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Encoding a qubit in a high-quality superconducting microwave cavity offers the opportunity to perform
the first layer of error correction in a single device but presents a challenge: how can quantum oscilla-
tors be controlled while introducing a minimal number of additional error channels? We focus on the
two-qubit portion of this control problem by using a three-wave-mixing coupling element to engineer a
programmable beam-splitter interaction between two bosonic modes separated by more than an octave
in frequency, without introducing major additional sources of decoherence. Combining this with single-
oscillator control provided by a dispersively coupled transmon provides a framework for quantum control
of multiple encoded qubits. The beam-splitter interaction gbs is fast relative to the time scale of oscillator
decoherence, enabling over 103 beam-splitter operations per coherence time and approaching the typical
rate of the dispersive coupling χ used for individual oscillator control. Further, the programmable cou-
pling is engineered without adding unwanted interactions between the oscillators, as evidenced by the
high on-off ratio of the operations, which can exceed 105. We then introduce a new protocol to realize a
hybrid controlled-SWAP operation in the regime gbs ≈ χ , in which a transmon provides the control bit for
the SWAP of two bosonic modes. Finally, we use this gate in a SWAP test to project a pair of bosonic qubits
into a Bell state with measurement-corrected fidelity of 95.5%± 0.2%.

DOI: 10.1103/PRXQuantum.4.020355

I. INTRODUCTION

Bosonic codes [1–6]—quantum error-correction
schemes in which a qubit is encoded in the multiple levels
of an oscillator—offer the chance to perform error cor-
rection with a single quantum mode. Along with the long
lifetimes of superconducting microwave cavities [7,8] and
their simple error models, this hardware-efficiency sug-
gests their use as a first layer of error correction for future
quantum processors [9].

Storing quantum information in highly coherent oscil-
lators presents a control challenge: the requisite nonlin-
earity must be introduced without adding significant error
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channels or unwanted Hamiltonian terms. In circuit-QED
implementations [10], universal control of a single bosonic
qubit can be accomplished with resonant drives on an
oscillator and a dispersively coupled transmon [11–15]
but making this control first-order insensitive to errors on
the ancilla [16,17], or developing alternative control meth-
ods based on noise-biased ancillas [18,19], is an area of
active research. For example, when the ancilla is excited,
ancilla decay can dephase the oscillator. In practice, this is
frequently the dominant error in these systems [20–23].

To perform two-qubit operations, another ancilla can
be dispersively coupled to a pair of oscillators. Manipu-
lating the state of the ancilla provides an immediate path
toward operations between the bosonic qubits [16,24] but
introduces additional error pathways when it decays or
dephases, due to its entanglement with the oscillators.

An alternative approach for generating two-qubit oper-
ations is to engineer a purely bilinear oscillator-oscillator
coupling with a circuit in which the quantum degrees of
freedom need not be explicitly excited or entangled with
the oscillators [25]. While such a scheme only allows
Gaussian interactions between the oscillators, it is largely
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immune to decay or dephasing errors on the coupler,
since ideally the coupler is only virtually excited. Heat-
ing of the coupler is then the only coupler error that
causes a cavity error. The non-Gaussian resource needed
for this approach can be provided by the ancillas used
for single-oscillator control and therefore allows two-qubit
gates to be performed without adding additional error-
prone control hardware. This approach is analogous to
well-known paradigms in linear optics in which univer-
sal control of continuous-variable systems is accomplished
with Gaussian two-mode interactions and a non-Gaussian
single-mode resource [26,27] but here it benefits from
the comparatively strong nonlinearity of the dispersive
shift.

Such a recipe for two-qubit operations on bosonically
encoded qubits has been recently employed in the form of
controlled-SWAP (CSWAP) and exponential-SWAP (ESWAP)
gates [28]. The performance of these demonstrations, how-
ever, has been limited by the speed and fidelity of the
engineered beam-splitter interaction [29]. Recent work
suggests that spurious Hamiltonian interactions of the
transmon coupling element have been responsible for these
limitations [30].

At the same time, efforts throughout the superconduct-
ing qubit community have shown the promise of designing
coupling elements (sometimes called tunable couplers)
to mediate interqubit interactions. These devices enable
strong coupling while suppressing spurious ZZ interactions
between qubits and can achieve on-off ratios exceeding 103

[31,32]. Suppressing such unwanted interactions is criti-
cal for quantum error correction, which often relies on the
assumption that errors are uncorrelated.

With this in mind, we improve on the efforts of Refs.
[28,29,33] by designing a coupler based on a supercon-
ducting nonlinear asymmetric inductive element (SNAIL)
dipole element [34]. The potential energy of the SNAIL
can be made asymmetric with a static external flux to allow
a pump-controlled beam-splitter interaction via three-wave
mixing [35], similar to that achieved with superconduct-
ing quantum interference devices (SQUIDs) driven by a
monochromatic flux pump [36,37]. Fine tuning the poten-
tial of the SNAIL coupler also allows in situ suppression of
higher-order terms in the coupler and oscillator Hamiltoni-
ans, such as cross-Kerr (ZZ-like) interactions between the
oscillators. SNAIL-based couplers constructed in this way
are therefore complementary to SQUID-based couplers
driven by bichromatic flux pumps, which offer less con-
trol of the static coupler Hamiltonian but suppress many
unwanted pumped interactions with symmetry [38].

Here, we use a SNAIL-based coupler to realize a pro-
grammable beam-splitter interaction between two bosonic
modes with over an octave separation in frequency
[Fig. 1(a)]. The interaction is fast relative to the time scale
of oscillator decoherence, enabling over 103 beam-splitter
operations per coherence time. Further, the programmable
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FIG. 1. Concept and coupler characterization. (a) A SNAIL-
based [34] three-wave-mixing coupler exchanges photons
between two high-quality superconducting microwave cavity
modes with resonant frequencies of 3 and 7 GHz, at a rate pro-
portional to the pump amplitude and with a phase set by the
pump. The process is enabled by a pump photon (purple) with
frequency equal to the 4-GHz detuning between the oscillators.
(b) The effective circuit diagram. The cavity modes are each dis-
persively coupled to a transmon for readout and control. Readout
resonators and Purcell filters for the transmons are not pictured.
(c) Measurements of the coupler frequency ωc (circles) as a func-
tion of the external flux bias in units of 80 = h/2e. The solid
line is a fit to the circuit model in (d) [39]. The extracted parame-
ters are EJ /h = 90.0± 0.3 GHz, EL/h = 64± 2 GHz, EC/h =
177± 2 MHz, and SNAIL junction asymmetry β = 0.147±
0.001. (e) The predicted Hamiltonian parameters, g3, g4, and g5,
and the anharmonicity of the coupler αc (lines) and the mea-
sured anharmonicity (circles). (f)–(h) Measurements (markers)
and predictions (lines; see Appendix D) of (f) the cavity-coupler
cross-Kerrs, (g) the cavity self-Kerrs, and (h) the cavity-cavity
cross-Kerr. The resonance in (g) occurs when ωc = 2ωa.

coupling is engineered without adding unwanted interac-
tions between the oscillators, as evidenced by the large
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ratio between the beam-splitter rate and the magnitude
of the strongest spurious cavity-cavity interactions during
idle periods, here called the on-off ratio. We find that the
on-off ratio is always above 2× 103 and can exceed 105 at
some operating points. To demonstrate the utility of the
beam-splitter interaction as a primitive for constructing
two-qubit gates, we combine it with a dispersively cou-
pled transmon to realize a hybrid CSWAP gate. We use this
to create a Bell state with measurement-corrected fidelity
of 95.5%± 0.2%.

II. COUPLER IMPLEMENTATION AND
CHARACTERIZATION

The beam-splitter Hamiltonian in the interaction picture

Ĥbs

~
= gbs(t)

(
eiθ â†b̂+ e−iθ âb̂†

)
, (1)

generates the coherent exchange of excitations between
two bosonic modes with annihilation operators â and b̂.
We refer to these modes as Alice and Bob. To realize this
interaction between bosonically encoded qubits, we link a
pair of high-quality microwave cavities with a three-wave-
mixing coupling element and control them by coupling
each cavity to its own transmon ancilla. Figure 1(b) shows
an effective circuit diagram of the system. For a simpli-
fied model of the superconducting package, see Fig. 16 in
Appendix Q.

Drawing inspiration from the quantum amplifier com-
munity [39,40] and the insights of Refs. [29,30], we adopt
a design philosophy that the coupler should act more like
a switch than a qubit and strive to minimize all Hamilto-
nian interactions that are not needed to generate the desired
beam-splitter interaction in Eq. (1). Constructing the cou-
pler from a SNAIL dipole element [34] serves this goal,
as the Hamiltonian of the coupler may be tuned in situ
to suppress parasitic fourth-order interactions [39,41] such
as self- and cross-Kerr interactions that distort multipho-
ton cavity states, while preserving the third-order non-
linearity g3 that enables the pumped three-wave-mixing
beam-splitter interaction gbs ∝ g3 (see Appendix F). We
emphasize that the amplitude gbs and phase θ of the beam-
splitter interaction are controlled by the amplitude and
phase of the microwave pump, making the beam-splitter
interaction in Eq. (1) fully programmable.

To demonstrate that the SNAIL can be used to suppress
parasitic quartic interactions while preserving the desired
cubic interaction, we characterize the coupler Hamilto-
nian following Ref. [39]. We first measure the resonant
frequency of the coupler ωc as a function of the external
flux bias [Fig. 1(c)], which we deliver to the SNAIL via a
superconducting flux transformer loop (see Appendix A).
We then fit a circuit model [Fig. 1(d)] to those measure-
ments [42]. Second quantization of the circuit Hamiltonian

and an expansion to fourth order then yields

Ĥc

~
≈ ωcĉ†ĉ+ g3

(
ĉ+ ĉ†)3

+ g4
(
ĉ+ ĉ†)4

, (2)

where ĉ is the annihilation operator associated with the
coupler mode. Here, g3 and g4 are the third- and fourth-
order nonlinearities of the coupler, both of which are func-
tions of the external flux and the fitted circuit parameters.
Figure 1(e) shows the resulting prediction for their depen-
dence on the external flux. (For a discussion on the design
choices of the SNAIL circuit parameters, see Appendix B.)

Crucially, it is possible to choose the external flux to
suppress g4 while g3 remains large. Suppressing the fourth-
order interactions provides several advantages: it reduces
the self- and cross-Kerr interactions of the cavities, which
distort multiphoton cavity states and can therefore be a
source of coherent errors; it reduces the anharmonicity
of the coupler, which mitigates pump-induced decoher-
ence effects [30]; and it reduces the cross-Kerr interaction
between the cavities and the coupler itself, which mitigates
cavity dephasing from thermal noise in the coupler.

To verify these predictions, we measure the anharmonic-
ity αc of the coupler, defined as the difference between
its |g〉 ↔ |e〉 and |e〉 ↔ |f 〉 transition frequencies. (Here,
|g〉 , |e〉 , and |f 〉 denote the first three energy eigen-
states of the coupler mode.) Figure 1(e) shows that these
measurements agree well with predictions made with per-
turbation theory in the small parameter (pφc) [43]:

αc = 12
(

g4 − 5
g2

3

ωc

)
+O (pφc)

4 , (3)

where φc is the zero-point phase fluctuation of the coupler
mode and p is the inductive participation of the SNAIL
junctions in this mode (i.e., the fraction of the induc-
tance arising from the junctions rather than the geometric
inductance of the leads; see Appendix B).

Conveniently, the nonlinear parameters in the coupler
Hamiltonian Ĥc can also be used to predict the depen-
dence of the joint cavity Hamiltonian Ĥ on the external
flux applied to the SNAIL, provided that the linear cou-
pling rates of each oscillator to the coupler ga and gb are
known. We infer these by measuring the dependence of
the cavity frequencies on the external flux (see Appendix
C). Expanded to fourth order, the joint cavity Hamiltonian
takes the form

Ĥ/~ ≈ ωaâ†â+ χaâ†â (|e〉 〈e|)a

+ ωbb̂†b̂+ χbb̂†b̂ (|e〉 〈e|)b + Ĥbs/~
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+
Ka

2
â†2

â2
+

Kb

2
b̂†2

b̂2
+ ĤSs

+ χabâ†âb̂†b̂+
(
χacâ†â+ χbcb̂†b̂

)
(|e〉 〈e|)c .

(4)

Here, the first two lines contain the desired terms: a pair
of oscillators dispersively coupled to transmon ancillas for
individual cavity control and a beam-splitter interaction to
couple the oscillators together. The cavity self-Kerr and
Stark-shift interactions ĤSs on the third line are parasitic,
as are the cross-Kerr interactions on the fourth line.

To visualize the flux dependence of Ĥ, the pre-
dicted and measured self- and cross-Kerrs are shown
in Figs. 1(f)–1(h). The cavity self-Kerr interactions
[Fig. 1(g)] are determined by the nonlinearity they inherit
from both the coupler and their transmon ancillas (see
Appendix D). In our system, there is no value of external
flux that nulls them but future designs could accomplish
this by neutralizing the negative anharmonicity from the
transmons with a positive anharmonicity from the coupler.
To first order, the cavity Stark shifts are proportional to the
self-Kerrs and could be nulled in the same way.

In contrast, the cavity cross-Kerr interactions [Figs. 1(f)
and 1(h)] are dictated solely by the coupler Hamiltonian.
To first order, they are proportional to g4, as is evident in
the change of their sign when the external flux approaches
approximately 0.480, a feature that allows any of these
interactions to be nulled via fine tuning of the external
flux. Higher-order corrections, however, make the precise
value of external flux that nulls these interactions slightly
different from the external flux at which g4 vanishes [39],
as well as the external flux at which the other interactions
vanish. These effects mean that many of the quartic inter-
actions can be suppressed simultaneously but only one of
the interactions can be finely nulled with a single value of
the external flux.

In summary, the external flux bias of the SNAIL cou-
pler serves a dual purpose. First, it breaks the symmetry of
the confining potential of the SNAIL, enabling three-wave
mixing and thus a switchable coupling between the cavi-
ties. At the same time, it provides a means of suppressing
the undesired quartic interactions induced by the coupler,
which give rise to the always-on cross-Kerr interaction χab
between the cavities, as well as the anharmonicity of the
coupler.

III. THE BEAM-SPLITTER INTERACTION

Ideally, a tunable coupler creates a hierarchy of rates.
When the coupler is “on,” the coupling should be strong,
both in absolute terms (to reduce algorithm run times) and
relative to the time scale of decoherence. Conversely, when
the coupler is “off,” it should provide ample isolation; the
interaction rates between the coupled modes should be

small relative to the time scale of decoherence. This last
condition ensures that errors due to residual coupling are
subdominant.

In our system, the cavities are strongly detuned, so
the largest cavity-cavity Hamiltonian interaction when the
coupler is “off” is the cross-Kerr interaction χab, which
describes a ZZ-like interaction between the cavities. The
desired hierarchy of rates is then

χab � τ−1
bs � gbs, (5)

where τbs is a time scale for cavity decoherence in the
presence of the beam-splitter interaction. We can quan-
tify the degree to which this hierarchy is enforced with
two dimensionless figures of merit. Anticipating its use
in pulsed operations, we note that the 50:50 beam-splitter
time (half the time required to swap a photon between the
cavities) sets a representative time scale for the interaction:
tbs ≡ π/4gbs. The first figure of merit is therefore the num-
ber of beam-splitter operations that can be performed in
one coherence time, τbs/tbs. The second is the on-off ratio
gbs/χab.

To measure these performance metrics, we turn on the
beam-splitter coupling by applying a microwave pump
tone with a frequency near to the detuning between the
Stark-shifted resonance frequencies of the oscillators. As
illustrated in Fig. 1(a), the pump supplies (or removes)
the energy required to convert a photon from one oscil-
lator to the other. When the pump frequency is precisely
equal to the difference of the two Stark-shifted oscillator
frequencies, we call it resonant.

We measure the rate of the beam-splitter interaction and
the decoherence of the cavities while the beam splitter is
“on” with the sequence in Fig. 2(a). To avoid coherent dis-
tortions of the cavity states caused by self- and cross-Kerr
interactions, we characterize it in the single-photon mani-
fold of the cavities. The cavities are first prepared in Fock
state |0, 1〉 and a resonant pump is applied for a variable
time t. The overlap of each cavity state with vacuum is
then measured and the outcomes are correlated shot by shot
to infer the photon-number probability distribution of the
joint cavity state (for details, see Appendix G). Figure 2(b)
shows the probability P10 of finding a photon in Alice and
none in Bob (orange) or vice versa (P01, blue). The two
traces have equal amplitude and opposite phase, indicat-
ing that the prepared photon is exchanged between the two
bosonic modes. The expected dynamics are [29]

P01/10 =
1
2

e−t/τ (1± e−t/τφ cos (2gbst+ θ)
)

+O
(
κa − κb

2gbs

)
, (6)

where κa and κb are the decay rates of Alice and Bob,
respectively. Fitting to Eq. (6) (for details, see Appendix
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FIG. 2. A three-wave-mixing beam splitter. (a) The pulse
sequence for measuring population exchange between the cav-
ities. With an external flux applied to the coupler, the cavities are
prepared in |0, 1〉 and the pump is applied resonantly for a vari-
able time t. The cavities are then measured to determine if they
are in vacuum and the outcomes are correlated shot by shot to
infer the joint probability distribution of the photon population
in the oscillators (see Appendix G). (b) The probability of find-
ing one photon in Alice and none in Bob, P10 (orange), and vice
versa, P01 (blue), as a function of time. The solid lines are fits
to Eq. (6). See Fig. 8(c) for the full data set without axis breaks.
(c) The fitted beam-splitter rate gbs (left axis) and the on-off ratio
(right axis), as a function of the dimensionless pump amplitude ξ ,
with external flux 8e/80 = 0.35. The circles show experimen-
tal data, the dashed line shows a prediction that is perturbative
in the drive strength and treats the coupler Hamiltonian to third
order, and the solid line shows a perturbation-theory prediction
that accounts for resonant odd-order nonlinear interactions in the
coupler Hamiltonian up to g17 [44] (for details, see Appendix F).
(d) The maximum number of beam splitters that can be achieved
per coherence time (left axis) and the corresponding on-off ratio
(right axis) at each value of the external flux 8e.

H), we extract the beam-splitter rate gbs, the time scale
for decay from the single-photon manifold τ , and the time
scale for dephasing τφ in the presence of the beam-splitter
drive.

Figure 2(c) shows the beam-splitter rates extracted from
a series of these measurements with different dimension-
less pump amplitudes ξ , which can be interpreted as the
classical displacement of the coupler by the pump. As
expected for a three-wave-mixing process, initially the
beam-splitter rate scales linearly with the pump amplitude,
gbs ∝ g3ξ , in agreement with the perturbation-theory esti-
mate (dashed line). As the amplitude increases, however,
the expansion of the coupler Hamiltonian becomes less
accurate and gbs deviates from this linear scaling.

One possible explanation for the observed turnaround
in gbs is the presence of odd higher-order nonlinearities in

the Hamiltonian of the coupler that can give rise to reso-
nant beam-splitter interactions that compete with g3. For
example, the first correction of this kind adjusts the beam-
splitter interaction by an amount proportional to g5|ξ |

2ξ .
This correction reduces the magnitude of the beam-splitter
rate because g3 and g5 have opposite sign. The solid line
in Fig. 2(c) shows a prediction of gbs accounting for odd-
order rotating-wave-approximation (RWA) processes up to
g17 [see Eq. (F10)] and indicates that while this explana-
tion is consistent with a slow-down, it fails to predict the
sharp turnaround and suggests the importance of captur-
ing non-RWA terms and treating the coupler Hamiltonian
nonperturbatively [45]; e.g., in the charge basis.

Nevertheless, at its maximum, gbs/2π is greater than 1
MHz. This is approximately a factor of 50 faster than the
beam-splitter rate used in Ref. [28] and it allows a 50:50
beam splitter (or half of a SWAP) to occur in tbs ≈ 125 ns.

To determine the on-off ratio, we compare this beam-
splitter rate to the cross-Kerr interaction between the cav-
ities, χab. When the external flux is biased to 8e/80 =

0.32, the measured cavity-cavity cross-Kerr is χab/2π =
−390± 10 Hz (for measurement details, see Appendix E),
allowing the on-off ratio to exceed 2× 103.

Fits to Eq. (6) also allow extraction of the decay times τ
and dephasing times τφ (see Fig. 8). The fitted values of τ
are relatively independent of the pump amplitude and near
the inverse of the average cavity decay rate. The dephas-
ing times τφ are also relatively independent of the pump
amplitude and are much longer than the decay times τ . The
decoherence in the presence of the beam splitter is there-
fore cavity-decay limited, which is significant because
photon loss is typically the error that bosonic codes are
designed to correct [1,3–5]. The dominant error during the
beam-splitter gate is therefore correctable.

For times t� min
(
τ , τφ

)
, the fidelity of the time-

evolved state diminishes at the composite time scale τ−1
bs ≡

1/τ + 1/2τφ [38]. The unconventional weighting given
here to decay and dephasing can be understood from the
perspective that unlike a qubit, which cannot decay from
its ground state, the single-photon manifold of the cavities
is always subject to decay. We take τbs as a represen-
tative time scale for cavity decoherence and compare it
to the beam-splitter time tbs to quantify the number of
50:50 beam splitters that can be performed in a single
coherence time. With 8e/80 = 0.32 and a strong drive,
τbs/tbs > 103, indicating that high-fidelity gates could be
achieved with this beam-splitter interaction.

To determine the flux bias that best enforces the hierar-
chy in Eq. (5), we repeat this procedure for many values
of the external flux. Figure 2(d) shows the number of
beam splitters per coherence time (left axis) and the on-
off ratio (right axis) as a function of the external flux.
For a given value of the external flux, we choose the
pump amplitude that maximizes the beam splitters per
coherence time and plot the on-off ratio achieved at that
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pump amplitude. The quoted figures of merit are therefore
achieved simultaneously.

Two clear operation points are visible. The first,
near 8e/80 = 0.32, yields the performance presented in
Fig. 2(b) and optimizes τbs/tbs. The second operation point
occurs at the external flux8e/80 = 0.43 that nulls χab and
optimizes the on-off ratio gbs/χab. To locate it, we resolve
the cross-Kerr far below either of the individual line widths
of the cavity by making a large displacement in the other
cavity (for details, see Appendix E). With this technique,
we null |χab|/2π < 10 Hz. Choosing 8e/80 = 0.43 still
allows over 700 beam splitters per coherence time and
due to the suppression of χab, elevates the on-off ratio
to over 105. In particular, we expect such an operating
point to find use in applications with special sensitivity
to self- and cross-Kerrs; e.g., controlled-NOT (CNOT) gates
between qubits encoded in grid states [2]. More broadly,
this exceptional on-off ratio is highly attractive from a
quantum error-correction standpoint, as uncorrelated errors
are an assumption for many forms of error correction.

IV. HYBRID CONTROLLED SWAP OF
BOSONICALLY ENCODED QUBITS

The fast beam-splitter rate engineered with this three-
wave-mixing coupler brings the system into a regime
where tbs is short not only compared to the cavity coher-
ence times but also to those of the transmon ancillas (see
Appendix I). This regime, in which T2/tbs ≈ 400� 1,
enables high-fidelity two-qubit gates constructed from the
combination of the beam-splitter interaction and single-
cavity dispersive control.

To demonstrate this, we perform a hybrid CSWAP gate on
two bosonic qubits, in which the transmon coupled to Bob
encodes the control bit:

CSWAP ≡ |g〉 〈g| ⊗ 1+ |e〉 〈e| ⊗ SWAP. (7)

(The beam-splitter interaction can also be used to realize
a SWAP controlled on the state of a bosonically encoded
qubit—for a proposed sequence for this gate, see Appendix
O.) The CSWAP, also known as a quantum Fredkin gate
[46], is a key operation for quantum implementations of
random-access memory (QRAM) [47,48] and fundamental
state-comparison and purification algorithms such as the
SWAP test [49–52]. Previously, it has been demonstrated
probabilistically in optical platforms [53] and determin-
istically in circuit QED [28] but performance there has
been limited by a less favorable ratio between transmon
coherence and the beam-splitter time T2/tbs ≈ 7.

In our system, the control for the CSWAP arises from the
dependence of the beam-splitter resonance condition on
the frequency of each oscillator [see Fig. 1(a)], which in
turn depends on the state of its transmon ancilla through
dispersive coupling. For example, when Bob’s ancilla is

excited, the frequency at which the beam-splitter interac-
tion is resonant shifts by χb (hereafter, simply χ ). Pumping
at ωb − ωa + χ for tgate = 2tbs enacts a SWAP when the
ancilla is in |e〉. The oscillator dynamics when the ancilla
is in |g〉, however, depend on the relative strengths of gbs
and χ . A photon evolving under the detuned beam-splitter
Hamiltonian Ĥ1bs ≡ Ĥbs +1â†â will swap between the
oscillators at a rate � and with contrast C ≡ max(P10)−

min(P10) given by

� =

√
g2

bs +
12

4
,

C =
g2

bs

�2 , (8)

in analogy to a detuned Rabi drive on a qubit. 1 is the
detuning of the beam-splitter drive from the ancilla-state-
dependent resonance condition (for CSWAP, 1 = χ when
the ancilla is in |g〉). If gbs � |χ |, the contrast is approxi-
mately zero and the desired identity operation is achieved,
albeit slowly [28]. A new approach is required, however,
when gbs approaches |χ |, as now the cavity populations
will exchange significantly when the control is in |g〉 [see
Fig. 3(a)].

This problem can be partially resolved by fine tuning
the beam-splitter rate to ensure that when the ancilla is in
|g〉, the cavities undergo exactly two detuned SWAP opera-
tions during tgate. To give a geometric interpretation of this
process, we formalize the analogy to Rabi oscillations by
moving to the Heisenberg picture. In that representation,
evolution under the detuned beam-splitter Hamiltonian can
be expressed as a unitary matrix acting on the vector of
operators

(
â
b̂

)
. As the operator evolution obeys an SU(2)

algebra [54], it can be visualized with trajectories on a
Bloch sphere, like those shown in Fig. 3(b) [55]. Under
Ĥ1bs, the operators rotate at a rate � about an axis

En =
1
�

gbs cos θ
gbs sin θ
1/2

 . (9)

To ensure that the operator executes precisely two detuned
SWAP operations during tgate—equivalent to the identity
up to a phase-space rotation on both cavities—when the
ancilla is in |g〉, we set the oscillation rate for a photon
evolving under the detuned beam-splitter Hamiltonian to
be twice the rate that it is under the resonant beam-splitter
Hamiltonian, i.e., � = 2gbs. This condition is satisfied
by setting gbs = |χ |/(2

√
3) [55]. This is illustrated in

Fig. 3(a) when tgate = 750 ns. The phase-space rotation, the
angle of which corresponds to half the solid angle enclosed
by the red trajectory in Fig. 3(b), is only imparted to the
oscillators when the control is in |g〉. To account for this,
we add a delay before and after the beam-splitter drive
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Concept and performance of the conditional SWAP. (a) The measured probability P10 after applying the beam-splitter pump
with δ = −|χ | and gbs = χ/2

√
3 for time t, with the control transmon prepared in |g〉 (red circles) or |e〉 (turquoise squares). The lines

are fits to Eq. (6). (b) An illustration of the evolution of the oscillator operator â in the Heisenberg picture during the demonstrated
CSWAP protocol. The SU(2) algebra generated by the detuned beam-splitter HamiltonianH1bs allows these dynamics to be illustrated
on a sphere. When the control is in |g〉, â traces a complete loop and â→ â (solid red). When the control is in |e〉, the cavity operators
exchange and â→ b̂ (dashed turquoise). The evolution of the b̂ operator follows the same trajectories inverted through the origin. (c)
The Wigner tomography of Alice (top row) and Bob (bottom row) initialized in D(α) |1〉 and |−α〉 and after performing a CSWAP with
the control in |g〉, |e〉, and (|g〉 + |e〉) /

√
2. (d) The gate sequence for a SWAP test followed by Wigner tomography, with a variable

number N CSWAP gates. Appendix K details how to calibrate the delays t1(N ) and t2(N ) required to account for the control-state-
dependent phase. (e) Joint-Pauli measurements on |9+〉 (red) with N = 1, compared to their ideal (solid) and expected (dashed)
values. See Appendix M for details on the tomography and rescaling of YY bar and Appendix N for calculation of the expected values
in the presence of decoherence. (f) The Bell fidelity F (log scale) as a function of the odd number N of CSWAP gates used in the SWAP
test (upper x axis) and the duration of the N CSWAP gates including pre- and postdelays (lower x axis), with the oscillators prepared in
|α,−α〉 (circles). The upper x axis is unevenly spaced because the delays t1(N ) and t2(N ) depend on N . The squares show fidelity to
|α,α〉 when oscillators are prepared in |α,α〉, as a control. The solid lines are linear fits; their slope is used to infer the SPAM-corrected
infidelity of the CSWAP, in analogy with randomized benchmarking.

during which the dispersive shift acts, imparting an equal
phase-space rotation to both oscillators when the control
is in |e〉. This results in an overall phase-space rotation on
the oscillators that is independent of the control state and
can thus be removed with local operations (for details, see
Appendix K).

In this experiment, the dispersive coupling χ/2π =
−1.104 MHz and so the required beam-splitter rate gbs =

|χ |/(2
√

3) = 2π × 319 kHz. Accounting for the pre- and
postdelays, as well as pulse ramp times to ensure finite
bandwidth, the total gate time is 1.3 µs and is limited by
the dispersive shift χ .

To ensure that the phase correction is properly cali-
brated, we perform this fast CSWAP protocol on the dis-
placed Fock states D(α) |1〉 ⊗ D(−α) |0〉 with α =

√
2

[see the left column of Fig. 3(c)]. These multiphoton ini-
tial states are both sensitive to phase-space rotations and
distinguishable under arbitrary rotation, such that a phase-
space rotation on each oscillator cannot be mistaken for a
SWAP (as would be the case for |α,−α〉).

The central columns of Fig. 3(c) show local Wigner
tomography on each oscillator after enacting a CSWAP with
the control initialized in |g〉 and |e〉 and serve as a truth
table for the gate. The oscillator states emerge unchanged
when the control is in |g〉 but are exchanged without
distortion when the control is in |e〉.

Importantly, the quantum CSWAP gate is not merely a
controlled SWAP on two quantum bits with a classical con-
trol; both targets and the control are quantum bits. To
demonstrate this, we perform a SWAP test by preparing
the control in a superposition state (|g〉 + |e〉)/

√
2 and

applying CSWAP followed by a second π/2 pulse and a
measurement of the control [see Fig. 11(a)]. This protocol
projects the oscillators into an eigenstate of SWAP, which
is entangled with the state of the control. Measuring the
control in |g〉means that the oscillators are in the+1 eigen-
state of SWAP; the unitary (1+ SWAP)/

√
2 has acted on the

joint oscillator state. The local Wigner tomography, unable
to reveal entanglement between oscillators, shows mixed
states [right column of Fig. 3(c)] composed equally of the
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initial states of Alice and Bob, with half the contrast of the
prior columns. In both oscillators, the two displaced Fock
states appear on opposite sides of the tomogram, confirm-
ing that there is no residual control-state-dependent phase
on the oscillator states.

To observe the interoscillator entanglement, we replace
local Wigner tomography with a measurement of the joint
Wigner function of the oscillators, in which the joint parity
is obtained by correlating local parity measurements shot
by shot:

W(βA,βB) = 〈D(βA,βB)PAPBD†(βA,βB)〉 . (10)

Here, PA,B ≡ eiπ n̂A,B is the photon-number parity operator
in each oscillator. Having validated the phase calibration,
we encode a qubit in the oscillator using the mapping
{|α〉 , |−α〉} to represent logical states {|0L〉 , |1L〉}. In this
basis, it is possible to measure two-qubit Pauli operators
without resorting to density-matrix reconstruction meth-
ods [24,56] (for details, see Appendix M). We prepare
the oscillators in |α,−α〉, such that a SWAP test produces
a Bell state in this basis |9±〉 ≡ N (|α,−α〉 ± |−α,α〉),
the parity of which is conditioned on the measurement of
the control. (Here, N ≈ 1/

√
2 is a normalization factor).

Postselecting on measuring |g〉 yields |9+〉.
Visualizing the full joint Wigner function of |9+〉 is dif-

ficult because it depends on two complex variables and is
thus four-dimensional but the signatures of entanglement
can be observed in slices in the real-real or imaginary-
imaginary planes [see Figs. 11(b) and 11(c)]. These match
qualitatively with the ideal simulated case [Figs. 11(d)
and 11(e)]. The interference fringes in the imaginary-
imaginary slice reveal the intercavity entanglement gen-
erated by the SWAP test.

To quantify this entanglement, we directly measure
the expectation values of all 16 two-qubit Pauli opera-
tors 〈9+|σi,Aσj ,B|9

+
〉 (i, j = 1, 2, 3 or 4) in the coherent-

state basis by sampling the joint Wigner function at 16
pairs of displacements (βA,βB) [24,56]. For an ideal Bell
state, simultaneous measurements of the same single-qubit
Pauli operator on each qubit are perfectly positively or
negatively correlated, while all other pairs of Pauli mea-
surements are uncorrelated: |〈9+|σi,Aσj ,B|9

+
〉| = δi,j (the

Kronecker-delta). In this experiment, where the basis states
for the Bell pair are quasiorthogonal coherent states with
α =
√

2, one caveat is that the measured value of 〈YY〉 is
ideally only | 〈iπ/8α| − iπ/8α〉 |2 ≈ 0.73 (see Appendix
M). This nonideality arises because not all Pauli opera-
tors can be perfectly expressed as simple combinations of
points in the measured Wigner function. It is the price paid
for efficiently extracting the expectation values of the Pauli
operators.

In Fig. 3(e), we compare these best-case outcomes
for |9+〉 to our measurements. The fidelity to the ideal
Bell state F ≡ 1/4 (〈II〉 + 〈XX 〉 + 〈YY〉 − 〈ZZ〉) is 74.1%

without correcting for state-preparation-and-measurement
(SPAM) errors, which exceeds the classical limit of 50%
[24].

To identify the origin of the infidelity, we estimate
and simulate the effects of transmon and cavity decoher-
ence using independently measured system parameters (for
details of the error budget, see Appendix N). The expected
values of the joint-Pauli measurements, indicated by the
dashed lines in Fig. 3(e), yield an overall estimated fidelity
within 2% of the measured value and suggest that the
CSWAP gate is decoherence limited. Furthermore, the error
budget suggests that the bulk of the errors arise from mea-
surement of the joint oscillator state and not from the
CSWAP gate itself.

To confirm this, we perform the Bell-state preparation
sequence while replacing the single CSWAP with N CSWAP
gates (with N an odd number), as shown in Fig. 3(d).
Since CSWAP squares to the identity, this allows us to
enhance the effect of gate errors while leaving the measure-
ment unchanged. By fitting the exponential decay of the
Bell fidelity as we increase the duration of the N CSWAP
sequence, we extract a measurement-corrected infidelity
of 4.5%± 0.2%. This value, obtained by multiplying the
fractional decrease in fidelity per unit time from the fit-
ted slope by the total duration of one CSWAP (including
delays), agrees with the predicted value of 4.2%± 0.1%
from our error budget, which suggests that cavity and
ancilla errors are approximately equally responsible for the
infidelity.

As a control experiment, we run the same protocol with
|α,α〉 as our initial cavity state. Since this state is already
an eigenstate of SWAP and therefore ideally unchanged
by a SWAP test, it is less prone to many of the error
mechanisms that limit the fidelity of |9+〉 and it results
in a lower measurement-corrected infidelity to the tar-
get state of 3.2%± 0.2%, in agreement with our error
budget.

V. CONCLUSIONS

SNAIL-based couplers can expand oscillator-control
capabilities without adding significant sources of error
because they need only be virtually excited to facilitate
the coupling. Here, we show how such a coupler enables
a fast and programmable three-wave-mixing beam-splitter
interaction that does not degrade oscillator coherence and
allows over 103 consecutive coherent beam-splitter opera-
tions.

Importantly, the strong oscillator-oscillator coupling gbs
is achieved without introducing unwanted interactions, as
evidenced by its high on-off ratio, which can exceed 105.
The coupler therefore satisfies the desired hierarchy of
rates χab � τ−1

bs � gbs.
To demonstrate its utility as a primitive for two-qubit

bosonic gates, we describe a new protocol that leverages

020355-8



HIGH-ON-OFF-RATIO BEAM-SPLITTER INTERACTION... PRX QUANTUM 4, 020355 (2023)

the beam splitter in a deterministic hybrid CSWAP gate in
which a transmon serves as the control qubit. We use this
to perform a SWAP test on coherent states with opposite
phase, projecting the oscillators into a Bell state with a
measurement-corrected infidelity of 4.5%± 0.2%.

Looking forward, the hybrid CSWAP operation can be
further optimized using established control techniques
such as GRAPE [57] or REBURP [58] or implemented
with the canonical construction of beam splitter, controlled
parity, and inverse beam splitter (see Appendix P). Extend-
ing it to allow the control qubit to be provided by a bosoni-
cally encoded qubit (e.g., with the sequence proposed in
Appendix O) will benefit QRAM implementations with
bosonic codes. The beam-splitter interaction engineered in
this work is also the first step in performing a universal
gate set in circuit-QED dual-rail qubits, where dominant
errors can be detected, leaving background Pauli errors
that are orders of magnitude smaller [59]. Finally, the prin-
ciples used to construct the hybrid CSWAP presented here
can be generalized to design families of error-detectable
two-qubit gates on bosonically encoded qubits [55]. As
SNAIL-based couplers need not themselves add signifi-
cant errors, such gates enable the long coherence times
in superconducting cavities to translate to higher two-
qubit gate fidelities with bosonic qubits, paving a path to
hardware-efficient quantum error correction.
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APPENDIX A: FLUX DELIVERY IN AN
ALL-SUPERCONDUCTING PACKAGE

Flux biasing a SNAIL in an all-superconducting pack-
age is challenging because the Meissner effect [60] screens
external magnetic fields and because oscillator coher-
ence can be degraded if a magnetic coil wound on
a spool of normal metal is located too near to the
cavity. One solution to this problem is to use an all-
superconducting pick-up loop [61] as an intermediary
between the magnetic coil and the SNAIL loop, as illus-
trated in Fig. 4. To see how the magnetic coil inte-
grates into the superconducting package, refer to Fig. 16.
When a dc magnetic field from the coil threads through
the pick-up loop, a screening current flows around the
loop to counter this flux. The magnetic field from this
screening current then threads through the loop of the
SNAIL, delivering the flux bias. This process is anal-
ogous to the operation of a transformer, except that
the properties of superconductors allow it to occur
at dc.

Experimentally, we measure that between 20 and 40 mA
are required to thread one flux quantum through the SNAIL
using this method. To apply this large current without
heating the mixing-chamber plate, we solder the super-
conducting magnet wire (SC-SW-M-0.127 mm Cu-Ni-clad
Nb-Ti from Supercon) to a segment of copper cable and
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heat sink their joint (and about 10 cm of wire on either
side) to an oxygen-free high-conductivity (OFHC) cop-
per bobbin secured to the 4 K plate. The other end of the
copper wire is then routed out of the fridge and to a cur-
rent source at room temperature. The absence of joints in
the Nb-Ti wire below 4 K avoids placing a heat load on
the dilution unit and allows us to send 200 mA through
this line without any change in the mixing-chamber
temperature.

APPENDIX B: SYSTEM DESIGN
CONSIDERATIONS

The design of the experimental system is guided by
enforcing the hierarchy of rates in Eq. (5). The parameter
space of the design includes the bare-oscillator frequencies
ωA,B, the linear coupling rates between the coupler and the
cavities ga,b, and the circuit parameters of the coupler: β,
EL, EJ , EC, the number of large junctions in the shunting
array M , and the number of SNAILs N arrayed in series
in the coupler. For brevity, we omit discussion here on
choices regarding the transmon and readout parameters.

1. Choice of coupler and bare-oscillator frequencies

When choosing the bare-oscillator frequencies, the pri-
mary consideration is that the difference of the oscillator
frequencies sets the frequency of the beam-splitter pump. It
is therefore convenient to parametrize the problem in terms
of ω± ≡ ωB ± ωA. (Without loss of generality, we take
ωB > ωA.) To avoid low-order spurious interactions with
waveguide modes in the three-dimensional (3D) package,
ω− + ωB should be much less than the waveguide cutoff
ωwg of the coupler or transmon tunnels. This consideration
constrains ω− from above. In our package, the waveguide
cutoff frequencies are at ωwg/2π ≈ 20 GHz, meaning that
at least five pump photons are required to convert a pho-
ton in Bob into one of the waveguide modes. Ensuring
that spurious interactions of this kind are of high order
mitigates pump-induced decoherence on the cavities. As
a general principle, reducing ω− as much as possible helps
to suppress unwanted pumped interactions.

The sum frequency ω+ should be chosen to allow for
acceptable thermal populations in both cavities—the Bose-
Einstein distribution is exponential in frequency, so modest
increases in oscillator frequency rapidly suppress residual
thermal populations. Additionally, unwanted hybridization
with auxiliary modes can be avoided by ensuring that
they are not resonant with intermodulation products of the
oscillator frequencies.

2. Choice of the linear coupling between the cavities
and the coupler

The beam-splitter rate is proportional to the hybridiza-
tion between the cavities and the coupler, as are the decay

and dephasing rates that the cavities inherit from the cou-
pler. The linear coupling should therefore be chosen to
maximize this coupling without meaningfully degrading
the coherence of the cavities.

We parametrize the hybridization between each oscil-
lator and the coupler in terms of their detuning 1a,b ≡

ωa,b − ωc and their linear coupling rate ga,b. The decay rate
that the oscillator inherits as a result of the hybridization is

κa,b ≈

(
ga,b

1a,b

)2

γc, (B1)

where γc ≡ 1/T1,c is the decay rate of the coupler. (This
can be seen by considering a complex bare coupler fre-
quency ωC → ωC + iγc in Eq. (C3).)

By the same mechanism, the oscillator inherits a dephas-
ing rate from the coupler if the coupler frequency fluctuates
stochastically, e.g., because of flux noise in the loop of the
SNAIL. How this inherited dephasing rate relates to the
fluctuations of the coupler frequency will depend on its
noise spectrum.

In the case of white noise with a constant power spectral
density S0, we can identify the dephasing rate on the cou-
pler as γCφ = ω

2
CS0/4 and the dephasing rate inherited by

the oscillator as follows:

κa,φ ≈
g4

a

14
a
γCφ , (B2)

where we use the fact that ωC − ωA ≈ 1a.
It is more likely, however, that the noise spectrum is pink

and of the form S(f ) = SP/f , in which case the dephasing
rate of the coupler is given by γCφ = ωC

√
Sp ln 0.401/fm.

Here, fm is a low-frequency cutoff that should be taken as
the inverse of the longest time scale in the system and
the value 0.401 arises from the Euler-Mascheroni con-
stant [62]. The dephasing rate inherited by the oscillator
is then

κa,φ ≈
g2

a

12
a
γCφ . (B3)

To be conservative, we use Eq. (B3) to model the oscillator
dephasing inherited from the coupler.

With the inherited decay and dephasing rates calculated,
the optimal degree of hybridization can be calculated with
knowledge of the bare oscillator and coupler decoherence
rates (and the assumption that all coupler dephasing arises
from flux noise). Assuming bare-oscillator coherence at the
level of 1 ms, we aim to make the inherited decay and
dephasing rates much less than (1 ms)−1. In our design,
we assume coupler coherence times of γ−1

C = 10 µs and
γ−1

Cφ = 20 µs based on previous measurements of similar
devices [19]. With these assumptions and the detunings
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in our system, choosing ga,b/2π ∼ 100 MHz results in
inherited decay and dephasing rates around (4 ms)−1.

As shown in Fig. 9(a), the measured T1 time of the cou-
pler exceeds this estimate. As a consequence, we see no
flux dependence in the oscillator decay times. The dephas-
ing time of the coupler is comparable to our estimate,
resulting in a measurable variation in oscillator dephasing
time with changing flux bias. Nevertheless, decay remains
the dominant cavity error. In future designs, enhancing the
coupling rates ga,b will allow a factor of several improve-
ment in the beam-splitter rate without degrading oscillator
coherence. The cost for this change will be a commen-
surate increase in χab but as this rate can be heavily
suppressed by tuning the external flux, this trade-off seems
favorable.

3. Choice of the SNAIL coupler parameters

As discussed in the main text, the coupler parameters
are chosen to suppress quartic interactions in its Hamil-
tonian and enhance cubic interactions. Realizing this goal
requires relating those interactions to the circuit parameters
of the coupler.

Following Refs. [34,39], we begin with general com-
ments on the potential Us of the SNAIL dipole,
parametrized as pictured in the inset of Fig. 1(d). When
the number of large junctions in the array M > 1 and the
external flux is a dc bias [63], the potential may be written
as

Us(ϕ̂s)

EJ
= −β cos(ϕ̂s − φe)−M cos

ϕ̂s

M
. (B4)

Here, φe ≡ 8e/80 is the phase difference imparted by the
external flux and ϕ̂s is the phase drop across the SNAIL;
β < 1 is the ratio of Josephson energies for the primary
and shunting Josephson junctions.

The position of the potential minimum ϕm at a given
external flux is found by solving

dUs/dϕ̂s

EJ
= β sin

(
ϕ̂s − φe

)
+ sin

(
ϕ̂s

M

)
= 0. (B5)

When β < 1/M , a single minimum exists and so to avoid
multistability we work in this regime. The position of
the potential minimum reaches its largest value ϕmax

m =

M arcsin (β−1) when φe = ϕ
max
m + π/2.

Near the minimum ϕm the potential Us is well approxi-
mated by fifth-order expansion in ϕ̂s − ϕm:

Us
(
ϕ̂s
)
≈

c2

2!
(ϕ̂s − ϕm)

2
+

c3

3!
(ϕ̂s − ϕm)

3

+
c4

4!
(ϕ̂s − ϕm)

4
+

c5

5!
(ϕs − ϕm)

5, (B6)

with

c2 = β cos(ϕm − φe)+M−1 cos
ϕm

M
,

c3 =
M 2
− 1

M 2 sin
ϕm

M
,

c4 = −β cos(ϕm − φe)−M−3 cos
ϕm

M
,

c5 =
1−M 4

M 4 sin
ϕm

M
, (B7)

where Eq. (B5) is used to simplify the expression for
c3 and c5. The maximum magnitudes of c3 and c5 are
obtained at ϕmax

m , at which point the ratio of their magni-
tudes is |c3/c5| = M 2/(M 2

+ 1). This suggests choosing
M > 2 to attain a more favorable ratio of the desired c3
to the unwanted c5, although the choice of M will also be
guided by fabrication considerations. For our coupler, we
use M = 3.

As discussed in Ref. [39], calculating the Hamiltonian
of the full circuit in Fig. 1(d), including a linear induc-
tance, rescales the potential coefficients cj → c̃j but does
not change the location of the potential minima. The
result is of the form given in Eq. (F2). Second quan-
tization with ϕ̂ − ϕm = φc(ĉ+ ĉ†), N̂ = −iφ−1

c (ĉ− ĉ†)/2
yields Eq. (2), with φ̂ replaced by ϕ̂. The coefficients in
Hc are

ωc =
√

8c̃2ECEJ ,

φc =

(
2EC

c̃2EJ

) 1
4

,

~g3 = EJφ
3
c

c̃3

3!
,

~g4 = EJφ
4
c

c̃4

4!
,

~g5 = EJφ
5
c

c̃5

5!
, (B8)

where

c̃2 = pc2,

c̃3 = p3c3,

c̃4 = p4
(

c4 − 3
c3

2

c2
(1− p)

)
,

c̃5 = p5
(

c5 − 10
c4c3

c2
(1− p)+ 15

c2
3

c2
2
(1− p)2

)
, (B9)

and p ≡ c2EJ /EL + c2EJ . A rotating wave approximation
on Hc yields a Kerr nonlinearity of the form −αc/2ĉ†2

ĉ2

[see Eq. (3)]. We are now in a position to optimize the
circuit parameters of the coupler for maximal g3/g5 and
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minimal quartic interaction such as the anharmonicity and
cross-Kerr χab. As the frequency ωc is constrained by other
considerations, choosing the φc (equivalent to choosing the
impedance of the coupler) fixes the linear circuit parame-
ters EL and EC. Reducing φc is a straightforward way to
increase the ratio g3 relative to higher-order terms. Care
should be taken, though, that the pump amplitude can
be commensurately increased, to avoid reduction of the
beam-splitter rate. In practice, this means ensuring that the
drive can be delivered to the SNAIL coupler while suffi-
ciently isolating other nonlinear components (such as the
transmons). For more details, see Appendix J.

Replacing a single SNAIL with an array of N SNAILs
accomplishes much the same goal (and at the same cost),
provided that EJ is adjusted such that the total induc-
tance of the array is equal to the inductance of the original
SNAIL. We note that this is only possible when EJ � EL
[64] but this requirement is well satisfied for our device.

We test multiple devices with N = 3 SNAILs in an
array and find them to have excellent suppression of quar-
tic interactions. Their performance, however, is limited by
an undesired coupling of the strong beam-splitter pump
to the transmons used for oscillator control. Reverting to
a single SNAIL remedies this issue, as the same beam-
splitter rate can be attained with a ninefold reduction in
pump power. Future designs, though, could recover the
enhanced suppression of higher-order terms by engineer-
ing better isolation between the coupler and the transmons,
as in Ref. [35].

The only remaining parameter in the coupler circuit is
the ratio of the Josephson energies β. Broadly speaking,
larger values of β in the range β < 1/M increase the non-
linearities g3 and g4 and cause the potential coefficients
c̃2 to be more sensitive to external flux. Assuming that
undesirable quartic interactions have already been sup-
pressed through other means, the trade-off in choosing
β amounts to balancing the desire to increase g3 against
greater susceptibility to flux noise (via the increase of
dωC/d8e).

To quantify this, we perform numerical simulations
sweeping β with EJ adjusted to hold ωC fixed. They show
that g3 and dωC/d8e increase fractionally at the same rate
when β is less than a critical value βc ≈ 0.15 (for our
choices of the other parameters). Beyond this, i.e., when
βc < β < 1/M , the susceptibility to external flux increases
more rapidly with β than g3.

Assuming that the flux noise on the coupler is pink, the
decay and dephasing rates inherited by the cavities both
scale as (ga,b/1a,b)

2. The optimal choice of β then depends
on the expected coupler coherence and can be found with
the following procedure. Beginning with β = βc, calculate
the dressed coherence of the cavities. If the cavities are
dephasing limited, increase (ga,b/1a,b) as much as possi-
ble until the inherited decay rate becomes non-negligible.
Alternatively, if the cavities are decay limited, increase β

until the decay and dephasing times are balanced. Then
adjust (ga,b/1a,b) as needed.

Note that the above procedure requires knowledge of
the bare-oscillator and coupler coherences, which are not
always available in design. Nonetheless it illustrates the
general considerations in the choice.

APPENDIX C: DETERMINING THE LINEAR
OSCILLATOR-SNAIL COUPLING

An important parameter in predicting the nonlinear
properties of the oscillators is the linear coupling strength
g between each oscillator and the SNAIL coupler. This
appears when considering their bare modes,

ĤAC/~ = ωAÂ†Â+ ωCĈ†Ĉ

+ ga

(
Â†Ĉ+ Ĉ†Â

)
, (C1)

where ωA and ωC are the bare frequencies of Alice and
the coupler and g is taken to be real and independent of
the external flux. The same expression holds for Bob. The
Hamiltonian can be rewritten in matrix form,

ĤAC/~ =
(
Â† Ĉ†

) (ωA ga
ga ωC

)(
Â
Ĉ

)
,

=
(
Â† Ĉ†

)
M
(

Â
Ĉ

)
, (C2)

and M diagonalized to find the dressed frequencies

ωa ≈ ωA −
g2

a

ωC − ωA
,

ωc ≈ ωC +
g2

a

ωC − ωA
, (C3)

where we use the fact that ga � ωC − ωA. The same
approximation relates the dressed frequencies to one
another,

ωa ≈ ωA −
g2

a

ωc − ωA
. (C4)

By observing how the oscillator frequencies depend on
the SNAIL frequency as we tune external flux, we can
fit to obtain the linear coupling g and the bare-oscillator
frequency, as shown in Fig. 5.

APPENDIX D: CALCULATION OF OSCILLATOR
SELF- AND CROSS-KERRS

The analysis in Appendix C can be extended to account
for two cavities (with dressed annihilation operators â and
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FIG. 5. The cavity frequencies. The circles show measure-
ments of the dressed oscillator frequencies for (a) Alice and (b)
Bob at a range of external flux biases, plotted as a function of
the measured SNAIL frequency. The lines show fits to Eq. (C4),
from which we extract the linear oscillator-SNAIL couplings of
ga/2π = 75.6± 0.2 MHz and gb/2π = 134.9± 0.1 MHz and
the bare-mode frequencies of ωA/2π = 2976.018(16) MHz and
ωB/2π = 6915.945(17) MHz.

b̂) coupled to the same SNAIL mode. In the dispersive
limit, we approximate the bare SNAIL mode as

Ĉ ≈ ĉ+
ga

1a
â+

gb

1b
b̂, (D1)

where 1a(b) ≡ ωa(b) − ωc. Insertion of Eq. (D1) into the
Hamiltonian for the uncoupled SNAIL mode [Eq. (2)]
allows us to calculate the energy of the combined system
perturbatively.

The cross-Kerr between the cavities χab can be defined
as the frequency shift 1E/~ proportional to nanb. The g4
nonlinearity yields a shift at first order in perturbation the-
ory, while g3 yields a shift at second order and so the
cross-Kerr can be approximated as

χab ≈

(
24g4 + 36

g2
3

ω̃

)(
ga

1a

)2 ( gb

1b

)2

, (D2)

where

ω̃ ≡

(
1

ωa − ωb − ωc
+

1
−ωa + ωb − ωc

+
1

ωa + ωb − ωc
+

1
−ωa − ωb − ωc

)−1

.

Here, we assume that ga � 1a and gb � 1b we do not
make any assumptions about the relative sizes of the mode
frequencies.

The same procedure can be used to estimate the cavity
self-Kerr, which is proportional to n2. To first order in g4
and second order in g3,

Ka ≈

(
12g4 − 18g2

3

(
2ωc

4ω2
a − ω

2
c
+

4
ωc

))(
ga

1a

)4

+
χ2

at

4αat
, (D3)

where αat is the anharmonicity of the transmon ancilla. The
first term accounts for the coupler contribution to the cavity
self-Kerr, while the second accounts for the ancilla contri-
bution, which gives a fixed offset that is independent of
external flux bias.

APPENDIX E: MEASUREMENT OF SELF- AND
CROSS-KERR BETWEEN MODES

To sensitively measure the oscillator-oscillator cross-
Kerr interaction χabâ†âb̂†b̂, we find the linear frequency
shift of one oscillator while populating the other with
a large and variable number of photons. The cross-Kerr
interaction is symmetric under exchange of â and b̂, so one
can either displace Alice and detect a change in Bob’s reso-
nant frequency or vice versa. Moreover, the frequency shift
can be detected either interferometrically or spectroscopi-
cally, giving four possible measurement configurations for
χab.

Figure 6(a) illustrates the pulse sequence used to inter-
ferometrically measure Alice’s frequency. The protocol
starts by displacing Bob by a variable amount αd. We then
apply a unit displacement to Alice with a detuned drive
at frequency ωa + δi such that the resulting coherent state
acquires phase at a rate δi/2π = 200 kHz. In addition, the
coherent state will pick up an extra phase due to the cross-
Kerr at an average rate of |αd|

2χab. After a variable delay
t, a second detuned unit displacement returns the coherent
state to the origin if and only if it has acquired π radians of
phase during the delay. Figure 6(c) shows data measured in
this way near the cross-Kerr free point at 8e/80 = 0.43.
By detecting the probability P0 of finding Alice in vacuum,
we can fit the measured revivals with the model

P0 = A0e1+cos
((
δi+|αd |

2χab

)
t
)
+ C, (E1)

to infer χab. Here, A0 and C capture measurement infidelity
and the detuning δi and displacement αd are fixed by the
protocol. The results of these fits are shown as circles in
Fig. 6(e). The model neglects the effects of cavity decay
but since measurements of Alice and Bob yield similar val-
ues for χab despite their different decay rates, we deduce
that corrections due to cavity decay are small.

Figure 6(b) illustrates the pulse sequences used to spec-
troscopically measure Alice’s frequency. After displacing
Bob by αd, a long pulse with variable detuning δs is
used to displace Alice, followed by a measurement to
determine whether Alice is in vacuum. Figure 6(d) shows
data measured in this way. Fitting a linear relation to the
spectroscopy dip at each value of n, the slope gives a
measurement of χab.

Cavity self-Kerr (Ka/2â†â†ââ) is measured very sim-
ilarly to the interferometric measurement of cross-Kerr
outlined above. Instead of displacing the other cavity, we
vary the amplitude of the detuned displacement α, such
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that the cavity acquires extra phase at a rate Ka/2|α|2. We
can then extract the self-Kerr by measuring whether the
cavity is in vacuum and fitting it to

P0 = A0e1+cos
((
δ+Ka/2|α|2

)
t
)
+ C. (E2)

The cross-Kerr between the cavities and the SNAIL cou-
pler (χacâ†â (|e〉 〈e|)c) is measured similarly to the spectro-
scopic measurement of the cavity-cavity cross-Kerr. The
cavity is displaced by a variable displacement αd before a
long spectroscopy tone is applied to the coupler. We can
then measure whether the coupler is in its ground state by
performing a coupler-state-selective π pulse on the trans-
mon not coupled to the cavity and reading out the transmon
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FIG. 6. Measurement of the oscillator-oscillator cross-Kerr.
The pulse sequence for measuring the oscillator-oscillator cross-
Kerr (a) interferometrically and (b) spectroscopically with Alice.
Exchanging the cavity rails yields the complementary sequences
used to measure with Bob. Both the interferometric and spectro-
scopic sequences start with a resonant and variable displacement
of Bob, which populates that cavity with an average of n = |αd|

2

photons. For the interferometric measurement in (a), the result-
ing frequency shift is detected by off-resonantly displacing Alice
by α = 1, waiting a variable time t, and then making a sec-
ond displacement of the same size before measuring whether
Alice is in vacuum. For the spectroscopic measurement in (b),
the frequency shift is detected by sweeping the frequency of a
long displacement pulse on Alice and measuring whether it is
in vacuum. (c),(d) The result of interferometric (c) and spectro-
scopic (d) measurements on Bob near the cross-Kerr free point
8e/80 = 0.43. The solid line in (d) is a linear fit to the centers
of Gaussian fits on line cuts at each value of αd. (e) The inferred
cross-Kerr χab as a function of the external flux, measured inter-
ferometrically (circles) and spectroscopically (squares), from
Alice (orange) and Bob (blue). The measurements shown in
Fig. 1(h) are the average of the two interferometric data sets.
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FIG. 7. Correcting for measurement infidelity. The top row
shows mock data of the uncorrected probability Q01/10 of mea-
suring the oscillators in |0, 1〉 or |1, 0〉 during beam-splitter
oscillations, assuming a fixed measurement infidelity, with either
(a) perfect or (b) imperfect preparation of the initial state |0, 1〉.
The bottom row shows the inferred probability P01/10 that the
oscillators are in |0, 1〉 or |1, 0〉 given the uncorrected data, with
(c) perfect and (d) imperfect state preparation, after applying
the correction in Eq. (G1). In practice, applying that correc-
tion requires populating the matrices E(A) and E(B), which can
be done with measurements of Rabi oscillations. To generate
the mock data, we take the conditional measurement probabil-
ities to be P(A)(e|0) = 0.93, P(B)(e|0) = 0.87, P(A)(g|1) = 0.98
and PB(g|1) = 0.99. In the right column, we take the state-
preparation fidelities to be P(A)(0|0) = 0.99, P(B)(0|0) = 0.98,
P(A)(1|1) = 0.87 and P(B)(1|1) = 0.84, where P(A/B)(i|j ) is the
probability of actually preparing Fock state |i〉 when we try to
prepare Fock state |j 〉. We emphasize that these values are not
taken from the experiment but are chosen to highlight the effect
of the Rabi correction.

state. The spectroscopy data show a linear frequency shift
proportional to |αd|

2, with the slope given by χac.

APPENDIX F: DERIVATION OF THE
BEAM-SPLITTER HAMILTONIAN FROM A

DRIVEN SNAIL

We consider a system of two oscillators with associated
annihilation operators â and b̂, which are jointly coupled
to a conversion element with annihilation operator ĉ.

The system Hamiltonian is

Ĥs

~
= ωaâ†â+ ωbb̂†b̂+ ωcĉ†ĉ+

Ĥd

~
+
Ĥcnl

~
. (F1)

Here, ωc is the g-e transition of the coupler, Ĥd is the
Hamiltonian of the drive, and Ĥcnl is the nonquadratic part
of the coupler Hamiltonian Ĥc.
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The Hamiltonian of the coupler circuit is [39] (see also
Appendix B):

Ĥc = 4ECN̂ 2
+ EJ

(
c̃2

2!
φ̂2
+

c̃3

3!
φ̂3
+

c̃4

4!
φ̂4
+

c̃5

5!
φ̂5
)

+O(φ̂)6 (F2)

or, equivalently,

ωcĉ†ĉ+ Ĥcnl = EJ

(
c̃3

3!
φ̂3
+

c̃4

4!
φ̂4
+

c̃5

5!
φ̂5
)
+O(φ̂)6,

where Ĥcnl represents the terms in the Hamiltonian with
order higher than two. Second quantization on Eq. (F2)
yields Eq. (2). As the coupler is capacitively connected
to the two oscillators [see Fig. 1(b)], the phase operator φ̂
depends on the displacement of all three hybridized modes,
φ̂ ≡ φa(â+ â†)+ φb(b̂+ b̂†)+ φc

(
ĉ+ ĉ†

)
. Here, the φi

are the zero-point phases of the ith mode, with i = a, b, c.
To actuate the mixing process, we apply a pump with

frequency ωp and strengths ε. The Hamiltonian of the drive
is

Ĥd/~ = −(εe−iωp t
− ε∗eiωp t)(ĉ− ĉ†). (F3)

We now move to the frame displaced by the drive [65]. The
unitary for the displacement transformation is

Ûd = eξ̃ (t)ĉ
†
−ξ̃∗(t)ĉ, (F4)

where

ξ̃ ≡ ξe−iωp t
≡

ε

ωp − ωc
e−iωp t. (F5)

In the above, we neglect dissipation on the coupler mode
and counter-rotating terms.

We then move into a frame corotating with the three
modes via the unitary transformation

Ûr = e−i
(
ωaâ†â+ωbb̂†b̂+ωc ĉ† ĉ

)
t. (F6)

The transformed phase operator is now

ˆ̃
φ = Û†

r Û†
dφ̂ÛdÛr

= φa(âe−iωat
+ â†eiωat)+ φb(b̂e−iωbt

+ b̂†eiωbt)

+ φc
(
ĉe−iωct

+ ĉ†eiωct
+ ξe−iωp t

+ ξ ∗eiωp t) . (F7)

When the frequency of the pump is 1 detuned from the
difference ωb − ωa, a beam-splitter interaction of the form

gbseiθ â†b̂ei1t
+ h.c. (F8)

emerges, with (to lowest order)

gbs ≈ EJφaφbφcξ c̃3,

≈ 6
ga

1a

gb

1b
ξg3. (F9)

Greater accuracy can be obtained by including the effect of
higher-order nonlinear terms in the Hamiltonian (beyond
g3). To leading order within the RWA (but still treating the
drive perturbatively) these modify the beam-splitter rate in
Eq. (F9) to

gbs ≈
ga

1a

gb

1b
ξ ∗

(∑
m=1

(2m+ 1)!
m! (m− 1)!

g2m+1|ξ |
2m−2

)
. (F10)

Terms that are of higher order in gi/1i and those pro-
portional to g2m+1ξ

∗
|ξ |j with j < 2m− 2 are suppressed,

since (gi/1i)
2
� 1 and (pφc)

2
� 1, respectively.

This expression predicts that at sufficient pump ampli-
tude, the beam-splitter rate will deviate from a purely lin-
ear increase with amplitude. What physical considerations
limit the pump amplitude itself?

The renormalized SNAIL potential (described in
Appendix B) is 6π periodic in φ̂ with a single minimum
within each period, provided that β < 1/M . Furthermore,
adjacent maxima and minima are exactly 3π apart. If
we approximate the maximum deviation from the poten-
tial minima due to the drive as |φmax| = 2φc|ξ |, then the
drive amplitude required to enter the adjacent well is
approximately

|ξcrit| ≈
3π
2φc

. (F11)

For our system, this evaluates to |ξcrit| = 12.9, a value that
agrees closely with other estimates for the critical photon
number given in Ref. [43]. This calculation suggests that
further optimization of the coupler may allow even faster
beam-splitter rates than those demonstrated in the present
work, for which ξ < 3. Such work will likely require more
exact treatments of the coupler Hamiltonian.

APPENDIX G: MEASUREMENT OF THE JOINT
PROBABILITY DISTRIBUTION OF THE PHOTON

POPULATION

The joint probability distribution of the photon popula-
tion in the two cavities [shown in Fig. 2(b)] is obtained
by measuring the state of both cavities simultaneously and
correlating the outcomes shot by shot.

These measurements involve performing a 0-selective
π pulse on the ancilla of each oscillator (which succeeds
only if the oscillator is in vacuum) and reading out the
ancilla state. Ideally, if an oscillator is in |0〉, we measure
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its ancilla in |e〉with unit probability. Likewise, if the oscil-
lator is in a state |ψ0̄〉 where 〈0|ψ0̄〉 = 0, we measure the
ancilla in |g〉. We multiply the results of the simultaneous
measurements shot by shot to infer the joint oscillator state
(e.g., the ancillas measured in |e〉A |g〉B register as joint
oscillator state |0〉A |ψ0̄〉B). If we neglect oscillator heating,
our cavities are confined to the {0, 1} subspace and we can
replace |ψ0̄〉 with |1〉. We do so for ease of reading but the
analysis works equally well with |ψ0̄〉 undetermined.

Averaging the results yields the uncorrected probabili-
ties Q(i, j ), where i, j = {e, g}. The uncorrected probabili-
ties are the result of imperfect measurement arising from
errors during our selective π pulses and readout. These
imperfections lead to false positives, where the ancilla is
measured in |e〉 despite the oscillator being in |1〉, and false
negatives, where the ancilla is measured in |g〉 despite the
oscillator being in |0〉.

For a single-oscillator measurement, we construct a
matrix E relating the probability of measuring the ancilla
state to the true oscillator state:(

Q(e)
Q(g)

)
=

(
P(e|0) P(e|1)
P(g|0) P(g|1)

)(
P(0)
P(1)

)
= E

(
P(0)
P(1)

)
.

Here, the matrix E can be written in terms of the false
positive and true positive rates, f and t. We can estimate
these by taking the minimum and maximum points of our
0-selective Rabi oscillations, respectively:

E =
(

t f
1− t 1− f

)
.

We can invert this matrix to obtain the oscillator state
probabilities from our measurements:(

P(0)
P(1)

)
= E−1

(
Q(e)
Q(g)

)
.

The same procedure may be generalized for joint mea-
surements, where we assume that measurement errors are
uncorrelated between ancillas:

Q(i, j ) = E(i, j |n, m)P(n, m),

= E(A)(i|n)E(B)(j |m)P(n, m),

Q = E(A)PET
(B).

Inverting this, we have

P = E−1
(A)Q

(
ET
(B)

)−1 . (G1)

This method corrects the distortion in the measurement
of the joint state of two oscillators when the measure-
ment fidelity on each oscillator is different. We note that it
does not normalize for imperfections in state preparation.

Figure 7 shows how the correction protocol transforms
mock uncorrected data, with and without perfect state
preparation. In the case of imperfect state preparation, the
oscillations of P01 and P10 should have the same amplitude
but not extend from 0 to 1.

To initialize the cavities in |1〉A |0〉B, we use a feed-
back routine whereby we displace Alice by α = 1 and then
simultaneously perform a 1-selective π pulse on Alice’s
ancilla and a 0-selective π pulse on Bob’s ancilla. We then
perform unselective π pulses on both ancillas and read out
their state. If the cavities are in |1〉A |0〉B, we should find the
ancillas in |g〉A |g〉B. If successful, we repeat the π pulses
and read out once more, and continue if the result is once
again |g〉A |g〉B. If either of these measurements fails, we
wait long enough to let Alice relax to vacuum and restart
from the beginning.

APPENDIX H: FITTING PROCEDURE FOR
COHERENCE TIMES

We characterize the beam-splitter interaction by fit-
ting the model in Eq. (6) to measurements like those
shown in Figs. 2(a) and 2(b). The procedure has sev-
eral steps. To begin, the duration and frequency of the
pump is swept to produce a chevron pattern [as can be
seen from Eq. (8)], from which we determine the pre-
cise pump frequency for a resonant beam-splitter inter-
action. Then, the pump frequency is fixed at resonance
and measurements of P01/10 are collected for a vari-
ety of unevenly spaced pump-duration times t. Readout
imperfections in the data are corrected as described in
Appendix G.

As illustrated in Fig. 2(b), we collect an oscillation
of both curves by finely sampling 21 time points in a
time window of duration approximately 6tbs. This pro-
cess is repeated with the fine sampling centered around
41 coarsely spaced times between 0 and about 3τbs (esti-
mated from the unpumped cavity lifetimes). To extract
gbs and the upper and lower envelopes of the probability
curves, we fit each of the finely sampled oscillations to
a sinusoid, A sin(2gbst+ φ)+ B. Together, the upper and
lower envelopes contain complete information about the
decay and dephasing: their mean, B, decays with the time
scale τ and their amplitude, A, decays at the time scale
(1/τ + 1/τφ)−1. We fit the mean and amplitude of both
P01 and P10 to extract τ and τφ .

The above procedure has several benefits relative to
fitting Eq. (6) directly or fitting P6 ≡ P01 + P10 and
P01/10/P6 [29]. First, unlike fitting Eq. (6) directly, the
decay and dephasing time can be extracted from sepa-
rate traces, thereby reducing the number of decoherence
time constants extracted from each fit from two to one.
Second, unlike fitting to P6 and P01/10/P6 , the two mea-
sured traces need not be combined. This allows decay and
dephasing times to be inferred separately from P01 and P10
and compared as a consistency check.
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FIG. 8. Fitting pumped decay and dephasing times. (a) The
decay of the mean of P01 (blue circles) and P10 (orange cir-
cles) is used to extract the decay time τ . (b) The decay of the
amplitude of P01 (blue circles) and P10 (orange circles) is used
to extract (1/τ + 1/τφ)−1, from which we obtain the dephas-
ing time τφ . The dashed lines show the exponential decay fits.
The decay constants for the mean of P01/10 are 170± 5 µs and
167± 7 µs, respectively, while the decay constants for the ampli-
tude are 132± 4 µs and 127± 4 µs. This yields an average fitted
τ = 168± 4 µs and τφ = 560± 70 µs. (c) The complete trace
of the measured P01/10 curves as a function of the variable delay
t, with envelopes (black lines) obtained from the fitted decay and
dephasing times. (d),(e) Fitted decay times τ (d) and dephasing
times τφ (e) as a function of the pump amplitude ξ . The solid
lines shows the average unpumped decay and dephasing time of
the cavities. The data are measured at the same flux point and
pump amplitude as in Fig. 2(b).

To illustrate the intermediate steps in the fitting process,
Fig. 8(a) shows the mean of P01 and P10 and Fig. 8(b)
shows their amplitude, measured at 8e/80 = 0.32 and
with |ξ | = 1.83. The time scales inferred from separate
fits agree within their standard error; the quoted values
for τ and τφ are the average of the two. To validate the
results, we plot the readout-corrected traces for P01/10 in
Fig. 8(c), along with the envelopes inferred from the fitted
time constants in Figs. 8(a) and 8(b).

Figures 8(d) and 8(e) show the time constants for decay
from the single-photon manifold [Fig. 8(d)] and dephasing

[Fig. 8(e)] extracted in this way, as a function of the pump
amplitude. The decay times are relatively independent of
the pump amplitude. The dephasing times are slightly
suppressed as pump amplitude increases but remain much
longer than the decay time τ .

APPENDIX I: SYSTEM PARAMETERS

Tables I and II list the coherence times and thermal pop-
ulations for the experimental system. The coherence rates
of the coupler, which depend on the external flux bias, are
plotted in Fig. 9(a). The decay times T1 (red circles) are rel-
atively independent of flux, but generally vary between 50
and 100 µs. The dephasing rates, however, exhibit a clear
suppression near the flux sweet spot of 80/2, as expected
from the flux dependence of the frequency dωc/d8e of
the coupler, shown in Fig. 9(b). Table III lists the self-
and cross-Kerr interactions of the transmons, which are not
plotted in the main text.

In Table I, we see that the relaxation times T1c of the
two oscillators differ by a factor of 5. We first note the dif-
ference in oscillator resonant frequencies (2.976 GHz and
6.915 GHz), which would lead to a factor-of-2.32 differ-
ence in the oscillator lifetime given the same quality factor.
Further, we measure the quality factor of the bare cavities
(before any chips are inserted) to be 43× 106 and 20×
106, respectively, which contributes another factor-of-2.15

TABLE I. The experimental time scales. All quoted coherence
times are measured at the same time as the CSWAP experi-
ment in Fig. 3(e) is performed. The coherence times for the
repeated CSWAP experiment in Fig. 3(f) differ from these due to
drifts over time. To compare the results of the repeated CSWAP
experiment with theoretical estimates, we use coherence times
measured at the same time as this experiment was performed.
The following list details those coherence times that change by
more than one standard deviation from the values in the table:
T1qA = 112± 8 µs, T1qB = 45.6± 9 µs, T2qA = 97± 10 µs, and
TφcA = 1510± 90 µs.

Alice Bob

Transmon e −→ g
relaxation time

T1q 127.2± 1.9 µs 57.1± 0.6 µs

Transmon T2 T2q 114.4± 2.9 µs 56.8± 1.5 µs
Transmon

dephasing time
Tφq 208± 10 µs 113± 6 µs

Oscillator
relaxation time

T1c 482± 16 µs 91± 4 µs

Oscillator
dephasing time

Tφc 2010± 220 µs 840± 200 µs

Parity-mapping
time

τp 616 ns 432 ns

Transmon readout
time

τRO 2.1 µs

CSWAP sequence
length

τCSWAP 1.3 µs
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TABLE II. The mode thermal populations. All values mea-
sured at 8e = 0.3580, the same external flux as for the CSWAP
data in Fig. 3.

Alice Bob

Transmon Pe 0.70± 0.14% 1.02± 0.20%
Cavity nthermal 0.96± 0.19% 0.11± 0.02%
SNAIL Pe 2.42± 0.47%

difference in the oscillator relaxation time. Together, the
differences in the oscillator resonant frequencies and bare
quality factors are consistent with the factor-of-5 difference
in the oscillator lifetime. However, these differences do not
fully explain why the lifetime of either oscillator is lower
than its bare lifetime.

This is not yet fully understood but there are a number
of possible mechanisms that could degrade the quality fac-
tors. We estimate the contributions of Purcell decay due
to the transmons and SNAIL from experimentally mea-
sured values of the T1 values of these modes and their
coupling to each oscillator and find them to be negligible.
Further, since we see no change in the cavity T1 as we tune
the external flux bias and thus the detuning between the
SNAIL and the cavity, it is unlikely that the cavity T1 is
Purcell limited by the SNAIL.

We also perform finite-element simulations of the Pur-
cell decay due to the Purcell filters, readout resonators,
and buffer mode, as well as direct radiative loss out of the
qubit drive pins. These too only limit the cavity lifetimes
to time scales that are an order of magnitude larger than the
observed values.

The main contributions that we find, besides the still-
dominant bare loss rate of the cavities, are the radiative
loss out of the cavity drive pin, the coupling rate of which
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FIG. 9. The dependence of the SNAIL-coupler coherence on
the external flux. (a) The SNAIL 1/T1 (red circles), 1/T2 (purple
circles), and 1/T2E (purple triangles) as a function of the external
flux through the SNAIL loop. (b) The simulated gradient of the
SNAIL frequency with respect to the flux, which determines its
sensitivity to dephasing due to flux noise through the loop. T2E is
greatly increased near the flux sweet spot.

is designed to be slightly undercoupled, and the conduc-
tive losses in the magnet coil. Nevertheless, finite-element
simulation suggests that these combined effects should not
limit the oscillator lifetimes to less than 2.66 ms (Alice)
and 0.81 ms (Bob).

Comparing T1c across cool-downs in which the exper-
imental setup is changed can provide a way to study the
sources of loss in this complex system. One notable data
point is a cool-down in which both transmon chips are
inserted but the SNAIL chip and the magnet coil are
removed. Here, we measure Bob’s T1c to be 333± 18 µs,
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FIG. 10. The network picture of the driven system. (a) A
microwave source with a voltage VS and a resistance RS con-
nected via a transmission line to the drive pin of the package. It
generates a voltage V1 at the drive pin (port 1) and a voltage V2
across the SNAIL (port 2). (b) The same circuit with the pack-
age, including the SNAIL itself, expressed as a two-port network
with an impedance matrix Z. (c) When port 2 is open circuited,
we can treat the package as an impedance Z11 in series with the
microwave source. (d) The simulated normalized pump ampli-
tude |ξ | with 100 pW delivered to the drive port, as a function
of the drive frequency, when the external applied flux is 0.3580.
The resonances at 3 and 7 GHz are due to Alice’s and Bob’s cav-
ity modes, while the resonance at 5.2 GHz is due to the SNAIL
mode. The peak near 4 GHz is due to the strip-line resonator that
we introduce as a single-mode band-pass filter between the drive
port and the SNAIL. (e) An enlargement of the dotted region in
(d), showing the simulated prediction (green line), measured val-
ues extracted from measurements of the Stark shift (blue dots),
and the simulated prediction shifted down in frequency by 14.3
MHz and up in amplitude by 2.84, to highlight the similar line
shape to the data (blue dashed line).
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lower than the bare cavity T1 of 457± 7 µs but higher
than when the SNAIL and magnet are included (91±
4 µs). However, large run-to-run variations in cavity T1
on cool-downs with the same package and chips make it
hard to precisely identify which changes are responsible.
For example, on another cool-down with the SNAIL and
magnet included, we measure Bob’s T1c to be 265± 27 µs.

APPENDIX J: DELIVERY OF STRONG
MICROWAVE DRIVES

Delivering a strong microwave drive to the SNAIL is
necessary to achieve a fast beam-splitter rate. However,
it is important that the drive port does not Purcell limit
the adjacent high-Q cavity modes. Furthermore, the drive
power that we can deliver to the package is limited by the
amount of power we can dissipate in the microwave atten-
uators before they start to heat the base temperature of the
dilution refrigerator.

To satisfy these constraints, we filter the environment,
as seen by the SNAIL and the adjacent cavity modes,
by introducing a 3D superconducting strip-line resonator
between the drive port and the SNAIL, with a resonance
frequency ωf close to ωb − ωa. This allows drive photons
near 4 GHz to reach the SNAIL while shielding oscillator
photons at 3 GHz and 7 GHz from the lossy drive line.
(Care is taken that the resonance frequency of the strip
line is sufficiently detuned from ωb − ωa relative to its line
width, to avoid unpumped conversion of photons in Bob.)

To confirm that the drive port does not Purcell limit the
oscillators, we perform a finite-element eigenmode simula-
tion of the package with the 3D strip-line resonator. From
this, we extract the coupling Q of the oscillators and verify
that they exceed 108 (limiting their T1 times to no less than
5.3 ms and 2.3 ms for Alice and Bob, respectively).

The normalized pump amplitude ξ that we can deliver
for a given input power can be calculated from the
impedance matrix of the embedding network of the
SNAIL. Figure 10(a) shows a simplified schematic of the
microwave drive on the SNAIL coupler. A microwave gen-
erator sourcing a voltage VS generates a voltage V1 at the
coupling pin inside the experimental package, which in
turn generates a voltage V2 across the SNAIL. Their ratio
is determined by the properties of the embedding network
of the SNAIL.

If we consider just the linear part of the circuit, we can
treat the entire package including the SNAIL itself as an
impedance matrix Z, as shown in Fig. 10(b). This can be
used to relate the voltage across the SNAIL to the current
delivered from the source,

Z21 =
V2

I1
. (J1)

Meanwhile, the impedance presented to the source by the
package is Z11 [Fig. 10(c)]. Current conservation indicates

that the source voltage VS is related to the current I1 by

VS = (RS + Z11) I1. (J2)

We can eliminate I1 from the equations to obtain

V2

VS
=

Z21

RS + Z11
. (J3)

Microwave generators typically display the rms power that
they would deliver to a matched load,

P =
|Vrms|

2

2RS
=
|VS|

2

4RS
, (J4)

allowing us to reach an expression for V2 in terms of the
source power:

|V2| =

∣∣∣∣ Z21

Z11 + RS

∣∣∣∣√4PRS. (J5)

Assuming a monochromatic source at ωp , the current pass-
ing through the SNAIL can be found by dividing V2 by the
impedance of the SNAIL at the pump frequency, iωpLs,

I(t) = Re
(

V2

iωpLs
eiωp t

)
. (J6)

This couples to the flux of the coupler mode in the
Hamiltonian

Ĥd = I(t)8̂ = Re
(

V2

iωpLs
eiωp t

)
8ZPF

c

(
ĉ+ ĉ†) . (J7)

By comparing this to Eq. (F3), we can write

|ε| =
8ZPF

c |V2|

2~ωpLs
. (J8)

From here, we can use the expression for ξ from Eq. (F5)
to finally obtain

|ξ | =

∣∣∣∣ Z21

Z11 + RS

∣∣∣∣ √
PRS8

ZPF
c

~ωpLs
(
ωp − ωc

) . (J9)

The impedance matrix Z can be obtained from a simula-
tion of the package in an electromagnetic solver such as
HFSS, while the zero-point flux of the SNAIL mode can be
found by combining an electromagnetic simulation with
further processing as, e.g., performed in the pyEPR pack-
age [66]. Figure 10(d) shows |ξ | as a function of the drive
frequency for an input power of 100 pW at the drive port of
the package. The inset shows how the band-pass filter near
4 GHz allows us to obtain |ξ | > 1 over a 40-MHz band-
width near the designed pump frequency. The simulation
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matches measurements of ξ (found by measuring the cou-
pler Stark shift and comparing to its anharmonicity) up to
a shift of 14.3 MHz in frequency and a factor of 2.84 in
power. We attribute the discrepancies to our uncertainty in
the cold attenuation of the microwave lines and the precise
location of the coupler chip after mounting.

APPENDIX K: CALIBRATING DELAYS DURING
cSWAP

As described in Sec. IV, during the CSWAP pulse, the
mode operators â and b̂ will exchange if the ancilla is in |e〉
and will stay the same if the ancilla is in |g〉 but they will
also acquire a dynamical phase that differs depending on
the ancilla state. This phase can be obtained by calculating
half the solid angle enclosed by the trajectory of the mode
operators on the Bloch sphere. A phase φ applied to a mode
operator (â→ eiφ â) corresponds to a rotation of the phase
space of that mode by an angle φ. In order to perform just a
CSWAP, we need to correct for this ancilla-state-dependent
phase.

This can be done by adding delays to the sequence. Due
to the dispersive interaction, Bob’s state will rotate by an
angle φ = χ t during a delay of length t only when Bob’s
transmon is excited. Since the CSWAP pulse exchanges the
oscillator states when the transmon is in |e〉, a delay after
the pulse rotates Bob’s final state, whereas a delay before
the pulse rotates Alice’s final state. The addition of two
delays, t1 before the pulse and t2 after the pulse, is suffi-
cient to deterministically erase the ancilla-state-dependent
phase. There is a remaining phase on the mode opera-
tors that is independent of the ancilla state but this can
be removed by applying a frame update to each cavity in
software, by a predetermined phase.

The delays and the frame updates are calibrated by ini-
tializing the cavities in D(α) |1〉 ⊗ D(−α) |0〉, performing
the CSWAP pulse with the ancilla in either |g〉 or |e〉 and
measuring the Wigner functions of each mode, as shown
in the center columns of Fig. 3(c). The angle in phase
space between the fitted center of the displaced Fock state
and its expected position on the x axis, for both initial
ancilla states, allows us to determine the delays and frame
updates required. We repeat this process with these delays
and frame updates applied to confirm that we produce the
expected Wigner function.

Empirically, the dynamical phase described above is not
the only phase that needs to be accounted for. For example,
the phase offset of the beam-splitter drive relative to the
difference between the cavity reference signals (either due
to different electrical lengths in the cables or due to a
phase offset that we control in the DAC) can advance or
retard the phase of the mode operators when a SWAP is
performed. Additionally, when the beam-splitter drive is
applied, the cavities are Stark shifted by differing amounts,
again imparting differing phases to the mode operators.

We find that the magnitude of these Stark shifts is also
dependent on the ancilla state.

The degrees of freedom under our control, namely the
pre- and postdelays, the frame updates on each cavity, and
the pump phase, are sufficient to account for the phases
acquired during a single CSWAP. However, these same
parameters will not correct the phases on a subsequent
CSWAP—a new set of parameters is required.

To correct the phase for a series of N CSWAP gates, we
could calibrate the delay required before and after every
CSWAP pulse, as well as the frame rotations associated with
each one. Alternatively, however, a single delay before and
after the entire sequence, as well as a single frame rotation
on each cavity, is sufficient. Since this allows us to perform
a long sequence while calibrating fewer parameters, this is
what we opt to do in the experiment, as shown in Fig. 3(d).
In order to calibrate these delays and frame rotations, we
use the same procedure as outlined above but replace the
single CSWAP pulse with N of them. Since the duration of
the single delay before and after depends on the number of
CSWAP pulses performed, the total duration of the sequence
is not linear in N , as evidenced by the uneven top x-axis
scale in Fig. 3(f).

APPENDIX L: JOINT WIGNER TOMOGRAPHY
ON A BELL STATE IN THE COHERENT-STATE

BASIS

To demonstrate the quantum nature of the CSWAP gate,
we perform a SWAP test followed by joint Wigner tomog-
raphy on the cavities. The sequence is shown in Fig. 11(a).
Line cuts of the measured displaced parities along the
Imβa = Imβb = 0 plane are shown in Fig. 11(b) and
line cuts along the Reβa = Reβb = 0 plane are shown in
Fig. 11(c). The measurements compare well with simu-
lations of the ideal distributions (i.e., simulations without
decoherence) shown in Figs. 11(d) and 11(e).

APPENDIX M: PAULI TOMOGRAPHY

For a single-oscillator state, the results of Wigner
tomography can be used to perform a maximum-likelihood
reconstruction of the density matrix. For many-oscillator
states, though, the cost of this technique scales exponen-
tially and to fully characterize even a two-oscillator density
matrix would take several days.

If, however, we choose a qubit basis within the Hilbert
space of each oscillator, we can obtain expectation values
of all the Pauli operators by probing the Wigner function
in just a handful of points in phase space [24,56]. In the
coherent-state basis {|α〉 , |−α〉}, single-oscillator tomog-
raphy can be simplified by conducting four displaced-
parity measurements, the linear combinations of which
approximate Pauli measurements.
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FIG. 11. Joint Wigner tomography on 9+. (a) A SWAP test
sequence (in gray dashed lines) followed by a joint Wigner
sequence. The SWAP test is composed of a π/2 pulse on the con-
trol ancilla, followed by the CSWAP gate, the reverse π/2 pulse
on the control ancilla, and its measurement. (b)–(e) Plane cuts
from the (b),(c) measured and (d),(e) simulated joint Wigner dis-
tribution of |9+〉. Correlations between the real quadratures of
the two cavities are shown in (b) and (d) in the plane ImβA =

0 = ImβB and correlations between the imaginary quadratures
are shown in (c) and (e) in the plane ReβA = 0 = ReβB.

To find the displacement β needed to perform a Pauli
measurement, we first apply the projection operator

M̂ = (|α〉〈α| + | − α〉〈−α|) (M1)

to the displaced-parity operator P̂β ≡ D̂(β)P̂D̂(β)† to
project it onto the coherent-state basis

M̂ P̂βM̂ †
=

(
〈α|Pβ |α〉 〈α|Pβ | − α〉
〈−α|Pβ |α〉 〈−α|Pβ | − α〉

)
. (M2)

We then find a set of displacements {βi} such that∑
i biM̂ P̂βiM̂

†
∈ {I , X , Y, Z} for some coefficients bi.

(Here, I , X , Y, and Z are Pauli matrices; we omit the hats
on these operators for brevity.)

When finding these displacements, the following rela-
tions prove useful:

〈β|P0|β〉 = 〈β| − β〉 = e−2|β|2 , (M3)

〈β|P0| − β〉 = 〈β|β〉 = 1, (M4)

〈α|Pβ |α〉 = 〈α − β| − α + β〉 = e−2|α−β|2 , (M5)

〈α|Pβ | − α〉 = 〈α − β|α + β〉 = e2(α∗β−β∗α)
〈β| − β〉.

(M6)

We note that these properties are identical to those quoted
in Ref. [56] except that in Eq. (M5) we do not conclude
that 〈α|Pβ |α〉 � 1 (e.g., when β = α, 〈α|Pβ |α〉 = 1).

We now choose to write the identity matrix I as the sum
of
(

1 0
0 0

)
and

(
0 0
0 1

)
and the Pauli-Z matrix as the difference.

Setting M̂ P̂β1M̂ †
=
(

1 0
0 0

)
, we must satisfy 〈α|P̂β1 |α〉 =

1, which sets β1 = α. We verify that 〈α|P̂α| − α〉 =

〈−α|P̂α|α〉 ≈ 0 and 〈−α|P̂α| − α〉 ≈ 0. Similarly, setting
M̂ P̂β2M̂ †

=
(

0 0
0 1

)
, we obtain β2 = −α.

I can be constructed by summing the above two
displaced-parity measurements,

I = M̂ P̂αM̂ †
+M̂ P̂−αM̂ †, (M7)

while Z can be constructed by taking the difference,

Z = M̂ P̂αM̂ †
−M̂ P̂−αM̂ †. (M8)

We then find the displacement required to measure X by
setting M̂ P̂β3M̂ †

=
(

0 1
1 0

)
, which is satisfied by β3 = 0.

Thus measuring the photon-number parity without any dis-
placement is equivalent to a Pauli-X measurement in this
basis:

X = M̂ P̂0M̂ †. (M9)

Finally, we solve M̂ P̂β4M̂ †
=
(

0 −i
i 0

)
to obtain a Pauli-

Y measurement. To ensure the correct relative phase
between 〈α|Pβ4 | − α〉 and 〈−α|Pβ4 |α〉, we need β4 =

ikπ/8α, where k is any odd integer. However, choosing
a larger |β4| results in a smaller magnitude for 〈α|Pβ4 | −

α〉 and 〈−α|Pβ4 |α〉. To maximize the off-diagonal matrix
elements, we thus choose β4 = iπ/8α.

For α =
√

2, this choice of β4 yields off-diagonal ele-
ments with a magnitude of approximately 0.86, so the
single-oscillator Pauli-Y measurement approximated by
this displaced-parity measurement has a maximum ampli-
tude of approximately 0.86. For general α,

M̂ P̂ iπ
8α

M̂ †
=

〈
iπ
8α

∣∣∣∣− iπ
8α

〉
Y = e−

π2

32α2 Y. (M10)

For a visual interpretation of how displaced-parity mea-
surements can be used to approximate Pauli measurements,
we mark the displacements of interest on Wigner functions
of the states |+Z〉, |−Z〉, |+X 〉, and |+Y〉 in Fig. 12.

To move from a single-oscillator measurement to a
two-oscillator measurement, we need all 16 combina-
tions of single-oscillator Pauli measurements {I , X , Y, Z}.
The 16 displacements whose linear combination make
up the two-oscillator Pauli measurements are labeled in
Figs. 12(e)–12(h). Note that the two-oscillator measure-
ment of YY has a maximum of amplitude of e−π/16α2

≈

0.73 for α =
√

2.

APPENDIX N: CSWAP ERROR BUDGET

For both the Bell-state preparation and the control
experiment where we perform a SWAP test on |α,α〉 [see
Figs. 3(c)–3(f)], we construct an error budget based on
independent measurements of coherence times (summa-
rized in Table I), the duration of each part of the experi-
mental sequence, and the sensitivity of each measurement
to various error channels.
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The sequence in Fig. 3(d) can be divided into four
parts: the controlled SWAP (including delays), the readout
of the control transmon, the parity-mapping sequence for
joint Wigner tomography, and the final transmon measure-
ments.

The error channels considered are decay and dephas-
ing on both ancillas and cavities. In this analysis, we
neglect cavity no-jump evolution, errors during ancilla
rotations, and coupler errors, since we expect them to have
a negligible effect on fidelities.

The Bell-state fidelity is comprised of the expectation
values of four two-qubit Pauli operators, each of which
is affected differently by errors. For example, 〈XX 〉 is
the measured joint photon-number parity and so is only
affected by errors that change the joint parity. Likewise,
〈YY〉 is measured near the origin of the joint Wigner
function and is sensitive to parity jumps but less so to
phase-space rotations. Any error that takes the even Bell
state to the odd Bell state results in a flip of the measured
〈XX 〉 or 〈YY〉 value.

In contrast, 〈II〉 and 〈ZZ〉 are identical for even and odd
Bell states. They are, however, much more sensitive to
rotations in phase space (coherent and incoherent).

Table IV summarizes the impact of errors on each
Pauli measurement and how this contributes to the over-
all fidelity. Detailed justification for each error considered
is provided below.

1. Errors during CSWAP

Following the CSWAP, the control-oscillator system will
ideally be in the state

|ψ〉post−CSWAP =
|g〉 |α,−α〉 + |e〉 |−α,α〉

√
2

. (N1)

The subsequent ancilla −π/2 rotation then generates a
superposition of Bell states entangled with the ancilla,

|ψ〉postrotation =
|g〉 |9+〉 + |e〉 |9−〉

√
2

, (N2)

at which point postselecting on the outcome |g〉 projects us
onto the desired Bell state.

Ancilla dephasing errors during the CSWAP, however,
can be mapped to ancilla bit-flip errors immediately after
the −π/2 rotation. The result is that our postselection
scheme will keep a shot in which we have prepared |9−〉,
for which 〈XX 〉 and 〈YY〉 have the opposite sign. As dis-
cussed previously, 〈II〉 and 〈ZZ〉 are identical for both
states |9+〉 and |9−〉, and so will be unaffected.

Oscillator decay transforms simply under the beam-
splitter Hamiltonian, such that an oscillator decay event
at any point during a SWAP is equivalent to a super-
position of decay on Alice and Bob occurring immedi-
ately after. In our case, we have the state (cos (gterr)â+
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FIG. 12. Local and joint Wigner plots. The top row shows the displaced photon-number parity of single-oscillator states in the
coherent-state bases (a) |−Z〉 = |−α〉, (b) |+Z〉 = |α〉, (c) |+X 〉 = |α〉 + |−α〉/N , and (d) |+Y〉 = |α〉 + i |−α〉/N for α =

√
2. The

black dots indicate the positions at which the displaced parity is sampled to obtain measurements of the single-oscillator Pauli operators.
The bottom row shows slices of the displaced joint photon-number parity of the two-oscillator state |9+〉 along (e) real axes of both
oscillators, (f) imaginary axes of both oscillators, (g) the imaginary axis of Alice and the real axis of Bob, and (h) vice versa. Here,
the black dots indicate the positions at which the displaced joint parity is sampled to obtain measurements of the two-oscillator Pauli
operators. The II , ZZ, IZ, and ZI measurements are obtained from linear combinations of measurements at the four gray dots.
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TABLE III. The mode couplings.

Alice Bob

Transmon-oscillator dispersive shift χqc/2π −766.4(5) kHz −1104.0(5) kHz
Transmon anharmonicity and cavity dispersive shift Kq/4π −181.2537(4) MHz −184.2860(3) MHz

i sin (gterr)b̂) |ψ〉post−CSWAP, where terr describes when dur-
ing the SWAP the error has occurred.

Ancilla decay during the CSWAP does not transform
as simply. In the Heisenberg picture, where the evolu-
tion of cavity operators is visualized on a sphere, ancilla
decay changes the rotation axis about which the Heisen-
berg operators rotate on the Bloch sphere partway through
their trajectory. On average, this will scramble the cavity
states; thus we expect this error to reduce all joint-Pauli
measurements.

Finally, oscillator dephasing errors should primarily
affect the II and ZZ measurements. This is because these
are measured by probing points far from the origin of the
joint Wigner function in phase space, where even small
phase-space rotations have a large impact.

2. Errors during CSWAP readout

During the CSWAP readout, ancilla measurement (and
postselection on |g〉) ideally projects the oscillators onto
an even Bell state. However, an oscillator decay event in
either cavity during this time will flip the joint photon-
number parity of the state and thus the measurement
outcomes for both XX and YY. Note that this happens
regardless of when during the readout the photon loss
occurs.

Ancilla decay during the readout leads not just to a pro-
jection on the incorrect Bell state but also to a random
rotation of Bob’s phase due to the dispersive shift to the
ancilla, depending on when during the readout the error
occurs. The XX -measurement outcome, which is insensi-
tive to phase, is therefore flipped but the effect on 〈YY〉,
〈II〉 and 〈ZZ〉 is to reduce their amplitude uniformly.

Oscillator decay during the CSWAP readout will affect
〈II〉 and 〈ZZ〉 in the same manner as during the CSWAP
itself.

3. Errors during parity measurement

Ancilla errors during the Wigner tomography, whether
dephasing during the parity map or decay during the parity
map and subsequent readout, affect all joint-Pauli measure-
ments equally, flipping the sign of the result. The reduction
in the measured value of each joint Pauli is thus reduced,
on average, by twice the error probability.

Oscillator decay during the parity map affects the joint-
Pauli measurements depending on the oscillator state after
the Wigner displacement. For the XX measurement, this
is (ideally) an eigenstate of joint parity and so decay will

change the joint parity of the oscillator state. The proba-
bility of measuring ±1 depends on when during the parity
map the error occurs and so we can treat it as depolarizing
the measurement results.

For the II and ZZ measurements, however, the states
after displacement are superpositions of vacuum and
a coherent state, e.g., |ψ〉 = |0, 0〉 + |2α,−2α〉. Since
2|α| � 1, photon loss only negligibly affects the joint
parity of this state.

4. Effects of Kerr and χ
′

As the number of CSWAP operations N increases in
Fig. 3(f), the effects of higher-order nonlinearities in the
joint-cavity Hamiltonian become non-negligible. The most
noticeable ones are cavity self-Kerrs and χ

′

.
Self-Kerrs of the cavities as shown in line three of

Eq. (4) result in detunings of the cavity frequencies that
depend on the cavity photon number quadratically. This
accumulation of photon-number-dependent phase mani-
fests as rotation and smearing of the cavity states in phase
space. What further complicates the story is the sixth-
order nonlinearity χ

′

bcb̂†2
b̂2 (|e〉 〈e|)c. This parasitic term

distorts Bob’s cavity states in the same way as cavity self-
Kerr but only when the control transmon is excited. At
the operating point for the CSWAP experiment, away from
the flux point where self-Kerr is minimized, we measure
cavity self-Kerrs Ka ≈ −0.8 kHz, Kb ≈ −3.0 kHz, and
χ
′

bc ≈ 0.9 kHz.
The combined effect of the cavity self-Kerrs and χ

′

is a
photon-number- and control-transmon-dependent rotation
and smearing of cavity states in phase space. The rotation
is accounted for when the pre- and postdelays are cali-
brated for different N but this cannot correct the smearing
of the states, which is due to photon-number-dependent
rotations. This smearing thus adds to the SPAM-corrected
infidelities extracted from the slope in Fig. 3(f).

Comparing the simulated fidelity up to N = 13 rounds
of CSWAP with and without self-Kerr terms and the χ

′

term in the Hamiltonian shows an increase in the slope
of 0.19%± 0.06% per round for the Bell-state preparation
and 0.10%± 0.07% per round for the control experiment.
The error bars arise from uncertainty in the phase of the
beam-splitter drive, which affects whether more photons
are present in Alice (with less Kerr) or Bob (with more
Kerr).
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TABLE V. The error budget for the control experiment. The estimated reduction in the measured fidelity to the target state due to
each error channel. The values in parentheses are predicted infidelities from master-equation simulations. The effects of Kerr and χ

′

are described in Appendix N 4.

Error channel Probability of occurrence

Estimated
(simulated) effect

on fidelity

CSWAP Ancilla decay |e〉〈e| τCSWAP/2T1qB ≈ 1.17%± 0.02% 1.17%± 0.02% (1.0%)
Oscillator dephasing â†â, b̂†b̂ 2n̄(τCSWAP/TφcA + τCSWAP/TφcB) ≈ 0.9%± 0.15% 1.8%± 0.3% (1.3%)

CSWAP RO Oscillator dephasing â†â, b̂†b̂ 2n̄(τRO/TφcA + τRO/TφcB) ≈ 1.2%± 0.2% 2.4%± 0.4% (1.9%)
Parity map Ancilla decay |e〉 −→ |g〉 1

2

(
τpA/T1qA + τpB/T1qB

)
≈ 0.620%± 0.005% 0.620%± 0.005% (0.6%)

Ancilla dephasing |e〉〈e| τpA/2TφqA + τpB/2TφqB ≈ 0.34%± 0.01% 0.68%± 0.03% (0.6%)
Parity RO Ancilla decay |e〉 −→ |g〉 1

2

(
τRO/T1qA + τRO/T1qB

)
≈ 2.28%± 0.02% 4.57%± 0.04% (4.5%)

Estimated gate error per round 3.0%± 0.3%
Estimated infidelity per round, including K and χ

′

3.1%± 0.3%
Estimated (simulated) fidelity 89.1%± 0.7% (90.6%)

Measured fidelity 89.5%

5. Combining errors

We estimate the combined fidelity as

F ≈
∏

i

(1− pi)+
∑

i

qipi

∏
j 6=i

(1− pj ), (N3)

where pi is the probability of an error in the ith channel and
qi = 0 or−1 is the expected measured value in the event of
the error occurring. This expression neglects contributions

(a) (b)

(c)

Alice Bob Charlie

BS

SW
A

P

SW
A

P

BS–1

BS BS–1

H HHH

FIG. 13. A CSWAP with three bosonic qubits. (a) A schematic
of the hardware required for the proposed CSWAP on three boson-
ically encoded qubits: Alice, Bob, and Charlie are bosonic modes
hosted in high-Q stub cavities [67] and linked by SNAIL couplers
of the kind presented in this work. A transmon ancilla is inserted
into Charlie’s cavity; it provides the requisite nonlinearity. (b)
The canonical construction of a CSWAP from a beam splitter, a
controlled-phase shift, and an inverse beam splitter (shown as
“BS−1). (c) The full sequence for the proposed CSWAP. SWAP
gates are unconditioned on the state of the transmon and only
affect the bosonic modes—that is, they exchange the states of
Alice and Charlie and do not affect the transmon rail.

from multiple errors happening during the same run, which
is a reasonable approximation given that pi � 1 ∀i.

6. Control experiment on identical oscillator states

To validate our ability to predict errors, we conduct
a control experiment where the cavities are initialized in
|α,α〉 and perform a SWAP test on these nominally identi-
cal states. For this experiment, we measure fidelity to the
target state |α,α〉 by probing the joint Wigner at |α,α〉.

This control experiment is insensitive to oscillator
decay. Since the oscillator states remain eigenstates of the
respective collapse operators during the CSWAP, they are
only affected by no-jump shrinking, which is negligible for
the time scales we are measuring. Meanwhile, during the
Wigner tomography, the displacement brings the oscilla-
tor state back to the origin where oscillator decay has no

CS
W

AP
 (μ

s)

1

2

3

0.5 1.51.00.0
0

bs (MHz)

FIG. 14. A comparison of CSWAP approaches. The blue solid
line shows the gate time as a function of the achievable beam-
splitter rate for a CSWAP composed of a controlled phase shift
sandwiched between two unconditional beam-splitter operations,
with the dashed line showing the limit as the beam-splitter rate
increases. The cross indicates the method implemented in this
work. Both assume a dispersive shift to the transmon of χ/2π =
−1.104 MHz.
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and a flux transformer (pink). The on-chip Purcell filters (present in the experiment) are omitted from the diagram.
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impact. For the same reason, oscillator dephasing has no
impact during the Wigner tomography.

The joint-Pauli measurements are also impervious to
transmon dephasing during the SWAP test because all |e〉
measurements resulting from transmon dephasing are dis-
carded. So the only error channels we consider for this
control experiment are ancilla decay and oscillator dephas-
ing during the SWAP test, oscillator dephasing during the
readout of the SWAP test, and transmon errors during the
parity map and its readout. These estimated infidelity due
to these error channels, shown in Table V, is consistent
with the measured value.

APPENDIX O: CSWAP WITH THREE
BOSONICALLY ENCODED QUBITS

A SWAP of two bosonically encoded qubits controlled
on the state of a third bosonically encoded qubit can
be realized with the hardware shown in Fig. 13(a). The
proposed sequence utilizes the canonical construction of
CSWAP from beam splitters and controlled phase shifts
[Fig. 13(b)]. To realize the controlled phase shift between
Charlie and Alice, the transmon ancilla serves as an inter-
mediary. After the beam splitter, Charlie’s state is mapped
to the transmon. A SWAP then exchanges Alice’s and
Charlie’s states, such that the following controlled phase
shift between the transmon (now storing Charlie’s origi-
nal state) and Charlie (now storing Alice’s original state)
accomplishes the desired operation. The sequence is then
reversed to disentangle the transmon. Measurement of the
transmon rail at the conclusion of the gate can provide a
flag to signal errors.

We note that the efficacy of this sequence requires that
the SWAP gates are unconditioned on the state of the trans-
mon. One way to accomplish this is by pumping the
beam-splitter interaction with δ = χ/2 while driving the
transmon resonantly with Rabi-rate�� gbs [55]. The fine
tuning of � such that 2�tbs = �tSWAP = 2nπ for some
integer n ensures that the transmon state is also unchanged
by this dynamical decoupling.

APPENDIX P: COMPARING CONTINUOUS AND
TROTTERIZED CSWAP SEQUENCES

As illustrated in Fig. 13(b), a CSWAP can be constructed
from a 50:50 beam splitter (unconditional on the ancilla
state), a parity map (enacted by a delay of π/χ ), and
another unconditional 50:50 beam splitter, with opposite
phase to the first. This differs from the approach taken
in Sec. IV, in which we let the ancilla and both cavities
interact simultaneously.

Analogously to the unconditional SWAP discussed in
Appendix O, the unconditional 50:50 beam splitter can
be performed by pumping the beam-splitter interaction

Alice’s microwave cavity

Alice’s
transmon chip

Bob’s
transmon chip

Magnetic
coil

SNAIL
drive pin

SNAIL
converter chip

Bob’s microwave cavity

FIG. 16. The experimental device model. A schematic model
of the superconducting device. The structure is machined out of
high-purity aluminum. Each transmon chip houses a readout res-
onator and a Purcell filter, in addition to the transmon. Cavity
drive pins, transmon drive pins, and transmon readout pins are
omitted in this model for simplicity.

with δ = χ/2 while resonantly driving the control trans-
mon with Rabi-rate �� gbs, in a time π/4gbs. Assuming
no restriction on how fast the beam-splitter pulse can be
ramped on or off, this gives a duration of π/2gbs + π/χ

for the full CSWAP. (In practice, ensuring that the spectral
content of the beam-splitter pulse is sufficiently narrow to
avoid driving unwanted processes introduces some non-
negligible ramp time.) In Fig. 14, this gate duration (solid
blue line) is plotted as a function of gbs for χ/2π =
−1.104 MHz, the value observed in our system. Com-
paring this “Trotterized” method to the performance of
the “continuous” scheme used in this paper (black cross),
we see that they give similar gate durations, given the
same beam-splitter rate. The flexibility of the “Trotterized”
method to further reduce the gate time as the achievable
beam-splitter rate increases makes it a promising scheme
for future CSWAP implementations.

APPENDIX Q: EXPERIMENTAL SETUP

To help minimize phase drift between our cavity drives,
we source the local oscillators for Alice and Bob from
channels 1 and 2 of the same SignalCore SC5510A gen-
erator. For quantum limited amplification of our readout
signal at the base of the refrigerator, we use a Josephson-
array-mode parametric amplifier (JAMPA) [64] and a
lumped SNAIL parametric amplifier (LSPA) [34]. For a
wiring diagram for this experiment, see Fig 16.
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