserved pt < 0.4GeV region. Similarly
the energy parameters are fixed for each multi-
plicity bin.

(For clarity: our thought experiments 1 and
2 of the Introduction assumed the same values
of ǫ̂0 for points A and C, thus the same solu-
tion. Now we compare central AA and some
representative bins of pA and pp, which have
parameters and correspond to different adia-
batic curves. )

The expression for transverse flow (8) does
not depend on ǫ̂0 though, and all one needs
to do to calculate the radial flow is to define
the freezeout surfaces. Such a map is shown
on the t, r plot in Fig.2, in which we, for now,
selected the same “average” freezeout tempera-
ture Tf = 150MeV (to be modified later). Hy-
drodynamics is valid between the (horizontal)
initial time lines and the contours of fixed freeze
out temperature Tf , shown by thicker solid line,
at which the particle decouple and fly to the de-
tector. The spectra should be calculated by the
standard Cooper-Fry formula

dN

dηdp2
⊥

∼
∫

pµdΣµ exp

(

−pµuµ

Tf

)

(15)

in which Σµ is the freeze out surface, on which
the collective velocity uµ(t, r) should be taken,
for details see [23] . ( We ignore changes in the
equation of state at T > Tc.)

Note first, that while the absolute sizes and
multiplicities in central AA are quite different
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from pA and pp bins discussed, in the dimen-
sionless variables those are not so far away. No-
tably the pA freezeout appears “later” than for
AA, and pp later still. (Of course, the order is
opposite in the absolute fm units.) Thus illus-
trates the case we made with the thought exper-
iment 2: smaller systems gets more and more
“explosive”, because in the right units CD path
is longer than AD.
The transverse collective velocity on the

freeze out curves is read off (8). We would not
give here a plot but just mention that trans-
verse rapidity rise about linearly from the fire-
ball center to the the maximal values reached
at the “corner” of the freeze-out curves. For
three cases considered those are

vmax
⊥

[AA, pA, pp] = [0.69, 0.83, 0.95] (16)

These values are of course for qualitative pur-
poses only, to demonstrate the point in the
most simple way. We will discuss recent
CMS data and realistic freezeout surfaces cor-
responding to them at the end of the paper.

B. The Navier-Stokes corrections

We continue to discuss the radial flow adding
the first viscosity effect. The equation for the
reduced temperature T̂ = ǫ̂1/4 using the com-
bination of variables

g =
1− t2 + r2

2t
(17)

becomes an ordinary differential equation

3(1+g2)3/2
dT̂

dg
+2g

√

1 + g2T̂+g2H0 = 0 (18)

This equation is easily solvable analytically in
terns of certain hypergeometric functions or nu-
merically. Note that the last term contains vis-
cous parameter

H0 =
η

ǫ3/4
=

η

s

4

3
f
1/4
∗ (19)

For η/s = 0.134 one finds H0 = 0.33 we will
use as representative number.
The question is how important is the viscous

term. While H0 is just a constant, its role de-
pends on the magnitude of the initial temper-
ature T̂0 or total entropy. For AA collisions

r

0 1 2 3

t

0.5

1

1.5

2

2.5

3

FIG. 2: (color online) The three horizontal lines
correspond to the initial time: from bottom up AA
(blue solid), pA (dash black) and pp (red dash-dot).
The corresponding three curves with the same color
are the lines at which the temperature reaches the
same freeze-out value, set to be Tf = 150MeV .
The two thin solid lines correspond to the values
of the variable ρ = −2.2 (lower) and −0.2 (upper).
Those values are used as initial and final values in
the evolution of higher harmonics.

we find that its role is truly negligible, as the
curves hardly are separated by the line width.
(This is, of course, well known from all studies
in the literature.) For the pA and pp cases as
modeled above one can see a difference between
ideal and viscous solutions , shown in Figs. 3
through the temperature dependence T = T̂ /t
at certain positions. The viscous effect is max-
imal at early times, while the viscous and ideal
curves meet near freezeout. As expected, the
viscous effects are more noticeable at the fire-
ball edge, compare the r = 1 and the r = 3
plots. The main conclusion of this section is
that small viscosity of the sQGP provides only
modest corrections to the radial flow, even for
the pA and pp cases.

Another sourse of viscous corrections comes
from modifications of the particle distributions
induced by gradients of the flow. Those should
be proportional to tensor of flow derivatives at
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t
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0.5

1

1.5
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FIG. 3: (color online) The temperature versus di-
mensionless time t, for ideal hydrodynamics (solid)
and viscous hydrodynamics with η/s = 0.132
(dashed) lines. The upper pair of (red) curves are
for pp, the lower (black) ones for pA collisions. The
upper plot is for r = 1, the lower plot for r = 3.

the freezeout surface

δf(x, p) ∼ f(x, p)pµpνuµ;ν (20)

where semicolon as usual stands for covariant
derivative. The coefficient is to be determined
from the fact that this correction is the one in-
ducing the viscosity part of the stress tensor.
Looking at the space-time dependence of the
(symmetrized) tensor of flow covariant deriva-
tives

σµν = u<µ;ν> (21)

we found rather curious behavior produced by
Gubser’s flow. In Fig.4 we display several com-
ponents of this tensor, and one can see that
some of them change sign and magnitude at
r ≈ 10 fm, which is on the r.h.s. or space like
part of the freezeout surface in AA collisions.
(The “corner” in this case is at r ≈ 9.1 fm.) We

0 2 4 6 8 10 12
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

r HfmL

0 2 4 6 8 10 12
0

5.´ 10-6

0.00001

0.000015

r HfmL

FIG. 4: (color online) Radial dependence of the
first order viscous term (a) and the second order
one (b) for central AA collisions. In (a) the black
dashed,blue solid, and brown dotted lines show
00,11,01 components of σµν , respectively. In (b) we
show 00,11,22 components of (23) by black dashed,
blue dotted and red solid lines.

think that this behavior is in fact an artifact of
the Gubser solution caused by slow (power-like)
decrease of the density at large distance. This
tails of the matter distribution serve in fact as
an“atmosphere” around the fireball, in which
some fraction of expanding matter get acceler-
ated inwards. We checked that such behavior
is not observed for exponentially decaying tails,
as is the case for real nuclei. Our conclusion
then is that one should not use Gubser solu-
tion outside of the fireball “rim”, in our case
for r > 9.1 fm. Fortunately, with realistic nu-
clear shapes that part of the surface contribute
only very small – few percents – contribution to
particle spectra and can therefore be neglected.

Let us now start the discussion of the sec-
ond and higher order gradients. In general,
those can be treated phenomenologically: one
can write down a complete set of all possible
forms for the stress tensor of the given order,
with some coefficients to be determined empir-
ically. The corresponding contribution to the
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stress tensor looks like

πµν =
∑

n

cnP
µν
n (T, uα) ∼

∑

n

cn

(

1

TR

)n

(22)
with some coefficients cn and certain kinemat-
ical structures with i derivatives Pµν

n . Their
order of magnitude is given by the pertinent
powers of the hydro parameter 1/TR, or multi-
plcity. Unfortunately, even for the second gra-
dients there are way too many terms for that
to be a practical program .
For conformal fluids the number of the sec-

ond order terms is more manageable and us-
ing the AdS/CFT one can obtain the value of
the coefficients (for review see [16] ). Using
such as a guide, one can estimate the mag-
nitude of the terms neglected in the Navier-
Stokes approximation. Furthermore, for Gub-
ser flow we find that the rotational (antisym-
metric) combination of the covariant deriva-
tives ωα,β = u[α;β] = 0, which eliminates two
more terms. The term which is the easiest to
estimate is the symmetrized convolution of two
first order term

π(2)
µν = −λ1

2
σ<µλσ

λ
ν> (23)

where angular bracket stands for symmetriza-
tion of µν. The AdS/CFT value for the coeffi-
cient is λ1 = η/(2πT ).
Radial dependence of this term at the freeze-

out surface for AA collision is shown in Fig.4
(b). It is reasonably small and constant, except
strong growth “beyond the rim” of the fireball.
As we already noted above, this is the artifact of
the Gubser solution, which should be ignored.

C. The radial expansion and the

Israel-Stuart second-order hydrodynamics

Using the lowest order hydrodynamics equa-
tions one can trade the spatial derivatives by
the time ones, and subsequently promote the
“static” gradient tensor σµν to “dynamical”
stress πµν , with its own equaltion of motion.
One may wander how these equations behave
in the Gubser setting.
Since the first version of this paper was

posted, this was done in [12], which we follow
in this section. The main purpose of this paper

has been methodical, to check their previously
developed MUSIC hydro solver against the ana-
lytically solvable examples. (The solutions dis-
cussed were not intended to correspond to any
particular physical settings.)

The IS equations to be solved have in this
case the form

T̂ ′(ρ)

T̂ (ρ)
+

2

3
tanh(ρ) =

1

3
π(ρ)tanh(ρ) (24)

c
η

s
[π′(ρ)+

4

3
π(ρ)2tanh(ρ)]+π(ρ)T̂ (ρ) =

4

3

η

s
tanh(ρ)

(25)
where a prime denotes the derivative over the
“time” ρ, and

T̂ = Tτ, π(ρ) = π̂ξ
ξ

1

T̂ ŝ
(26)

Note that at ρ → ±∞ the dimensionless tem-
perature T̂ vanishes as certain negative power
of coshρ, and therefore the second eqn de-
couples from the first. Furthermore, putting
to zero the derivative, one find constant fixed
point solution π = 1/

√
c, to which any solution

should tend in the ρ → ±∞ limit. This fea-
ture is very unusual, in variance with Navier-
Stokes and generic dissipative equations, which
only regulate solutions at positive time infinity,
generating singular or indefinitely growing so-
lutions toward the past ρ → −∞. In this sense,
there exists clear advantage of the IS equations
over the NS ones: but we don’t think this im-
provement reflects actual physics.

The negative of the Israel-Stuart version of
hydrodynamics, is that selecting the initial con-
ditions for π(ρ) is a nontrivial task. In princi-
ple, some theory of pre-equilibrium conditions
– e.g. the AdS/CFT or color glass conden-
sate (CGC) model – should provide it. For
lack of knowledge about the initial value of the
anisotropic part of the pressure tensor πµν prac-
titioners often select π(τi) = 0 at the initiation
time, and then carry it on from the equation,
till freezeout. In Fig.5 such a solution to Israel-
Stuart equations given above is shown by the
black solid lines. This solution is indeed more
than satisfactory, in the sense that the temper-
ature is very close to the ideal case (red dotted
line), and π remains small.

This however is opposite to general expecta-
tions for the real QCD setting, in which the
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coupling constant runs from small to large as
a function of time. Because of that, the η/s, c
are not in fact constant but run, toward the
most ideal fluid reached near Tc, at the end of
the QGP era. Therefore one expects the non-
equilibrium effects – in particular described by
π – to monotonously decrease from the initial to
the final state, as close to equilibrium as possi-
ble. We therefore suggest another possible so-
lution, with π(ρ) set to be zero at the end of
the expansion, at the freezeout. This solution
is shown in Fig.5 by the blue dashed line: it
indeed shows a monotonous decrease of π(ρ) in
the range of interest, ρ = −2..0. While this
scenario it is not as nice as the previous one
– the anisotropic pressure is not small at the
initial time π(−2) ∼ 1 and in the temperature
deviations from the ideal solution are well seen
– perhaps it is closer to reality.
In summary, while IS approach has advan-

tages such as regular behavior of the solutions
at both time infinities, in practice it allows wide
range of solutions in between, depending on the
required initial conditions for the viscous ten-
sor. There is no real argument explaining why
this version can be better than the first order
NS in cases when viscous corrections get no-
ticeable, as there is no estimate of the terms
neglected.

D. Higher gradients and

Lublinsky-Shuryak re-summation

The Navier-Stokes and Israel-Stuart approx-
imations used so far only includes the first and
the second order terms in the gradient expan-
sion. What about high orders?
The expansion coefficients may be obtained

from AdS/CFT, an indispensable tool. For
small (linearized) perturbations – sounds – the
correlators of the two stress tensors was cal-
culated to higher orders in frequency and wave
vector ω, k, extending the original viscosity pre-
diction η/s = 1/4π of Son et al to about a dozen
further coefficients.
Can one re-sum the higher gradient terms?

While hydrodynamics is more than two cen-
turies old, it seems that the first attempt of
the kind has been suggested by Lublinsky and
Shuryak (LS) [20]. An approximate PADE-like
re-summation of the higher order terms results

-3 -2 -1 0 1
0.0

0.5

1.0

1.5

2.0

2.5

3.0

-3 -2 -1 0 1

0.0

0.5

1.0

1.5

FIG. 5: (color online) (a) The dimensionless confor-

mal temperature T̂ and (b) the dimensionless con-
formal stress π as a function of “time” ρ. The pa-
rameters correspond to q = 1 fm−1, η/s = .2, c = 5
and multiplicity corresponding to the highest mul-
tiplicity bin of pA in CMS experiment. The red
dotted line in (a) is the ideal hydro Gubser solu-

tion T̂0/cosh
2/3ρ. In both plots the blue dashed

lines are for a “realistic” solution with π(0) = 0
near freezeout, while the black solid lines are for
“nice” solution with zero anisotropic stress at the
initiation time, π(−2) = 0.

from the alternating signs of the series and co-
efficients of the order 1, which calls for approx-
imate re-summation a la geometrical series[31]

1− x+ x2 + . . . → 1

1 + x
(27)

which keeps the quantity positive and regu-
lar even for x > 1. The suggested recipe is
to substitute the Navier-Stokes viscosity con-
stant by an effective one, which is in frequency-
momentum dependent and reads

ηLS2(ω, k) =
ηNS

1− η2,0k2/(2πT )2 − iωη0,1/(2πT )
(28)



10

while (28) involves only two dimensionless co-
efficients, whose values for AdS/CFT are

η2,0 = −1

2
η0,1 = 2− ln2 = 1.30 (29)

it actually approximately reproduces about a
dozen of known terms. Note that re-summation
into the denominator suggests a reduction of
the viscous effect as gradient grows. It may look
counterintuitive: note however that viscosity is
a coefficient of a term in hydro equations with
at list second order of k: so this reduction only
makes such terms finite, not zero.
Recently one of us has studied the “strong

shock wave” problem [25] in the AdS/CFT
setting, solved from the first principles (Ein-
stein equations) and comparing to the LS re-
summation. While this problem is far from
sound and is a generic “hydro-at-its-edge” type,
with large gradients without any small param-
eters, deviations between the NS and the exact
(variational) solution of the corresponding Ein-
stein equations were found to be on the level of
few percents only. Studies of time-dependent
collisions in bulk AdS/CFT have found that
the first-principle solution approaches the NS
solution early on and quite accurately, at the
time when the higher gradients by themselves
are not small, see e.g. [26].
Let us now check how does it work in the

case of Gubser solution. Changing k2, ω into
derivatives

− k2/q2 → (
∂

∂r
)2 +

1

r

∂

∂r

iω/q → ∂

∂t
(30)

makes the re-summed factor (with the denomi-
nator) an integral operator, which can be used
not only for plane waves of the sound but for
any function of the coordinates f(t, r). The in-
verse “LS operator” acting on a function f is
defined as

O−1
LS(f) = 1 +

q2

2(2πT )2

(

∂2f

∂r2
+

1

r

∂f

∂r

)

1

f

+ (2− ln2)
q

2πT

∂f

∂t

1

f
(31)

Schematically the resummed hydro equations
look as

(Euler) = ηOLS(Navier − Stokes) (32)

where OLS is an integral operator. However,
one can act with its inverse on the hydrody-
namical equation as a whole, acting on the Eu-
ler part but canceling it in the viscous term

O−1
LS(Euler) = η(Navier − Stokes) (33)

These are the equations of the LS hydrodynam-
ics. Obviously they have two extra derivatives
and thus need more initial conditions for solu-
tion.
Instead of solving these equations, we will

simply check the magnitude of the corrections
appearing in the l.h.s due to the action by the
LS differential operator on the (ideal Gubser)
solution used as a zeroth-order starting point.
As one can see, large systems have a small
q/T ∼ 1/RT parameter and so these correc-
tions are parametrically small. The issue is
what happens “on the hydro edge”, when the
corrections have no formal small parameter.

In Fig.6 we show the (inverse) action of (31)
on the zeroth other temperature profile of the
Gubser flow as a function of r. We have used
the freeze-out temperature Tf = 150MeV and
the indicated respective freeze-out times for pp,
pA and AA. The higher gradient corrections for
AA and pA are inside the few percent range
from 1, while in the pp case the correction is
larger, yet still in the 15 percent range. We thus
conclude, that if the LS resummation repre-
sents the role of the higher gradients, the over-
all corrections remain manageable, although it
does grow from AA to pA to pp cases.

III. HIGHER ANGULAR HARMONICS

A. Acoustic damping

There is a qualitative difference between
the radial flow we had discussed so far, and
higher angular harmonics. While the former
monotonously grows with time, driven by sign-
constant pressure gradient, the latter are a
(damped) oscillators. The signal observed de-
pend on the viscous damping factor as well as
on the particular phase in which the oscillator
finds itself at the freezeout time. We will dis-
cuss those effects subsequently.
The effects of viscosity damps the higher an-

gular flow moments stronger. The so called
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FIG. 6: (color online) The action of the LS operator
OLS (31) on the zeroth order (non-viscous) temper-
ature profile, the first term of (40). The three lines
correspond to AA (black) solid, pA (blue) dashed
and pp (red) dash-dot.

“acoustic damping” formula was suggested by
Staig and Shuryak [21] . Wave amplitude reac-
tion is given by

Pk =
δTµν(t, k)

δTµν(0, k)
= exp

(

−2

3

η

s

k2t

T

)

(34)

Since the scaling of the freeze out time is linear
in R or tf ∼ R, and the wave vector k corre-
sponds to the fireball circumference which is m
times the wavelength

2πR = m
2π

k
(35)

the expression (34) yields

vm
ǫm

∼ exp

[

−m2 4

3

(η

s

)

(

1

TR

)]

(36)

Note that the exponent contains the product of
two small factors, η/s and 1/TR, as discussed
in the introduction. Note further that the har-
monics number is squared. For central PbPb
LHC collisions with

1

TR
= O(1/10) (37)

its product of η/s is O(10−2). So one can imme-
diately see from this expression why harmonics
up to m = O(10) can be observed.

Proceeding to snapper systems in the spirit
of our thought experiment 0, by keeping a
similar initial temperature Ti ∼ 400MeV ∼
1/(0.5 fm) but a smaller size R, results in
a macro-to-micro parameter that is no longer
small, or 1/TR ∼ 0.5, 1, respectively. For a
usual liquid/gas, with η/s > 1, there would
not be any small parameter left and one would
have to conclude that hydrodynamics is inap-
plicable for such a small system. However,
since the quark-gluon plasma is an exception-
ally good liquid with a very small η/s, one can

still observe harmonics up to m = O(
√
10) ∼ 3.

However, if TR = const, along the line of the
thought experiment 1, there is no difference in
the damping.

Extensive comparison of this expression with
the AA data, from central to peripheral, has
been recently done in Ref. [22] . Both issues –
them2 and 1/R dependences of the log(vm/ǫm)
– are very well reproduced. It works all the
way to rather peripheral AA collisions with
R ∼ 1 fm and multiplicities comparable to
those in the highest pA binds. Thus the acous-
tic damping provides solid hydro-based system-
atics of the harmonic strength, to which new pA
and pp data should be compared.

B. Angular harmonics of Gubser flow

Unfortunately, the acoustic damping formula
does not include the oscillatory prefactors. (As
emphasized in Ref. [23], those should lead to
secondary peaks in power spectrum of fluctua-
tions at high m similar to those in cosmological
perturbations. Those are however not yet ob-
served.)

Since we are actually interested in not so
large m = 2, 3, we return to Gubser’s flow and
consider its angular perturbations. Those has
been developed in [19, 23]. In the former pa-
per Gubser and Yarom re-derived the radial so-
lution by going into the co-moving frame via
a coordinate transformation from the τ, r to a
new set ρ, θ given by:

sinh ρ = −1− τ2 + r2

2τ
(38)

tan θ =
2r

1 + τ2 − r2
(39)
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In the new coordinates the rescaled metric
reads:

dŝ2 = −dρ2 + cosh2 ρ
(

dθ2 + sin2 θdφ2
)

+ dη2

and we will use ρ as the “new time” coordinate
and θ as a new “space” coordinate. In the new
coordinates the fluid is at rest, so the velocity
field has only nonzero uρ. The temperature is
now dependent only on the new time ρ. For
nonzero viscosity the solution is

T̂ =
T̂0

(cosh ρ)2/3
+

H0 sinh
3 ρ

9(cosh ρ)2/3

× 2F1

(

3

2
,
7

6
;
5

2
,− sinh2 ρ

)

(40)

with T̂ = τf
1/4
∗ T and f∗ = ǫ/T 4 = 11 as in

[18].
Small perturbations to Gubsers flow obey lin-

earized equations which have also been derived
in [19]. We start with the zero viscosity case,
so that the background temperature (now to be
called T0) will be given by just the first term in
(40). The perturbations over the previous so-
lution are defined by

T̂ = T̂0(1 + δ) (41)

uµ = u0µ + u1µ (42)

with

û0µ = (−1, 0, 0, 0) (43)

û1µ = (0, uθ(ρ, θ, φ), uφ(ρ, θ, φ), 0) (44)

δ = δ(ρ, θ, φ) (45)

The exact solution can be found by us-
ing the separation of variables δ(ρ, θ, φ) =
R(ρ)Θ(θ)Φ(θ). In the non-viscous case, that
we are now discussing, each of the three equa-
tions

R(ρ) +
4

3
tanh ρR(ρ) +

λ

3 cosh2 ρ
R(ρ) = 0

Θ(θ) +
1

tan θ
Θ(θ) +

(

λ− m2

sin2 θ

)

Θ(θ) = 0

Φ(φ) +m2Φ(φ) = 0 (46)

are analytically solvable, with the results dis-
cussed in [23]. The parts of the solution de-
pending on θ and φ can be combined in order to

form spherical harmonics Ylm(θ, φ), such that
δ(ρ, θ, φ) ∝ Rl(ρ)Ylm(θ, φ).
The basic equations for the ρ-dependent part

of the perturbation, now with viscosity terms,
can be written as a system of coupled first-
order equations [19]. We are assuming rapid-
ity independence, thus the system of equations
(107),(108) and (109), from the referred pa-
per, becomes two coupled equations, for (the
ρ-dependent part of) the temperature and ve-
locity perturbations

d~w

dρ
= −Γ~w , ~w =

(

δv
vv

)

(47)

where the index v stands for viscous and the
matrix components are,

Γ11 =
H0 tanh

2 ρ

3T̂b

Γ12 =
l(l + 1)

3T̂b cosh
2 ρ

(

H0 tanh ρ− T̂b

)

Γ21 =
2H0 tanh ρ

H0 tanh ρ− 2T̂b

+ 1

Γ22 = (8T̂ 2
b tanh ρ

+H0T̂b

(−4(3l(l + 1)− 10))

cosh2 ρ
− 16

)

+6H2
0 tanh

3 ρ)/(6T̂b

(

H0 tanh ρ− 2T̂b

)

)

(48)

Before we display the solutions, we need to
translate our space-time plot into the ρ− θ co-
ordinates. The initiation surface t = ti are not
the ρ = const surfaces. The freezeout ones also
do not correspond to fixed ρ because the tem-
perature is T = T̂ (ρ)/t(ρ, θ). So, in both cases
one has to decide which points on the initiation
and final surfaces are most important. The thin
solid lines in Fig.2 approximately represent the
initial ρi and the final ρf values for all three
systems. Therefore, we will solve the equations
between those two surfaces.

In Fig.7 we show the solution of the ρ evolu-
tion of the two variables, the temperature per-
turbation and velocity δl(ρ), vl(ρ). As one can
see, all of them start at ρ0 = −2 from the same
δl = 1 value. While the elliptic one l = 2 (black
solid curves) changes more slowly, higher har-
monics oscillate more. We return to its discus-
sion in section IVB
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FIG. 7: (color online) The dimensional less temperature perturbation δl(ρ) and velocity vl(ρ), for l = 2, 3, 4
shown by (black) solid, (blue) dashed and (red) dotted curves, respectively. Three sets of calculations
corresponds to AA, pA and pp collisions.

IV. PHENOMENOLOGY

A. The radial flow in spectra of identified

secondaries

The main idea behind experimental signa-
tures of the radial flow has been used in [3],
it is based on the fact that collective flow man-
ifests itself differently for secondaries of differ-
ent mass. The exponential thermal spectra of

the near-massless pion are simply blue-shifted
by a factor, the exponent of the transverse flow
rapidity T ′ = Teκ. However spectra of mas-
sive particles – such as kaons, protons etc – are
modified in a more complex way. Instead of
discussing the shape of the spectra, let us focus
on their high-momentum behavior and the so
called m⊥ slopes: the particle spectra are fit-
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FIG. 8: (color online) The slopes of the m⊥ distri-
bution T ′ (GeV) as a function of the particle mass,
from [13]. The numbers on the right are track mul-
tiplicity.

ted to the exponential form (above certain pt)

dN

dydp2
⊥

=
dN

dydm2
⊥

∼ exp(−m⊥

T ′
) (49)

in the transverse mass variable m⊥ =
√

m2 + p2
⊥
, typically above certain value of the

m⊥ (see examples below). It has been found
in [3] using the min.bias ISR pp data that the
so called “m⊥ scaling” holds – the slopes T ′ are
the same for π,K, p independent on their mass
M . This scaling (coming from the string frag-
mentation mechanism) implies that there was
no evidence for collective expansion in min.bias.
pp collisions at the ISR energies.
Recent CMS pA data [13] significantly in-

creased the range of multiplicities, and now
contain spectra of identified particles. As seen
in the shown in Fig.8, for small multiplicity
bins (marked by 8 and 32 at the bottom) the
same m⊥ scaling holds, 34 years later and at
beam energies hundreds of times higher. How-
ever for larger multiplicity bins the slopes grow
with the particle mass linearly. Qualitatively
similar behavior has been previously seen in
AGS/SPS/RHIC and LHC AA data, and is
widely recognized as the signature of the radial
flow. Furthermore, six months after the first
version of this paper [1] made its main pre-
diction – that not only the radial flow in pA
and pp will be observed, but that its magni-
tude will even be larger than in central AA
collisions – is confirmed. The highest multi-

FIG. 9: (color online) (a) A sample of spectra calcu-
lated for π,K, p, top-to-bottom, versus m⊥ (GeV),
together with fitted exponents. ( b) Comparison
of the experimental slopes T ′(m) vests the parti-
cle mass m (GeV). The solid circles are from the
highest multiplicity bin data of fig.(a), compared to
those of the theoretical models. The solid and dash-
dotted lines are our calculations for freezeout tem-
peratures Tf = 0.17, 0.12GeV . Asterisks/dashed
line are for Epos LHC, diagonal crosses /dashed
line are for AMTP models.

plicity pA do have slopes exceeding even those
in central PbPb LHC collisions, the previous
record-holding on the radial flow.

In Fig.9(a) we show samples m⊥ spectra cal-
culated from Gubser radial flow. As for any
axially symmetric case, one can perform the in-
tegrals over the spatial rapidity and azimuthal
angle analytically, both producing Bessel func-
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tions,

dN

dydp2
⊥

=
gstat
2π2

∫

drτ(r)r (50)

[m⊥K1(
m⊥cosh(κ)

Tf
)I0(

p⊥sinh(κ)

Tf
)

−p⊥
dτ

dr
K0(

m⊥cosh(κ)

Tf
)I1(

p⊥sinh(κ)

Tf
)]

In the remaining radial Cooper-Fry integral
over the freezeout surface one should substi-
tute proper time τ(r) and its derivative, as
well as transverse rapidity κ(τ(r), r), defined
via tanh(κ) = v⊥. The spectra are fitted to ex-
ponential form at large m⊥ (see Fig.9( a)) and
finally in Fig.9( b) we compare the slopes T ′ ob-
served by the CMS (in the highest multiplicity
bin) to theoretical results.
We start doing it by comparing to other mod-

els. We do not include the parton cascade mod-
els Hijing, as it has no flow by design and ob-
viously fails in such a comparison. The (latest
version of the) hydrodynamical model “Epos
LHC” [14] predicts spectra with slopes shown
by asterisks: as evident from Fig( b) it misses
the slope by a lot, for the protons by about
factor 2. Even further from the data are the
slopes calculated from the AMPT model [15]
(diagonal crosses and dashed line).
Upper two lines in Fig.9( b) show our results,

corresponding to two selected values of Tf , .12
and .17 GeV. The former is in the ballpark of
the kinetic freezeout used for AA data: but as
the figure ( b) shows it overpredicts the radial
flow for the pA case. The second value corre-
sponds to the QCD critical temperature Tc: it
is kind of the upper limit for Tf since it is hard
to imagine freezeout in the QGP phase. As seen
from the figure, such value produces reasonable
amount for the collective radial flow as observed
by the CMS. The same level of agreement holds
not only in the highest multiplicity bin, but for
most of them. We thus conclude that in pA the
chemical and kinetic freezeout coincide.
Apart from the effective m⊥ slopes T ′ for

each multiplicity bin and particle type, the pa-
per [13] also gives the mean transverse mo-
menta. Like slopes, they also display that ra-
dial flow in few highest multiplicity pA do ex-
ceed that in central AA. Those data also agree
reasonably well with our calculation.

(The reader may wander why we don’t com-
pare the spectra themselves. Unfortunately
we cannot do it now, neither in normaliza-
tion more in shape because of significant “feed-
down” from multiple resonance decays, strongly
distorting the small-pt region. Event genera-
tors like HIJING and AMPT use “afterburner”
hadron cascade codes for that.)

B. Higher harmonics

The repeated motive of this paper is that
the smaller systems should have stronger radial
flow, as they evolve “longer” (in proper units,
not absolute ones) and the pressure gradient
driving them never disappears. Higher harmon-
ics are not driven permanently but are instead
oscillating, plus damped by the viscosity. Since
the only harmonics in the pA and pp observed
so far are the elliptic m = 2 and triangular
m = 3 ones, and their origins are quite differ-
ent, we will discuss them subsequently, starting
from qualitative expectations and then return-
ing to hydro calculations.

Elliptic deformation ǫAA
2 of the peripheral

AA collisions is quite large, significantly larger

than than those of the very central pA ǫpA2 of
comparable multiplicity. However if those are
evaluated – e.g. in the Glauber model – and
divided out in the ratio v2/ǫ2, the result should
be about the same in both cases for the same
multiplicity in both sets. This is e.g. seen
from the acoustic damping expression (36 ): the
same value of the multiplcity/entropy implies
the same TR and thus damping.

Specially interesting case is dAu collisions, as
in this case there are two collision centers and
ǫ2 is factor 2 enhanced [11], and v2 is also a
factor 2 higher [9]

The m=3 flow originates from fluctua-
tions, not from a particular average shape.
Therefore[32] , assuming we compare the same
number of wounded nucleons and multiplicity
in central pA and peripheral AA, we expect
similar ǫ3 in both cases. Indeed, the magnitude
of all m > 2 deformations is ǫm>2 ∼ 1/

√
N

where N is the number of “fluctuating clus-
ters” – wounded nucleons. Thus we expect v3
for both cases be the same, even without the
need to renormalize it by ǫ3. This predictions
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is indeed fulfilled in the LHC data.

Now we return to hydro results, discussed in
section III B. As one can see from Fig.7 the time
from initial ρ ∼ −2 till freezeout ρ ∼ 0 is be-
tween a quarter and a half of the period of the
oscillations. So the energy associated with the
initial spatial deformation is transferred into ki-
netic energy of the flow, and start to come back
when the explosion ends. The amplitude of the
velocity at the r.h.s. of the plot is the largest
for the m=2, and is smaller for m=3,4. Smaller
system do evolve a bit “longer” which put their
velocity amplitudes closer to zero.

Note that all of those start from the same de-
formation ǫm, so what one reads from this plot
is actually proportional to vm/ǫm. In order to
get absolutely normalized vm/ǫm one has to do
integration over the the Cooper-Fry freezeout,
as done in the previous section for radial flow.
Since the latter includes rather lengthy calcu-
lations (see [23] for details) we will not do it at
this stage.

Assuming that the integrals produce the
same factors for all cases, we just read off the
ratios of vm/ǫm from Fig.7 values of the flow at
ρ ∼ 0. Since measurements are for two-particle
correlation functions, we compare the squares
of the flow harmonics

(
vAA
2

ǫAA
2

)2 : (
vpA2

ǫpA2
)2 : (

vpp2 )

ǫpp2
)2

= 0.5 : 0.3 : 0.16 (51)

(This is not inconsistent with constancy of the
v2/ǫ2 proposed above, since in the calculations
we do not compare three points on the same
adiabatic or RT = const.)

The CMS data do show that the pp has
smaller v2 as compared to pA data, the ra-
tio is about a factor of 1/4 (see Fig.3 of [6])
rather than 1/2 which the hydro solution pro-
vides. Perhaps it is because the pp collisions
create a somewhat more spherical fireball, with

ǫpp2 < ǫpA2 , in spite of having a smaller size. We
will return to this issue at the end of the paper.

Let us now compare in a similar manner the

ratio of the m = 3 to m = 2 harmonics
(

vAA
3

vAA
2

)2

≈ 0.12

(

ǫAA
3

ǫAA
2

)2

(52)

(

vpA3

vpA2

)2

≈ 0.09

(

ǫpA3

ǫpA2

)2

(

vpp3
vpp2

)2

≈ 0.02

(

ǫpp3
ǫpp2

)2

Assuming ǫ3/ǫ2 ∼ 1 one finds that in pA we
predict v3/v2 ≈ 1/3, which agrees nicely with
the ALICE data [7]. For pp we have v3/v2 ≈
1/7 which is probably too small to be seen.

C. Comment of higher gradients at

freezeout

The effect of flow gradients affect spectra
at freezeout. As emphasized by Teaney [27],
the equilibrium distribution function f0(x, p)
should be complemented by the non equilib-
rium corrections proportional to flow gradients

f(x, p) = f0(x, p) + δf(x, p)pµpν∂µuν

+(higher gradients) (53)

Furthermore [27] , the Lorentz covariance forces
any extra gradient to carry another power of the
particle momentum. As a result, the expansion
parameter of the n-th term is of the order

δf

f
∼ η

s

(

p

T

1

TR

)n

(54)

If one moves to large p⊥/T = O(10), compen-
sating small factor 1/TR, the expansion in gra-
dients (and thus hydrodynamics) breaks down.
Indeed, the radial and harmonics of the flow
agree with hydro up to transverse momenta of
the order of pt ≈ 3GeV, or pt/Tf < 20.
In some applications people had calculated

f+δf and get negative spectra at large pt from
viscous corrections, which is of course meaning-
less. Needless to say, it resemble the first terms
(1 − x) in expansion (27), which gets negative
for x > 1. Our suggestion, along the line of LS
re-summation, is to use instead

f =
f0

1 + δf/f0
(55)

form which is sign-definite and approximately
reproduce the higher order terms as well.
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V. SUMMARY AND DISCUSSION

High multiplicity pp and pA collisions are
very interesting systems to study, as they are
expected to display the transition from a “mi-
cro” to “macro” dynamical regimes, treated
theoretically by quite different means. In this
paper we tried to explain how this transition
works using the language of the macroscopic
theory, the viscous hydrodynamics.
As we emphasized in the Introduction, the

applicability of hydrodynamics to high energy
collisions rests on the product of the two small
parameters: (i) the micro-to-macro ratio 1/TR,
and (ii) the viscosity-to-entropy ratio η/s. For
central AA collisions, both are small or of order
O(1/10). For high enough multiplicity of the
pA and pp collisions, such as the first parameter
becomes the same as in current AA collisions,
the accuracy of hydrodynamics should be the
same. While those value of multiplicity are not
reached yet, hydrodynamics apparently starts
to work, albight with less accuracy.
After solving the hydrodynamical equations

we found that the radial (axially symmetric)
flow is little modified by viscosity and is in fact
enhanced by “longer” (in dimensionless time)
run. Thus our main prediction is an enhanced

radial flow. Its signatures – growing m⊥ slopes
with the particle mass, or growing proton-to-
pion-ratio – are indeed confirmed by recent
CMS and ALICE data. This happens in spite of
the fact, that AA feezeout happens at smaller
Tf than in pA.
We extensively studied various forms of vis-

cous hydrodynamics, from NS to IS to re-
summation of gradients as la LS. In short, those

grow from AA to pA to pp, but perhaps even in
the last case they remain manageable. Higher
harmonics are obviously more penalized by vis-
cous corrections, especially of higher order, as
each gradient goes with extra factor m. The
role of those should be studied further else-
where.

Finally let us comment the following: ver-
sion 1 of this paper also included a view on
the high multiplicity pp/pA from microscopic
model, based on stringy Pomeron. It had grown
substantially and will now appear as a separate
publication.

Note added: When this version of the pa-
per was completed, we learned about ALICE
measurements of the identified particle spectra
in high multiplicity pPb collisions [28]. Strong
radial flow, growing with the multiplicity, is re-
ported, clearly seen in proton/antiproton spec-
tra. All conclusions are completely consistent
with ours. Note especially one point: ALICE
also finds that in pPb the freezeout happens at

temperature T pPb
f ≈ 0.17GeV higher than that

in central PbPb, in which TPbPb
f ≈ 0.12GeV .
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