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Figure S1. HOT-DIW printing of molten polymer, carbohydrate glass, and metallic alloy 

inks. One-dimensional (1D) arrays of printed filaments (nozzle diameter = 50 µm, nozzle 

temperature ~ 200°C, substrate temperature ~ 25°C) composed of (a) polylactic acid (PLA). (b) 

sugar, and (c) eutectic bismuth-tin (Bi-Sn) alloy. Scale bars are 100 µm in length. 
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Figure S2. Lamellar features within printed eutectic AgCl-KCl filaments. SEM images of 

the (a) top surface and (b) bottom surface of representative filament (nozzle diameter = 1 mm, 

nozzle temperature ~ 400°C, substrate temperature ~ 25°C, and ! ! !!!" mm!s-1
), including (i) 

macro-view and micro-views of (ii) side and (iii) middle of the filament. (c) Bar plot of average 

lamellar spacing, !, as a function of printing speed, !, measured at the middle of the filament. 

Error bars represent ± 2 standard deviations. 
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Figure S3. (a) Normalized speed of solidification front calculated in the central region of printed 

filaments as a function of print speed. White region denotes filaments printed below !!"#$, where 

lamellae of uniform orientation were observed. Gray region denotes filaments printed above !!"#$, exhibiting non-uniformly oriented lamellae. (b) Schematic illustration of lamellar growth 

along bottom surface of the printed filaments depicting geometric relationship between 

solidification front velocity (!) and printing speed (!). 
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Figure S4. Comparison of lamellar spacing measured directly from SEM images to that 

estimated from the measured first order diffraction response. 
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Figure S5. Representative images of a printed eutectic AgCl-KCl filament. (a) SEM of the 

filament cross-section. Higher magnification views of the (b) filament center revealing the 

presence of wavy lamellae and (c) filament-substrate interface that contains both wavy and 

straight lamellar regions. Dotted line denotes the boundary between these two regions. This 

filament was printed using a nozzle diameter = 1 mm, nozzle temperature ~ 400°C, substrate 

temperature ~ 25°C, and ! ! !!!" mm!s-1
. 
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Figure S6. Absolute diffraction efficiencies. (a) Measured absolute diffraction efficiency for 

eutectic filaments printed at ! ! !!!" mm!s-1
 (! ! !"#$ nm) (black), ! ! !!!" mm!s-1

 (! ! !"# 

nm) (red), and ! ! !!! mm!s-1
 (! ! !"! nm) (blue). (b) Simulated absolute efficiency for 

eutectic filaments. Colors are matched to corresponding print speeds and lamellar spacings in (a). 

(c) Simulated absolute diffraction efficiency for as-printed (! ! !!!" mm!s-1
), KCl-etched, and 

KCl-etched and coated with silver (450 nm thick), where ! ! !"# nm. 
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Figure S7. Printed eutectic AgCl-KCl filaments exhibit structural color. (a) Optical 

micrographs of top surface of filament printed at ! ! !!!" mm!s-1
 (i), ! ! !!!" mm!s-1

 (ii), and 

(iii) ! ! !!!! mm!s-1
. Schematic at bottom shows direction of white light source. Colored circles 

mark locations from where spectral measurements were obtained. Corresponding lamellar 

spacings and print speeds are noted above each micrograph. Scale bars are 400 µm in length. (b) 

Normalized reflectance measurements obtained from locations marked in (a). Observed peaks for 

samples displaying structural color are marked by vertical dotted lines at corresponding 

wavelengths, and are color-matched to their respective spectra. [Note: No reflectance peaks are 

observed in the non-uniform sample.] 
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Figure S8. (a) Representative image of HOT printhead, (b) High magnification image of nozzle 

tip, and (c,d ) Bottom view of HOT printhead and high magnification view of the 200 µm nozzle 

orifice (white color) operating at 700°C, respectively. 
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Figure S9. Schematic illustration of 3D heat transfer simulation (not drawn to scale) highlighting 

key boundaries. 
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Figure S10. Composition of printed eutectic AgCl-KCl filaments. (a) SEM image of top 

surface of representative printed filament. (b) Corresponding EDS spectra (main) and extracted 

composition ratio of Cl, Ag, and K (inset). (c) SEM image and (ii-iii) corresponding elemental 

mapping (EDS analysis) of the lamellar features, where green denotes silver and blue denotes 

potassium. Representative sample printed at!! ! !!!" mm!s-1
. 
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Figure S11. Etching of printed eutectic AgCl-KCl filaments. (a) SEM image of bottom of 

filament. (b) Corresponding EDS spectra (main) and extracted composition ratios of Cl, Ag, and 

K (table inset). (c) SEM image of bottom of un-etched sample. (d) SEM image bottom of etched 

sample. Representative sample printed at 𝑣 = 0.05 mm∙s
-1

. 
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Figure S12. Cross-sectional view of modified printed eutectic filaments. (a) SEM image of 

bottom cross-section of the printed filament after KCl etching and silver coating. (b) Higher 

magnification SEM image. Representative sample printed at!! ! !!!" mm!s-1
. 
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Table S1. Quantities used in parameterizing the phase field simulations. 

Quantity Symbol Value Reference 

Thermal diffusivity of 

solid eutectic 
𝛼! 1.86×10

!! m
2
∙s

-1
 [1, 2] 

Thermal diffusivity of  

liquid eutectic 
α! 2.36×10

!! m
2
∙s

-1
 [3] 

Thermal conductivity of 

solid eutectic 
𝑘! 3.25 W m

-1
∙K

-1
 [1, 2] 

Thermal conductivity of 

liquid eutectic 
𝑘! 0.45 W m

-1
∙K

-1
 [3] 

Heat capacity of solid eutectic 𝑐! 417 J kg
-1
∙K

-1
 [1, 2] 

Heat capacity of liquid 

eutectic 
𝑐! 519 J kg

-1
∙K

-1
 [3] 

Temperature of air 𝑇!"# 25°C Experiment 

Temperature of substrate 𝑇!"# 25°C Experiment 

Temperature of nozzle 𝑇!"##$% 400°C Experiment 

Heat transfer coefficient 

to air 
ℎ!"# 10 W m

-2
∙K

-1
 [4] 

Heat transfer coefficient 

to substrate 
ℎ!"# 2×10

! W∙m
-2
∙K

-1
 Experiment 

Liquidus slope of AgCl 𝑚!"#$ -542 K∙mol
-1

 [5] 

Liquidus slope of KCl 𝑚!"# 837 K∙mol
-1

 [5] 

Eutectic temperature 𝑇! 319°C [5] 

Eutectic composition 𝐶! 30 mol% [5] 

Composition of AgCl at 𝑇! 𝐶!"#$ 0 mol% [5] 

Volume fraction of KCl at 𝑇! 𝑉! 38 vol.% Calculated 

Composition of KCl at 𝑇! 𝐶!"# 100 mol% [5] 
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AgCl-Liquid interfacial 

energy 
𝜎!"#$!! 154 mJ∙m

-2
 

Assume same 

as 𝜎!"#!! 

KCl-Liquid interfacial energy 𝜎!"#!! 154 mJ∙m
-2

 [6] 

AgCl-KCl interfacial energy 𝜎!"#$!!"# 154 mJ∙m
-2

 
Assume same 

as 𝜎!"#!! 

Latent heat of fusion per unit  

mass for eutectic 
𝐿! 1.4×10

! J∙kg
-1

 [7] 

Latent heat of fusion per unit  

volume for AgCl 
𝐿!"#$ 5.12×10

! J∙m
-3

 [7] 

Latent heat of fusion per unit  

volume for KCl 
𝐿!"# 6.93×10

! J∙m
-3

 [7] 

Thermal gradient for edge of  

filament 
𝐺!!"# 1.5×10

! K∙m
-1

 

3D heat 

transfer 

simulations 

Thermal gradient for center of  

filament 
𝐺!"#$ 9.5×10

! K∙m
-1

 

3D heat 

transfer 

simulations 

Diffusion coefficient 𝐷 3.79×10
!! m

2
∙s

-1
 Experiment* 

*To our knowledge, the diffusion coefficient of AgCl-KCl has not been measured at the eutectic 

composition and temperature. The diffusion coefficient was calculated by fitting the Jackson-

Hunt relationship
[8]

 to the experimental results for lamellar spacing versus solidification velocity 

(Figure 3d). Using the other known physical parameters, the diffusion coefficient was estimated. 

The value of 3.79×10!! m
2
∙s

-1
 is within the range of K

+
 diffusivity in liquid AgCl or KCl 

reported in the literature.
[9, 10]
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Table S2. Properties of eutectic AgCl-KCl ink at HOT nozzle temperature (𝑇! = 400°C) and 

eutectic temperature (𝑇! = 319°C). 

Quantity Symbol Value at 𝑇! Value at 𝑇! Reference 

Density  𝜌 3.7 g m
-3

 3.8 g∙m
-3

 
Extrapolated 

from [11] 

Surface 

tension 
𝜎 145 mN∙m

-1
 151 mN∙m

-1
 

Extrapolated 

from [11] 

Viscosity 𝜇 3.1 mPa∙s 4.7 mPa∙s 
Extrapolated 

from [11] 
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Movie 1. HOT-DIW of molten AgCl-KCl ink. Side view of printed eutectic AgCl-KCl filament 

at v = 0.1 mm!s-1
.  
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Movie 2.  Structural color observed for printed eutectic filaments. Top view of printed 

eutectic filament (2 mm wide, v = 0.18 mm!s-1
) reveals that their structural color (red) switches 

on and off depending on orientation of lamellar features with respect to the white light source. 
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Movie 3.  Structural color observed for printed eutectic filaments. Top view of printed 

eutectic filament (2 mm wide, v = 0.35 mm!s-1
) reveals that their structural color (blue) switches 

on and off depending on orientation of lamellar features with respect to the white light source. 
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