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and ontinuous and disontinuous �nite element formulations. We also dis-

uss temporal integration and disrete stability, and point out important
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1. INTRODUCTION

The genius of James Clerk Maxwell led to a simple system of equations, known

to us as Maxwell's equations, desribing the propagation of eletromagneti waves

and, ombined with onstitutive relations and boundary onditions, the interation

of eletromagneti energy with matter. As simple as these equations appear, their

importane is tremendous and aurate, eÆient, and robust methods for solving

them are at the heart of the modeling and design of emerging tehnologies suh

as very low observable vehiles, ground/foliage penetrating radars, phase sensitive

omponents, and high-speed eletronis and eletrooptis.

The simpliity of Maxwell's equations is indeed deeptive and solving them au-

rately and eÆiently in realisti appliations remains a signi�ant hallenge whih

ontinues to attrat attention among omputational mathematiians, physiists,

and engineers alike. What ompliates the solution of Maxwell's equations is the

need to aurately model the wave-matter interation, i.e., reetion, refration,

and di�ration proesses, the vetorial nature of the boundary onditions, and the

size and geometri omplexity one often enounters in appliations. This imposes

requirements on the auray and performane of the omputational tools well be-

yond that of existing standard tehniques. The need to identify new approahes to

eletromagneti modeling and design is further emphasized by the growing inter-

est in very broad band signals and their interation with large and geometrially

omplex objets, often involving regions of inhomogeneous, anisotropi, lossy, or

even nonlinear materials. Additional ompliations often involve random surfaes

and materials whih beome of inreasing importae as the frequeny of the waves

inrease in appliations as and in modeling e�orts.

The lassial integral based solution tehniques [17℄, as unhallenged as they are

for pure sattering problems, are less appealing for broadband appliations and

problems inluding penetration, omplex materials, and random e�ets. Finite

element tehniques [69, 120℄ an, at signi�ant ost, suessfully address some of

these onerns but does so assuming monohromati waves. This suggests that

one turns the attention to time-domain methods for solving Maxwell's equations.

Indeed, the strength of this approah has been suessfully demonstrated over the

last few deades, beginning with the 2nd order aurate Yee sheme [132℄. As

simple as this sheme is, it ontinues to be the main workhorse of omputational

eletromagnetis in the time-domain [116, 117℄.

It is easy to identify several reasons for the suess of the Yee sheme but its

most appealing quality is perhaps its simpliity. Furthermore, the use of the stag-

gered grid improves the auray somewhat and an be shown to ensure that the

divergene of the initial onditions in homogeneous regions is preserved exatly in

agreement with Maxwell's equations [132℄.

The limitations of the Yee sheme are, however, equally straightforward to iden-

tify. Apart from the 2nd order auray, limiting the eletri size and duration of

problems one an onsider, the embedding of the omputational geometry poses the

most signi�ant problem by requiring one to approximate boundaries and interfaes

by a stairased urve. While this may seem adequate for many problems it never-

theless a�ets the overall auray and essentially redues auray of the sheme

to �rst order. Tehniques for overoming this are plentiful in the literature, see e.g.
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[70, 91, 116, 133, 59℄. Most of these methods, however, sari�e the simpliity of

the original Yee sheme to ahieve the improved auray whih remains, at best,

seond order.

However, as the problems inrease in size and the geometries in omplexity,

one begins to enounter the limits of the seond order sheme. In partiular the

aumulating dispersion errors beomes a major onern, see, e.g., [104℄. Ways to

overome this problem are, however, few and well known { derease the grid size

or inrease the order of the sheme. As the former quikly beomes impratial for

large sale problems it is only natural to turn the attention to the development of

high-order aurate methods for solving Maxwell's equations in the time-domain.

As we shall disuss in Se. 3, high-order methods are haraterized by being able

to aurately represent wave propagation over very long distanes, using only a

few points per wavelength. For three-dimensional large sale omputations, this

translates into dramati redutions in the required omputational resoures, i.e.,

memory and exeution time, and promises to o�er the ability to model problems

of a realisti omplexity and size.

This omes at a prie, however. The simpliity of the shemes is sari�ed some-

what for the auray, in partiular when ombined with a need for geometri

exibility. This inreased omplexity of the sheme is perhaps the main reason

for the rather slow aeptane of high-order methods among pratitioners of om-

putational eletromagnetis. Although the need for high-order aurate shemes

was realized by some pratitioners early on [92℄, aeptane of this is still far from

wide spread. Evidene of this is the lak of ontributions disussing high-order time-

domain methods in reent overviews of state-of-the-art tehniques in omputational

eletromagnetis [41, 83℄.

It is the purpose of this review to retify this by o�ering an overview of a number

of reent e�orts direted towards the development of high-order aurate methods

for the time-domain solution of Maxwell's equation. By high-order we shall refer

to methods with a spatial onvergene rate exeeding two. The question of whih

order of auray is suitable for large sale appliations is an interesting question

in itself and an be analyzed as a ost-bene�t question [30, 124, 39℄. While the

answer naturally has some problem dependene, the general onlusion is that

shemes of spatial order four to six o�ers an optimal balane between auray

and omputational work for a large lass of appliations. It is therefore natural to

fous on methods that have the potential to reah this level of auray.

Unavoidably, the disussion is olored by our own interests and experienes and

some smaller urrent developments have not been inluded in this disussion, most

notably perhaps multi-resolution time-domain methods [117℄. These methods do

display high-order auray under ertain irumstanes, but are notoriously diÆ-

ult to use for geometrially omplex problems. As this remains one of the major

onerns, we have hosen not to inlude a disussion in this review. A good starting

point for suh methods is [117℄.

While more seletive overviews are available [117, 19℄ we shall strive to bring

most urrent e�orts into the disussion. We hope this, one on hand, will be helpful

as a starting point to the pratitioner seeking alternatives to standard tehniques

and, on the other hand, an serve as a updated review of an emerging and rapidly

evolving �eld to the interested omputational mathematiian.



4 J.S. HESTHAVEN

What remains of this review is organized as follows. In Se. 2 we reall Maxwell's

equations in the time-domain, disuss boundary onditions, various simpli�ations,

and standard normalizations. Setion 3 is devoted to an overview of the by now

lassial phase-error analysis as a way of motivating the need to onsider high-

order aurate methods in time-domain eletromagnetis, in partiular as problems

inrease in size and omplexity. This sets the stage for Se. 4 where we disuss

extensions of the Yee sheme and other more omplex �nite di�erene shemes.

It will beome apparent that a major hallenge in the development of high-order

methods is in fat not to ahieve the high order auray but rather to do this in

ways that enables geometri exibility. An interesting development in this diretion

is the emerging embedding tehniques whih we disuss in some detail.

In Se. 3 it emerges that higher order shemes allow a signi�ant redution of

the degrees of freedom without sari�ing auray. For some appliations it may

be natural to onsider the ultimate limit, leading to global or spetral methods

as disussed in Se. 5. As tempting as this approah is, the need for geometri

exibility again enters as a major onern. We disuss in some detail the elements

of spetral multi-domain methods, whih ombine the auray of global methods

with the geometri exibility of a multi-element formulation.

The need to deompose the omputational domain into multiple elements to

maintain auray and geometri exibility is not unique to omputational ele-

tromagnetis and it is only natural that muh work has foused on transferring

suesses from other branhes of siene into the time-domain solution of Maxwell's

equations. An example of this is disussed in Se. 6 where reent e�orts on the de-

velopment of high-order �nite volume methods, reovered by onsidering Maxwell's

equations as a system of onservation laws, is outlined. A parallel and more ex-

tensive e�ort fouses on the development of �nite element methods for solving

Maxwell's equations in the time-domain. This, as disussed in Se. 7, is more

involved and requires attention to a number of issues, e.g., proper form of the

equations, proper variational statement, and element types. We shall disuss some

possibilities and reent developments before turning the attention to disontinuous

element shemes whih we disuss in some detail due to their attrative proper-

ties for problems suh as Maxwell's equations. As we shall see, the �nite element

formulations are in general the mathematially most omplex but also result in for-

mulations whih appear most promising at this point in time, assuming { naively {

that the assoiated grid-generation is a minor issue. We onlude, in Se. 8, with a

brief disussion of issues related to high-order time stepping and disrete stability,

before o�ering a few onluding remarks in Se. 9.

2. MAXWELL'S EQUATIONS IN THE TIME-DOMAIN

We onern ourselves with the diret solution of Maxwell's equations on di�er-

ential form

� ~D

�~t
= ~r� ~H + ~J ;

� ~B

�~t
= � ~r� ~E ; (1)
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~r � ~D = ~� ; ~r � ~B = 0 ; (2)

in the three-dimensional domain, 
, with the harge distribution, ~�(~x; ~t). The

eletri �eld, ~E(~x; ~t), and the eletri ux density, ~D(~x; ~t), as well as the mag-

neti �eld, ~H(~x; ~t), and the magneti ux density, ~B(~x; ~t), are related through the

onstitutive relations

~D = ~" ~E ; ~B = ~� ~H :

The permittivity tensor, ~", and the permeability tensor, ~�, are in general anisotropi

and may depend on spae and time as well as the strength of the �elds themselves.

The urrent, ~J , is typially assumed to be related to the eletri �eld, ~E, through

Ohms law, ~J = ~� ~E, where ~� measures the �nite ondutivity, although more om-

plex relations are possible.

In the subsequent disussion, we shall generally assume that the materials an be

assumed isotropi, linear, and time-invariant. In that ase the onstitutive relations

take the form

~D = ~"0"r ~E ; ~B = ~�0�r ~H :

Here ~"0 = 8:854� 10�12 F/m and ~�0 = 4� � 10�7 H/m represent the vauum per-

mittivity and permeability, respetively, and "r(x) and �r(x) refers to the relative

permittivity and permeability, respetively, of the materials.

It is worth while pointing out, however, that most of the methods disussed in

the following an be extended to inlude muh more omplex and even nonlinear

materials with limited additional e�ort required.

Taking the divergene of Eq.(1) and applying Eq.(2) in ombination with Gauss'

law for harge onservation shows that if the initial onditions satisfy Eq.(2), and

the �elds are evolved aording to Maxwell's equations, Eq.(1), the solution will

satisfy Eq.(2) at all times. Hene, one generally views Eq.(2) as a onsisteny

relation on the initial onditions and limit the solution to the time-dependent part

of Maxwell's equations, Eq.(1), although the validity of doing so remains somewhat

ontroversial [65, 72℄

To simplify matters further, we onsider the non-dimensionalized equations by

introduing the normalized quantities

x =
~x
~L

; t =
~t

~L=~0
;

where ~L is a referene length, and ~0 = (~"0~�0)
�1=2 represents the dimensional

vauum speed of light. The �elds themselves are normalized as

E =
~Z�10

~E
~H0

; H =
~H
~H0

; J =
~J ~L
~H0

;

where ~Z0 =
p

~�0=~"0 refers to the dimensional free spae intrinsi impedane, and
~H0 is a dimensional referene magneti �eld strength.
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With this normalization Eq.(1) takes the form

"r
�E

�t
= r�H + J ; �r

�H

�t
= �r�E ; (3)

whih is the form of the equations we shall onsider in what remains. The ompo-

nents of the �elds are subsequently referred to as E = (Ex; Ey; Ez)T and likewise

for H and J .

To solve Maxwell's equations in the viinity of boundaries, penetrable or not, we

shall need boundary onditions relating the �eld omponents on either side of the

boundary. Assuming that a normal unit vetor, n̂, to the boundary is given, the

boundary onditions on the eletri �eld omponents take the form

n̂� (E1 �E2) = 0 ; n̂ � (D1 �D2) = �s ;

where Ei and Di, i = (1; 2), represent the �elds on either side of the interfae and

�s represents a surfae harge. Equivalently, the onditions on the magneti �elds

are given as

n̂� (H1 �H2) = Js ; n̂ � (B1 �B2) = 0 ;

where Js represents a surfae urrent density.

In the general ase of materials with �nite ondutivity, no surfae harges and

urrents an exist, and the relevant onditions beome

n̂� (E1 �E2) = 0 ; n̂� (H1 �H2) = 0 ; (4)

expressing ontinuity of the tangential �eld omponents. The normal omponents

of the ux densities must likewise satisfy

n̂ � (D1 �D2) = 0 ; n̂ � (B1 �B2) = 0 ; (5)

i.e., they are ontinuous, while the normal omponents of the �elds themselves are

disontinuous.

For the important speial ase of a perfet ondutor, the onditions take a speial

form as the perfet ondutor supports surfae harges and urrents while the �elds

are unable to penetrate into the body, i.e.,

n̂�E = 0 ; n̂ �B = 0 : (6)

2.1. The Sattered Field Formulation

For sattering and penetration problems involving linear materials it is often

advantageous to exploit the linearity of Maxwell's equations and solve for the sat-

tered �eld, (Es;Hs), rather than for the total �eld, (E;H). These are trivially

related as
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E = Ei +Es ; H =Hi +Hs ;

where (Ei;Hi) represents the inident �eld, illuminating the sattering objet.

A partiularly useful illumination is the vauum plane wave of the form

Ei = A exp

�
i2�

L

�

�
k̂ � x� �t

��
; Hi = k̂ �Ei :

Here k̂ = (k̂x; k̂y; k̂z)
T is normalized wave vetor and � the normalized frequeny.

One an think of L=� as a normalized inverse wavelength of the illuminating wave.

For monohromati plane wave illumination, it is ustomary to take L = � to

simplify matters.

Assuming that (Ei;Hi) represents a partiular solution, e.g., the plane wave

solution give above, to Maxwell's equations, one reovers the sattered �eld formu-

lation

"r
�Es

�t
= r�Hs + �Es � �

"r � "ir
� �Ei

�t
+ (� � �i)Ei ; (7)

�r
�Hs

�t
= �r�Es � �

�r � �ir
� �Hi

�t
; (8)

where "ir(x), �ir(x), and �i(x) represents the relative permittivity, permeability

and ondutivity of the media in whih the inident �eld is a solution to Maxwell's

equations, e.g., in the above ase of a plane wave vauum �eld illuminating the

objet we have "ir = �ir = 1, and �i = 0. To simplify matters we have assumed

Ohms law, J = �E.

In this formulation, the boundary onditions along a dieletri interfae are

n̂� (Es
1 �Es

2) = 0 ; n̂� (Hs
1 �Hs

2) = 0 ; (9)

for the tangential omponents, while the onditions on the sattered �eld ompo-

nents beomes

n̂�Es = �n̂�Ei ; n̂ �Bs = ��rn̂ �Hi ; (10)

in the ase of a perfetly onduting boundary. The general onditions on normal

omponents an likewise be derived diretly from Eq.(5).

2.2. Maxwell's Equations in One and Two-Dimensions

For ompleteness, let us also state Maxwell's equations in the one- and two-

dimensional ases. In the former ase we simply have
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"r
�Ez

�t
=

�Hz

�x
+ Jz ; �r

�Hz

�t
=

�Ez

�x
: (11)

Both �eld omponents are tangential to a material interfae and, thus, always on-

tinuous { but not smoother than that. At a metalli boundary, Ez vanishes. This

set of equations is well suited for testing new shemes as it aptures essential fea-

tures of Maxwell's equations, e.g., two-way wave propagation and loss of smoothness

aross material interfaes.

To model e�ets of polarization, reetion/refration at interfaes, di�ration et

we need to onsider two dimensional problems. In this ase Maxwell's equations

separate into two independent ases { polarizations { with the transverse eletri

(TE) form being

"r
�Ex

�t
=

�Hz

�y
+ Jx ; (12)

"r
�Ey

�t
= ��Hz

�x
+ Jy ;

�r
�Hz

�t
=

�Ex

�y
� �Ey

�x
;

by assuming that Ez = 0 and �
�z = 0. The other polarization, known as the

transverse magneti (TM) form, is given as

�r
�Hx

�t
= ��Ez

�y
; (13)

�r
�Hy

�t
=

�Hz

�x
;

"r
�Ez

�t
=

�Hy

�x
� �Hx

�y
+ Jz ;

by taking Hz = 0.

Boundary onditions and sattered �eld forms an be derived as for the general

ase disussed previously.

3. THE CASE FOR HIGH-ORDER METHODS IN CEM

To ome to an appreiation of the need for high-order methods in time-domain

eletromagnetis, let us briey reall the question of phase-errors assoiated with

�nite-di�erene methods, as �rst presented in the pioneering work of Kreiss and

Oliger [80℄.

Consider, as the fundamental omponent of Maxwell's equations, the salar wave

equation

�u

�t
= ��u

�x
; u(x; 0) = eikx ;

in the domain x 2 [0; 2�℄ and subjet to periodi boundary onditions. Here k =

2�=� is the wavenumber. To begin with, we onsider only the e�et of the spatial
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approximation and restrit the disussion to �nite di�erene methods. One should

keep in mind, however, that the onlusions reahes remain qualitatively true also

for the other high-order aurate shemes disussed subsequently.

We introdue an equidistant grid

xj =
2�j

N
= jh ; j 2 [0; N � 1℄ ;

suh that u(xj ; t) = uj . Using a 2m'th order expliit entral di�erene approxima-

tion to the spatial derivative of u(x; t) yields the semi-disrete sheme

du

dt

����
xj

= �
mX
n=1

� �2(�1)n(m!)2

(m� n)!(m+ n)!

�
1

2n
Dnuj ;

where

Dn =
En � E�n

h
; Enuj = uj+n ; (14)

represents the entral di�erene and shift operator, respetively.

The exat solution to this semi-disrete equation is

u(x; t) = eik(x�m(k)t) :

Here m(k) is termed the numerial wave speed. Clearly we wish that  ' m(k)

over as large a range of the wavenumber, k, as possible. A measure of this, the

phase error, is de�ned as

em(k) = jk(� m(k))tj :

The analysis of the phase error allows us to answer questions about the proper

hoie of shemes for a spei�ed phase error and the overall eÆieny of high-order

methods.

To ontinue, let us introdue non-dimensional measures of the atual sheme. In

partiular, we introdue

p =
�

h
=

2�

kh
; � =

t

�
;

whih are nothing else than the number of points per wavelength, p, and the number

of wave-periods, �, we wish to advane the wave. The phase-error thus beomes

em(p; �) ' ��

�m

�
2�

p

�2m
;

where �m is a onstant spei� to the trunation error of the di�erent shemes, e.g.

�1 = 3, �2 = 15, �3 = 70 [80℄ et. If we term the maximal aeptable phase-error,

"p, we reover the lower bounds

pm(�; "p) � 2� 2m

r
��

�m"p
/ 2m

r
�

"p
; (15)
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on the number of points per wavelengths, pm(�; "p), required to ensure a spei�ed

error, "p, after � periods of propagation. We note that the required number of points

per wavelength depend on the aeptable auray, "p, but also on the number of

periods, �, needed to omplete the omputation, i.e. the e�et of the phase-error

aumulates over time.

Assume now that we wish to propagate a wave in a d-dimensional box with side

lengths �. Clearly, onsidering general problems of size L� simply sales all results

with Ld.

The memory needed to store the �elds is proportional to

Memory / (pm)
d /

�
�

"p

� d
2m

:

Furthermore, the work needed to advane the solution to the �nal time, t, sales as

Work / (2mpm)
d t

�t
/ (2m)d�

�
�

"p

� d+1

2m

:

The strong dependene on 2m, i.e., the order of the sheme, suggests that using

high-order shemes (m > 1) is advantageous when measured in memory usage

and/or required omputational work in the following situations

� "p � 1, i.e., when high auray is required.

� � � 1, i.e., when long time integration is needed.

� d > 1, i.e., for multi-dimensional problems.

� pm < 10, i.e., eÆient disretizations of large problems.

These are learly situations of relevane to the modeling of eletromagneti phe-

nomena. While this analysis does not inlude e�ets of grid-anisotropy on the

wave-propagation, this is only to bene�t of the low-order shemes whih will su�er

most from suh phenomena. Furthermore, the popular use of staggered grids will

not improve the eÆieny of the low-order methods qualitatively [127℄.

Thus, the use of high-order aurate methods promises to enable the aurate and

eÆient modeling of transient eletrially large problems over long times. It is the

purpose of what remains to disuss a number of reently developed omputational

methods that aims at ful�lling these promises.

4. HIGH-ORDER FINITE DIFFERENCE SCHEMES

The most widely used omputational tehnique for solving Maxwell's equations in

the time-domain, the �nite-di�erene time-domain (FDTD) method, an be traed

to a sheme introdued by Yee [132℄. It utilizes the speial struture of Maxwell's

equations and introdues a spatially staggered equidistant grid in whih the problem

of interest is embedded.

Let us introdue ui = u(xi) as a grid funtion de�ned on an equidistant grid,

xi, with grid size, h. Using the notation of Eq.(14), the familiar 2nd order entral

�nite di�erene sheme is

dui
dx

= 1
2D1ui :



HIGH-ORDER ACCURATE METHODS IN TIME-DOMAIN CEM: A REVIEW 11

To reover a semi-disrete approximation to Eq.(11) we de�ne a set of staggered

grids, xi and xi+1=2, shifted spae by h=2, on whih E and H are olloated,

respetively. This yields

"(xi)
dEz

i

dt
= D1=2H

z
i ;

�(xi+1=2)
dHz

i+1=2

dt
= D1=2E

z
i+1=2 :

We assume, for simpliity, no urrents, i.e., Jz = 0. Approximating the temporal

integration by a staggered-in-time leap-frog sheme yields

"(xi)
En+1
i �En

i

�t
= D1=2H

n+1=2
i ;

�(xi+1=2)
H

n+1=2
i+1=2 �H

n�1=2
i+1=2

�t
= D1=2E

n
i+1=2 ;

whih is indeed the lassi Yee sheme, proposed in [132℄. Here En
i = Ez(xi; n�t)

and similarly for Hz. In regions with smoothly varying materials, this sheme is

2nd order aurate in spae and time.

The suess of the Yee sheme, ombined with the realization that 2nd order

auray may well be insuÆient for many appliations, has spawned muh reent

work in the development of higher order aurate shemes of a similar nature. To

highlight the problems assoiated with suh extensions, let us onsider a simple

example.

Consider the one-dimensional problem,

"r(x)
�Ez

�t
=

�Hz

�x
;
�Hz

�t
=

�Ez

�x
;

de�ned in the domain x 2 [�L;L℄ and with a material interfae positioned at

x = a; jaj < L and metalli walls at jxj = L, i.e., Ez(�L; t) = 0. The permittivity

is assumed to be pieewise onstant as

"r(x) =

(
"
(1)
r �L � x � a

"
(2)
r a < x < L

:

One easily derives the exat solution of this problem, essentially onsisting of a set

of standing waves, as illustrated in Fig. 1. The exat solution is given in [24℄.

In Fig. 1 we show an example of the solution and the results obtained using a

straightforward 4th order extension of the Yee sheme, disussed in Se. 4.1. For

the simple homogeneous problem we see the expeted 4th order onvergene. A

4th order expliit Runge-Kutta sheme is used to advane in time, and the global

disrete L2-norm measures the error, i.e.,

kukh =
 
h

NX
i=0

u2i

!1=2

; h =
2L

N
;
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FIG. 1. Metalli avity problem, L = 1, "r = 1 and the �nal time for omputation is
T = 2�. In a) we show the solution at T = 2� and in b) we on�rm the expeted 4th order global
onvergene as a funtion of number of points, N .

and Æu signi�es the di�erene between the omputed and the exat solution.

While suh straightforward extensions of the Yee sheme performs well for homo-

geneous problems with grid-onforming geometries, these shemes also inherit the

problems assoiated with the Yee-sheme, i.e., the need to stairase general geome-

tries and the inability to orretly enfore physial jump-onditions, Eqs.(4)-(5), at

material interfaes.

While a onsequene of suh stairasing is auray redution , i.e., one is solving

a problem that is O(h) di�erent, is well established in the literature (see e.g. [24℄),

it appears less appreiated that the physial interfae onditions at a material

interfae are equally important. To emphasize this point, we show in Fig. 2 results

for the avity problem disussed above, assuming, however, that for x 2 [0; L℄ the

avity is �lled with an "
(2)
r = 2:25 material. While the solution remains ontinuous

aross the material interfae, it does not remain smooth, i.e., using a di�erene

sheme aross the interfae is poised to have a redued auray as is also on�rmed

in Fig. 2. The popular use of averaging of the material oeÆients [116, 19℄ restores

O(h2) auray only.

One should keep in mind that the situation may well be worse for multi-dimensional

problems where the averaging tehnique is muh less e�etive due to the likely ex-

istene of disontinuous �elds. Indeed, one an onstrut simple tests where even

the Yee sheme fails to onverge due to this [24℄.

Thus, the formulation of high-order �nite-di�erene methods entails not only the

derivation of the high-order aurate �nite-di�erene stenils but also tehniques to

treat the embedded geometries to the order of the sheme. The latter is onsiderably

more omplex than the former as some of the approahes disussed in the following

illustrate.

4.1. Extensions of the Yee Sheme

It is a simple matter to derive a diret higher order aurate �nite di�erene

stenil on a staggered grid, i.e., we have the expliit 4th order sheme
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FIG. 2. Metalli avity problem, L = 1, "
(1)
r = 1:0; "

(2)
r = 2:25, and the �nal time for

omputation is T = 2�. In a) we show the solution at T = 2� and in b) we illustrate the global
onvergene as a funtion of number of points, N , using a straightforward 4th order sheme as
well as one making use of an averaged material parameter.

"(xi)
dEz

i

dt
= 1

24

�
27D1=2 �D3=2

�
Hz

i ; (16)

�(xi+1=2)
dHz

i+1=2

dt
= 1

24

�
27D1=2 �D3=2

�
Ez

i+1=2 :

This appears to have been onsidered �rst in the ontext of eletromagnetis in [29℄

as a diret extension of the Yee sheme, i.e., using a seond order aurate sheme

in time. Subsequent works using this approah inlude [101, 100, 117℄. Results,

ombining this with the Yee sheme in subgridded areas, are obtained in [36, 37℄.

Close to metalli boundaries one an use 3rd order losures of the form

"(xi)
dEz

i

dt
=
�23Hz

i�1=2 + 21Hz
i+1=2 + 3Hz

i+3=2 �Hz
i+5=2

24h
; (17)

whih suÆes to ensure global 4th order auray [43℄. This is the sheme used on

the examples shown in Figs. 1 and 2. A stable 4th order losure is proposed in

[134℄.

While one may ontinue suh developments and de�ne stenils of arbitrary order,

suh methods has little pratial value as the orresponding one-sided losures tend

to be unstable [114, 44℄. We shall therefore restrit the attention to the 4th order

sheme above, as has been done in most of the urrent literature.

Attempting to overome the problems exposed above the solution esapes the

obvious, e.g., using a high order approximation to the material properties [117,

135℄ may improve matters quantitatively but not make a qualitative di�erene,

i.e., the onvergene rate typially remains 2nd order. Furthermore, the extension

of suh tehniques to multi-dimensional problems, where higher order geometri

information, e.g., urvature, would need to enter the model to maintain design

auray, remains elusive.
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FIG. 3. De�nition of grid, numbering and various parameters for solving the one-dimensional
Maxwell's equations in a PEC avity �lled with two materials.

Initiated in [24℄ in the ontext of Maxwell's equations, steps in a di�erent dire-

tion has reently been taken. The entral idea is to use the staggered grid sheme,

Eqs.(16)-(17), in homogeneous regions away from boundaries and then loally mod-

ify the sheme lose to boundaries and interfaes. This latter part must be done in

a geometry onforming way to overome the stairasing problem and must inlude

the physially orret jump onditions. As shown in [24℄ suh shemes, termed

embedding shemes, allow one to fully restore 2nd order auray in a modi�ed Yee

sheme, thus overoming problems of stairasing and the e�et internal boundaries

in a uni�ed way. As the sheme is modi�ed loally only, it maintains the simpliity

and omputational eÆieny of the original formulation as most of the additional

work, i.e., omputing the loal stenils, is done in a preproessing stage.

The extension of these ideas to 4th order embedding methods is far from triv-

ial and questions remain unanswered. To illustrate the potential of suh methods,

however, let us return to the avity problem above but allow the material inter-

fae to be positioned anywhere inside the avity, i.e., we do not require geometri

onformity.

We shall use Fig. 3 to highlight the elements of the sheme. Everywhere away

from the internal material boundary we use the 4th order staggered grid method

given in Eqs.(16)-(17). Also, grid-points not diretly adjaent to the interfae, e.g.,

E
(1)
N�1 and H

(2)
1=2 is updated using the one-sided 3rd order sheme, Eq.(17), reahing

into the homogeneous region. The ritial question is naturally to update the points

diretly next to the interfae, i.e., H
(1)
N�1=2 and E

(2)
0 . The idea put forward in [24℄ is

to form extrapolated valued, Hmat and Emat, from the left and right, respetively,

and use these in ombination with the physial jump-onditions to omplete the

sheme.

Using the notation of Fig. 3, we de�ne the extrapolated �elds as

Hmat =
(7� 2L)(5� 2L)(3� 2L)

48
H

(1)
N�1=2 �

(7� 2L)(5� 2L)(1� 2L)

16
H

(1)
N�3=2

+
(7� 2L)(3� 2L)(1� 2L)

16
H

(1)
N�5=2 �

(5� 2L)(3� 2L)(1� 2L)

48
H

(1)
N�7=2
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and

Emat =
(7� 2R)(5� 2R)(3� 2R)

48
E
(2)
0 � (7� 2R)(5� 2R)(1� 2R)

16
E
(2)
1

+
(7� 2R)(3� 2R)(1� 2R)

16
E
(2)
2 � (5� 2R)(3� 2R)(1� 2R)

48
E
(2)
3

Note that due to the geometry of the problem, L + R = 1
2 . The shemes to

update H
(1)
N�1=2 and E

(2)
0 are then given as

dH
(1)
N�1=2

dt
=

46

h(1 + 2L)(3 + 2L)(5 + 2L)
Emat � 15� 16L

4h(1 + 2L)
E
(1)
N�1

+
5� 12L

2h(3 + 2L)
E
(1)
N�2 �

3� 8L
4h(5 + 2L)

E
(1)
N�3 ;

and

"(2)
dE

(2)
0

dt
= � 46

h(1 + 2R)(3 + 2R)(5 + 2R)
Hmat +

15� 16R
4h(1 + 2R)

H
(2)
1=2

� 5� 12R
2h(3 + 2R)

H
(2)
3=2 +

3� 8R
4h(5 + 2R)

H
(2)
5=2 :

It is worth emphasizing that the stenils do not ollapse even if the interfae is

positioned very lose to or at a grid point. This is a onsequene of the staggered

grid whih is essential to ensure this and yield a sheme with a uniformly bounded

time-step restrition.

As an illustration of the performane of the sheme we show in Fig. 4 results

obtained for the problem disussed in relation to Fig. 2, although allowing the

interfae to be positioned away from a grid point also. In suh a situation the

unmodi�ed sheme would yield only O(h) onvergene due to stairasing. However,
as shown in 4, the embedded sheme reovers full auray regardless of the position

of the material interfae.

Albeit less general, similar ideas exploiting loally modi�ed expliit shemes have

also been developed in [134℄. There the position of the interfae is restrited to

oinide with the grid points but the physial jump-onditions are enfored as

above. A slight generalization along similar lines is found in [126℄ where suh

ideas are ombined with smooth urvilinear mappings. In [102℄ it is disussed how

the embedding an be utilized as a separator between di�erent grids rather than

di�erent materials, thus allowing for subgridding.

While the embedding shemes are appealing and appears to o�er a good balane

between omputational omplexity and obtainable auray, muh development

remains to be done to make these methods a viable alternative. In partiular, the

stable and aurate treatment of urved interfaes and metalli boundaries remains

a hallenge.

In [121, 122℄ a related, yet slightly di�erent approah is taken. Motivated by [118℄,

the authors apply dispersion-relation-preserving (DRP) 4th order expliit shemes

to solve Maxwell's equations in two [121℄ and three [122℄ spatial dimensions. Suh

shemes are derived by extending the stenil beyond the minimum 5 points. The



16 J.S. HESTHAVEN

N

||
δE

z
||

h

10
1

10
2

10
310

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

a)

γ
L
=0.00

γ
L
=0.25

γ
L
=0.50

N
-4

N

||
δH

z
||

h

10
1

10
2

10
310

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

b)

γ
L
=0.00

γ
L
=0.25

γ
L
=0.50

N
-4

FIG. 4. Same problem as in Fig. 2, however solved using the 4th order embedding sheme.
In a) we illustrate the global onvergene of Ez while b) illustrates the same for Hz .

additional degrees of freedom for de�ning the stenil is used to optimize its wave-

propagation harateristis, e.g., by minimizing the phase-error. While suh an

approah is highly aurate wave-propagation, the wide stenil makes it diÆult to

terminate the stenil and, thus, deal with omplex geometries.

4.2. Compat Shemes and SBP Shemes

The problems with stability and auray of the straightforward 4th order exten-

sion of the Yee sheme, Eq.(16), disussed above has lead to a number of alternative

developments. These have mostly foused on impliit omputations of the deriva-

tives, i.e.,

P
d

dx
u = Qu : (18)

Here u represents the grid-vetor and the two matries, P and Q, are onstruted

to ensure auray and/or stability of the approximation.

A lassial example of suh methods are the ompat shemes, see e.g. [84℄ for

an introdution. These were introdued in the ontext of Maxwell's equations in

[117, 106, 135℄.

Let us for illustration ontinue the use of a staggered grid as above. Then, the

lassial 4th order ompat sheme for omputing derivatives is [117℄�
1

2
�xD1 + 11

�
dui

dx
= 12D1=2ui ;

i.e., it is an impliit sheme, involving the solution of a tridiagonal matrix. Its

main appeal lies in a very ompat stenil, using only nearest neighbor values, and

better auray than expliit shemes disussed above. Furthermore, away from

boundaries and interfaes, the sheme onserves divergene due to the staggered

grid.

Close to boundaries speial stenils are needed as for the expliit sheme. In

[135, 117℄ a fully impliit losures is proposed on the form
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26
du1=2

dx
� 5

du3=2

dx
+ 4

du5=2

dx
� du7=2

dx
= 24D1=2u1=2 :

Combining these expressions yields

P =
1

24

2
666666666664

26 �5 4 �1 : : : 0

1 22 1 0 : : : 0

0 1 22 1 0 : : 0

: : : : : : : :

: : : : : : : :

0 : : : 1 22 1 0

0 : : : 0 1 22 1

0 : : : �1 4 �5 26

3
777777777775

;

and

Q =
1

�x

2
666666666664

�1 1 0 0 : : : 0

0 �1 1 0 : : : 0

0 0 �1 1 0 : : 0

: : : : : : : :

: : : : : : : :

0 : : 0 �1 1 0 0

0 : : : 0 �1 1 0

0 : : : 0 0 �1 1

3
777777777775

;

we reover the 4th order semi-disrete ompat sheme for the one-dimensional

Maxwell's equations as

"r
dEz

h

dt
= P�1QHz

h ; �r
dHz

h

dt
= P�1QEz

h :

We have introdued the vetors of grid-funtions

Ez
h =

�
Ez
0 (t); E

z
1 (t); ::; E

z
N�1(t); E

z
N (t)

�T
;

Hz
h =

h
Hz

1=2(t); H
z
3=2(t); ::; H

z
N�3=2(t); H

z
N�1=2(t)

iT
;

and similarly for the vetors of materials

"r = ["r(x0); "r(x1); ::; "r(xN�1); "r(xN )℄
T

;

�r =
�
�r(x1=2); �r(x3=2); ::; �r(xN�3=2); �r(xN�1=2)

�T
:

Sine P is banded its inversion is heap. Results in [117, 135℄ on�rm the expeted

auray and stability of the sheme for the one-dimensional Maxwell equations and

the two-dimensional TM-form, Eq.(13), assuming simple grid onforming bound-

aries and homogeneous materials. Dispersion-relation-preserving ompat shemes

are disussed in [84℄.
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Although the ompat sheme ahieves higher order spatial auray using a nar-

row stenil, it su�ers from the same problems as the Yee sheme and its straightfor-

ward extensions disussed above sheme, i.e., diÆulties with aurately represent-

ing boundaries and material interfaes. The impliit nature of the ompat sheme,

however, makes it diÆult to utilize loal remedies as for the expliit sheme sine

any suh loal adjustment has a global impat. Initial work in this diretion is

reported in [119℄, in whih the ompat stenil is loally modi�ed to allow for a

non-onforming Dirihlet boundary ondition as required in the two-dimensional

TM-form, Eq.(13). The sheme, however, requires one to physially moves the grid

points, thus introduing severe sti�ness for ases where the boundary is lose to

a grid-point of the equidistant grid. More general types of boundary onditions,

e.g., magneti boundaries, are not treated. In related work [117, 135℄ the problem

of material interfaes is addressed by using high-order smooth approximations to

material parameters. While this visually improves on the auray, a rigorous anal-

ysis was not done and the omputational results restrited to ases where all �eld

omponents are ontinuous.

Using a nonstaggered grid, it is proposed in [106℄ to terminate the ompat

stenils with expliit shemes. While it is found experimentally that one needs to

use a �lter to avoid instabilities, full three-dimensional sattering results have been

reported. The auray of this approah is not known.

The formulation of the ompat shemes, leading to the operators P and Q given

above, is done with auray in mind. The equally important question of stability

must then be addressed subsequently. This is known to be a task of onsiderably

omplexity and often requires speial tehniques to impose boundary onditions,

see e.g. [12, 13℄.

The omplementary approah to this is the diret onstrution of stable high-

order shemes. Suh shemes, known as summation-by-parts (SBP) shemes, were

originally proposed in [81℄, and developed further in [113, 96, 97℄. The disrete

operators, P and Q, are derived to mimi the integration-by-parts property of

the divergene operator, leading to the onditions that P be symmetri, positive

de�nite, and Q almost skew-symmetri, i.e., Q + QT = diag[�1; 0:::; 0; 1℄. Both P

and Q are typially banded, with examples given in [81, 113℄.

Imposing boundary onditions in this type of shemes is a bit more omplex

as modifying the operators diretly may destroy the SBP-property. The stan-

dard approah is thus to impose the onditions weakly through a simultaneous-

approximation-term (SAT) as

du

dx
; u(1) = g ) P�1

du

dx
= Qu�T [u(1)� g℄ :

Here T = diag[0; 0::::; 0; � ℄ where � � 1 ensures stability. Sine the boundary

onditions are imposed as an additional term, more omplex boundary operators

an be imposed in a similar way.

SBP shemes for Maxwell's equations are disussed in [95℄, showing the expeted

auray and stability for the two-dimensional TE-form, Eq.(12), in simple grid-

onforming geometries. The sheme preserves divergene in regions of homogeneous

materials. Treatment of material interfaes is done in a way similar to that disussed
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in Se. 4.1, i.e., by treating the di�erent regions separately and using the physial

jump-onditions to onnet the regions.

As for the ompat sheme, the SBP methods have problems treating geomet-

rially omplex problems due to the impliit nature of the shemes. Furthermore,

the SBP property is deliate and even the use of simple urvilinear mappings may

destroy this property, thus ruining the stability. It is worth while mentioning that a

2nd order aurate sheme, using the SAT-approah, for arbitrary embedded metal-

li boundaries has been proposed in [1℄. It is oneivable that similar ideas an be

adapted to a 4th order sheme, although the analysis promises to be omplex.

4.3. Fititious and Overlapping Grid Methods

In the straightforward extensions of the Yee sheme disussed in Se. 4.1 it was

proposed to use extrapolations and strongly enfore the jump-onditions. Methods,

taking this approah one step further by using the equation repeatedly at the inter-

fae also, were reently proposed in [25, 26℄ for one- and two-dimensional problems

in eletromagnetis. Similar ideas have been proposed previously in the ontext of

aoustis and elastiity but apparently never implemented [136, 137℄.

These shemes employ a standard high-order expliit �nite di�erene sheme on

a nonstaggered grid in regions with homogeneous materials. Close to boundaries

and interfaes, however, a di�erent proedure is taken, muh in the spirit of Se.

4.1, albeit using a di�erent approah.

To illustrate the entral idea, onsider again the one-dimensional Maxwell's equa-

tions, Eq.(11), on the form

�q

�t
= A(x)

�q

�x
; q =

�
Ez

Hz

�
; A =

�
0 "�1r (x)

��1r (x) 0

�
:

For simpliity we restrit the attention to the ase of a material interfae at x = xmat

aross whih we have that q is ontinuous, i.e.,

q(x�mat; t) = q(x+mat; t) :

Using the equation themselves, however, we also have that

A(x�mat)q
(1)(x�mat; t) = A(x+mat)q

(1)(x+mat; t) ; (19)

i.e., we have onditions on the �rst spatial derivatives, q(1), of q aross the interfae.

One an of ourse repeat this argument as often as needed to obtain

A(x�mat)
pq(p)(x�mat; t) = A(x+mat)

pq(p)(x+mat; t) :

We assume that we solve Maxwell's equations on a simple equidistant grid, xj ,

although it ould also be staggered.

Consider the situation in Fig. 5, where the two regions of di�erent materials are

separated at xmat whih do not have to oinide with a grid point. Everywhere

away from the interfae, we shall use whatever expliit �nite-di�erene preferred,

f. Se. 4.1. To update the values of q at points lose to the interfae, e.g., x
(1)
N
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FIG. 5. Illustration of ghost grids and numbering used in overlapping grid methods.

and x
(2)
0 , we shall assume the existene of ghost-points, x

(1)
N+m and x

(2)
�m, m = 1::M .

Clearly, if the values of q were known at these points, one ould update q at x
(1)
N

and x
(2)
0 using standard �nite di�erene stenils.

We an, however, use the additional onstraints, Eq.(19). One an approximate

the one-sided derivatives as entral di�erenes

q(p)(x�mat) '
N+MX
j=N�M

v
(p)
j q(x

(1)
j ) ; q(p)(x+mat) '

MX
j=�M

w
(p)
j q(x

(2)
j ) ;

where v
(p)
j are the weights orresponding to omputing derivatives using values left

of the interfae and w
(p)
j using values from right of the interfae. These an be

found on losed form using Lagrange polynomials as in Se. 4.1, or omputed as

disussed in [32℄. Note that p = 0 orresponds to interpolation at xmat.

There are a total of 2M unknown ghost-values, implying that we will need 2M

onstraints, Eq.(19), to reover these, typially resulting in a sheme of O(h2M )

lose to the interfae, e.g., if a 4th order sheme is used in the interior, one needs

4 additional onstraints to ompute the 4 ghost values. Clearly, one an initialize

all operators in a pre-proessing stage as they depend on the weights only whih

again depends on the order of auray and position of interfae. In the original

work [25℄ this is taken to the limit by using maximal auray, i.e., a global spetral

method, everywhere in eah region of homogeneous material. This requires addi-

tional attention to positions of the grids lose to the interfaes. We refer to [25℄ for

the details.

To illustrate the performane of suh an approah we show in Fig. 6 omputa-

tional results obtained by solving the one-dimensional Maxwell's equations, Eq.(11).

The problem is very similar to that onsidered earlier, although the domain is on-

sidered periodi rather than trunated by a metalli avity and the initial ondition

is a Gaussian pulse in one domain. As the pulse propagates, it experienes multiple

reetions and transmissions at the interfaes. The �gure learly illustrates the

importane of orretly treating the material interfaes, in partiular for problems

requiring long time integration.

In [26℄ these ideas are extended to two-dimensional problems, simpli�ed by as-

suming that the material interfae an be smoothly mapped to align with a o-

ordinate axis. In that ase, the modi�ations needed to maintain auray re-

mains essentially one-dimensional. The only additional ompliation is that deriv-

ing onditions, Eq.(19), for the multi-dimensional ase introdues ross-derivatives
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FIG. 6. Computational results for a pulse undergoing multiple reetions at a material

interfae ("
(1)
r = 1:0 and "

(2)
r = 4:0 as obtained using di�erent shemes. The omputations are

terminated where the results are visibly bad. While the Yee sheme quikly looses the orret the
solution, also the standard 4th order �nite di�erene performs poorly after only 10 periods. The
overlapping sheme (BPS) uses a global sheme in eah domain and performs very well after long
time. The results marked CSE are obtained using a spetral multi-domain sheme (Se. 5.2). The
�gure is ourtesy of T. Drisoll and B. Fornberg.

for M > 1. Thus, only one ghost-point in used and the stenils beome one-sided

as needed.

For smooth interfaes, it is proposed to used an overlapping path or grid, on-

forming to the interfae and employ the ghost-point approah to update the solution

at the interfae. The solution at the path is smoothly blended, using a partition-

of-unity approah, with the solution at an underlying equidistant grid to obtain the

global solution. An example of a grid is shown in Fig. 7. Computational examples

on this and other simple grids an be found in [26℄.

While the use of �titious (or ghost-) points has shown promise, many issues

remain open, in partiular related to the extension of suh tehniques to more gen-

eral two- and three-dimensional problems, as well as problems involving non-smooth

geometries. Furthermore, the stability of these methods has not been analyzed.

5. SPECTRAL METHODS

The lassial phase error analysis, Se. 3, as well as the results disussed above

suggest advantages in going to even higher order aurate shemes to further redue

work and memory requirements while maintaining the auray.

A straightforward exeution of suh ideas, however, introdues issues related

to omputational eÆieny when omputing with very wide stenils, as well as

diÆulties assoiated with �nite omputational domains and omplex geometries.

In the following we shall disuss tehniques proposed to overome these onerns

while maintaining the auray and eÆieny of the very high-order shemes.
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FIG. 7. Example of a overlapping grid approah, used to extend the ghost-point approah
to two-dimensional problems. The �gure is ourtesy of T. Drisoll and B. Fornberg.

5.1. Global Methods

If we maintain the typial senario when using a high-order �nite di�erene

sheme and assume that we have a simple equidistant grid, one an imagine using

a stenil spanning the whole omputational grid, i.e., a global method. The prob-

lems with this straightforward approah are several, e.g., the omputational ost

and the development of stable and aurate means of dealing with the ends of the

omputational domain.

The bene�ts of overoming suh problems are, however, quite substantial as an

be realized by realling Eq.(15). Letting m inrease we see that one ould expet

that the required number of points per wavelength beomes independent of auray

and integration time. In other words, one this requirement is ful�lled, the sheme

solves the wave propagation problem exatly. As was shown in [80℄, this intuition

holds with the requirement being only two points per wavelength.

One way of overoming some of the problems to harvest the advantages of using

a global sheme was �rst proposed in [86℄ in the ontext of Maxwell's equations.

At �rst, one assumes that the solution is spatially periodi to overome the prob-

lems with terminating the omputational domain and designing large, one-sided

stenils. A further advantage of this assumption is the well known result [80, 31℄

that the in�nite order �nite di�erene sheme for a periodi problem is nothing else

than a pseudospetral Fourier method. In other words, the O(N2) omputation of

derivatives

du

dx

����
xj

=

NX
k=0

Djku(xk) ;
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where D is a dense di�erentiation matrix, an be done through a Fourier series as

du

dx

����
xj

=

NX
n=0

(in)~un exp(inxj) ; ~un =
1

N + 1

NX
j=0

u(xj) exp(�inxj) ;

where xj = 2�j=(N + 1) represent the equidistant grid points. The bene�t of this

formulation is that both summations an be done in O(N logN) operations by

using the Fast Fourier Transform.

The assumption of periodi solutions may, at �rst, seem to severely limit the use

of suh methods. The entral idea in [86℄, however, was to surround the omputa-

tional domain with an absorbing layer, a perfetly mathed layer (PML) [4, 5, 117℄.

Assuming that the absorption of waves is suÆiently eÆient, the solution on the

outer boundary almost vanishes, thus ahieving the periodiity. This approah has

been used suessfully to model large sale three-dimensional wave-propagation and

sattering problems, see e.g. [87℄, using a little as 2 points per wavelength. See

also [85℄ for a omparison between PSTD and lassial Yee shemes for sattering

problems.

As eÆient and simple as this approah is, it has a number of limitations. The

need to ompletely surround the omputational problem with an absorbing layer

essentially limits the attention to open spae problems, although one ould deal

with simple interior problems by hoosing a partiular basis. The most severe

limitation is, however, the very same as that of the simple extensions of the Yee

sheme, i.e., an inability to handle interior interfaes and boundaries.

This is emphasized by the simple approximation result that [11℄

ku� uNk � N�qku(q)k ;

where uN represents the Fourier approximation of u, and u(q) reets the q'th

derivative. Clearly, if u is very smooth, i.e., ku(q)k is bounded for high values of

q, the onvergene is very fast and the funtion is well represented with only few

points per wavelength. Unfortunately, it is the other limit that is relevant regarding

the solution of Maxwell's equations for problems involving interior boundaries and

interfaes. In suh ases a best ase senario is that q � 1, i.e., one an not expet

better than loal �rst and global seond order auray even for problems where

material interfaes are aligned with the grid. For urvilinear interfaes, where the

�elds may be disontinuous, the situation is worse and the ombined impat the

lak of smoothness and stairasing will be signi�ant.

Due to the global nature of the approximation and the need to use the Fast

Fourier Transform for omputational eÆieny, it is diÆult to see how to overome

these shortomings, e.g., straightforward loal modi�ations of the stenils as for

the �nite di�erene shemes are not possible, and the bene�ts of using loal smooth

mappings is limited for problems with even moderate geometri omplexity [11℄.

5.2. Multi-Domain Formulations

The most signi�ant restrition of the global methods disussed is the inability to

orretly deal with problems in omplex geometries. While several tehniques were

disussed for the 4th order �nite di�erene shemes in Se. 4, these methods are only
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now emerging and muh work is still needed. Furthermore, it is unlear whether

suh tehniques allows one to formulate shemes beyond 4th order auray.

Thus, it seems natural to onsider alternatives, allowing one to maintain global

high-order auray even in situations with geometri omplexity. The main obser-

vation to make is that the eÆieny of a high-order method is losely related to the

smoothness of the solution. When internal interfaes and boundaries are present,

the global smoothness is generally redued and one does not bene�t as muh from

using high-order methods as one ould expet. However, the solution often remains

smooth in regions of smoothly varying or onstant material parameters, with these

regions being separated by well de�ned geometri features.

The only pratial way to take advantage of this is to leave the simple equidis-

tant grids behind and onsider the formulation of high-order aurate shemes using

body-onforming grids. For general geometries, one an not hope, however, to a-

omplish this with simple globally mapped grids but must onsider a multi-element

or multi-domain formulation in whih the omputational domain is omposed as a

union of non-overlapping elements.

Suh an approah introdues a ouple of issues that needs areful attention, e.g.,

how does one ompute derivatives at the individual elements to high order and

how does one onnet the loal element wise solutions to form the global solution

in a stable manner. The resolution of the questions has been the topi of reent

researh [71, 129, 130, 131℄ pawing the way for high-order aurate sheme without

the problems of the �nite-di�erene sheme. In the following we shall disuss the

elements of this formulation in some more detail.

5.2.1. The Loal Sheme

We shall assume that the omputational domain, 
, is split intoK non-overlapping

elements. This is done in a way suh that interfaes are aligned with the geom-

etry, i.e., returning to the one-dimensional avity problem disussed previously, a

straightforward splitting is into two elements, orresponding to eah of the two

regions of di�erent materials.

As we will now need to represent solutions and derivatives of solutions on �nite

domains, it is well known that we must abandon the use of a simple equidistant

grid in eah domain. Indeed, we must use a grid that lusters lose to the ends

of the element. A suitable hoie ould be the mapped Chebyshev Gauss Lobatto

nodes (see e.g. [31, 39℄)

i = 0::N : xi = a+
1� os(i�=N)

2
(b� a) ;

where the element spans [a; b℄ and N + 1 are the number of grid points in the

domain.

Following the basi approah of a �nite di�erene method, one an now form

elementwise Lagrange interpolation polynomials on the form

li(x) =
(�1)N+1+j(1� �(x)2)T 0

N (�(x))

N2i(�(x) � �(xi))
;

where Tn(�) = os(n aros �) represents the n'th order Chebyshev polynomial,

0 = N = 2, and i = 1 otherwise. The saled variable, �(x), is given as
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FIG. 8. Illustration of the urvilinear mapping used in the multidomain formulation

�(x) = 2
x� a

b� a
� 1 :

With this, we an represent the loal element wise solutions as

uN(x) =

NX
i=0

u(xi)li(x) ;

and ompute the pointwise derivatives in a similar fashion as for �nite di�erene

shemes, i.e., by a matrix-multiply as

du

dx

����
xj

' duN
dx

����
xj

=

NX
i=0

u(xi)Dji ;

where the di�erentiation matrix, D, has the entries [39℄

Dji =
dli(xj)

dx
=

8>>>><
>>>>:

� 2N2+1
6 i = j = 0

j
i

(�1)i+j

xj�xi
i 6= j

� xi

2(1�x2
i
)

0 < i = j < N

2N2+1
6 i = j = N

:

Thus, with this we an represent solutions and evaluate derivatives with spetral

auray, provided the solution is suÆiently smooth on the element [11℄.

The extension of this to multidimensional problems utilizes tensor produts, i.e.,

a two dimensional funtion is represented as

uN (x; y) =

NX
i=0

NX
j=0

u(xi; yj)li(x)lj(y) ;

and likewise for a three-dimensional �eld. The omputation of derivatives follows

the approah above.

While this allows the aurate omputation of spatial derivatives, it also assumes

that u(x; y) is de�ned on a retangular grid. This restrition we an overome by



26 J.S. HESTHAVEN

onsidering a urvilinear representation. In other words, we assume the existene

of a smooth non-singular mapping funtion, 	, relating the (x; y; z)-oordinate

system to the general urvilinear oordinate system (�; �; �) as illustrated in Fig. 8.

To establish a one to one orrespondene between the unit ube, I � R
3, and the

general urvilinear hexahedral, D, we onstrut the loal map for eah sub-domain

using trans�nite blending funtions [38℄. We refer to [48℄ for a thorough aount

of this proedure within the present ontext. Thus, we have Cartesian oordinates,

(x; y; z) 2 D, and the general urvilinear oordinates, (�; �; �) 2 I.

On urvilinear form, Maxwell's equations take the form

Q
�q

�t
+A(r�)

�q

��
+A(r�)

�q

��
+A(r�)

�q

��
= 0 ; (20)

with the state vetor, q = (E;H)T , and the material matrix, Q = diag("r; "r; "r; �r; �r; �r).

The general operator, A(n), depending on the loal normal vetor, n = (nx; ny; nz),

obtained from the metri through the mapping, 	, is given as

A(n) =

2
66666664

0 0 0 0 nz �ny
0 0 0 �nz 0 nx
0 0 0 ny �nx 0

0 �nz ny 0 0 0

nz 0 �nx 0 0 0

�ny nx 0 0 0 0

3
77777775

:

We show in Fig. 9 as an example a simple two-dimensional holographi waveguide

oupler and the geometry onforming multi-domain grid. The mapped Chebyshev

grid in eah element allows aurate omputation of derivatives while the body

�tted grid ensures that the solution is smooth inside eah element, hene taking

advantage of the auray of the high order sheme.

5.2.2. Conneting the Elements

Having the ability to aurately and eÆiently ompute derivatives in a general

urvilinear hexahedral and, thus, solve Maxwell's equations in suh a domain, we

must now fous on the question of how to assemble these loal solutions to reover

a global solution in a time-stable and aurate manner. Clearly, are has to be

exerise here as Maxwell's equations supports ounter propagating waves, onsisting

of both eletri and magneti �elds, i.e., one an not simply enfore ontinuity aross

the interfaes.

The entral observation to make, utilized in the ontext gasdynamis also [76,

77, 48℄, is that Maxwell's equations, written as in Eq.(20), is a strongly hyperboli

system. In other words, we an diagonalize the matrix Q�1A(n) as

STQ�1A(n)S = rjnj

2
66666664

�1 0 0 0 0 0

0 �1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
77777775

:
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FIG. 9. On top we show a sketh of a di�rative waveguide oupler and below a multi-domain
spetral grid used to model suh a geometry.

Here r = (�r"r)
�1=2 is the loal speed of light and jnj the length of the normal.

The entries of S an be found in [131℄ and a simpli�ed two-dimensional form in

[129℄.

Let us �rst onsider the ase where two neighboring elements an be assumed to

have smoothly varying materials. If we ompute the harateristi funtions, R =

STq, then the entries in the above diagonal matrix tell exatly how these funtions

are propagating, e.g., R1 and R2 propagates antiparallel to n, R5 and R6 propagates

parallel to n, while R3 and R4 signi�es a non-propagating DC omponent. With

this one knows exatly whih information propagates where at any point of the

boundary of the an element. Furthermore, what leaves one element, i.e., R5 and

R6, must orrespond exatly to what enters the neighboring element through R1

and R2. Thus, R5 and R6 provides the boundary onditions needed to solve the

neighboring solution. The non-propagating harateristi waves an be required to

be ontinuous.

At a material interfae, the situation an be dealt with in two di�erent ways.

One an either resale the harateristi variables to aount for the abrupt hange

in the materials or one an abandon the harateristi variables and simply enfore

the physial jump-onditions on the �elds, e.g., ontinuity of the tangential �elds.

5.2.3. A Few Examples

To illustrate the performane of the multi-domain spetral sheme disussed in

the above, let us onsider a few examples.
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FIG. 10. Illustration of plane waveguide test ase. The grid shows the general layout with
the high-index waveguide just below x = 0 and N = 16 modes in eah domain. On the right is
a snapshot of the Hz omponent at an arbitrary time illustrating the total �eld region as well as
the surrounding sattered �eld region (marked by an S).

As a �rst one, onsider simple two-dimensional TM polarized wave propagation in

a planar multi layer waveguide, as illustrated in Fig. 10. The waveguide is 6� long

waveguide where the ore layer has a thikness of d2 = � and an index of refration

n2 = 1:45, the ladding layers both have n1 = n3 = 1:4, while the thikness of the

two ladding layers are d1 = �, and d3 = 4�, respetively. The total �eld region,

in whih the omputation is onduted, as well as the surrounding sattered �eld

region with the absorbing layers are shown in Fig. 10. A 4th order Runge-Kutta

sheme is used to advane in time and a PML to trunate the omputational domain

(see [51℄ for details).

TABLE 1

Error in the omputation of the plane waveguide solution at t = 10.

N Nppw �t L1(Hz) L1(Hx) L1(Ey)

12 4.3 3.1E-2 5.0E-2 3.6E-1 2.5E-1

16 5.7 2.1E-2 1.1E-3 8.5E-3 6.0E-3

20 7.1 1.4E-2 6.9E-6 4.8E-5 3.9E-5

24 8.5 1.1E-2 2.2E-6 1.5E-5 1.1E-5

As a validation of the expeted spetral auray, we list in Table 1 the global

L1 error measured after 10 periods. Not only do we �nd spetral onvergene but

also that less than 6 points per wavelength (Nppw) yields an aeptable auray

for many appliations.

As a seond example, onsidered in more detail in [130℄, we onsider sattering by

an axisymmetri three-dimensional metalli satterer, in this ase a roket-shaped

nonsmooth objet. In Fig. 11 we illustrate the body-onforming grid and Fig. 12

shows a omparison of the bistati radar-ross-setion (RCS) for di�erent polar-
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FIG. 11. Typial multi-domain grid for the solution of sattering by a three-dimensional
axisymmetri missile.
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FIG. 12. On the left is shown the RCS(�,0) for a missile subjet to axial illumination by
a horizontally polarized plane wave and one the right the results under vertial polarization. A
referene solution is marked by \+".

izations as ompared with results obtained using a ontemporary integral equation

solver. The results are essentially idential.

As a �nal example, let us onsider a three-dimensional problem, in this ase

plane wave sattering by a ka = 5:3 di-eletri sphere. The sphere onsists of

a nonmagneti material with �r = 3 [131℄. Exellent results for the radar-ross-

setion, obtained with about 8 points per wavelength on the surfae of the sphere,

is shown in Fig. 13 along with a segment of the grid.

The multidomain sheme has by now been implemented and tested for a vari-

ety of problems, inluding three-dimensional waveguide and di�rative optis [23℄,

quasi-three-dimensional [138℄ and fully three-dimensional sattering [131, 139℄, and

propagation in lossy media [131, 28℄. Exellent parallel performane is demon-

strated in [23℄.

As exible and versatile as the multi-domain spetral approah is, these bene�ts

do ome at a prie, most notably the problems of onstruting a high-order body

onforming blok strutured grid. Furthermore, for highly urved elements one

has to be areful to avoid instabilities aused by aliasing, and to resolve both the

solution and the geometry suÆiently aurate. For nontrivial problems is it often

advantageous to use a high-order �lter [129, 51, 39℄ to improve robustness, although

are has to be taken not to adversely impat the auray.
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FIG. 13. On the left is shown an example of a three-dimensional urvilinear grid for
sattering by a ka = 5:3 dieletri sphere with �r = 3, and �r = 1. On the right is shown
the omputed bistati radar-ross-setion (RCS) (full lines) as ompared with the exat solution
(dashed line) omputed using a Mie series.

6. HIGH-ORDER FINITE VOLUME SCHEMES

The need for geometri exibility is shared with many other diiplines and it is

tempting to try and take advantage of suh related developments. Given the wave

nature of the solutions, it is natural to turn the attention towards methods from

gasdynami where one of the most remarkable and suessful developments has been

the �nite volume methods, ombining the geometri exibility of an unstrutured

grid with the ability to handle nonsmooth solutions.

The �nite volume method is based on a disretization of the onservation law

�u

�t
+r � f(u) = 0 ;

where u is the solution and f(u) represents a ux, often of a nonlinear harater.

Introduing a grid with grid points, xi 2 
, entered in the individual ontrol

volumes, D, we integrate over the ontrol volume and invoke Gauss' theorem to

reover

A(D)
dui

dt
+

I
�D
n̂ � f(u) dx = 0 ;

where A(D) represents the area/volume of D, ui the ell-averaged solution value,

i.e.,

u =

Z
D
u(x) dx ; (21)

and n̂ an outward pointing normal vetor at the boundary of D.

To put this into the ontext of Maxwell's equations, one needs only realize that

Eqs.(7)-(8) an be written as
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Q
�q

�t
+r � F (q) = S ; (22)

where Q represents the materials, q = [E;H℄T , and the ux, F = [F 1;F 2;F 3℄
T

has the omponents

F i(q) =

� �êi �H
êi �E

�
; (23)

where ê�, � = (x; y; z), represents the three Cartesian unit vetors.

The lose onnetion between gas dynamis and eletromagnetis has been ex-

plored in a series of papers [108, 107, 109, 33, 110, 35℄, devoted to the development

of high-order aurate �nite volume methods on strutured and loally orthogonal,

but unstrutured grids.

So far, everything in the above disussion remains exat. However, as we only

have ell-entered solution values, ui, evaluating the uxes, f(u), whih depend on

the solution, along the irumferene of the element an not be done in a straight-

forward manner. This problem, being one of reonstrution in ontrast to the

approximation of derivatives as disussed so far, is at the heart of the �nite volume

method and is where the approximation enters.

As shown in [47℄, if one an evaluate the loal uxes to O(hn), then the trunation
error of the ell averaged solutions, u, are also O(hn), i.e., we an fous on the

sheme for reonstruting the loal uxes.

Borrowing diretly from the suesses in omputational uid dynamis, one ould

again use the notion of harateristi waves, disussed in Se. 5.2, and form the edge

based solution by upwinding from both sides of the edge. Assuming for simpliity

a loally Cartesian grid, as done in [108, 33℄, one expresses the edge uxes as

f(xi+1=2) = F (uL; uR) = F+(uL) + F�(uR) ;

where F+(u) and F�(u) orresponds to the downwind, i.e., positive eigenvalues,

and F+(u) to the upwind, i.e., negative eigenvalues, omponents of the harater-

isti waves disussed in Se.5.2. This ux splitting is non unique with suggestions

given in [107, 109℄ in a general urvilinear formulation.

Given the linearity of the uxes, the auray of the reonstruted solution values,

i.e., uL and uR reonstruted from the left and right of edge, determines the overall

auray. Assuming a loally equidistant grid, it is proposed in [108, 33℄ to use the

MUSCL uxes

uLi+1=2 =

�
1 +

1

6
(r+ 2�)

�
ui ; uRi+1=2 =

�
1� 1

6
(2r��)

�
ui+1 ;

where r = E0 � E�1 and � = E1 � E0 where Ei is the shift-operator de�ned

in Eq.(14). This approah is based on loal Taylor expansions and is aurate to

O(h3), i.e., the sheme an be expeted to be third order aurate on a loally

uniform grid. Alternatives to the upwinded reonstrutions are disussed in [108℄.
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The numerial dispersion and grid-anisotropy for this method is disussed in

[107, 109, 33℄ and simulations using urvilinear, orthogonal grids are shown in

[110℄.

As disussed above, at the heart of the �nite volume sheme is the need to reon-

strut the loal solution, using only ell averaged values. The approah disussed

above is essentially limited to 3rd order auray by the MUSCL ux. An alterna-

tive is disussed in [33℄ and introdue the new one-dimensional variable

V (x) =

Z x

0

u(s) ds ;
dV

dx
= u(x) ;

i.e., if one an evaluate the pointwise derivative of V (x) aurately, one an reon-

strut the loal pointwise value of u(x) aurately. However, from the de�nition of

u, Eq.(21), it follows diretly that

V1=2 = 0 ; Vi+1=2 = Vi�1=2 + hui ;

assuming a simple one-dimensional equidistant grid. The extension to multiple

dimensions involves tensor-produt grids. With the grid funtion Vi+1=2 omputed,

we an now use any of the �nite di�erene tehnique disussed in Se. 4 to ompute

the loal derivative of Vi+1=2 to reover ui+1=2 and, onsequently, the loal ux.

Clearly, the order of this approah will depend on the sheme hosen to evaluate

the derivative of V (x). In [33, 35, 34℄ it is advoated to use an impliit ompat

stenil, similar to the ones disussed in Se. 4.2. Other tehniques disussed in

Se. 4 ould equally well be used. Dispersion errors of the ompat shemes are

disussed in [33℄ and errors assoiated with strethed grids are addressed in [35℄.

Dispersion optimized ompat reonstrutions are introdued in [34℄.

As appealing and simple as the �nite volume shemes are, they su�er from short-

oming similar to those of the �nite di�erene shemes disussed previously, e.g., an

inability to aurately deal with material interfaes and omplex geometries. This

is aused by the high-order reonstrutions essentially being based on logially

Cartesian grids. Furthermore, the ompat reonstrution essentially assumes loal

smoothness of the solutions, whih may not be the ase aross material interfaes.

Exploiting embedding tehniques may be a way of overoming this.

7. FINITE ELEMENT SCHEMES

Through the above disussions it has beome lear that the need to aurately and

systematially handle geometri omplex problems is perhaps the most signi�ant

hallenge when developing new methods. This realization is, however, not unique

to eletromagnetis and muh work has been done to address this problem in other

areas of omputational siene.

The ability to e�etively and aurately handle this problems remains one of

the main reasons for the remarkable suess of �nite element methods in solid and

uid mehanis (see [63℄ and referenes therein), leading to its widespread use and

availability of numerous ommerial software environments.

The use of �nite elements for solving Maxwell's equations has, however, been

relatively slow, in spite of early e�orts [111, 15, 112℄. This an be attributed

partly to the need to address numerous tehnial questions, e.g., element types,
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equation form and orret variational statements, and partly to the failure of the

most straightforward formulations. The suess of the �nite di�erene methods for

many problems ombined with it simpliity also made the �nite element formulation

less attrative.

With the growing need to solve geometrially omplex large sale problems, the

last last deade has seen a inreasing interest in the exibility o�ered by �nite ele-

ment shemes, although most of the developments has been for problems formulated

in the frequeny domain [69, 120℄.

Only more reently has �nite element shemes for the time-domain solution of

Maxwell's equations reeived more attention [82℄, fousing almost exlusively on low

order formulations. The development of high-order aurate �nite element methods

for the time-domain solution of Maxwell's equation remains an emerging �eld at

this point in time, although some of the results we shall disuss in the following

show illustrate its potential.

7.1. Continuous Finite Element Tehniques

When formulating a �nite element sheme for solving Maxwell's equations, one

enounters a number of questions, the �rst one being on whih form to onsider the

equations themselves.

On one hand one ould onsider solving the equations on �rst order form, Eq.(3),

"r
�E

�t
= r�H + J ; �r

�H

�t
= �r�E : (24)

The treatment of these �rst order non-self-adjoint operators is, however, often a

soure of signi�ant problems in lassial �nite element formulations.

An attrative alternative, and one that is most often used, is obtained by om-

bining the two �rst order equations to reover the selfadjoint url-url form

"r
�2E

�t2
+r� 1

�r
r�E =

�J

�t
: (25)

Both equations are subjet to appropriate boundary onditions, i.e., ontinuity of

tangential �eld omponents at material boundaries, Eq.(4), and vanishing tangen-

tial eletri �elds at ondutors, Eq.(6).

For both Eq.(24) and Eq.(25), some ondition at the far �eld is also needed if

the domain is open [82℄. This latter formulation is often preferred, partly beause

of the self-adjoint operator, natural for the formulation of standard �nite element

shemes, and partly beause of the deoupling between the �elds, thus reduing

the number of unknowns. However, this formulation also omes with a number of

pitfalls as we shall disuss shortly.

Let us �rst, however, onsider shemes for the �rst order form and introdue the

inner produt

(u;v)
 =

Z



u � v dx :

The variational form of Eq.(3) then follows as
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d

dt
("rE;�)
 = (r�H;�)
 + (J ;�)
 ;

d

dt
(�rH;�)
 = � (r�E;�)
 ;

� is test funtion, whih an be a salar or a vetor valued funtion. To seek

the semi-disrete numerial sheme, assume that the omputational domain, 
, is

partitioned into K non-overlapping elements, D, on whih the test funtions has

support.

Let us �rst onsider the simplest ase in whih the test funtion is a salar nodal

element, muh as is done in lassial �nite elements [63℄. Thus, we assume that the

numerial solutions are given as

E�
h (x; t) =

X
i

E�
i (t)�i(x) ; H�

h (x; t) =
X
i

H�
i (t)�i(x) ;

where � = (x; y; z), (E�
i ; H

�
i ) represents the unknowns, being nodal values or ex-

pansion oeÆients, and �i(x) are the loally de�ned basis funtions whih are

assumed ontinuous. Although not generally neessary, in the Galerkin form on-

sidered here, the trial and test funtions are the same.

Inserting the numerial solutions into the variational statement, yields the semi-

disrete form as

M" d

dt
Ex

h = SyHz
h � SzHy

h +MJx
h (26)

M" d

dt
E

y
h = SzHx

h � SxHz
h +MJy

h

M" d

dt
Ez

h = SxHy
h � SyHx

h +MJz
h

M� d

dt
Hx

h = SzEy
h � SyEz

h

M� d

dt
H

y
h = SxEz

h � SzEx
h

M� d

dt
Hz

h = SyEx
h � SxEy

h

where (E�
h ;H

�
h) represents the global degrees of freedom. We likewise have the

globally de�ned mass matries

M"
ij = (�i; "r�j)
 ; M�

ij = (�i; �r�j)
 ;Mij = (�i; �j)
 ;

as well as the di�erentiation matrix

S�ij =

�
�i;

��j
��

�



:

For the harmoni ase, it was shown in [89℄, however, that this most obvious form

harbors spurious vetor modes whih may lead to onvergene to wrong solutions.
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This was attributed to a lak of enforing the onstraint of divergene free �elds.

Another interpretation of this is the inability to properly represent the nulls pae

of the url-operator [115℄.

This topi of spurious solutions to Maxwell's equations has reeived signi�ant

attention in the literature [89, 98, 65℄, primarily in the ontext of frequeny do-

main solutions. An introdutory overview is given in [115℄. In the time-domain

these problems appear to be muh less signi�ant and ontrollable through the

smoothness of the initial onditions [65, 72℄.

Nevertheless, the solutions proposed to overome problems of spurious modes

in frequeny domain shemes have generally been used also in the development

of shemes for the time-domain. While several solutions are known, the by far

most popular is the use of a vetorial basis in the formulation of the �nite element

shemes, i.e.,

E(x; t) =
X
i

Ei(t)N i(x) ; H(x; t) =
X
i

Hi(t)N i(x) ; (27)

where (Ei; Hi) are salars and N i(x) represents the vetorial basis.

The main motivation for seeking vetor basis funtions is the observation that

the boundary onditions for Maxwell's equations are vetorial, i.e., it is natural

when seeking a onforming disretizations to utilize vetor basis funtions. Suh

basis funtions, often known as url onforming elements, should satisfy funda-

mental properties of the solutions to Maxwell's equations, e.g., support tangential

ontinuity of the solutions. This allows for imposing tangential ontinuity between

elements with di�erent materials as well as impose boundary onditions in a natu-

ral way. Furthermore, the use of suh elements guarantee the absene of spurious

modes in frequeny-domain �nite element shemes [7℄. An introdution to vetor

elements and how they avoid the spurious modes is given in [115℄.

Suh vetor elements, known as edge-elements [6℄, Nedele elements [93, 94℄,

Whitney forms [6, 56, 57℄, and url/div onforming vetor elements [40, 2℄, have

a number of interesting properties. In partiular, they are onstruted to provide

a disrete analog to the ontinuous vetor algebra and to enfore only minimal

ontinuity aross element boundaries, i.e., the url onforming elements enfore

tangential ontinuity while the div-onforming elements enfore normal ontinuity.

Albeit at onsiderable tehnial e�ort, edge elements an be onstruted to arbitrary

high-order, of modal/hierarhi [94, 125, 2℄ as well as interpolatory type [40℄, and for

simplies as well as quadrilaterals and hexahedrals. A general abstrat onstrution

is disussed in [56, 57, 58℄ and elements suitable for nonuniform order is derived in

[22℄.

Using url onforming elements, the semi-disrete form of Eq.(24) beomes

M" d

dt
Eh = SHh +MJh ; M� d

dt
Hh = �SEh ; (28)

where (Eh;Hh) again represents the global degrees of freedom. The globally de-

�ned mass matries are given as
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M"
ij = (N i; "rN j)
 ; M�

ij = (N i; �rN j)
 ;Mij = (N i;N j)
 ; (29)

as well as the sti�ness matrix

Sij = (N i;r�N j)
 :

While use of these elements e�etively eliminates the spurious modes and adds a lot

of struture to the solutions, they do overome another impat of the onforming

�nite element sheme, i.e., the need to invert a global, albeit sparse, mass matrix,

even if expliit time-stepping is used. As the order of the sheme inreases, more

degrees of freedom is needed on eah element, quikly rendering this inversion

prohibitive.

An approah to irumvent this has been developed in [20℄ where it was demon-

strated that one an use mass lumping to diagonalize the mass matries without

sari�ing the auray, even on urvilinear elements. This makes the sheme fully

expliit at the semi-disrete level and ompetitive with alternative methods. Unfor-

tunately, this approah is suessful only when using quadrilateral and hexahedral

Nedele-type elements as disussed in depth in [20, 19℄. The omputational results

are limited to two dimensional problems. A dispersion analysis of the semi disrete

sheme is also inluded in [20℄, displaying properties as for the �nite di�erene

sheme disussed in Se. 3.

While the development of the url-onforming Nedele elements presents a major

advanement, it omes at a slight prie. Not only are these families of elements

omplex but they also have a signi�antly higher number of degrees of freedom as

ompared to the lassial nodal elements. This is summarized in Table 2, illus-

trating that the url-onforming elements typially have d-times more degrees of

freedom, d being the dimension of the problem. However, as one needs d salar

�elds, the di�erenes are signi�ant for low order elements only.

An alternative to the use of url-onforming elements, while avoiding to rein-

trodue the problem of spurious modes, is to hange the variation statement to

aount for the divergene onstraint, e.g., as a penalty term

d

dt
("rE;�)
 = (r�H;�)
 + (J ;�)
 + (r � "rE;�)
 ;

d

dt
(�rH ;�)
 = � (r�E;�)
 + (r �H ;�)
 :

Similar forms has been shown to suessfully eliminate the spurious modes [65,

64℄, using the general language of least squares stabilized low order �nite element

sheme. As promising as this approah appear, we are unaware of any high-order

results using this.

While the developments of high-order �nite element shemes for the �rst order

system remains limited, there has been more reent ativity regarding the devel-

opment of �nite element shemes for Maxwell's equations on the url-url form,

Eq.(25).
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TABLE 2

Degrees of freedom for nodal and url elements of order n.

Nodal Element Curl Element

Quadrilateral (n + 1)2 2(n + 1)(n+ 2)

Hexahedral (n + 1)3 3(n + 1)(n + 2)2

Triangle 1
2
(n+ 1)(n+ 2) (n+ 1)(n+ 3)

Tetrahedron 1
6
(n+ 1)(n+ 2)(n + 3) 1

2
(n+ 1)(n+ 3)(n+ 4)

Assuming again the use of salar nodal �nite elements, the strong variational

form for Eq.(25) is

d2

dt2
("rE; �)
 +

�
r� 1

�r
r�E; �

�



=
d

dt
(J ; �)
 ;

resulting in the semi-disrete Galerkin form

M" d2

dt2
Ex

h + Sy;xEy
h � Sy;yEx

h � Sz;zEx
h + Sz;xEz

h = M
d

dt
Jx
h

M" d2

dt2
E

y
h + Sz;yEz

h � Sz;zEy
h � Sx;xEy

h + Sx;yEx
h = M

d

dt
J
y
h (30)

M" d2

dt2
Ez

h + Sx;zEx
h � Sx;xEz

h � Sy;yEz
h + Sy;zEy

h = M
d

dt
Jz
h

where

S�;�ij =

�
�i;

�

��

1

�r

�

��
�j

�



;

and the remaining operators are de�ned as above. It is, however, more ommon to

balane the smoothness between the trial and test funtions and onsider the weak

form

d2

dt2
("rE; �)
 +

I
�


�
n̂� 1

�r
r�E

�
� dx�

Z



r� � 1

�r
r�E dx =

d

dt
(J ; �)


with a semi-disrete form very similar to that above, Eq. (30).

As for the �rst order shemes disussed above, muh attention has been paid

to the problems of spurious modes in the frequeny-domain form of the url-url

equations. Indeed, it was in these shemes that the problems with spurious solutions

was �rst observed [111℄.

This has lead to several di�erent approahes to overomes this, following ideas

similar to those disussed above. The straightforward approah is to employ high-

order url-onforming elements to eliminate the possibility of spurious modes. As-

suming solutions of the form in Eq.(27), this yields the semi-disrete sheme

M" d2

dt2
Eh � SEh = M

d

dt
Jh ;
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where Eh and Jh represents the vetors of global eletri �elds and urrents, the

global mass-matries are de�ned in Eq.(29), and the sti�ness matrix has the entries

Sij =

�
r�N i;

1

�r
r�N j

�



:

As demonstrated reently in [67, 68℄, this formulation allows for the development

of high-order aurate shemes for the time-domain solution of the url-url equa-

tions. The e�ort demonstrates the viability of suh an approah for solving full

three-dimensional time-dependent problems, in ombination with perfetly mathed

layers [66℄ or a global boundary elements tehnique [68℄. Although the available

results remain fairly simple they nevertheless demonstrate the potential of suh an

approah.

The alternative approah, modifying the variational statement to inlude the

divergene onstraint, takes the from [88℄

d2

dt2
("rE; �)
 +

I
�


�
n̂� 1

�r
r�E

�
�x�

Z



r�� 1

�r
�E dx+

+

Z



(r � "rE)r� dx�
I
�


n̂
1

"r�r
r � "rE� dx =

d

dt
(J ; �)
 :

A related approah is disussed in [65, 64℄, derived using a least squares stabi-

lized �nite element sheme, thus avoiding the diret penalization. In [8, 99, 9℄ it

is proposed to solve Maxwell's equations using vetor and salar potentials, like-

wise eliminating spurious modes. We are unaware of attempts to ombine suh

formulations with high order elements.

7.2. Disontinuous Finite Element Tehniques

As promising as the ontinuous �nite element formulation is, it su�ers from a

number of problems whih are not easily overome. As we have already disussed,

the need for a onforming disretization not only ompliates matters but also

results in the need to invert a global mass matrix at every time step. While this

mass matrix is sparse and typially well onditioned the work assoiated with this

inversion inreases for higher order methods, beomes signi�ant for large sale

problems and may beome a bottlenek for parallel omputations.

Reently, however, formulations whih eliminate these issues has appeared. While

they an be derived for Maxwell's equations on both �rst order form, Eq.(24), as

well as for the url-url form, Eq.(25), all reent work has foused on the former.

We shall thus seek solution to Eq.(24) in a general domain, 
 onsidered as the

union of non-overlapping body-onforming elements, D. To simplify the derivation

we shall furthermore onsider Maxwell's equations on onservation form, Eq.(31),

as

Q(x)
�q

�t
+r � F (q) = S(qi;x) : (31)

Reall that q represents the state vetor, the ux F is given in Eq.(23), Q reets

a diagonal matrix with material parameters and S signi�es the soures, e.g., the

inoming �elds and/or the urrent.
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To formulate the sheme we assume that there exists an approximate solution,

qh, on the form

qh(x; t) =
X
i

qi(t)�i(x) ; (32)

within eah element. Similarly, we assume that F h and Sh are polynomial repre-

sentations of the ux and of the soure, respetively. Note that we do not plae

any global onstraints on the basis, �i, i.e., it is in general disontinuous and non-

onforming.

To seek equations for the unknowns, we require the approximate solution to

Maxwell's equations, qh, to satisfy

Z
D

�
Q
�qh
�t

+ r � F h � Sh) �i(x) dx

=

I
�D

	i(x)n̂ � [F h � F �℄ dx : (33)

We emphasize that the integration is over the loal element, D, and not the full

domain, 
, in ontrast to the to ontinuous �nite element shemes disussed in Se.

7.1.

Here �i and 	i represent sequenes of N test funtions, F � signi�es a numerial

ux and n̂ is an outward pointing unit vetor de�ned at the boundary of the

element. If the numerial ux is onsistent, the sheme is learly onsistent. On

the other hand, boundary/interfae onditions are not imposed exatly but rather

weakly through the penalizing surfae integral. In this multi-element ontext, the

formulation is inherently disontinuous and yields, through its very onstrution, a

highly parallel loal sheme.

Let us de�ne the loal inner produt

(u;v)D =

Z
D
u � v dx ;

and the loal mass matries operators

M"
ij = (�i; "r�j)D ; M�

ij = (�i; �r�j)D ; Mij = (�i; �j)D ; (34)

the disrete di�erentiation operator

S�ij =

�
�i;

�

��
�j

�
D

; (35)

where � = (x; y; z). The boundary integration operator is de�ned as

Fij =

I
�D

	i�j dx : (36)
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With this, we an write the semi-disrete form of Maxwell's equations as

M" d

dt
Ex
h � SyHz

h + SzHy
h �MSE;xh = FPE;x

h (37)

M" d

dt
E
y
h � SzHx

h + SxHz
h �MSE;yh = FPE;y

h

M" d

dt
Ez
h � SxHy

h + SyHx
h �MSE;z

h = FPE;z
h

M� d

dt
Hx

h � SzEy
h + SyEz

h �MSH;xh = FPH;x
h

M� d

dt
H

y
h � SxEz

h + SzEx
h �MSH;yh = FPH;y

h

M� d

dt
Hz

h � SyEx
h + SxEy

h �MSH;zh = FPH;z
h :

Here (E�
h ;H

�
h), � = (x; y; z), represents the loal degrees of freedom, SE;� and

SH;� represents the omponents of the soures disussed in Se. 2, and we have

introdued the penalizing boundary uxes, PE;�
h and PH;�

h for Eh and Hh, re-

spetively. We shall de�ne these shortly.

One notes immediately that relaxing the ontinuity of the elements deouples the

elements and results in a blok-diagonal global mass matrix whih an be inverted

in preproessing. The prie paid for this is the additional degrees of freedom needed

to support the loal basis funtions. For high-order elements, this is, however, only

a small fration of the total number of degrees of freedom.

The oupling of the loal solutions to reover the global solution is aomplished

through the numerial uxes, F �. In this regard, one an view these methods

as a high-order generalization of the �nite volume shemes disussed in Se. 6,

albeit without the ompliations of wide stenils and omplex proedures for the

reonstrution of the pointwise solution.

Given the linearity of Maxwell's equations, it is natural to use upwinding, simi-

lar to the pathing through harateristis disussed for the spetral multidomain

shemes in Se. 5. This is given on the form [90℄

PE
h = Z

�1
n̂� �

n̂� [Eh℄� Z+[Hh℄
�

; (38)

PH
h = Y

�1
n̂� �

n̂� [Hh℄ + Y +[Eh℄
�

: (39)

Here [q℄ = q� � q+ measures the jump in the �eld values aross an interfae.

Supersript '+' refers to �eld values from the neighbor element while supersript '-'

refers to �eld values loal to the element. To aount for the potential di�erenes in

material properties in the two elements, the loal impedane, Z�, and ondutane,

Y �, is de�ned as

Z� =
1

Y �
=

r
��

"�
;

and the sums
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Z = Z+ + Z� ; Y = Y + + Y � ;

of the loal impedane and ondutane, respetively.

Choosing the test funtions, �i, 	i and the numerial ux, F �, one has a large

degree of freedom when designing di�erent shemes. Fousing on Galerkin shemes,

in whih ase 	i(x) = �i(x) = �i(x), it is worth realizing that following integration

by parts in Eq.(33) this sheme beomes the muh studied disontinuous Galerkin

method [18, 3℄. This is, however, only one among many di�erent formulations in

the same family of disontinuous element/Penalty methods. We refer to [50, 52, 53℄

where other hoies are studied in the general ontext of onservation laws and

problems of wave-propagation.

To omplete the sheme one needs to speify basis element type and an assoiated

basis �i(x), most often of polynomial nature. and de�ne the unknown oeÆients,

qh, for funtions de�ned on the elements.

Using general urvilinear quadrilaterals, as in [78, 79℄, it is natural to use a

tensor-produt interpolating basis as is done for the spetral multi-domain shemes

disussed in Se. 5.2. The advantage of this is, apart from its simpliity, that one

reovers a diagonal loal mass matrix by using polynomials de�ned at quadrature

points. This results in shemes that are very similar to those in Se. 5.2, the

main di�erene being whether the harateristi onditions on the boundary uxes

are imposed weakly or strongly. A non-onforming extension of suh shemes is

disussed in [79℄ and the dispersion harateristis of suh shemes are disussed in

[61℄. Extensions to problems with nonuniform grids are analyzed in [62℄, on�rming

that suh disontinuous formulations are well suited for wave-propagation.

In [123, 54, 55℄ the development of a Galerkin sheme on nodal tetrahedral ele-

ments is initiated, aimed at demonstrating the potential of using a disontinuous

element formulation for solving very large geometrially omplex three-dimensional

problems in time-domain omputational eletromagnetis.

Choosing the appropriate form of the loal basis on the tetrahedron is less a

question of formulation and more a question of performane as measured by eÆ-

ieny and auray of the �nal sheme. An immediate andidate is the monomial

basis, �i(x) = x�1y�2z�3 with j�j � n. As is well known, however, this will lead to

extremely illonditioned operators as the basis beomes almost linearly dependent

for high polynomial order and prohibits the stable and aurate omputation at

high order.

The way to overome suh onditioning problems, we �rst follow the approah

of Se. 5.2, and introdue a smooth urvilinear mapping, 	 : D ! I, between the

general element, D, and a anonial tetrahedron, I, on whih we seek an orthonormal

basis. Suh a basis has been known for a long time [103, 75, 27℄. This leaves

the question of how to ompute the expansion oeÆients, q. Clearly, with an

orthonormal basis at hand, it may seem natural to use this as the loal basis. The

impat of doing so, however, is that all modes are needed to evaluate qh pointwise.

This lak of separation between inner modes and boundary modes is not optimal

for the disontinuous formulation where the ux term depends on the uxes at the

boundary of D only. To overome this issue one ould seek to give up the strit
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orthonormality of the basis to ahieve a separation between inner and boundary

modes. Suh a basis is developed in [73℄ and provides an approah, albeit rather

omplex, to ahieve arbitrarily high order auray.

Using a nodal element, however, one an de�ne qh as an interpolating polynomial,

i.e., we require that

8i : qh(x(�i); t) =
X
j

qj(t)�j(�i) ;

where �j(�) is the orthonormal basis on I and �i are prede�ned grid-points in I. The

number of nodes, N , is simply that required for ompleteness, as listed in Table 2.

On vetor form this yields the requirement that

qh = Vq ; Vij = �j(�i) ; (40)

where V is a multidimensional Vandermonde matrix. The genuine multivariate

Lagrangian polynomials are

qh(x(�); t) =
NX
i=1

qh(x(�i); t)Li(�) ; VTL = � ;

where the latter expression for evaluation of the Lagrange polynomials follows from

the interpolation property. Here L = [L1(�); ::; LN(�)℄
T and the basis is given as

 = [�1(�); ::; �N (�)℄
T .

The �nal issue in need of attention is the hoie of the nodal points, �i, within

I. As is well known, the suess of high-order Lagrangian interpolation is ritially

dependent on the orret distribution of the nodes. This is a problem that has

reeived some attention reently and nodal distributions, enabling the onstrution

of well behaved unique Lagrange polynomials up to order 18 on the triangle [49℄

and up to order 10 on the tetrahedron [16, 53℄.

The nodal distributions are haraterized by having exatly N nodes. Further-

more, the nodal set inludes the verties, the edges, and the faes of the tetrahe-

dron. The number of nodes on eah fae is exatly that is required to support a

two-dimensional multivariate polynomial, i.e., N2d = (n + 1)(n + 2)=2 nodes on

eah fae. Same harateristis are shared by the nodes on the triangles.

In this setting it is more natural to reast the sheme in physial spae. The

only di�erene with Eq.(37) is that (E�
h ;H

�
h) then represents the N -long vetors

of nodal values in eah element, Sh the nodal values of the soure funtion, and

PE
h and PH

h the nodal values of the numerial ux as de�ned in Eqs.(38)-(39).

The disrete, pointwise operators, are given as

Mij =

Z
D
LiLj dx ; S�ij =

Z
D
Li

�Lj
��

dx : (41)

The form of the boundary operator, F, is simpli�ed as a onsequene of the unique-

ness of the Lagrange polynomial and the struture of the nodal points, i.e., inte-

gration of the three-dimensional Li over the surfae is equivalent to the sum of
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the integration of the two-dimensional Lagrange polynomials de�ned by the nodal

distribution on the faes. This implies that

Ffae
ij =

I
fae

l2Di l2Dj dx ; (42)

F =
X
faes

RT
fae(V

�1
2D)

TFfaeV�1
2DRfae :

Here l2Di represents the two-dimensional Lagrange polynomials de�ned by the

nodes on eah of the 4 faes, V2D is the assoiated Vandermonde matrix similar

to the three-dimensional form, Eq.(40), and Rfae is an N2d �N whih serves to

extrat those nodes situated at eah fae of the element.

To reiterate the importane of this separation between internal and boundary

nodes, we note that the operation ount for evaluating the sheme, Eq.(37), assum-

ing no separation, is O(6N2) for eah variable. For the nodal sheme, or a modal

sheme with a similar separation, the work sales like O(2N2 + 4NN2d). Hene,

the relative saving in operations sales as

Work with Nodal Basis

Work with Simple Modal Basis
=

1

3
+

2

n+ 3
:

This learly beomes inreasingly important as the order of the approximation, n,

inreases, although even for n = 3 do we �nd a 1=3 redution.

One of the main advantages of the nodal element is the ease by whih one an re-

lax the restrition on tetrahedra having straight faes only. Clearly, this will impat

the evaluation of the disrete operators, Eqs.(41)-(42), by requiring spei� opera-

tors for eah element and suÆient auray in the integration to evaluate entries

in the operators. However, the evaluation of the boundary uxes is straightforward

in a nodal representation even as the normal vetors, n̂, vary along the faes.

The details of the nodal based disontinuous element sheme and its eÆient

implementation an be found in [54, 55℄, inluding a omplete onvergene analysis

and alternative divergene preserving formulations.

The disontinuous element formulation an be expeted disussed to allow a

highly eÆient parallel implementation on ontemporary large sale distributed

memory mahines. As a veri�ation of this, we list in Table 3 the relative parallel

speedup for a single large sale appliation, demonstrating superlinear saling. Sim-

ilar and more extensive studies, given in [54℄, on�rm this high parallel eÆieny

for a variety of appliations.

TABLE 3

Relative time for a 245.000 element grid with 6'th order elements

as a funtion of the number of proessors.

Number of Proessors 64 128 256 512

Relative time 1.00 0.48 0.24 0.14
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FIG. 14. On the left is shown details of the body onforming grid used to ompute
sattering by a two-dimensional PEC ylinder. The right shows the rapidly onverging bistati
radar-ross-setion when inreasing the order, n, of the sheme.

Let us onlude this disussion with a few examples. Advanement in time is

done using a low-storage 4th order expliit Runge-Kutta method [14℄ and the om-

putational domain is terminated with a ombination of strething of the grid and

harateristi boundary onditions at the outer boundaries.

As a �rst, simple two-dimensional problem, we onsider TM-polarized plane wave

sattering by a ka = 15� metalli ylinder . In Fig. 14 we show both a fration of the

grid, illustrating the body onforming high-order nodal grid, and the bistati RCS

omputed using a �xed, very oarse grid, and ahieving onvergene by inreasing

the order of the sheme.

As an example of a more hallenging three-dimensional problem, onsider plane

wave sattering by a perfetly onduting onesphere, onsisting of a 60.5 m long

one with half angle of 7 deg, apped smoothly with a spherial ap of radius 7.49
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FIG. 15. On the left we show a details of the body onforming grid used to ompute
sattering by a large PEC onesphere. The surfaes are triangulated for visualization based on
the nodes of the high-order elements. On the right we show omputed bistati radar-ross-setion
(RCS) for vertially polarized plane wave illumination at the tip and ompared with results using
integral equation based frequeny domain solver (CFIE).
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FIG. 17. Appliation of an unstrutured grid disontinuous element high-order method to
the solution of eletromagneti sattering a military airraft. The frequeny of the inoming plane
wave is 600 MHz. On the left is shown a part of the triangulated surfae grid and on the right
is shown one of the magneti �eld omponents on the surfae of the plane. The omputation is
performed with 4th order elements and approximately 245.000 tetrahedra to �ll the omputational
volume.

methods suh as expliit 3rd or 4th order Runge-Kutta methods [10, 46℄. Interest-

ing alternatives to these lassial approahes are low-storage Runge-Kutta methods

[10, 14℄, limiting the need for additional stages, and dispersion optimized Runge-

Kutta shemes [60℄, designed for propagating waves over long distanes.

Using a spatial high-order �nite di�erene sheme, many pratitioners ontinue to

use the 2nd order aurate Leapfrog sheme, used also in the lassial Yee sheme

[132℄, often hoosing the time-step under error onstraints rather than stability

onstraints. This approah is used in e.g. [119, 135, 134℄. In [126℄ a deferred

orretion tehnique using a bakward di�erentiation method is used to ahieve 4th

order.

The situation is very similar when using �nite volume or �nite element disretiza-

tions of the �rst order Maxwell's equations where 2nd order Leapfrog shemes

[20, 19℄ or expliit Runge-Kutta methods [33, 34, 35℄ remain the main workhorses.

For the �nite element disretizations of the url-url equations, leading to an equa-

tion of 2nd order in time, the standard hoie is the Newmark sheme [63℄, generally

hosen to be 2nd order aurate and either impliit or expliit [66, 68℄. Interesting

alternatives ould be Nystr�om methods to enable a higher order auray. As the

�nite element disretization of the url-url form always requires a matrix inversion,

impliit shemes seems most attrative as they ome at little additional ost.

The onditions for disrete stability naturally depends on both the details of

the spatial and the temporal disretization as well as the form in whih Maxwell's

equations are stated. However, ombining any of the semi-disrete shemes dis-

ussed here with an expliit time-integration sheme generally yields a ondition

for disrete stability as

�t � C min
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What separates the di�erent shemes is partly the value of the onstant C, typi-

ally of O(1), but most importantly what the grid size, h, means. Naturally, for

the extensions of the Yee sheme disussed in Se. 4 or the high-order �nite vol-

ume shemes in Se. 5, h maintains its simple meaning due to the equidistant

grid. However, for the more ompliated multi-domain/multi-element shemes, the

geometri exibility omes at a prie sine typially one has

h / l

n2
;

where n represents the order of the approximation and l the smallest edge length of

the elements. This illustrates that one should strive to use a large elements as pos-

sible to avoid prohibitively small time-steps and, thus, very long omputing times.

Some attempts to slightly improve on this are disussed in [25, 31, 51℄ although one

has to be areful not to inrease the time-step at the expense of auray. Ulti-

mately, this emphasizes the need to support urvilinear body-onforming elements

in the formulation as one must aim to resolve the solutions and not the geometry

sine the latter may result in unneessarily small stable time steps.

As appliations beome inreasingly omplex, the geometries themselves often re-

quires small ells and, thus, small time steps. Tehniques to overome this remain

ative researh areas. Fully impliit time-stepping is of ourse an option but may be

prohibitive for large sale problems where the sti�ness is loalized to small regions

of the grid. More interesting alternatives inlude the use of non-onforming dis-

retizations [22, 79℄, expliit-impliit Runge-Kutta methods [74℄ enabling splitting

on the grid, and time-aurate loal time-stepping methods [21℄.

9. CONCLUSIONS AND OUTLOOK

Looking through the list of referenes aompanying this review, one quikly

realizes that most referenes diretly related to the high-order aurate time-domain

solution of Maxwell's equation are less that 5 years old. This is both a testament

to the timeliness of this review as well as the ativity experiened in this researh

area over the last few years.

However, learning about the various e�orts also emphasizes that muh work re-

mains to be done. The simpliity of the �nite di�erene bases embedding shemes,

avoiding grid generation and allowing the treatment of omplex, even moving,

boundaries in a simple manner, is also its Ahilles Heel, i.e., it is diÆult to imag-

ine higher than 4th order auray and many issues related to stability of general

interfaes remains open. However, 4th order may well suÆe for many problems of

moderate size and omplexity. Indeed, if stable and robust versions of suh meth-

ods ould be developed, they may well have the potential to sueed the urrent

golden standard { the Yee sheme.

Currently, however, there seems to be no robust alternative to multi-element

shemes, be they spetral multi-domain shemes, high-order time-domain �nite el-

ement shemes, or disontinuous �nite element shemes. Eah of these formulations

have their own advantages and disadvantages although, at this partiular point in

time, the development of the disontinuous element formulations, Se. 7.2, appear

to be most advaned.



48 J.S. HESTHAVEN

Many issues ontinue to require serious attention. Apart from the plentiful the-

oretial questions, e.g., semi-disrete and fully disrete stability, smoothness of the

solutions around non smooth geometries and its impat on the onvergene rate,

the importane of the divergene onstraints in time-domain shemes et, many is-

sues with a potential for immediate impat remains open. Perhaps most evident is

the need to onsider alternatives to the widely used expliit time-stepping shemes.

For large sale geometrially omplex problems this is beoming a bottlenek.

Another area that ontinues to require attention is the development of au-

rate and eÆient means to trunate the omputational domain. This beomes of

inreasing importane as the auray requirements inrease. Perfetly mathed

layer methods [4, 5℄ have reeived muh attention in the last deade and ontinues

to be a viable solution. Their ost for large sale problems is, however, a onern.

Global boundary onditions, e.g., [45, 42, 105℄, deserves serious attention as does

the reently demonstrated use of time-domain integral equations [68℄ as a means to

trunate the omputational domain when using high-order aurate methods.

High-order aurate multi-element tehniques are urrently limited by low-order

grid generation, i.e., most ommerial grid-generation software does not support

higher order desriptions of boundaries and interfaes. To fully ripe the bene�ts

of the high-order auray, this must be overome, e.g., through a more dynami

interfae between the model desription and the grid generation. This problem is,

however, not unique to eletromagnetis and there is urrently signi�ant researh

ativity to overome this restrition and enable high-order model desription and

grid-generation.

Adaptive solution tehniques as well as aurate and eÆient means to treat

randomness in the geometries, materials, and solutions, are both areas whih have

reeived only very limited attention in the past. Nevertheless, advanes in these ar-

eas have the potential for a dramati impat as appliations ontinues to emphasise

higher frequenies and more omplex signals form and materials.

While it took the insight of Maxwell to realize the beautiful simpliity of ele-

tromagneti wave propagation, the reent advanes in high-order aurate methods

for suh phenomena suggests that less an do when it omes to solving them om-

putationally. As omplex as these problems are, the advanes over the last deade

are substantial and enouraging, although the appliations ontinue to surpass the

omputational apabilities in omplexity and size. Nevertheless, the gap is slowly

narrowing, and the ontinued emphasis on high-order aurate methods for the

time-domain solution of Maxwell's equations may eventually enable the develop-

ment of robust, aurate, and eÆient omputational tools, powerful and versatile

enough to address the eletromagneti problems of tomorrow.
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