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Chapter 1

Introduction

Stochastic analysis has played a key role in the development of financial markets.
It has provided practitioners with scientific tools that helped them agreeing on
which is the fair price of any derivative contract traded and therefore, standardize
the financial industry’s activity. The simplest derivative contracts are financial
instruments that involve two counterparties. These two participants agree today
on the form of a future payment, often referred to as the payoff, that the
first counterparty will pay to the second one on a future given date known
as the contract’s maturity. The payoff of this contract will be linked to the
performance of an underlying asset during the time to maturity, and some fixed
price negotiated between both counterparties, also known as the strike price.
The difficulty arises when trying to give a fair price to this derivative contract
today. The question can be posed in simple terms as follows:

“How much should the counterparty A pay today to the counterparty B, to
acquire the right that the counterparty B pays back the agreed payoff in a future

date?”

This, a priory, simple question had remained unanswered for many years and is
still today hard to answer. The following subsection provides the reader with
a quick introduction to option pricing and a chronological historic background.
This will lead into some of the questions that this thesis attempts to answer,
through a collection of research articles developed over the past three years.
Each of the papers are presented along Chapters 2 to 5, some of which are a
bit more theoretical and others try to answer more applied questions. All of the
research is somehow connected to the previous key question.

The rest of the subsections in this introduction provide the reader with the
techniques and references used later in the articles for a better understanding.
Special attention will be put on Malliavin calculus and fractional Brownian
motion among other technical results. A summary of the papers is also provided
to resume what each of the articles attempt to answer, helping the reader move
through the different parts of this work with extra agility. Finally, some ideas
on how to perform further research, and how to extend the results presented in
this work will be sketched.
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1. Introduction

1.1 Option Pricing Framework and Historical Background

Many different researchers have been key to the development of mathematical
models for financial markets. The first of them was Louis Bachelier (1900), who
introduced the basis of mathematical finance in his PhD thesis [5] and set an
agenda for the future of probability theory and stochastic analysis. He was
the first to use a mathematical model to reproduce the behavior of asset prices
after conjecturing that asset prices followed a normal distribution. In modern
probability theory, his idea would formally be stated through the following
concepts. Mainly, a complete probability space

(

Ω, (Ft)t∈[0,T ] ,P
)

, a natural

(right-continuous) filtration given by F , {Ft, t ∈ [0, T ]} and generated by a
standard Brownian Motion {Wt, t ∈ [0, T ]}. Assuming a constant interest rate
equal to zero, and letting {St, t ∈ [0, T ]} be the stock price process, Bachelier
suggested the following equation according to the normality hypothesis.

St = S0 + σWt, 0 ≤ t ≤ T, (1.1.1)

where S0 is the current price of the stock. An obvious deficiency in Bachelier’s
model is that stock prices being normal, can lead to negative prices at any
time t ∈ [0, T ]. To overcome this problem, Samuelson introduced in [37] (1955)
the geometric Brownian motion model (GBM), in which the stock price St, in
the risk-neutral setup given by the equivalent martingale measure Q ∼ P (see
Theorem 1.4.6), is given by

St = S0e
(r− 1

2
σ2)t+σWt , (1.1.2)

where r, σ are constants. Since Wt ∼ N (0, t) we have that EQ
[

eσWt
]

= e
1
2

σ2t.
Therefore, the expectation of St is EQ [St] = S0e

rt. This implies that the
expected growth rate of the stock is r. This is key to risk-neutral pricing as
proposed later. Note that the parameter σ, known as volatility, measures the
standard deviation of log-returns, i.e. the standard deviation of log (St+h/St) is
σ

√
h. This volatility parameter is the cornerstone of the later developments in

financial modeling that serve as motivation for this thesis. In parallel Kiyoshi
Itô developed the concept of stochastic integral in 1951, see for instance [23],
where he gives an interpretation to the following expression:

It (X) ,

∫ t

0

XsdWs, (1.1.3)

where {Xs, s ∈ [0, t]} is an adapted stochastic process, integrated with respect
to a Brownian motion. He also provided formalization of a continuous time
stochastic evolution given by the following stochastic differential equation (SDE):

dSt = a (t, St) dt+ b (t, St) dWt, t ∈ [0, T ] , (1.1.4)

where a, b are sufficiently regular functions. The Itô formula was also being
developed during that time, allowing to establish a relationship between a SDE

2



Option Pricing Framework and Historical Background

for some independent variable St and a SDE for a function of that variable, i.e.
f (t, St) for a certain family of functions. Itô’s formula is a stochastic version
of the classical chain rule of differentiation and prescribes how a function of a
stochastic process f (t, St) changes stochastically as time changes.

Theorem 1.1.1. (Itô formula). Let St be the process given in (1.1.4) and consider
a function f (t, x) ∈ C1,2 ([0, T ] × R+). Then

df (t, St) =

(

∂tf (t, St) + ∂xf (t, St) a (t, St) +
1

2
∂2

xxf (t, St) b (t, St)
2

)

dt

+ ∂xf (t, St) b (t, St) dWt. (1.1.5)

By 1960 the Itô integral, SDE’s and the connection with the heat equation
were already understood and this propitiated that in 1973, Fisher Black, Myron
Scholes and Robert Merton derived the celebrated Black-Scholes option pricing
formula in two separate papers, both in 1973 (Black-Scholes in [12] and Merton
in [31]). Their study awarded Scholes and Merton the Nobel Prize for Economics
in 1997. Black had died in 1995. Using a model based on the geometric Brownian
motion from equation (1.1.2), and given by

dSt = µStdt+ σStdWt, (1.1.6)

where S is the asset price, µ ∈ R is the drift parameter and σ ∈ R+ is the
volatility or diffusion parameter, which was assumed to be constant. The authors
managed to derive the Black-Scholes partial differential equation that an option
value Vt had to fulfill, this is,

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (1.1.7)

where r is the interest rate from a riskless asset, also referred to as the bank
account. The previous equation provides the condition for an investor to be
indifferent to either a risky or riskless investment. So far, all the previous work
had been addressed towards pricing equity options, but little had been done
on interest rates. In 1977, Oldrich Vasicek developed a framework for pricing
interest rate options in [39]. A first model for short-term interest rate using the
geometric Brownian motion from equation (1.1.2) led to an SDE of the form

drt = µ (t, rt) dt+ σ (t, rt) dWt. (1.1.8)

The bond pricing equation was postulated as a parabolic partial differential
equation (PDE), similar to the Black-Scholes equity counterparty formula.

In 1981 following the analogy established by Black, Scholes and Merton,
between risky and riskless assets, Harrison and Pliska introduced the risk-
neutrality concept for pricing contingent claims. In [20], the authors develop the
risk-neutral pricing formula by means of martingale theory, which is an essential
tool of stochastic calculus.

3



1. Introduction

Theorem 1.1.2. (Risk-Neutral Pricing Formula). In an arbitrage-free complete
market M, there exists a unique equivalent martingale measure Q ∼ P, such
that for all r ∈ R+ and t ∈ [0, T ], the price at time t, of a contingent claim h (St)
is given by

Vt = e−r(T −t)EQ [h (ST ) | Ft] .

A basic requirement on any option pricing model is to match observed market
prices at any given time t. In order to achieve the previous requirement, the
model parameters are chosen such that model prices fit observed market prices.
One would also require any good model, to capture the main features in the
observed prices. Recalling from [13] that a European call option on an asset St

that pays no dividends, with maturity date T > 0 and strike price K, is given
by the payoff (ST −K)

+, the Black-Scholes formula that provides the value of
this call option is given by

CBS (St,K, τ, σ) = StΦ (d+) −Ke−rτ Φ (d−) ,

d+ =
− ln (St/K) +

(

r ± σ2

2

)

τ

σ
√
τ

, d+ = d− + σ
√
τ ,

where τ = T − t is the time to maturity, Φ is a standard normal cumulative
distribution function and σ ∈ R+ is the constant parameter for volatility. Given
that the Black-Scholes function is a strictly increasing function with respect to
the volatility σ ∈ (0,+∞), one can find the theoretical value Σt (τ, k) of the
volatility parameter, such that Black-Scholes model prices match the observed
market prices, i.e. CBS

mkt = CBS (St,K, τ,Σt (τ, k)), where the function

Σt : (τ, k) −→ Σt (τ, k) ,

is called the implied volatility surface at a fixed date t and k = log (St/K) is
often referred to as log-moneyness. The following Figure 1.1, found in [6], shows
an implied volatility surface for the options on S&P500 as of August 14, 2003.
While the Black-Scholes model from (1.1.6) assumed the implied volatility to be
constant, i.e.

Σt (τ, k) = σ,

it is clearly observed from empirical data that there exists a strong dependence1

of implied volatility with respect to strike prices K and time to maturity τ . In
other words, one cannot properly calibrate the model to observed market prices
with a constant value of σ. Therefore the assumption that volatility is constant,
made in the Black-Scholes model, seems to be no longer realistic.

At this point stochastic volatility (SV) models come to play, allowing the
volatility parameter σ to vary in a random fashion, see [17] for a detailed

1This dependence is often referred to as “skew” if the implied volatility is a decreasing

function of strike prices, or “smile” if implied volatility is U-shaped with respect to strike

prices.
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Option Pricing Framework and Historical Background

Figure 1.1: SPX volatility surface as of August 14, 2013. Time measured in
years. (Source: C. Bayer, P. Friz and J. Gatheral in [6].)

introduction. These models are useful since they manage to describe in a
consistent way the previous empirical observation, i.e. why options with different
strike prices and expirations have different values of implied volatility. These
new family of models assume an SDE to describe the dynamics of the volatility.
One of the most popular among SV models is due to Steven Heston in 1993. In
[21], the author provides joint dynamics for both the underlying asset price St

and the volatility σt through the following SDEs

dSt = µtStdt+
√
σtStdW

1
t , (1.1.9)

dσt = −κ (σt − θ) dt+ ν
√
σtdW

2
t , (1.1.10)

where κ is often called the speed of mean reversion, θ is the long term mean value,
ν is the volatility of volatility and W 1 and W 2 are two Brownian motions with
correlation ρ ∈ [−1, 1]. Equation (1.1.10) is a version of a Cox-Ingersoll-Ross
(CIR) process, see for instance [14] and must fulfill the Feller condition [16], given
by 2κθ > ν2, in order to ensure the positivity of the process σt. The first main
drawback in SV models such as the Heston model is their associated market
incompleteness as a consequence of the fact that instantaneous volatility σ is
not tradable nor observable at each time t. A second drawback arises from using
this class of models to reproduce the term structure of ATM (at-the-money)
skew, this is

ψ (τ) ,

∣

∣

∣

∣

∂

∂k
Σt (τ, k)

∣

∣

∣

∣

k=0

.

Note that k = 0 turns out to be the ATM. Estimates of ψ (τ) are very sensitive
to the choice of the SDE for the volatility dynamics in a SV model. Gatheral et

5



1. Introduction

Figure 1.2: The black dots are non-parametric estimates of the S&P500 ATM
volatility skew as of June 2013; the red curve is the power law fit ψ (τ) = Aτ−0.4.
Time is measured in years. (Source: J. Gatheral, T. Jaisson and M. Rosenbaum
in [18].)

al. show in 2018 in [18] how none of the classic SV models can fit non-parametric
estimates of the S&P500 ATM volatility skews. Indeed, SV models can only
generate a term structure for ATM skew such that it is constant for small τ .
Instead, fractional stochastic volatility models, this is a SV model where the
volatility is driven by a fractional Brownian motion (fBm) with Hurst exponent
H ∈ (0, 1/2), can generate ATM volatility skews of the form ψ (τ) ∼ τH−1/2,
that fit observed data. This is shown in Figure 1.2. A brief introduction to fBm
can be found later in Section 1.6.

Alternatively, this sort of explosion in ψ (τ) as τ → 0 can also be mimicked
to a certain extent, using jump diffusion processes, but can never be achieved
using a Brownian motion. Models with jumps, not only produce a huge variety
of smile and skew patterns but can also help explain the distinction between
skew and smile, in terms of asymmetry of jumps anticipated by the market.
This is, the difference in price of index options across different strike prices as a
consequence of fear of a large downward jump. The previous fact, often leads to
downward skews as shown in [13].

All the previous developments made having closed-form pricing formulas
almost impossible. Even when possible, these formulas do not allow in general
for fast model calibration of the parameters. Giving a physical interpretation
is also sometimes difficult. In view of these difficulties, a race towards the
development of approximating formulas for pricing derivatives started. These
approximation formulas or decomposition formulas, give better understanding
of the model parameters role, since they are the sum of the classical Black-
Scholes equation plus a Taylor-type expansion with respect to these parameters.
Special decomposition formulas for call option prices in the Heston model using
Malliavin calculus and Itô calculus were first developed by Elisa Alòs in [2] and

6



Option Pricing Framework and Historical Background

[1], respectively. Let T > 0 be the time horizon, and let W and W̃ be two
independent Brownian motions defined on a complete probability space (Ω,F ,P).
Denoting by FW and FW̃ , the completed natural filtrations generated by W and
W̃ , respectively. Set Ft , FW

t ∨ FW̃
t , t ∈ [0, T ]. We will consider the log-price

process Xt = logSt, as it is more convenient for better tractability. Therefore,
from the general Itô formula (1.1.5) from Theorem 1.1.1, we have that

dXt =

(

r − 1

2
σ2

t

)

dt+ σt

(

ρdWt +
√

1 − ρ2dW̃t

)

. (1.1.11)

It will be very useful at this point to define the projected future variance as

v2
t ,

1

T − t

∫ T

t

E
[

σ2
s | Ft

]

ds, (1.1.12)

since this will set the basis to define the forward variance as shown later in this
section.

Theorem 1.1.3. (Decomposition formula Alòs 2012) Assume the model given by
equations (1.1.11) and (1.1.10), where the volatility process σ = {σs, s ∈ [0, T ]}
satisfies the Feller condition. Then, for all t ∈ [0, T ], the price Vt of an European
call option with payoff

(

eXT −K
)+

can be written as follows,

Vt = BS (t,Xt; vt) (1.1.13)

+
ρ

2
E

[

∫ T

t

e−r(s−t)ΛΓBS (s,Xs, vs)σsd〈M,W 〉s | Ft

]

+
1

8
E

[

∫ T

t

e−r(s−t)Γ2BS (s,Xs, vs) d〈M,M〉s | Ft

]

,

where

Λ , ∂x,

Γ ,
(

∂2
x − ∂x

)

; Γ2 = Γ ◦ Γ =
(

∂4
x − 2∂3

x + ∂2
x

)

,

and BS (t, x, σ) , exΦ
(

d̃+

)

− Ke−r(T −t)Φ
(

d̃−
)

is the Black-Scholes function

written in terms of log-prices, with d̃± ,
Xt−ln(K)+

(

r± σ2

2

)

(T −t)

σ
√

T −t
.

In 1994 Bruno Dupire introduced a new class of SV models, see for instance
[15], that were later refined by Lorenzo Bergomi [8, 9] in the 2000s. Once forward
variance had been defined as the expectation under the pricing measure of future
instantaneous variance, given by,

ξu
t , E [σu | Ft] ; u ≥ t,

7



1. Introduction

forward variance models took over since ξt had a deep connection with a whole
new class of derivative products that started to become popular among practi-
tioners. Known as variance swaps, these products exchange the realized variance
of a given asset with some fixed amount during a period of time until expiry T .
Therefore, acquiring a long position in such contract would grant the holder the
following payoff:

1

T − t

N
∑

i=1

(

log
(

Sti+1

)

− log (Sti
)
)2 − V T

t , (1.1.14)

where
∑N

i=1

(

log
(

Sti+1

)

− log (Sti
)
)2

is the realized variance of the asset S and
V T

t is the strike price, such that the initial price of the variance swap is zero.

Definition 1.1.4. Let T > 0 be the maturity of a variance swap V T
t . We define

the instantaneous forward variance as

ξT
t ,

d

dT

(

(T − t)V T
t

)

, t ≤ T. (1.1.15)

Therefore, we have that

V T
t =

1

(T − t)

∫ T

t

ξu
t du. (1.1.16)

.

Now that the connection between forward variance and variance swaps is
clear, it is known that any Markovian SV model can be rewritten in forward
variance form, see for instance Chapter 7 in [10]. Therefore, one would preferably
want to work with the later, given that instantaneous volatility σt is not tradable
but variance swaps are indeed tradable. In such way, one does no longer need to
consider an incomplete market.

1.1.1 The Insurance Framework

A lot less has been said on insurance over the years, despite the challenges
that this industry has faced were never smaller. Usually, insurance products
have longer time horizons than financial products, increasing the importance of
certain assumptions that can be simplified or even neglected in finance. The risk
derived from interest rates in such long term products acquires higher relevance
as well as the modeling of mortality rates of clients, or the distributions of house
fires, car accidents and natural catastrophes. We will follow Chapters 2 and 8
in [27], for a quick introduction to mortality transition rates and an analysis of
unit-linked policies, respectively.

The studies performed in this thesis that are connected to insurance are
centered in a specific insurance product named “unit-linked” policies. The value
of such product is tied to the performance of a fund or the value of a stock St. The

8



Option Pricing Framework and Historical Background

insurer pays an agreed payoff to the insured in case an insured event takes place.
These policies have the characteristic feature that the benefits (endowments
or death benefits) are not deterministic, but random. A unit-linked policy is
usually financed by a single premium due to management of this policies. In the
case studied, we model the payoff of such contract at time t, as the maximum
between the price of the stock or fund value St and a deterministic guarantee
G ∈ R+,

Ct = max {St, G} .
We have already seen in Theorem 1.1.2 that, in order for us to give a fair price
to this future payment, there exists an equivalent martingale measure Q ∼ P,
such that there is no arbitrage opportunity. Therefore, the price at time t of a
unit-linked policy with death benefit CT , is given by

Vt = EQ
[

e−r(T −t) max {ST , G} | Ft

]

· T px,

where T px is the probability that an x-year old individual survives for the next
T − t years and Q is an equivalent measure to the historical measure P, such
that the discounted value of the underlying fund or stock price is a martingale.

In order to properly introduce the mortality transition rates and probabilities,
we will need to introduce some definitions.

Definition 1.1.5. Let X = {Xt, t ∈ [0, T ]} be a stochastic process on (Ω,F ,P)
with state space S and T ∈ R, where S is a countable set consisting of all possible
health states of the insured. The process X is called Markov chain, if for all

n ≥ 1, t1 < t2 < · · · < tn+1 ∈ [0, T ] , i1, i2, . . . , in+1 ∈ S

with
P [Xt1

= i1, Xt2
= i2, . . . , Xtn

= in] > 0,

the following holds:

P
[

Xtn+1
= in+1 | Xtk

= ik∀k ≤ n
]

= P
[

Xtn+1
= in+1 | Xtn

= in
]

. (1.1.17)

We will focus mainly on two following health states in this work, represented
by ∗ =”alive” and † =”deceased”. Now, it will be convenient to define the
following processes:

IX
i (t) =

{

1, if Xt = i

0, if Xt 6= i
, i ∈ S,

NX
ij (t) = # {s ∈ (0, t) : Xt− = i,Xt = j} , i, j ∈ S, i 6= j.

Here, # denotes the counting measure and Xt− , limu→t Xu the left limit of X
at time t. The random variable IX

i (t) tells us whether the insured is in state i
at time t and NX

ij (t) tells us the number of transitions from state i to state j in
the whole period (0, t).

9



1. Introduction

Definition 1.1.6. Let X be a stochastic process on (Ω,F ,P). Then

pi,j (s, t) , P [Xt = j | Xs = i] , where s ≤ t and i, j ∈ S,

is called the conditional probability to switch from state i at time s, to state j
at time t. These probabilities are often referred to as transition probabilities.

The following theorem of Chapman and Kolmogorov states the relation be-
tween P (s, t), P (t, u) and P (s, u) for s ≤ t ≤ u, where P (s, t) = {pij (s, t)}(i,j)∈S×S
is the matrix of all transition probabilities between all the possible states in S.

Theorem 1.1.7. Let X be a Markov chain. For s ≤ t ≤ u ∈ [0, T ] and i, k ∈ S
such that P [Xs = i] > 0, the following equations hold:

pik (s, u) =
∑

j∈S

pi,j (s, t) pj,k (t, u) ,

or in matrix notation,

P (s, u) = P (s, t) × P (t, u) .

This shows, that one can get P (s, u) by matrix multiplication of P (s, t) and
P (t, u), for s ≤ t ≤ u ∈ [0, T ].

Definition 1.1.8. A family (pij (s, t))(i,j)∈S×S is called transition matrix, if the
following four properties hold:

1. pij (s, t) ≥ 0.

2.
∑

j∈S pij (s, t) = 1.

3. pij (s, t) =

{

1, if i = j,

0, if i 6= j,
if P [Xs = i] > 0.

4. pik (s, u) =
∑

j∈S pij (s, t) pjk (t, u) for s ≤ t ≤ u and P [Xs = i] > 0.

Theorem 1.1.9. Let X be a Markov chain. Then, (pij (s, t))(i,j)∈S×S is a transi-
tion matrix.

Definition 1.1.10. A Markov Chain X is called homogeneous, if it is time homo-
geneous, i.e. the following equation holds for all s, t ∈ R, h > 0 and i, j ∈ S such
that P [Xs = i] > 0 and P [Xt = i] > 0:

P [Xs+h = j | Xs = i] = P [Xt+h = j | Xt = i] .

For a homogeneous Markov chain, we use the notation:

pij (h) , pij (s, s+ h) ,

P (h) , P (s, s+ h) .

10
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Definition 1.1.11. Let X be a Markov chain in continuous time with finite state
space S. Then, X is called regular, if

µi (t) = lim
∆tց0

1 − pii (t, t+ ∆t)

∆t
for all i ∈ S,

µij (t) = lim
∆tց0

pij (t, t+ ∆t)

∆t
for all i ∈ S,

exist, are finite and continuous with respect to t. The functions µi and µij are
called transition rates of the Markov chain.

Theorem 1.1.12. Let X be a regular Markov chain on a finite state space S.
Then, the following statements hold:

1. (Backward differential equations)

d

ds
pij (s, t) = µi (s) pij (s, t) −

∑

k 6=i

µij (s) pkj (s, t) ,

d

ds
P (s, t) = −Λ (s)P (s, t) .

2. (Forward differential equations)

d

dt
pij (s, t) = −pij (s, t)µj (t) +

∑

k 6=j

pik (s, t)µkj (t) ,

d

dt
P (s, t) = P (s, t) Λ (t) .

Definition 1.1.13. Let X be a regular Markov chain on a finite state space S.
Then, we denote the conditional probability to stay in state j during the time
interval (s, t), by

p̄jj (s, t) , P





⋂

ξ∈[s,t]

{Xξ = j} | Xs = j



 ,

where s, t ∈ [0, T ], s ≤ t and j ∈ S.

This can be used to calculate the probability that the insured survives the
next T -years. The following theorem ends this section by illustrating how
this probability can be calculated based on the transition rates, showing that
everything needed in order to derive these probabilities, is to properly model
the transition rates.

Theorem 1.1.14. Let X be a regular Markov chain. Then the probability of
being in state j ∈ S at time s and staying in the same state at time t, is given by

T px , p̄jj (t, t+ T ) = exp







−
∑

k 6=j

∫ t+T

t

µjk (τ) dτ







,

11



1. Introduction

where s ≤ t, provided that P [Xs = j] > 0. For example, this gives us the
probability that a t-year old individual who is alive j = ∗ ∈ S, is still alive after
the next T years.

1.2 Basics of Stochastic Analysis

This section provides a brief introduction to the basic concepts of stochastic
analysis for both the continuous and discontinuous cases. Both cases are treated
respectively in two different subsections.

1.2.1 The Continuous Case: Brownian Motion

We will closely follow [7] for a quick introduction to this topic given that the
content in this subsection corresponds to the concepts given in any introduction
to stochastic analysis. One can find in [24], a detailed guide to this topic. In
order to build the option pricing theory of Black and Scholes, it will be very
convenient to study the basics of stochastic analysis. Concepts such as the Itô
integral and the Itô formula, constitute the foundation of this mathematical
discipline. The so-called martingale processes, or simply martingales, constitute
an important class of stochastic processes. In mathematical finance they are one
of the main building blocks for deriving option prices and hedging strategies. In
order to fully understand the definition of a martingale it is essential to clarify
the concept of conditional expectation.

Definition 1.2.1. Assume that Z is a random variable. Then the conditional
expectation E [Z | Fs] is defined as the unique Fs-adapted random variable X
satisfying

E [1AX] = E [1AZ] , ∀A ∈ Fs. (1.2.1)

In order for the conditional expectation to exist, we need to impose a moment
condition on Z: one can only define the conditional expectation of random
variables Z for which E [|Z|] < ∞.

Definition 1.2.2. A stochastic process Mt is called a martingale if it is an adapted
process, E [Mt] < ∞ and

E [Mt | Fs] = Ms, (1.2.2)

for every 0 ≤ s ≤ t < ∞.

On the left-hand side of (1.2.2) we take the expectation of Mt conditioned
on all the information the Brownian motion can give us up to time s. This
information is encapsulated in the notation Fs.

The Itô integral defines what one should understand by integration of a
stochastic process with respect to a Brownian motion (or any stochastic process
acting as an integrator). The whole purpose is to give an interpretation to the

12
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expression (1.1.3). One would like to define the stochastic integral in (1.1.3), as
the following limit

∫ t

0

X (s, ω) dB (s, ω) = lim
n→∞

n−1
∑

i=1

X (si, ω) (B (si+1, ω) −B (si, ω)) . (1.2.3)

Note that we take the limit for each fixed ω. The problem is that for almost
all ω ∈ Ω, this limit in general does not exist. The function s → B (s, ω) is
extremely volatile for almost all ω. It is an example of a continuous, but nowhere
differentiable function. Indeed is a function of infinite variation. This fact does
not allow to construct a pathwise integral in the sense of Riemann-Stieltjes for
all continuous path integrands. However, Itô took advantage of the martingale
properties of Brownian motion and the fact that their paths have finite quadratic
variation, to construct an integral in the L2 sense.

We conclude the discussion with the definition of the Itô integral.

Definition 1.2.3. A stochastic process Xs is called Itô integrable on the interval
[0, t] if:

1. Xs is adapted for every s ∈ [0, t], and

2.
∫ t

0
E
[

X2
s

]

ds < ∞.

The Itô integral is defined as the random variable

∫ t

0

XsdBs ,

∫ t

0

X (s) dB (s) (1.2.4)

= lim
n→∞

n−1
∑

i=1

X (si) (B (si+1) −B (si)) ,

where the limit is taken in L2 (Ω).

Theorem 1.2.4. The expectation and variance of the Itô integral are

E

[
∫ t

0

XsdBs

]

= 0, Var
(
∫ t

0

XsdBs

)

=

∫ t

0

E
[

X2
s

]

ds.

The relation for the variance is also known as the Itô isometry.

Definition 1.2.5. The stochastic process Xt is called an Itô process if there exist
two Itô integrable stochastic processes Yt and Zt, such that

Xt = x+

∫ t

0

YsdBs +

∫ t

0

Zsds. (1.2.5)

13
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Note that we assume both processes Yt and Zt to be adapted, which leads to
the adaptedness of Xt. Moreover, since Z is also Itô integrable, the Itô process
has a finite second order moment. In the following theorem we state the Itô
formula for an Itô process of the form (1.2.5).

We will now introduce the Itô formula. This formula has a wide range of
applications and is the stochastic version of the classical chain rule of differen-
tiation of calculus. It prescribes how a function of a Brownian motion f (Bt),
or more generally, a function of an Itô process f (Xt) will be decomposed into
the dynamics of the process Xt and the rate of change of f (x) given by its
derivatives. The Itô integral is the main ingredient in the stochastic chain rule.
Together with the Itô integral, Itô’s formula set the foundation for modern
stochastic analysis.

Theorem 1.2.6. Assume that f (t, x) ∈ C1,2 ([0, T ] × R) and let Xt be an Itô
process. Then

f (t,Xt) = f (0, x) +

∫ t

0

Ys
∂f

∂x
(s,Xs) dBs

+

∫ t

0

∂f

∂t
(s,Xs) ds+

∫ t

0

Zs
∂f

∂x
(s,Xs) ds+

1

2

∫ t

0

Y 2
s

∂2f

∂x2
(s,Xs) ds.

To end this section, we give a result on a representation of martingales in
terms of stochastic integrals.

Theorem 1.2.7. (Martingale Representation Theorem) If Mt is an L2 (Ω), F-
adapted martingale, there exists an Itô integrable process Xs such that

Mt = M0 +

∫ t

0

XsdBs.

All square integrable martingales with respect to the filtration generated by
a Brownian motion can be written as a stochastic integral with respect to that
given filtration. Therefore, a consequence of this theorem is that we can define
martingales as processes of the form Mt = M0 +

∫ t

0
XsdBs. This will be very

convenient since later on, we will manipulate the conditional expectation and
martingales to derive option prices in a simple way.

1.2.2 The Discontinuous Case: Pure Jump Lévy Processes

This section is an analogous introduction to the basic concepts and results of
stochastic analysis for jump processes instead. We will follow [33] for a quick
introduction. A complete and detailed review of this topic can be found in [4].
Let (Ω,F ,P) be a complete probability space.

Definition 1.2.8. A one-dimensional Lévy process is a stochastic process X =
{Xt, t ≥ 0}, satisfying the following properties:

14
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1. X0 = 0, P−a.s.,

2. X has independent increments, that is, for all t > 0 and h > 0, the
increment Xt+h −Xt is independent of Xs for all s ≤ t.

3. X has stationary increments, that is, for all h > 0, Xt+h −Xt
d
= Xh.

4. X is stochastically continuous, that is for all ǫ > 0 and

lim
s→t

P (|Xt −Xs| > ǫ) = 0, t ≥ 0.

The jump of X at time t is defined by

∆Xt , Xt −Xt−,

and the number of jumps of size ∆Xs ∈ U ⊂ B (R0), for any s ∈ [0, t] where
R0 , R \ {0} is given by

N (t, U) ,
∑

0≤s≤t

XU (∆Xs) . (1.2.6)

This defines in a natural way a Poisson random measure N on B (0,∞) × B (R0),
given by

(a, b] × U 7−→ N (b, U) −N (a, U) , 0 < a ≤ b, U ∈ B (R0) .

We call this measure, the jump measure of X and its differential form is denoted
by N (dt, dz), t > 0.

The Lévy measure ℓ of X is defined by

ℓ (U) , E [N (1, U)] , U ∈ B (R0) .

This measure does not need to be finite, but must always satisfy
∫

R0

(

1 ∧ |z|2
)

ℓ (dz) < ∞.

It is possible to have the following
∫

R0

(1 ∧ |z|) ℓ (dz) = ∞,

which implies paths of infinite variation.

Now we will present a characterization of Lévy processes through a formula
that was first established by Paul Lévy and A. Ya. Khintchine in the 1930s and
is known as the Lévy-Khintchine representation formula.
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Theorem 1.2.9. (Lévy-Khintchine formula)

(1) Let X be a Lévy process. Then

E
[

eiuXt
]

= eiΨ(u), u ∈ R, (1.2.7)

with the characteristic exponent being given by

Ψ (u) , iαu− 1

2
σ2u2 +

∫

|z|<1

(

eiuz − 1 − iuz
)

ℓ (dz) +

∫

|z|≥1

(

eiuz − 1
)

ℓ (dz) ,

(1.2.8)
where the parameters α ∈ R and σ2 ≥ 0 are constants and ℓ = ℓ (dz), z ∈ R0, is
a σ-finite measure on B (R0) satisfying

∫

R0

(

1 ∧ |z|2
)

ℓ (dz) < ∞. (1.2.9)

It follows that ℓ is the Lévy measure of X.

(2) Conversely, given the constants α ∈ R and σ2 ≥ 0, and the σ-finite
measure ℓ ∈ B (R0), such that (1.2.9) holds, then there exists a process X
(unique in law), such that (1.2.7) and (1.2.8) hold. The process X is a Lévy
process.

We define the compensated jump measure Ñ , also referred to as the compen-
sated Poisson random measure, by

Ñ (dt, dz) , N (dt, dz) − ℓ (dz) dt.

For any t, let Ft be the σ-algebra generated by the random variables Ws and
Ñ (s,A); A ∈ B (R0), s ≤ t and define the following filtration F = {Ft, t ≥ 0} in
the given probability space (Ω,F ,P). Now, fix 0 < T < ∞ and let P denote the
smallest σ-algebra with respect to which all mappings F : [0, T ] × R0 × Ω → R

satisfying (1) and (2) below are measurable:

1. for each 0 ≤ t ≤ T , the mapping (x, ω) → F (t, x, ω) is B (R0) ⊗ Ft-
measurable.

2. For each x ∈ R0, ω ∈ Ω, the mapping t → F (t, x, ω) is left-continuous.

We call P the predictable σ-algebra. A P-measurable mapping G : [0, T ] × R0 ×
Ω → R is then said to be predictable. Clearly the definition extends naturally
to the case where [0, T ] is replaced by R+.

Let θ = θ (t, z), t ≥ 0, z ∈ R0, be an F-predictable process, such that

E

[

∫ T

0

∫

R0

θ2 (t, z) ℓ (dz) dt

]

< ∞ for some T > 0,
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the process

M (t) ,

∫ t

0

∫

R0

θ (s, z) Ñ (ds, dz) , 0 ≤ t ≤ T, (1.2.10)

is a martingale in L2. Moreover we have the Itô isometry given by

E





(

∫ T

0

∫

R0

θ (t, z) Ñ (dt, dz)

)2


 = E

[

∫ T

0

∫

R0

θ2 (t, z) ℓ (dz) dt

]

. (1.2.11)

A Wiener process is a special case of a Lévy process. In fact, we have the
following general representation theorem.

Theorem 1.2.10. (Lévy-Itô decomposition) Let X be a Lévy process. Then
X = Xt, t ≥ 0, admits the following integral representation

Xt = a1t+ σWt +

∫ T

0

∫

|z|<1

zÑ (ds, dz) +

∫ T

0

∫

|z|≥1

zN (ds, dz) , (1.2.12)

for some constants a1, σ ∈ R. Here W = {Wt, t ≥ 0}, is a standard Wiener
process.

Finally, in order to end this section, we provide a fundamental result in
stochastic calculus for Lévy processes, which is the counterpart of the Itô formula
for jump processes.

Theorem 1.2.11. (The one-dimensional Itô formula). Let X = {Xt, t ≥ 0} be
the Lévy process given by

Xt = x+

∫ t

0

α (s) ds+

∫ t

0

β (s) dWs +

∫ t

0

∫

R0

γ (s, z) Ñ (ds, dz) ,

where α (t) , β (t) and γ (t, z) are predictable processes. Consider a function
f : (0,∞) × R −→ R in C1,2 ((0,∞) × R) and define

Yt , f (t,Xt) , t ≥ 0.

Then, the process Y = (Yt)t≥0 , is also an Itô-Lévy process and its differential
form is

dYt =
∂f

∂t
(t,Xt) dt+

∂f

∂x
(t,Xt)α (t) dt+

∂f

∂x
(t,Xt)β (t) dWt (1.2.13)

+
1

2

∂2f

∂x2
(t,Xt)β

2 (t) dt+

∫

R0

[f (t,Xt + γ (t, z))

−f (t,Xt) − ∂f

∂x
(t,Xt) γ (t, z)

]

ℓ (dz) dt

+

∫

R0

[f (t,Xt− + γ (t, z)) − f (t,Xt−)] Ñ (dt, dz) .
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1.3 Stochastic Differential Equations

This subsection aims to provide a basic framework for stochastic differential
equations (SDEs) as well as addressing the problem of solving such differential
equations. An introductory guide to this topic is found in [36], or alternatively
in Chapter 5 of [26].

Starting from the Itô integral (1.2.4) we can define an SDE by the following
expression:

dXt = b (t,Xt) dt+ σ (t,Xt) dBt, X0 = x0 ∈ R, (1.3.1)

for a Brownian motion B. This equation is an informal version of the corre-
sponding Itô integral equation, given by

Xt = x0 +

∫ t

0

b (s,Xs) ds+

∫ t

0

σ (s,Xs) dBs. (1.3.2)

Several questions arise at this point:

1. Can one obtain a solution to the SDE (1.3.2), i.e. when does a solution to
the SDE exist?

2. If a solution to (1.3.2) exists, when is the solution unique?

3. How can one solve an equation such as the one given in (1.3.2)?

In order to answer all these questions, we need to start by introducing the
concept of strong solution, given in the following definition.

Definition 1.3.1. (Strong solution) Let X = {Xt, t ∈ [0, T ]} be a process on a
given probability space (Ω,F ,P) with continuous sample paths, such that:

1. X is adapted to the filtration F,

2. There exists x ∈ R, such that P (X0 = x) = 1,

3. P

(

∫ t

0

[

|b (s,Xs)| + σ2 (s,Xs)
]

ds < ∞
)

= 1,

4. Xt = x+
∫ t

0
b (s,Xs) ds+

∫ t

0
σ (s,Xs) dBs, P − a.s.

Then, X is called a strong solution to (1.3.1), with initial condition x ∈ R.

Following [25] we will introduce the definition of uniqueness.
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Definition 1.3.2. Let b (t, x) and σ (t, x) be given. Suppose that, B is a Brownian
motion on some (Ω,F ,P), X0 = x0 ∈ R, {Ft} is the natural filtration generated
by B, and X, X̃ are two strong solutions of (1.3.1) relative to B with initial
condition x0, then P

(

Xt = X̃t; 0 ≤ t < ∞
)

= 1. Under these conditions, we say
that strong uniqueness holds for the pair (b, σ) .

Theorem 1.3.3. (Existence and uniqueness of solutions for stochastic differential
equations). Let T > 0 and b (·, ·) : [0, T ] × R → R, σ (·, ·) : [0, T ] × R → R be
measurable functions satisfying

|b (t, x)| + |σ (t, x)| ≤ C (1 + |x|) ; x ∈ R, t ∈ [0, T ] , (1.3.3)

for some constant C, and such that

|b (t, x) − b (t, y)| + |σ (t, x) − σ (t, y)| ≤ D |x− y| , (1.3.4)

for all x, y ∈ R, t ∈ [0, T ] and some constant D. Then, for all t ∈ [0, T ]
and X0 = x0 ∈ R, the stochastic differential equation (1.3.1) has a unique
t-continuous solution Xt (ω) with the property that Xt (ω) is adapted to the
filtration Ft generated by Bs; s ≤ t and

E

[

∫ T

0

|Xt|2 dt
]

< ∞.

Proof. The full version of this proof is found in [36]. The proof for the existence of
a strong solution is similar to the familiar existence proof for ordinary differential
equations based on the technique of Picard iteration, see e.g. Chapter 4 in
[22]. �

The uniqueness of the strong solution follows from the Itô isometry (1.2.11)
and the Lipschitz property (1.3.4), answering this way, to the second question
posed in the beginning of this subsection. Despite one may prove the existence
and uniqueness of a solution to an SDE like the one given in (1.3.1), it may
be difficult to explicitly write the actual solution, usually even impossible.
Nevertheless, one can derive explicit solutions for simple examples as the ones
proposed in the beginning of Section 5 in [36].

1.4 Basics of Mathematical Finance. Option Pricing and
Hedging

The goal of this section is to provide the reader with the basic results on option
pricing on a simplified framework. We will follow [7] and [11] for this quick
introduction, and the reader is referred to Chapter 10 in [11] for a full overview
in a more general framework. What we aim to do here, is to derive fair prices of
derivative contracts. Furthermore, we shall discuss how one can come up with a
strategy, to hedge the risk associated with a position in a derivative contract.
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Let us therefore consider a financial market consisting of only two assets: a
risk free asset (which can be regarded as a bank account), with price process B,
and a stock price process S. Let us start with the formal definition of risk-free
asset.

Definition 1.4.1. The price process B is the price of a risk free asset, if it has
the dynamics

dBt = rBtdt, (1.4.1)

where r is a constant.

A natural interpretation of a riskless asset is that it corresponds to a bank
account with short rate interest r. We will assume that the stock dynamics is
given by the SDE (1.1.6). The Black-Scholes model consists of two assets with
dynamics given by (1.1.6) and (1.4.1), with r, µ and σ being constants. We
consider a financial market given by these two assets, and approach the problem
of pricing financial derivatives, also known as contingent claims.

Definition 1.4.2. A contingent T -claim is a financial contract that pays the
holder a random amount X at time T . The random variable X is square
integrable and FT -adapted, and T is called the exercise time of the contingent
claim.

Observe that all contracts with payoff f (ST ), where f is some function of an
underlying asset price S, are contingent claims. European call and put options
are defined respectively by the following payoffs:

f (s) = (s−K)
+

= max (s−K, 0) , (European call option payoff),

f (s) = (K − s)
+

= max (K − s, 0) , (European put option payoff).

In order to give a fair price to this financial products, we start by considering
a financial market consisting of a stock (risky investment), a bond (risk-free
investment) and a contingent claim. The price process of the stock is modeled
by a geometric Brownian motion,

dSt = µStdt+ σStdWt,

while the price dynamics of the bond takes the form

dBt = rBtdt; B0 = 1.

We let the price dynamics of the contingent claim be an adapted stochastic
process denoted by Vt = V (t, St). We will assume that an investor can form
portfolios from three investment alternatives. Let at be the number of stocks, bt

the number of bonds and ct the number of claims in such a portfolio at time t,
which are all assumed to be adapted stochastic processes. We call (a, b, c) the
portfolio strategy, and the portfolio value at time t is therefore

Πt = atSt + btBt + ctVt. (1.4.2)
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The value process Πt becomes an adapted stochastic process by definition.

Definition 1.4.3. A portfolio strategy (a, b, c) is called self-financing if

dΠt = atdSt + btdBt + ctdVt. (1.4.3)

We can think of dΠ as the change in portfolio value that coincides with
the right-hand side of (1.4.3) if the portfolio is self-financing. Recall that the
differential form of a stochastic process is just a simplified notation, and the
self-financing property is translated into integral form as follows

Πt = Π0 +

∫ t

0

asdSs +

∫ t

0

bsdBs +

∫ t

0

csdVs.

We introduce now the arbitrage notion, that is the possibility of earning money
from a zero-investment without taking any risk. For instance, if there is a way
to short-sell bonds to finance a purchase of stocks and claims which yields a sure
profit, the market is pricing the different instruments so that arbitrage is possible.
In ideal markets, such opportunities should not exist, simply because investors
will see this opportunity and try to exploit it by competing on prices. This would
eventually lead to an equilibrium price in a liquid market, where arbitrage is not
possible. We now proceed to give a formal mathematical definition to this idea.

Definition 1.4.4. A self-financing portfolio strategy is called an arbitrage oppor-
tunity if Π0 ≤ 0, ΠT ≥ 0 and E [ΠT ] > 0.

Claim 1. We assume that the price process Πt is such that there are no arbitrage
possibilities on the market consisting of (Bt, St,Πt).

Theorem 1.4.5. (Black-Scholes Equation) Assume that the market is specified
by equations (1.1.6) and (1.4.1), and we want to price a contingent claim f (ST ).
Then the only pricing function which is consistent with the absence of arbitrage
is the solution to the following boundary value problem in the domain [0, T ]×R+,
given by

V (t, s) + rsV (t, s) +
1

2
s2σ2V (t, s) ∂ssV (t, s) − rV (t, s) = 0, (1.4.4)

V (T, s) = f (s) . (1.4.5)

The proof to the previous result revolves over the fact that we explicitly
assumed Markovian dynamics for S and B, and these play a key role in obtaining
equations (1.4.4) and (1.4.5). A more general result for the fair price of contingent
claims can be obtained due to Harrison and Pliska [20], as stated in Theorem
1.1.2. In that case, the fair price of a contingent claim f (St) is given by the
formula

Vt = e−r(T −t)EQ [f (ST ) | Ft] , (1.4.6)
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where the Q-dynamics of S are given by the change of measure established by
Girsanov’s theorem in [19], resulting in the following SDE for the stock price

dSt = rStdt+ σStdWt.

Theorem 1.4.6. (Girsanov Theorem) Let W P be a standard P-Wiener process
on (Ω,F ,P) and ϕ be any adapted process, such that is integrable with respect
to W P. We define the process Lt as

Lt = exp

(
∫ t

0

ϕsdW
P
s − 1

2

∫ t

0

ϕ2
sds

)

, t ∈ [0, T ] .

Assume that EP [LT ] = 1 and define a probability measure Q on FT , given by

LT =
dQ

dP
.

Then

WQ
t = W P

t −
∫ t

0

ϕsds, t ∈ [0, T ] ,

is a standard Q-Wiener process.

The following result is due to Richard Feynman and Marc Kac̆ and provides
a relationship between the conditional expectation of the risk-neutral pricing
formula (1.4.6) and the PDE from equation (1.4.4).

Proposition 1.4.7. (Feynman-Kac̆) Assume that V is a solution to the boundary
problem

∂tV (t, x) + r∂xV (t, x) +
1

2
σ2 (t, x) ∂2

xxV (t, x) = 0,

V (T, x) = f (x) .

Assume furthermore that the process σ (t, St) ∂xV (t, St) ∈ L2 ([0, T ] × R) . Then
one has

V (t, St) = EQ
[

e−r(T −t)f (ST ) | Ft

]

,

where S satisfies the SDE in equation (1.1.6) .

So far we have shown the tools and main results that lead to the derivation
of the pricing equation (1.4.4). A second major interest, once we know how to
price financial derivatives, is whether we can build a portfolio such that when
the contingent claim matures, its price coincides with the value of such portfolio.
This concept is properly introduced in the following definition.

22



Malliavin Calculus

Definition 1.4.8. We say that a T -claim f (ST ) can be replicated or hedged, if
there exists a self-financing portfolio Π, such that

ΠT = 0, P − a.s.

In this case, we say that Π is a hedge against f (ST ). Alternatively, Π is called a
replicating or hedging portfolio. If every contingent claim is replicable, we say
that the market is complete.

The following result shows the condition needed in order to state that a
market is complete.

Proposition 1.4.9. Suppose that a claim f (ST ) can be hedged using the portfolio
Π. Then the only portfolio price process which is consistent with the no arbitrage
condition, is given by

Πt = 0, t ∈ [0, T ] .

Furthermore if the claim f (ST ) can be hedged using a portfolio Π̃ as well, then
Πt = Π̃t P-a.s. for all t ∈ [0, T ].

Note, that the Black-Scholes model is an example of a complete market. See
Chapter 8 pp.116 in [11] for a detailed proof of this statement.

1.5 Malliavin Calculus

This mathematical theory was first introduced by Paul Malliavin in [29] as an
infinite-dimensional integration by parts technique. The purpose of this calculus
was to prove the results about the smoothness of densities of solutions of SDEs
driven by Brownian motion. But in 1984, Ocone in [34] obtained an explicit
representation of random variables in terms of Itô stochastic integrals and the
Malliavin derivative, later to be known as the Clark-Ocone formula. Ocone
and Karatzas [35] applied this result to finance, proving that the Clark-Ocone
formula could be used to obtain explicit formulae for replicating portfolios of
contingent claims in complete markets. Also Alòs used these techniques in [2] to
derive approximations to call option prices using an anticipating process, known
as expected integrated future variance.

This section will only cover a quick introduction to Malliavin calculus with
respect to Brownian motion. This techniques can also be extended to jump
processes and they are both indeed used in this thesis, but the jump case has
been omitted for sake of briefness in this introduction. The reader is referred to
[33] as it is a good introduction to both continuous and discontinuous cases. See
also [32] for an alternative introduction to this topic. None of the statements in
the following subsection are proved, as the proofs are already in the references
provided.
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1.5.1 Wiener-Itô Chaos Expansion

Consider a Brownian setup formed by a complete probability space (Ω,F ,P), a
one-dimensional Wiener process W = Wt = W (ω, t), ω ∈ Ω, t ∈ [0, T ] ; (T > 0),
such that W0 = 0. We denote the corresponding left- and right-continuous
filtration by F = {Ft, t ∈ [0, T ]}, where Ft is the σ-algebra generated by Ws, 0 ≤
s ≤ t, augmented by all the P-zero measure events.

Definition 1.5.1. A real function g : [0, T ]
N → R is called symmetric if

g (tσ1
, . . . , tσn

) = g (t1, . . . , tn) , (1.5.1)

for all permutations σ = (σ1, . . . , σn) of (1, 2, . . . , n).

We denote by L2 ([0, T ]
n
), the standard space of square integrable Borel real

functions on [0, T ]
n, such that

‖g‖2
L2([0,T ]n) ,

∫

[0,T ]n

g2 (t1, . . . , tn) dt1 · · · dtn < ∞. (1.5.2)

Let L̃2 ([0, T ]
n
) ⊂ L2 ([0, T ]

n
) be the space of symmetric square integrable Borel

real functions on [0, T ]
n and consider the set

Sn = {(t1, . . . , tn) ∈ [0, T ]
n

: 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T} .

Now, if g ∈ L̃2 ([0, T ]
n
), then g|Sn

∈ L2 (Sn) and

‖g‖2
L2([0,T ]n) = n!

∫

Sn

g2 (t1, . . . , tn) dt1 · · · dtn = n! ‖g‖2
L2(Sn) ,

where ‖·‖L2(Sn) denotes the norm induced by L2 ([0, T ]
n
) on L2 (Sn), the space

of square integrable functions on Sn.

If f is a real function on [0, T ]
n, then its symmetrization f̃ is defined by

f̃ (t1, . . . , tn) =
1

n!

∑

σ

f (tσ1
, . . . , tσn

) ,

where the sum is taken over all permutations σ of (1, . . . , n). Note that f̃ = f if,
and only if, f is symmetric.

Definition 1.5.2. Let f be a deterministic function defined on Sn, (n ≥ 1) such
that

‖f‖2
L2(Sn) ,

∫

Sn

f2 (t1, . . . , tn) dt1 · · · dtn < ∞.

Then, we can define the n-fold iterated Itô integral as

Jn (f) ,

∫ T

0

∫ tn

0

· · ·
∫ t3

0

∫ t2

0

∫ t1

0

f (t1, . . . , tn) dWt1
dWt2

· · · dWtn−1
dWtn

.

(1.5.3)
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Thanks to the construction of the Itô integral we have that Jn (f) belongs to
L2 (P), that is, the space of square integrable random variables.

Proposition 1.5.3. The following relations hold true:

E [Jm (g) Jn (h)] =

{

0 , n 6= m

(g, h)L2(Sn) , n = m
(m,n = 1, 2 . . .) , (1.5.4)

where

(g, h)L2(Sn) ,

∫

Sn

g (t1, . . . , tn)h (t1, . . . , tn) dt1 · · · dtn

is the inner product of L2 (Sn). In particular, we have

‖Jn (h)‖L2(P) = ‖h‖L2(Sn) . (1.5.5)

Definition 1.5.4. If g ∈ L̃2 ([0, T ]
n
) we define

In (g) ,

∫

[0,T ]n

g (t1, . . . , tn) dWt1
· · · dWtn

, n!Jn (g) . (1.5.6)

We also call n-fold iterated Itô integrals the In (g) here above.

Note from (1.5.4) and (1.5.6), that we have

‖In (g)‖2
L2(P) = E

[

I2
n (g)

]

= E

[

(n!)
2
J2

n (g)
]

= (n!)
2 ‖g‖2

L2(Sn) = n! ‖g‖2
L2([0,T ]n) ,

for all g ∈ L̃2 ([0, T ]
n
).

Theorem 1.5.5. Let ξ be an FT -measurable random variable in L2 (P). Then
there exists a unique sequence {fn}∞

n=0 of functions fn ∈ L̃2 ([0, T ]
n
) such that

ξ =

∞
∑

n=0

In (fn) , (1.5.7)

where the convergence is in L2 (P). Moreover, we have the isometry

‖ξ‖2
L2(P) =

∞
∑

n=0

n! ‖fn‖2
L2([0,T ]n) .

1.5.2 The Malliavin Derivative

Malliavin Calculus has a huge significance in finance. It has triggered a wide
range of applications, such as in numerical methods, stochastic control and
insider trading.
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Definition 1.5.6. Let F ∈ L2 (P) be FT -measurable with chaos expansion

F =
∞
∑

n=0

In (fn) ,

where fn ∈ L̃2 ([0, T ]
n
), n = 1, 2, . . . .

(i) We say that F ∈ D1,2, i.e. F is Malliavin differentiable, if

‖F‖2
D1,2,

,

∞
∑

n=1

nn! ‖fn‖2
L2([0,T ]n) < ∞. (1.5.8)

(ii) If F ∈ D1,2, we define the Malliavin Derivative DtF of F at time t, as
the expansion

DtF =

∞
∑

n=1

nIn−1 (fn (·, t)) , t ∈ [0, T ] , (1.5.9)

where In−1 (fn (·, t)) is the (n− 1)-fold iterated integral of fn (t1, . . . , tn−1, t)
with respect to the first n−1 variables t1, . . . , tn−1 and tn = t left as a parameter.

1.5.3 Integral Representations

In the following lines, an explicit stochastic representation for random variables in
terms of the Malliavin derivative is provided. The central result is the celebrated
Clark-Ocone formula.

Theorem 1.5.7. Let F ∈ D1,2 be FT -measurable. Then

F = E [F ] +

∫ T

0

E [DtF | Ft] dWt. (1.5.10)

This theorem gives a representation of the random variable F in terms of Itô
stochastic integrals.

1.6 Fractional Brownian Motion (fBm)

In order to provide the reader with a quick introduction to the topic, this section
summarizes some of the most relevant results found in Chapter 5 of [32]. The
proofs for the following results can be found in the reference and therefore will
not be included in this section.

Definition 1.6.1. A centered Gaussian process B = {Bt, t ≥ 0} is called frac-
tional Brownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has the
following covariance function:

RH (t, s) = E [BtBs] =
1

2

(

s2H + t2H − |t− s|2H
)

. (1.6.1)
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Fractional Brownian motion has the following self-similar property: For any
constant a > 0, the process

{

a−HBat, t ≥ 0
}

and {Bt, t ≥ 0} have the same
distribution. This property is an immediate consequence of the fact that the
covariance function (1.6.1) is homogeneous of order 2H.

From (1.6.1) we can deduce the following expression for the variance of the
increment of the process in an interval [s, t]:

E

[

|Bt −Bs|2
]

= |t− s|2H
.

This implies that fBm has stationary increments. Also, for all ǫ > 0 and T > 0,
there exists a nonnegative random variable Gǫ,T , such that E [|Gǫ,T |p] < ∞ for
all p ≥ 1, and

|Bt −Bs| ≤ Gǫ,T |t− s|H−ǫ
,

for all s, t ∈ [0, T ]. In other words, the parameter H controls the regularity of
all trajectories, which are Hölder continuous of order H − ǫ, for any ǫ > 0.

Remark 1.6.1. For H = 1
2 , the covariance function (1.6.1) can be written as

R 1
2

(t, s) = t ∧ s, and the process B is a standard Brownian motion. Hence,
in this case the increments of the process in disjoint intervals are independent.
However, for H 6= 1

2 , the increments are not independent.

Set Xn = Bn − Bn−1, n ≥ 1. Then {Xn, n ≥ 1} is a Gaussian stationary
sequence with covariance function

ρH (n) =
1

2

(

(n+ 1)
2H

+ (n− 1)
2H − 2n2H

)

.

This implies that two increments of the form Bk − Bk−1 and Bk+n − Bk+n−1

are:

• positively correlated, (ρH (n) > 0), if H > 1
2 . This implies an aggregation

behavior that describes cluster phenomena and the sequence exhibits long
range dependence, this is,

∞
∑

n=1

ρH (n) = ∞.

• negatively correlated, (ρH (n) < 0), if H < 1
2 . This is usually observed in

sequences that present intermittency and the sequence exhibits short range
dependence, this is,

∞
∑

n=1

|ρH (n)| < ∞.

We have seen that for H 6= 1
2 fBm does not have independent increments. The

following proposition asserts that it is not a semimartingale.

Proposition 1.6.2. The fBm is not a semimartingale for H 6= 1
2 .
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1.6.1 Fractional integrals and derivatives.

In what follows we will recall the basic definitions and properties of fractional
calculus.

Let a, b ∈ R such that a < b. Let f ∈ L1 (a, b) and α > 0. The left- and
right-sided fractional integrals of f of order α are defined for almost all x ∈ (a, b)
by

Iα
a+f (x) ,

1

Γ (α)

∫ x

a

(x− y)
α−1

f (y) dy, (1.6.2)

Iα
b−f (x) ,

1

Γ (α)

∫ x

a

(y − x)
α−1

f (y) dy, (1.6.3)

respectively. Let Iα
a+ (Lp) (resp. Iα

b− (Lp)) be the image of Lp (a, b) by the
operator Iα

a+ (resp. Iα
b−). If f ∈ Iα

a+ (Lp) (resp. f ∈ Iα
b− (Lp)) and 0 < α < 1,

then the left- and right-sided fractional derivatives are defined by

Dα
a+f (x) ,

1

Γ (1 − α)

(

f (x)

(x− a)
α + α

∫ x

a

f (x) − f (y)

(x− y)
α+1 dy

)

,

Dα
b−f (x) ,

1

Γ (1 − α)

(

f (x)

(b− x)
α + α

∫ b

x

f (x) − f (y)

(y − x)
α+1 dy

)

,

for almost all x ∈ (a, b). The following inversion formulas are true:

Iα
a+

(

Dα
a+f

)

= f, ∀f ∈ Iα
a+ (Lp) ,

Dα
a+

(

Iα
a+f

)

= f, ∀f ∈ L1 (a, b) .

Analogous inversion formulas hold for the operators Iα
b− and Dα

b−.

We now show that fractional Brownian motion can be represented as a
stochastic integral. This representation of fBm in term of a Wiener process was
first proved by Mandelbrot and Van Ness in [30]. Consider,

XH
t =

1

C (H)

∫

R

(

(t− s)
H− 1

2

+ − (−s)H− 1
2

+

)

dBs

=
1

C (H)

(
∫ 0

−∞

(

(t− s)
H− 1

2 − (−s)H− 1
2

)

dBs +

∫ t

0

(t− s)
H− 1

2 dBs

)

,

where Bt is a standard Brownian motion and

C (H) =

(
∫ 0

−∞

[

(1 − s)
H− 1

2 − (−s)H− 1
2

]2

ds+
1

2H

)

1
2

.

One has to notice that XH
t is a stochastic integral with respect to a standard

Brownian motion as in (1.1.3), where the integrand is a square integrable
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deterministic function. Thus, it must be Gaussian with E
[

XH
t

]

= 0 and
therefore we can characterize XH

t by its first and second order moments. In
order to do so, observe that

E

[

∣

∣XH
t −XH

s

∣

∣

2
]

= E

[

(

XH
t

)2
]

− 2E
[

XH
t X

H
s

]

+ E

[

(

XH
s

)2
]

. (1.6.4)

Since by hypothesis it is a square integrable process, if we do the change of
variable s = tu, one obtains the following,

E

[

(

XH
t

)2
]

=
1

C (H)
2

∫

R

(

(t− s)
H− 1

2

+ − (−s)H− 1
2

+

)2

ds

=
1

C (H)
2 t

2H

∫

R

(

(1 − u)
H− 1

2

+ − (−u)
H− 1

2

+

)2

du

= t2H .

Analogously, one can show that E

[

∣

∣XH
t −XH

s

∣

∣

2
]

= |t− s|2H
. Using (1.6.4), we

can write the following,

E
[

XH
t X

H
s

]

= −1

2

(

E

[

∣

∣XH
t −XH

s

∣

∣

2
]

− E

[

(

XH
t

)2
]

− E

[

(

XH
s

)2
])

=
1

2

(

t2H + s2H − |t− s|2H
)

.

Therefore, XH
t is a fBm since we have proved that its mean and variance are

the ones from a fractional Brownian motion.

Prior to the introduction of fBm, Paul Lévy in [28] used the Riemann-Liouville
integral, defined by

Iαf (x) =
1

Γ (α)

∫ x

a

f (t) (x− t)
α−1

dt,

where Γ is the Gamma function, f a locally integrable function and α ∈ C

with ℜ (α) > 0, to define the process today known, as the Riemann-Liouville
representation of fBm:

BH
t =

1

Γ (H + 1/2)

∫ t

0

(t− s)
H− 1

2 dBs, (1.6.5)

where the integration is with respect to the Brownian measure dBs. Despite
being an approximation to fBm through a nice and simple representation, this
integral turns out to over-emphasize the origin. This is why later Mandelbrot and
Van Ness came out with a more accurate representation for fBm, as introduced
previously.

1.7 Summary of Papers

The papers in this thesis appear following a chronological order and are listed
below, together with a brief description of the study performed in each of them.
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Paper I: “Self-exciting multifractional processes”

In Paper I, we propose a new class of stochastic processes where the future
state depends directly on all the past states of the process. This processes are
often referred to as self-excited multifractional processes. Starting from the
Riemann-Liouville representation of a fBm

{

BH
t , t ∈ [0, T ]

}

, with Hurst exponent
H ∈ (0, 1), we follow [38] and study a continuous time version of the process,
found as the solution to the SDE

Xh,f
t =

∫ t

0

exp
{

−f
(

t,Xh,f
s

)

(t− s)
}

(t− s)
h(t,Xh,f

s )− 1
2 dBs. (1.7.1)

Existence and uniqueness of equation (1.7.1) is shown, as well as a study of
probabilistic and path properties such as variance and Hölder regularity of the
process. An Euler-Maruyama scheme to approximate the process is provided
and we show its strong convergence, as well as estimate its rate of convergence.

Paper II: “High order approximations to call option prices in the

Heston model”

In Paper II, we provide a new version of the decomposition formula for a call
option price from Alòs in 2012, see [1]. We use this new decomposition result, to
find sharper estimates of the error term than in previously known approximations.
In particular estimates of the form O

(

ν3 (|ρ| + ν)
)

and O
(

ν4 (1 + |ρ| ν)
)

, where
ν and ρ are, respectively, the volatility of volatility and the correlation terms in
the Heston model. A higher order approximation of the form O

(

ν6
)

is provided
for the uncorrelated case, i.e. ρ = 0.

Paper III: “Variance and interest rate risk in unit-linked insurance

policies”

In Paper III, we provide a risk-neutral pricing formula for unit-linked life insur-
ance policies, as well as, provide a perfect hedging strategy. We characterize the
unique pricing measure Q, for a stochastic volatility model written in forward
variance and stochastic interest rates. By considering this setup we are able to
complete the market and characterize the measure Q for the particular Heston
model written in forward variance and Vasicek model for interest rates. The
study concludes with a simulation, where we price unit-linked policies using
the Norwegian mortality rates. In addition we compare prices for the classical
Black-Scholes model against the one we propose.

Paper IV: “A decomposition formula for fractional Heston jump

diffusion models”

In Paper IV, we start from the fractional Heston version of the decomposition
formula from Alòs and Yang in 2017, see [3], to extend it under a jump diffusion
model with both jumps in the asset prices and volatility. We provide a martingale
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representation of the integrated future average variance, by means of Malliavin
calculus, and deduce an exact general formula to approximate call option prices
V . The expression is built from the Black-Scholes formula, plus some correction
terms due to the model parameters, and is written as follows.

Vt = BS (t,Xt, vt) − ζ (ρ2, η)Et

[

∫ T

t

e−rsΛBS (s,Xs, vs) ds

]

(1.7.2)

+
ρ1

2
Et

[

∫ T

t

e−r(s−t)ΛΓBS (s,Xs, vs)σsd [W,M c]s

]

+
1

8
Et

[

∫ T

t

e−r(s−t)Γ2BS (s,Xs, vs) d [M c,M c]s

]

+ Et

[

∫ T

t

e−r(s−t)ΓBS (s,Xs, vs)

[

vs (T − s)

∫ ∞

0

∆2
mg (s,Ms−, Ys−) ℓ (dz)

]

ds

]

+ Et

[

∫ T

t

∫ ∞

0

e−r(s−t)
[

∆2
xBS (s,Xs−, vs−) + ∆2

yBS (s,Xs−, vs−)
]

ℓ(dz)ds

]

.

We provide a first order approximation formula for equation (1.7.2), in terms
of O

(

ν2 + η2
)

, where ν and η are, respectively, the vol-of-vol and the jump
diffusion term. The approximation formula is achieved as a recurrent application
of the general result, and is written as a Taylor-type of expansion formula, which
can be extended to higher orders.

1.8 Further Research

In future research, one could try to extend the results provided in this thesis in
several directions as suggested below:

In Paper I, it would be worth trying to investigate how to use this new class
of SEMP processes, in order to model the dynamics of financial assets and study
their properties. A first suggestion would be to study instantaneous volatility
processes given by an SDE of the following type

dσt = −κ (σt − θ) + ν
√
σtdX

h,f
t .

One could study, for instance, if the term structure of skew could easily be fitted,
and how to match this with the no-arbitrage market hypothesis.

In Paper II, one could try to extend the approximating results provided and
apply them to the computation of the option’s greeks, in order to approximate the
greeks of an option in terms of the model parameters. By doing this, one would
not only faster estimates of the greeks, but would also gain further interpretation
of the results in terms of the model parameters.
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In Paper III, there is a major dependence between the completeness of the
market and a structure correlation between the assets considered. One loses the
uniqueness of the equivalent martingale measure Q when providing a correlation
structure between the underlying asset S, the forward variance ξ and the zero-
coupon bond P . The study of how to characterize this relationship between
the uniqueness of the measure and the correlation is of high interest due to the
natural dependence between S and ξ particularly.

In Paper IV, providing a second order approximation formula as an exten-
sion of Theorem 14 would be very relevant. In the first order formula, the
discontinuous terms are of order O

(

ν2, η2
)

and therefore are not part of the
approximation but rather of the error term, leading to an analogous version of
the continuous approximation formula already developed in [3]. If one were to
extend the approximation up to second order, the discontinuous terms would
appear in the approximation, leading to a new formula that would give clearer
understanding of the effects of jumps in the final price of a call option. The
difficulty here, lies in proving the integrability of a numerous amount of terms
that come from applying iteratively the general expansion result provided in this
thesis.
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Abstract: One of the risks derived from selling long-term policies that any insurance company

has arises from interest rates. In this paper, we consider a general class of stochastic volatility

models written in forward variance form. We also deal with stochastic interest rates to obtain

the risk-free price for unit-linked life insurance contracts, as well as providing a perfect hedging

strategy by completing the market. We conclude with a simulation experiment, where we price

unit-linked policies using Norwegian mortality rates. In addition, we compare prices for the classical

Black-Scholes model against the Heston stochastic volatility model with a Vasicek interest rate model.

Keywords: unit-linked policies; pure endowment; term insurance; stochastic volatility models;

stochastic interest rates

MSC: 60H30; 91G20; 91G30; 91G60

1. Introduction

A unit-linked insurance policy is a product offered by insurance companies. Such contract

specifies an event under which the insured of the contract obtains a fixed amount. Typically, the payoff

of such contract is the maximum value between some prescribed quantity, the guarantee, and some

quantity depending on the performance of a stock or fund. For instance, if G is some positive constant

amount, and S is the value of some equity or stock at the time of expiration of the contract, then a

unit-linked contract pays

H = max{G, f (S)},

where f is some suitable function of S. Here, the payoff H is always larger than G, hence being G

a minimum guaranteed amount that the insured will receive. Naturally, the price of such contract

depends on the age of the insured at the moment of entering the contract and the time of expiration,

likewise, it also depends on the event that the insured is alive at the time of expiration.

The risk of such contracts depends on the risk of the financial instruments used to hedge the

claim H, and there are many ways to model it. The most classical one is considering the evolution

of S under a Black-Scholes model; this is, for instance, the case in Boyle and Schwartz (1977) or

Aase and Persson (1994), where the authors derive pricing and reserving formulas for unit-linked

contracts in such setting. One can also consider a more general class of models. For example, it is

empirically known that the driving volatility of S is, in general, not constant. One could then take

a stochastic model for the volatility, as it is done in Wang et al. (2013), where the authors carry

out pricing and hedging under stochastic volatility. Since there is more randomness in the model,

complete hedging is no longer possible, the authors in Wang et al. (2013) provide the so-called local

risk minimizing strategies. Another result that considers both stochastic interest rates and stochastic

volatility is van Haastrecht et al. (2009). This paper focuses on the pricing problem.

Risks 2020, 8, 84; doi:10.3390/risks8030084 www.mdpi.com/journal/risks
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In this paper, instead, we look at the problem from two different perspectives. On the one hand,

we also consider stochastic volatility, as market evidence shows. Nonetheless, there are available

instruments in the market for hedging against volatility risk, the so-called forward variance swaps.

Such products are contracts on the future performance of the volatility of the stock. In such a

way, we want to price unit-linked contracts taking into account that the insurance company can

trade these instruments as well. On the other hand, it is known that unit-linked products share

similarities with European call options. For example, authors in Boyle and Schwartz (1977) recognize

the payoff of unit-linked products as European call options plus some certain amount. However,

European call options have very short maturities, typically between the same day of the contract up

to two years, while it is not uncommon to have unit-linked insurance contracts that last for up to

40 years. For this reason, there is an inherent risk in the interest rate driving the intrinsic value of money.

In this paper, we take such long-term risk into account as well. Our simulations for the particular

contracts in Sections 5.1 and 5.2 suggest that the premiums are underpriced in the Black-Scholes

model. The insurer should, therefore, be aware that long maturities in unit-linked contracts have a

significant impact on their premiums depending on the model chosen. Classically, most of the literature

about equity-linked policies assumes deterministic interest rates. Nevertheless, some research on

stochastic interest rates has also been carried. For example, in Bacinello and Persson (2002), the authors

consider stochastic interest rates under the Heath-Jarrow-Morton framework and study different

types of premium payments. In addition, a comparison with the classical Black-Scholes model is

offered in Bacinello and Persson (2002). In addition, in Bacinello and Persson (1993), the Vasicek and

Cox-Ingersoll-Ross model is considered for the interest rate. In this paper, we consider a general

framework including both cases.

While many results in the literature deal with the construction of risk minimizing strategies in

incomplete markets, in this paper instead, inspired by Romano and Touzi (1997), we complete the

market by allowing for the possibility to trade other instruments that one can find in the market.

On the one hand, we introduce zero-coupon bonds to hedge against interest rate risk and, on the other

hand, we introduce variance swaps to hedge against volatility risk.

This paper is organized as follows. First, we introduce in Section 2 our insurance and economic

framework with the specific models for the money account, stock, and volatility. Then, in Section 3,

we complete the market by incorporating zero-coupon bonds and variance swaps in the market.

We derive the dynamics of the new instruments used to hedge and apply the risk-neutral theory to

price insurance contracts subject to the performance of an equity or fund with stochastic interest and

volatility. In Section 4, we take a particular model, the Vasicek model for the interest rate, and a Heston

model written in forward variance form. We implement the model and do a comparison study with

the classical Black-Scholes model in Section 5, where we generate price surfaces under Norwegian

mortality rates and different maturities. We conclude Section 5 with a Monte Carlo simulation of the

price distributions.

2. Framework

The two basic elements needed in order to build a financial model robust enough to be able to

price unit-linked policies are a financial market and a group of individuals to write insurance on.

We consider a finite time horizon T > 0 and a given probability space (Ω,A,P) where Ω is the set

of all possible states of the world, A is a s-algebra of subsets of Ω, and P is a probability measure

on (Ω,A). We model the information flow at each given time with a filtration F = {Ft, t 2 [0, T]}

given by a collection of increasing s-algebras, i.e., Fs ⊂ Ft ⊂ A for t ≥ s. We will also assume that F0

contains all the sets of probability zero and that the filtration is right continuous. We also take A = FT .

The information flow F comes from two sources; the financial market and the states of the insured

that are relevant in the policy. The market information available at time t will be denoted by Gt and

the information regarding to the state of the insured by Ht. We will assume throughout the paper that

the s-algebras Gt and Ht are independent for all t, which implies that the value of the market assets
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is independent from the health condition of the insured. We also assume that Ft = Gt _Ht, for all t,

where Gt _Ht is the s-algebra generated by the union of Gt and Ht. This can be understood as the

total amount of information available in the economy at time t that is the information one can get by

recording the values of market assets and the health state of the insured from time 0 to time t.

2.1. The Market Model

The market information G will be modeled using the filtration generated by three independent

standard Brownian motions, W0
t , W1

t , and W2
t . These three Brownian motions represent the sources

of risk in our model. We will consider a market formed by assets of two different natures. A bank

account, considered to be of a riskless nature and stock or bond prices, which are of risky nature.

We start by defining the bank account, whose price process is denoted by B = {Bt}t2[0,T], such that

B0 = 1. We will assume that the asset evolves according to the following differential equation:

dBt = rtBtdt, t 2 [0, T] , (1)

where rt is the instantaneous spot rate and it is assumed to have integrable trajectories. Actually,

we will assume that this rate evolves under the physical measure P, according to the following

stochastic differential equation (SDE):

drt = µ (t, rt) dt + s (t, rt) dW0
t , r0 > 0, t 2 [0, T] , (2)

where µ, s : [0, T]×R ! R are Borel measurable functions such that, for every t 2 [0, T] and x 2 R,

|µ (t, x)|+ |s (t, x)| ≤ C (1 + |x|) ,

for some positive constant C, and such that for every t 2 [0, T] and x, y 2 R

|µ (t, x)− µ (t, y)|+ |s (t, x)− s (t, x)| ≤ L |x − y| ,

for some constant L > 0. We will also assume there exists e > 0, such that s (t, x) ≥ e > 0 for every

(t, x) 2 R+ ×R. These conditions are sufficient to guarantee a unique global strong solution of (2),

weaker conditions may be imposed, see, e.g., (Revuz and Yor 1999, Chapter IX, Theorem 3.5).

One of the risky assets will be the stock. We describe the stock price process S = {St}t2[0,T] by a

general mean-reverting stochastic volatility model. Specifically, we will consider the following SDEs:

dSt

St
= b (t, St) dt + a (t, St) f (nt) dW1

t , S0 > 0, (3)

dnt = −k (nt − n̄) dt + h (nt) dW2
t , n0 > 0, (4)

for t 2 [0, T]. Here, a, b are uniformly Lipschitz continuous and bounded functions, such that

a (t, x) > 0 for all (t, x) 2 [0, T]×R. The function f is assumed to be continuous with linear growth

and strictly positive. We assume that h is a non-negative, linear growth, invertible function such that

|h(x)− h(y)|2 ≤ ` (|x − y|) ,

for some function ` defined on (0, ∞) such that

Z e

0

dz

` (z)
= ∞, for any e > 0.

Then, (Revuz and Yor 1999, Chapter IX, Theorem 3.5(ii)) guarantees the existence of a pathwise

unique solution of Equation (3). We call nt the instantaneous variance.
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Due to the fact that neither n nor r are tradable, our market model is highly incomplete. In the

forthcoming section, we will complete the market by introducing financial instruments in order to

hedge against the risk derived from instantaneous variance and interest rates.

We introduce the numéraire, with respect to which we will discount our cashflows.

Definition 1. The (stochastic) discount factor Dt,T between two time intervals t and T, 0 ≤ t ≤ T, is the

amount at time t that is equivalent to one unit of currency payable at time T, and is given by

Dt,T =
Bt

BT
= exp

(

−
Z T

t
rsds

)

. (5)

2.2. The Insurance Model

In what follows, we introduce our insurance model. More specifically, we want to model the

insurance information H as the one generated by a regular Markov chain X = {Xt, t 2 [0, T]} with

finite state space S which regulates the states of the insured at each time t 2 [0, T]. For instance, in an

endowment insurance, the state S = {∗, †} consists of the two states, ∗ = “alive” and † = “deceased”.

In a disability insurance, we have three states, S = {∗, *, †}, where * stands for “disabled”. Observe that

X is right-continuous with left limits and, in particular, H satisfies the usual conditions.

We introduce the following processes:

IX
i (t) =

(

1, if Xt = i,

0, if Xt 6= i
, i 2 S,

NX
ij (t) = #{s 2 (0, t) : Xt− = i, Xt = j}, i, j 2 S, i 6= j.

Here, # denotes the counting measure and Xt− , limu!t
u<t

Xu the left limit of X at the point t.

The random variable IX
i (t) tells us whether the insured is in state i at time t and NX

ij (t) tells us the

number of transitions from i to j in the whole period (0, t).

Definition 2 (Stochastic cash flow). A stochastic cash flow is a stochastic process A = {At}t≥0 with almost

all sample paths with bounded variation.

More concretely, we will consider cash flows described by an insurance policy entirely determined

by its payout functions. We denote by ai(t), i 2 S, the sum of payments from the insurer to the insured

up to time t, given that we know that the insured has always been in state i. Moreover, we will denote

by aij(t), i, j 2 S, i 6= j, the payments which are due when the insured switches state from i to j at

time t. We always assume that these functions are of bounded variation. The cash flows we will

consider are entirely described by the policy functions, defined by an insurance policy. Observe that

the policy functions can be stochastic in the case where the payout is linked to a fund modeled by a

stochastic process.

Definition 3 (Policy cash flow). We consider payout functions ai(t), i 2 S and aij(t), i, j 2 S, i 6= j for

t ≥ 0 of bounded variation. The (stochastic) cash flow associated with this insurance is defined by

A(t) = ∑
i2S

Ai(t) + ∑
i,j2S
i 6=j

Aij(t),

where

Ai(t) =
Z t

0
IX
i (s)dai(s), Aij(t) =

Z t

0
aij(s)dNX

ij (s).
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The quantity Ai corresponds to the accumulated liabilities while the insured is in state i and Aij for the

case when the insured switches from i to j.

The value of a stochastic cash flow A at time t will be denoted by V+(t, A), or simply V+(t),

and is defined as

V+(t, A) = BT

Z ∞

t

dA(s)

Bs
,

where B is the reference discount factor in (1). The stochastic integral is a well-defined pathwise

Riemann–Stieltjes integral since A is almost surely of bounded variation and B is almost surely

continuous. The quantity V+(t, A) is stochastic since both B and A are stochastic. The prospective

reserve of an insurance policy with cash flow A given the information Ft is then defined as

V+
F (t, A) = EQ[V+(t, A)|Ft],

where Q is an equivalent martingale measure.

It turns out, see (Koller 2012, Theorem 4.6.3), that one can find explicit expressions when the

policy functions ai, i 2 S, aij, i, j 2 S, i 6= j and the force of interest are deterministic. Combining the

previous result with a conditioning argument allows us to recast the expression for the reserves as the

following conditional expectation:

V+
i (t, A) , EQ

2

6

6

4

∑
j2S

Z ∞

t

Bt

Bs
pij(t, s)daj(s) + ∑

j,k2S
k 6=j

Z ∞

t

Bt

Bs
pij(t, s)µjk(s)ajk(s)ds

∣

∣

∣

∣

∣

Gt

3

7

7

5

, (6)

where µij are the continuous transition rates associated with the Markov chain X and pij(s, t) are the

transition probabilities from changing from state i at time s to state j at time t.

In this paper, we will focus on the pricing and hedging of unit-linked pure endowment policies

with stochastic volatility and stochastic interest rate. Other more general insurances can be reduced to

this. For instance, in (6), if ai is of bounded variation and a.e. differentiable with derivative ȧi, then we

can look at

EQ

[

Bt

Bs
ȧi(s)

∣

∣

∣
Gt

]

and EQ

[

Bt

Bs
aij(s)

∣

∣

∣
Gt

]

as contracts with payoff ȧi(s), respectively aij(s), with maturity s ≥ t.

3. Pricing and Hedging of the Unit-Linked Life Insurance Contract

The aim of this section is to price and hedge insurance claims linked to the fund S.

However, we cannot hedge any contingent claim using a portfolio with S only. In the spirit

of Romano and Touzi (1997), we will complete the market, including the possibility to trade products

whose underlying are the forward variance and interest rate, which are indeed actively traded in

the market.

3.1. Completing the Market Using Variance Swaps and Zero-Coupon Bonds

First, we will introduce a family of equivalent probability measures Q ∼ P given by

Q (A) = E [ZT1A] , A 2 GT , (7)

where Z = {Zt, t 2 [0, T]} is given by

Zt = E

(

2

∑
i=0

Z ·

0
gi

sdWi
s

!

t

, t 2 [0, T] ,
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and G-adapted gi, for every i = 0, 1, 2, such that E [ZT ] = 1. Here, E (M)t = exp
(

Mt − 1
2 [M, M]t

)

denotes the stochastic exponential for a continuous semimartingale M.

The following processes are Brownian motions under Q

WQ,i
t = Wi

t −
Z t

0
gi

sds, i = 0, 1, 2. (8)

Note that not all probability measures given in (7) are risk-neutral in our market model.

In particular, g1 is determined by the fact that S is a tradable asset and takes the form

g1
t ,

rt − b (t, St)

a (t, St) f (nt)
.

All probability measures in (7) fixing g1 are valid risk-neutral measures. In particular,

choosing g0 = g2 = 0 is one of them. From now on, we denote by Q0 this choice, that is,

dQ0

dP
= E

(

Z ·

0
g1

s dW1
s

)

T

. (9)

Now, we are in a position to introduce the financial instruments whose valuation will be done

under Q0. One of the most traded assets in interest rate markets are zero-coupon bonds.

Definition 4. A T-maturity zero-coupon bond is a contract that guarantees its holder the payment of one unit

of currency at time T, with no intermediate payments. The contract value at time 0 ≤ t ≤ T is denoted by Pt,T

and by definition PT,T = 1, for all T.

A risk-neutral price of a zero-coupon bond in our framework is given in the following definition.

Definition 5. The price of a zero-coupon bond, Pt,T is given by

Pt,T = EQ0
[Dt,T | Gt] = EQ0

[

Bt

BT
| Gt

]

= EQ0
[

exp

{

−
Z T

t
rsds

}

| Gt

]

, (10)

where Q0 is the equivalent martingale measure given by (9). See (Filipović 2009, Definition 4.1. in Section 4.3.1

and Section 5.1) for definitions.

The next classical result gives a connection between the bond price in (10) and the solution to a

linear partial differential equation (PDE), see e.g., Filipović (2009).

Lemma 1. Assume that, for any T > 0, FT 2 C1,2 ([0, T]×R) is a solution to the boundary problem on

[0, T]×R given by

∂tFT (t, x) + µ (t, x) ∂xFT (t, x) +
1

2
s2 (t, x) ∂2

xFT (t, x)− xFT (t, x) = 0,

FT (T, x) = 1.

Then,

Mt , FT (t, rt) e−
R t

0 rudu, t 2 [0, T]

is a local martingale. If in addition either:

(a) EQ0

[

R T
0

∣

∣

∣
∂xFT (t, rt) e−

R t
0 rudus (t, rt)

∣

∣

∣

2
dt

]

< ∞, or

(b) M is uniformly bounded,
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then M is a martingale, and

FT (t, rt) = EQ0
h

e−
R T

t rudu | Gt

i

, t 2 [0, T] . (11)

The dynamics of the zero-coupon bond P in terms of the function FT are given by

dPt,T = LP (FT) (t, rt) dt + ∂xFT (t, rt) s (t, rt) dW0
t , (12)

where LP , ∂t + µ (t, x) ∂x +
1
2 s2 (t, x) ∂2

x − x.

We turn now to the definition of the forward variance process. The forward variance xt,u,

for 0 ≤ t ≤ u, is by definition the conditional expectation of the future instantaneous variance,

see, e.g., Ould Aly (2014), that is,

xt,u , EQ0
[nu | Gt] , 0 ≤ t ≤ u, (13)

where Q0 is the risk-neutral pricing measure defined in (9). Following Bergomi and Guyon (2012),

one can easily rewrite the general stochastic volatility model, given by Equations (3) and (4) in forward

variance form. This is achieved by taking conditional expectation of Equation (4), which yields

dEQ0
[nu | Gt] = −k

(

EQ0
[nu | Gt]− n̄

)

du, u > t,

Solving the previous linear ordinary differential equation (ODE), by integrating on [t, u], we have

xt,u = n̄ + e−k(u−t) (nt − n̄) . (14)

There are two things to notice at this point. The first is that, by construction, nt = xt,t, for every

t 2 [0, T]. The second is that, differentiating the previous equation, we can characterize the dynamics

with respect to t for the forward variance as follows:

dxt,u = e−k(u−t)h (nt) dW2
t . (15)

Solving Equation (14) for nt yields

nt = n̄ + ek(u−t) (xt,u − n̄) , y (t, u, xt,u) .

Usually, the dynamics of the forward variance in any forward variance model are given through

the following SDE:

dxt,u = l (t, u, xt,u) dW2
t . (16)

As a consequence of the previous result, in our case, the function l in Equation (16) is fully

characterized by

l (t, u, xt,u) , e−k(u−t) (h ◦ y) (t, u, xt,u) . (17)

Note that any finite-dimensional Markovian stochastic volatility model can be rewritten in forward

variance form. Since we will only be interested in the fixed case u = T, we will drop the dependence

on T for xt,T and write instead xt = xt,T .

We will show how to form a portfolio with a perfect hedge. The financial instruments needed in

order to build a riskless portfolio are the underlying asset, a variance swap, and the zero-coupon bond.
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From now on, we will assume that the function FT , solution to the PDE in Lemma 1 is invertible

in the space variable, for every t 2 [0, T] , e.g., this is the case if rt, t 2 [0, T] is given by the Vasicek

model. Introduce the notation

GT (t, x) , ∂xFT (t, x) , (18)

then ∂xFT (t, rt) = GT

(

t, F−1
T (t, Pt,T)

)

, where rt = F−1
T (t, Pt,T) .

3.2. Pricing and Hedging in the Completed Market

Let Π = {Πt}t2[0,T] be a stochastic process representing the value of a portfolio consisting of a

long position on an option with price Vt, where Vt = V (t, St, xt, Pt,T), and respective short positions

on ∆t units of the underlying asset, Σt units of a variance swap, and Ψt units of a zero-coupon bond.

Therefore, we can characterize the process Π as

Πt = V (t, St, xt, Pt,T)− ∆tSt − Σtxt − ΨtPt,T , t 2 [0, T] . (19)

Definition 6. We say that the portfolio Π is self-financing if, and only if,

dΠt = dV (t, St, xt, Pt,T)− ∆tdSt − Σtdxt − ΨtdPt,T ,

for every t 2 [0, T] .

Definition 7. We say that the portfolio Π is perfectly hedged, or risk-neutral, if it is self-financing and

ΠT = 0.

From now on, and throughout the rest of the paper, we will only differentiate between time

derivative ∂tV and space derivatives ∂xV, ∂yV, ∂zV, to write the partial derivatives of V = V (t, x, y, z).

We will also denote second order spatial partial derivatives of V with respect to St, xt, Pt,T , respectively

by ∂2
xV, ∂2

yV, ∂2
zV and the second order crossed derivatives as ∂x∂yV, ∂x∂zV, ∂y∂zV. In order to simplify

the notation in the following results, we shall define

ΞT (t, x) , GT

(

t, F−1
T (t, x)

)

· s
(

t, F−1
T (t, x)

)

,

where one should recall that GT is given in (18).

Theorem 1. Let Π be a portfolio defined as in (19), and assume V 2 C1,2
(

[0, T]×R3
)

. If Π is a replicating

portfolio, then V fulfills

∂tV +
1

2

(

x2a (t, x)2 f (y (t, T, y))2 ∂2
xV + l (t, T, y)2 ∂2

yV + Ξ2
T (t, z) ∂2

zV
)

(20)

−rt

(

V − x∂xV − y∂yV − z∂zV
)

= 0,

for every t 2 [0, T] and

V (T, ST , xT , PT,T) = max (ST , G) . (21)

Proof. See Appendix A.1 in Appendix A.
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From now on, in order to ease the notation, we will define the differential operator in (20) as

LV , ∂t +
1

2

(

x2a (t, x)2 f (y (t, T, y))2 ∂2
x + l (t, T, y)2 ∂2

y + Ξ2
T (t, z) ∂2

z

)

(22)

− rt

(

1 − x∂x − y∂y − z∂z

)

.

We will now prove that the discounted option price is a martingale.

Theorem 2. Let V be the solution to the PDE given by Equation (20) with terminal condition (21). Then,

B−1
t V (t, St, xt, Pt,T) = EQ

h

B−1
T V (T, ST , xT , PT,T) | Gt

i

,

where Q indicates the risk-neutral measure.

Proof. See Appendix A.2 in the Appendix A.

4. The Vasicek Model and Heston Model Written in Forward Variance

This section is devoted to providing the reader with a particular model. We will assume that the

evolution of the short-term rate is given by a Vasicek model and consider a Heston model for the risky

asset written in forward variance form.

Let us consider the following SDE for the short-term rate given by the Vasicek model:

drt = k (q − rt) dt + sdW0
t , r0 > 0, t 2 [0, T] , (23)

and the Heston model for the risky asset, given by

dSt = µtStdt + St
p

ntdW1
t , S0 > 0, t 2 [0, T] , (24)

dnt = −k (nt − n̄) dt + h
p

ntdW2
t , n0 > 0, t 2 [0, T] . (25)

It is well known that the SDE (23) admits the following closed expression:

rT = e−k(T−t)rt + q
(

1 − e−k(T−t)
)

+ s
Z T

t
e−k(T−s)dW0

s .

Now, we know that rT , conditional on Gt, is normally distributed with mean and variance

E [rT | Gt] = e−k(T−t)rt + q
(

1 − e−k(T−t)
)

,

Var [rT | Gt] =
s2

2k

(

1 − e−2k(T−t)
)

.

One can show, see, e.g., Musiela and Rutkowski (2005), that the price of the zero-coupon bond

under the dynamics given in (23) is

Pt,T = A (t, T) e−B(t,T)rt ,
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where B (t, T) , 1
k

(

1 − e−k(T−t)
)

and A (t, T) , exp
((

q − s2

2k2

)

(B (t, T) + t − T)− s2

4k B (t, T)2
)

.

If we now apply Itô’s Lemma to f (t, rt) = A (t, T) e−B(t,T)rt , we have

dPt,T = ∂t f (t, rt) dt + ∂r f (t, rt) drt +
1

2
∂2

rr f (t, rt) d [r, r]t

= ∂tPt,Tdt − A (t, T) B (t, T) e−B(t,T)rt drt +
1

2
A (t, T) B (t, T)2 e−B(t,T)rt d [r, r]t

= ∂tPt,Tdt + Pt,T

(

−B (t, T) drt +
1

2
B (t, T)2 d [r, r]t

)

.

Replacing the term drt in the previous equation by its SDE (23), we have

dPt,T

Pt,T
= −

(

B (t, T) k (q − rt)−
1

2
B (t, T)2 s2

)

dt − sB (t, T) dW0
t . (26)

The forward variance in this case has the following dynamics:

dxt,u = he−k(u−t)
p

xt,tdW2
t . (27)

The Heston model, as any Markovian model, can be rewritten in forward variance form by means

of Equations (24) and (27) . The following corollary gives the specific risk-neutral measure for the

Vasicek-Heston model that will be useful for simulation purposes in the next section.

Corollary 1. The risk-neutral measure under the Vasicek-Heston model is given by the measure in (7) with

g0
t =

1

Θ (t, nt)

h

h
p

nt

(

2 (−1 + B (t, T) k) rt + B (t, T)
(

B (t, T) s2 − 2kq
) )i

,

g1
t =

−1

Θ (t, nt)

h

2B (t, T) sh (µt − rt)
i

,

g2
t =

1

Θ (t, nt)

h

2B (t, T) ek(T−t)rtsxt

i

,

where

Θ (t, x) , 2B (t, T) sh
p

x.

Proof. We will proceed similarly as in Theorem 2. We have to impose that the discounted price

process, S̃t, the discounted variance swap x̃t, and the discounted zero-coupon bond price P̃t,T are

Q-martingales:

dS̃t = dB−1
t St + B−1

t dSt

= −rtB
−1
t Stdt + B−1

t

h

µtStdt + St
p

ntdW1
t

i

= S̃t

(h

µt − rt +
p

ntg
1
t

i

dt +
p

ntdWQ,1
t

)

,

now the discounted price process S̃t is a Q−martingale if and only if

g1
t =

rt − µtp
nt

. (28)
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We do the same for the discounted forward variance, hence we obtain

dx̃t = dB−1
t xt + B−1

t dxt

= −rtB
−1
t xtdt + B−1

t he−k(T−t)pntdW2
t

= B−1
t

(

−rtxtdt + he−k(T−t)pnt

h

dWQ,2
t + g2

t dt
i)

= B−1
t

(h

he−k(T−t)pntg
2
t − rtxt

i

dt + he−k(T−t)pntdWQ,2
t

)

.

Therefore, the discounted variance swap x̃t, is a Q−martingale if and only if

g2
t =

xtrt

he−k(T−t)pnt
. (29)

Finally, we impose that the discounted zero-coupon bond price process is a Q-martingale in an

analogous computation,

dP̃t,T = dB−1
t Pt,T + B−1

t dPt,T

= −rtB
−1
t Pt,T + B−1

t Pt,T

[

−
(

B (t, T) k (q − rt)−
1

2
B (t, T)2 s2

)

dt − sB (t, T) dW0
t

]

= −P̃t,T

((

rt + B (t, T) k (q − rt)−
1

2
B (t, T)2 s2

)

dt + sB (t, T) dW0
t

)

= −P̃t,T

(

rt + sB (t, T) g0
t + B (t, T) k (q − rt)−

1

2
B (t, T)2 s2

)

dt − P̃t,T

(

sB (t, T) dWQ,0
t

)

,

therefore the discounted zero-coupon bond is a Q-martingale if and only if

−1

1 − B (t, T) k

(

sB (t, T) g0
t + B (t, T) kq − 1

2
B (t, T)2 s2

)

= rt. (30)

The result follows, solving the linear system formed by Equations (28)–(30).

5. Model Implementation and Examples

In this section, we present an implementation of the Heston model written in forward variance

together with a Vasicek model for the interest rates, in order to price numerically a unit-linked product.

We will implement a Monte Carlo scheme for simulating prices under this model and compare it against

a classical Black-Scholes model. The Heston process will be simulated using a full-truncation scheme

Andersen (2007) in the Euler discretization in both models. We first show the discretized versions of

the SDE’s for each model and the result of the model comparison given some initial conditions.

Let N 2 N be the number of time steps in which the interval [0, T] is equally divided.

Then, consider the uniform time grid tk , (kT) /N, for all k = 1, . . . , N of length ∆t = T/N. We present

the following Euler schemes for each model:

1. Classical Black Scholes

Stk+1
= Stk

exp

((

r0 −
1

2
n̄2

)

∆t + n̄
p

∆t
(

WQ
1 (tk+1)− WQ

1 (tk)
)

)

,

where the parameters for the simulation are (S0, r, n̄) , given by: S0 = 100, r0 = 0.01, n̄ = 0.04.
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2. Vasicek-Heston Model written in forward variance

rtk+1
= rtk

+
h

k
(

q −
(

rtk

)+
)

+ sg0 (tk)
i

∆t + s
p

∆t
(

WQ
0 (tk+1)− WQ

0 (tk)
)

,

xtk+1
(tN) = xtk

(tN) + rtk
xtk

(tN)∆t + he−k(tN−tk)
q

(

ntk

)+
∆t

(

WQ
2 (tk+1)− WQ

2 (tk)
)

,

ntk+1
= n̄ + ek(tN−tk+1)

(

xtk+1
(tN)− n̄

)

,

Stk+1
= Stk

+ rtk
Stk

∆t + Stk

q

(

ntk

)+
∆t

(

WQ
1 (tk+1)− WQ

1 (tk)
)

,

P (tk+1, tN) = P (tk, tN) + P (tk, tN)
h

rtk
∆t − sB (tk, tN)

p
∆t

(

WQ
0 (tk+1)− WQ

0 (tk)
)i

.

where the parameters are (S0, µ, n0, n̄, k, h, r0, q, k, s) and were set as S0 = 100, µ = 0.015, n̄ = 0.01,

n0 = 0.04, k = 10−3, h = 0.01, q = r0 = 0.01, k = 0.3, and s = 0.02.

For simulation purposes, the Monte Carlo scheme was implemented using 5000 simulations.

The following graphs in Figure 1 result from the implementation of the previous models with the

mentioned initial conditions, and for T = {10, 20, 30, 40} . As one can see in Figure 1, it seems like

the classic Black-Scholes model tends to underprice the risks derived from volatility and interest rate

risk. It is worth noting that the difference between prices increases with both time to maturity and the

guarantee. When it comes to what source of risk is bigger, it seems like the fundamental risk lies in the

driving interest rate.

Figure 1. Pricing comparative between the Black-Scholes model, Vasicek-Heston model written in

forward variance, Heston model with constant rate r0, and a Vasicek model with constant volatility n0

for T 2 {10, 20, 30, 40}.

As shown in Theorem 2 and Corollary 1, in order to properly price a unit-linked product, it only

remains to multiply the value of the derivative priced using the Monte Carlo scheme, times the
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probability that an x-year old insured survives during the life of the product (T years). To do so,

we have used Norwegian mortality from 2018 extracted from Statistics Norway.

As it is usual, mortality among men is higher. We consider, however, the aggregated mortality

for simplicity. To model the mortality given in Table 1, we use the Gompertz-Makeham law of

mortality which states that the death rate is the sum of an age-dependent component, which increases

exponentially with age, and an age-independent component, i.e., µ∗†(t) = a + bect, t 2 [0, T]. This law

of mortality describes the age dynamics of human mortality rather accurately in the age window from

about 30 to 80 years of age, which is good enough for our purposes. For this reason, we excluded

the very first and last observations from the table. We then find the best fit for µ∗† in the class of

functions C = { f (t) = a + bect, t 2 [0, T] , a, b, c 2 R}. As stated previously, since the stochastic process

X = {Xt}t2[0,T], which regulates the states of the insured, is a regular Markov chain, then the survival

probability of an x-year old individual during the next T years is

T px = p̄∗∗ (x, x + T) = exp

(

−
Z x+T

x
µ∗† (t) dt

)

.

Table 1. Norwegian mortality in 2018, per 100,000 inhabitants. Data from Statistics Norway, table: 05381.

Age Men Women Total

4 50 45 95
9 7 2 9

14 10 3 13
19 26 13 39
24 33 6 39
29 63 24 87
34 72 27 99
39 93 43 136
44 109 68 177
49 156 111 267
54 258 177 435
59 454 310 764
64 737 495 1232
69 1206 824 2030
74 1990 1331 3321
79 3602 2447 6049
84 6626 4628 11254
89 12,469 9053 21,522
≥90 21,909 24,230 46,139

Figure 2 shows the fitted Gompertz–Makeham law based on the mortality data from Table 1.

Figure 2. Joint plot of the mortality data given in Table 1, together with the fitted curve using the

Gompertz–Makeham law of mortality.
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Now, using the Vasicek-Heston model written in forward variance, we can compute a unit-linked

price surface in terms of the guarantee, or strike price, and the age of the insured given a terminal

time for the product T > 0. In particular, the graphs below show the price surfaces for fixed

T = {10, 20, 30, 40}.

From the plots in Figure 3, we can observe that the longer time to maturity is, the lower the

unit-linked price is, since the less probable it is that the insured survives. This effect has greater

impact on the price than the effect of future volatility, or uncertainty arising from the stochasticity in

interest rates. This behavior is easily observed by noting how the price surface collapses to zero as

the contract’s time to maturity increases, as well as the age of the insured when entering the contract.

Hence, we can say that time to maturity has a cancelling effect on price, i.e., on one hand, it increases

price as the stock or fund pays longer performance, but, on the other hand, it decreases price due to a

lower probability of surviving during the time to maturity of the unit-linked contract.

Figure 3. Unit-linked price surfaces under a Vasicek-Heston model written in forward variance for

different policy maturities, in terms of the guaranteed amount desired by the insured and his age at the

time of acquisition.

The following plots in Figures 4 and 5 are aimed at providing the reader with an overview of the

distributional properties of the price process at a constant survival rate equal to one. The first thing

that comes to sight is how the variance and time to maturity are directly proportional. In addition,

the longer the time to maturity of the unit-linked product is, the more leptokurtic the distribution of

the insurance product price is. This is an important thing to take into account in the modeling of prices

due to the impact in the hedging of such insurance products.
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Figure 4. Unit-Linked Price histograms with constant survival rate equal to 1.

Figure 5. QQ-Plot between the unit-linked price input data and the standard normal distribution for

maturities T = {10, 20, 30, 40} years.
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5.1. Pure Endowment

Consider an endowment for a life aged x with maturity T > 0. The policy pays the amount

ET , max{Ge, ST} if the insured survives by time T where Ge > 0 is a guaranteed amount and ST is

the value of a fund at the expiration time. This policy is entirely determined by the policy function:

a∗(t) =

(

ET if t ≥ T

0 else
.

In view of (6) and the above function, the value of this insurance at time t given that the insured

is still alive is then given by

V+
∗ (t, A) = EQ

[

Z T

t

Bt

Bs
p∗∗(x + t, x + s)da∗(s)

∣

∣

∣
Gt

]

= EQ

[

Bt

BT
ET

∣

∣

∣
Gt

]

p∗∗(x + t, x + T), (31)

The above quantity corresponds to the formula in Theorem 2.

Observe that the payoff of an endowment can be written as

max{Ge, ST} = (Ge − ST)+ + Ge,

where (x)+ , max{x, 0}, which corresponds to a call option with strike price Ge plus Ge. In the case

that S is modelled by the Black-Scholes model (with constant interest rate), we know that the price at

time t of a call option with strike Ge and maturity T is given by

BS(t, T, St, Ge) , Φ(d1(t, T))St − Φ(d2(t, T))Gee−r(T−t),

where Φ denotes the distribution function of a standard normally distributed random variable and

d1(t, T) ,
log(St/Ge) +

(

r + 1
2 s2

)

(T − t)

s
p

T − t
, d2(t, T) , d1(t, T)− s

p
T − t.

Then, we have that the unit-linked pure endowment under the Black-Scholes model has the price

BSE(t, T, St, Ge) , Φ(d1(t, T))St + Gee−r(T−t)Φ(−d2(t, T)). (32)

The single premium at the beginning of this contract under the Black-Scholes model is then

p0
BS , BSE(0, T, S0, Ge).

It is also possible to compute yearly premiums by introducing payment of yearly premiums pBS

in the policy function a∗, i.e., a∗(t) = −pBSt if t 2 [0, T) and a∗(t) = −pBST + ET if t ≥ T, then the

value of the insurance at any given time t ≥ 0 with yearly premiums, denoted by Vp
∗ , becomes

−pBS

Z T

t
e−r(s−t)p∗∗(x + t, x + s)ds + BSE(t, T, St, Ge).

We choose the premiums in accordance with the equivalence principle, i.e., such that the value

today is 0,

pBS =
BSE(0, T, S0, Ge)

R T
0 e−rs p∗∗(x, x + s)ds

.
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Under the Vasicek-Heston model instead, the value of policy at time t ≥ 0 with yearly premiums

pVH is

V+
∗ (t, A) = EQ

[

Z T

t

Bt

Bs
p∗∗(x + t, x + s)da∗(s)

∣

∣

∣
Gt

]

= −pVH

Z T

t
EQ

[

Bt

Bs

∣

∣

∣
Gt

]

p∗∗(x + t, x + s)ds +EQ

[

Bt

BT
ET

∣

∣

∣
Gt

]

p∗∗(x + t, x + T).

A single premium payment p0
VH corresponds to V+

∗ (0, A), i.e.,

p0
VH = EQ

[

ET

BT

]

p∗∗(x, x + T)

and the yearly ones correspond to

pVH =
V+
∗ (0, A)

R T
0 EQ

h

1
Bs

i

p∗∗(x, x + s)ds
.

In Figure 6, we compare the single premiums using the classical Black-Scholes unit-linked model

in contrast to the Vasicek-Heston model proposed for different maturities T with parameters S0 = 1,

Ge = 1, r = 1% and µ = 1.5%, s = 4% for the Black-Scholes model, and S0 = 1, Ge = 1, µ = 1.5%,

n̄ = 1%, n0 = 4%, k = 10−3, h = 10−2, q = r0 = 1%, k = 0.3, s = 2% for the Vasicek-Heston model.

Figure 6. Single premiums for a pure endowment with benefit equal to 1 monetary unit, using the

classical Black-Scholes with constant interest r = 1% and µ = 1.5%, s = 4% and a Vasicek-Heston

model with parameters S0 = 1, µ = 1.5%, n̄ = 1%, n0 = 4%, k = 10−3, h = 10−2, q = r0 = 1%, k = 0.3,

s = 2%.

5.2. Endowment with Death Benefit

Consider now an endowment for a life aged x with maturity T > 0 that pays, in addition, a death

benefit in case the insured dies within the period of the contract. That is, the policy pays the amount
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ET := max{Ge, ST} if the insured survives by time T as before and, in addition, a death benefit of

Dt := max{Gd, St} if t 2 [0, T). This policy is entirely determined by the two policy functions:

a∗(t) =

(

ET if t ≥ T

0 else
, a∗†(t) =

(

Dt if t 2 [0, T)

0 else
.

In view of (6) and the above functions, the value of this insurance at time t given that the insured

is still alive is then given by

V+
∗ (t, A) = EQ

[

Bt

BT
ET

∣

∣

∣
Gt

]

p∗∗(x + t, x + T) +
Z T

t
EQ

[

Bt

Bs
Ds

∣

∣

∣
Gt

]

p∗∗(x + t, x + s)µ∗†(x + s)ds. (33)

Following similar arguments as in the case of a pure endowment, by adding the function a∗† in

the computations, we obtain that the single premiums p0
BS and p0

VH for the Black-Scholes model and

Vasicek-Heston model, respectively, are given by.

p0
BS = BSE(0, T, S0, Ge) +

Z T

0
e−rsBSE(0, s, S0, Gd)p∗∗(x, x + s)µ∗†(x + s)ds,

where the function BSE is given in (32), and

p0
VH = EQ

[

ET

BT

]

p∗∗(x, x + T) +
Z T

0
EQ

[

Ds

Bs

]

p∗∗(x, x + s)µ∗†(x + s)ds.

In Figure 7, we compare the single premiums using the classical Black-Scholes unit-linked model

in contrast to the Vasicek-Heston model proposed for different maturities T with parameters S0 = 1,

Ge = Gd = 1, r = 1% and µ = 1.5%, s = 4% for the Black-Scholes model, and S0 = 1, Ge = 1, µ = 1.5%,

n̄ = 1%, n0 = 4%, k = 10−3, h = 10−2, q = r0 = 1%, k = 0.3, s = 2% for the Vasicek-Heston model.

Figure 7. Single premiums for an endowment with benefits equal to 1 monetary unit, using the classical

Black-Scholes with constant interest r = 1% and µ = 1.5%, s = 4% and a Vasicek-Heston model with

parameters S0 = 1, µ = 1.5%, n̄ = 1%, n0 = 4%, k = 10−3, h = 10−2, q = r0 = 1%, k = 0.3, s = 2%.
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Appendix A. Technical Results

Appendix A.1. Proof of Theorem 1

Proof. It is important to notice that we will use the notation Vt to refer to the process V (t, St, xt, Pt,T),

and similarly for the partial derivatives. For instance, ∂xVt = ∂xV (t, St, xt, Pt,T). By means of Itô’s

lemma, we are able to write the change in our portfolio {Vt}t2[0,T] as follows:

dΠt = ∂tVtdt + ∂xVtdSt + ∂yVtdxt + ∂zVtdPt,T

+
1

2
∂2

xVtd [S, S]t +
1

2
∂2

yVtd [x, x]t +
1

2
∂2

zVtd [P, P]t

+ ∂x∂yVtd [S, x]t + ∂x∂zVtd [S, P]t + ∂y∂zVtd [x, P]t

− ∆tdS (t)− Σtdxt − ΨtdPt,T

= ∂tVtdt + {∂xVt − ∆t} dSt +
{

∂yVt − Σt

}

dxt + {∂zVt − Ψt} dPt,T

+
1

2
∂2

xVtd [S, S]t +
1

2
∂2

yVtd [x, x]t +
1

2
∂2

zVtd [P, P]t

+ ∂x∂yVtd [S, x]t + ∂x∂zVtd [S, P]t + ∂y∂zVtd [x, P]t .

Using the dynamics for dSt, dxt, dPt,T and the quadratic covariations, given by

d [S, S]t = S2
t a (t, St)

2 f (y (t, T, xt))
2 dt,

d [x, x]t = l (t, T, xt)
2 dt,

d [P, P]t = Ξ2
T (t, Pt,T) dt,

d [S, x]t = 0,

d [S, P]t = 0,

d [x, P]t = 0,

we obtain

dΠt = ∂tVtdt + {∂xVt − ∆t} dSt +
{

∂yVt − Σt

}

dxt + {∂zVt − Ψt} dPt,T

+
1

2
S2

t a (t, St)
2 f (y (t, T, xt))

2 ∂2
xVtdt +

1

2
l (t, T, xt)

2 ∂2
yVtdt +

1

2
Ξ2

T (t, Pt,T) ∂2
zVtdt

=

(

∂tVt +
1

2

(

S2
t a (t, St)

2 f (y (t, T, xt))
2 ∂2

xVt + l (t, T, xt)
2 ∂2

yVt + Ξ2
T (t, Pt,T) ∂2

zVt

)

)

dt

+ {∂xVt − ∆t} dSt +
{

∂yVt − Σt

}

dxt + {∂zVt − Ψt} dPt,T .
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Now, in order to make the portfolio instantaneously risk-free, we must impose that the return

on our portfolio equals the risk-free rate rt, i.e., dΠt = rtΠtdt = rt (Vt − ∆tSt − Σtxt − ΨtPt,T) dt,

and force the coefficients in front of dSt, dxt and dPt,T to be zero, i.e.,

∆t = ∂xVt,

Σt = ∂yVt,

Ψt = ∂zVt.

This implies that

dΠt =

(

∂tVt +
1

2

(

S2
t a (t, St)

2 f (y (t, T, xt))
2 ∂2

xVt + l (t, T, xt)
2 ∂2

yVt + Ξ2
T (t, Pt,T) ∂2

zVt

)

)

dt.

Therefore, rearranging the terms in the previous expression and taking into account that we

have imposed ∆t = ∂xVt, Σt = ∂yVt, Ψt = ∂zVt, we have the PDE for the unit-linked product,

ending the proof.

Appendix A.2. Proof of Theorem 2

Proof. We start by imposing that the discounted price process, S̃t = B−1
t St, the discounted variance

swap x̃t, and the discounted zero-coupon bond price P̃t,T are Q−martingales, where dBt = rtBtdt and

dB−1
t = −rtB

−1
t dt. To do so, we will also make use of the relationship between the Brownian motions

and their Q-measure counterparts, given by (8):

dS̃t = dB−1
t St + B−1

t dSt

= −rtB
−1
t Stdt + B−1

t

h

b (t, St) Stdt + a (t, St) f (y (t, T, xt)) StdW1
t

i

= S̃t

h

(b (t, St)− rt) dt + a (t, St) f (y (t, T, xt))
h

dWQ,1
t + g1

t dt
ii

= S̃t

h

b (t, St)− rt + a (t, St) f (y (t, T, xt)) g1
t

i

dt + S̃ta (t, St) f (nt) dWQ,1
t .

Now, the discounted price process S̃t is a Q−martingale if, and only if,

g1
t =

rt − b (t, St)

a (t, St) f (y (t, T, xt))
. (A1)

We do the same for the discounted forward variance process,

dx̃t = dB−1
t xt + B−1

t dxt

= −rtB
−1
t xtdt + B−1

t l (t, T, xt) dW2
t

= B−1
t

h

l (t, T, xt) g2
t − rtxt

i

dt + B−1
t l (t, T, xt) dWQ,2

t .

Therefore, the discounted variance swap is a Q−martingale if, and only if,

g2
t =

rtxt

l (t, T, xt)
. (A2)
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Finally, we impose that the discounted zero-coupon bond price process is aQ-martingale analogously

dP̃t,T = dB−1
t Pt,T + B−1

t dPt,T

= −rtB
−1
t Pt,Tdt

+ B−1
t

[

∂tFT (t, rt) + µ (t, rt) ∂xFT (t, rt)

+
1

2
s2 (t, rt) ∂2

xFT (t, rt)− rtFT (t, rt)

]

dt + B−1
t ∂xFT (t, rt) s (t, rt) dW0

t

= B−1
t

[

∂tFT (t, rt) +
(

µ (t, rt) + s (t, rt) g0
t

)

∂xFT (t, rt)

+
1

2
s2 (t, rt) ∂2

xFT (t, rt)− rt (FT (t, rt) + Pt,T)

]

dt

+ B−1
t Ξ2

T (t, Pt,T) dWQ,0
t .

Therefore, the discounted zero-coupon bond is a Q-martingale if, and only if,

1

FT (t, rt) + Pt,T

[

∂tFT (t, rt) +
(

µ (t, rt) + s (t, rt) g0
t

)

∂xFT (t, rt) +
1

2
Ξ2

T (t, Pt,T)

]

= rt. (A3)

Now, we are able to characterize gi, for all i 2 {0, 1, 2} , by solving the linear system given by

Equations (A1)–(A3).

Therefore, we will apply Itô’s lemma to the discounted price of the option,

d
h

B−1
t V (t, St, xt, Pt,T)

i

= dB−1
t V (t, St, xt, Pt,T) + B−1

t dV (t, St, xt, Pt,T) .

In order to relax the notation, we will drop the dependencies of V, allowing us to rewrite the

previous expression as

d
h

B−1
t Vt

i

= dB−1
t Vt + B−1

t dVt

= −rtB
−1
t Vtdt + B−1

t

[

∂tVtdt + ∂xVtdSt + ∂yVtdxt + ∂zVtdPt,T

]

+ B−1
t

[

1

2
∂2

xVtd [S, S]t +
1

2
∂2

yVtd [x, x]t +
1

2
∂2

zVtd [P, P]t

]

+ B−1
t

[

∂x∂yVtd [S, x]t + ∂x∂zVtd [S, P]t + ∂y∂zVtd [x, P]t
]

.

Furthermore,

d
h

B−1
t Vt

i

= B−1
t (∂tVt − rtVt) dt

+B−1
t

(

∂xVt

[

b (t, St) Stdt + Sta (t, St) f (y (t, T, xt)) dW1
t

]

+ ∂yVt

[

l (t, T, xt) dW2
t

])

+B−1
t ∂zVt

[

LP (FT (t, rt)) dt + ΞT (t, Pt,T) dW0
t

]

+B−1
t

h

1
2 S2

t a (t, St)
2 f (y (t, T, xt))

2 ∂2
xVt +

1
2 l (t, T, xt)

2 ∂2
yVt +

1
2 Ξ2

T (t, Pt,T) ∂2
zVt

i

dt

= B−1
t

[

∂tVt − rtVt + b (t, St) St∂xVt + LP (FT (t, rt)) ∂zVt

+ 1
2

(

S2
t a (t, St)

2 f (y (t, T, xt))
2 ∂2

xVt + l (t, T, xt)
2 ∂2

yVt + Ξ2
T (t, Pt,T) ∂2

zVt

)

]

dt

+B−1
t

[

St f (y (t, T, xt)) ∂xVtdW1
t + l (t, T, xt) ∂yVtdW2

t + ΞT (t, Pt,T) ∂zVtdW0
t

]

.
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If we replace the Brownian motions under the P-measure by the ones under the Q-measure given

by Equation (8), we can rewrite the previous expression as follows:

d
h

B−1
t Vt

i

= B−1
t

[

∂tVt − rtVt + b (t, St) St∂xVt + LP (FT (t, rt)) ∂zVt

+ 1
2

(

S2
t a (t, St)

2 f (y (t, T, xt))
2 ∂2

xVt + l (t, T, xt)
2 ∂2

yVt + Ξ2
T (t, Pt,T) ∂2

zVt

)

]

dt

+B−1
t Sta (t, St) f (y (t, T, xt)) ∂xVt

h

dWQ,1
t + g1

t dt
i

+B−1
t l (t, T, xt) ∂yVt

h

dWQ,2
t + g2

t dt
i

+B−1
t ΞT (t, Pt,T) ∂zVt

h

dWQ,0
t + g0

t dt
i

= B−1
t

[

∂tVt − rtVt + St

[

b (t, St) + g1
t a (t, St) f (y (t, T, xt))

]

∂xVt

+g2
t l (t, T, xt) ∂yVt +

[

LP (FT (t, rt)) + g0
t ΞT (t, Pt,T)

]

∂zVt

+ 1
2

(

S2
t a (t, St)

2 f (y (t, T, xt))
2 ∂2

xVt + l (t, T, xt)
2 ∂2

yVt + Ξ2
T (t, Pt,T) ∂2

zVt

)

]

dt

+B−1
t

h

Sta (t, St) f (y (t, T, xt)) ∂xVtdWQ,1
t + l (t, T, xt) ∂yVtdWQ,2

t + ΞT (t, Pt,T))∂zVtdWQ,0
t

i

.

Applying Equations (A1)–(A3) and reorganizing the terms in the previous equation, we have

d
h

B−1
t Vt

i

= B−1
t

[

∂tVt + rt

(

St∂xVt + xt∂yVt + Pt,T∂zVt − Vt

)

+ 1
2

(

S2
t a (t, St)

2 f (y (t, T, xt))
2 ∂2

xVt + l (t, T, xt)
2 ∂2

yVt + Ξ2
T (t, Pt,T) ∂2

zVt

)

]

dt

+B−1
t

h

Sta (t, St) f (y (t, T, xt)) ∂xVtdWQ,1
t + l (t, T, xt) ∂yVtdWQ,2

t + ΞT (t, Pt,T) ∂zVtdWQ,0
t

i

.

Now, noticing that the dt term in the previous equation is the differential operator (22) applied to

V, we can write the following:

d
h

B−1
t V (t, St, xt, Pt,T)

i

= B−1
t LVV (t, St, xt, Pt,T) dt

+ B−1
t Sta (t, St) f (y (t, T, xt)) ∂xV (t, St, xt, Pt,T) dWQ,1

t

+ B−1
t l (t, u, xt) ∂yV (t, St, xt, Pt,T) dWQ,2

t

+ B−1
t ΞT (t, Pt,T) ∂zV (t, St, xt, Pt,T) dWQ,0

t .

Next, integrating on the interval [s, t] , with s ≤ t, we can write the previous equation in integral

form as

B−1
t V (t, St, xt, Pt,T) = V (s, Ss, xs, Ps,T) +

Z t

s
B−1

t LVV (t, St , xt , Pt,T) dt

+
Z t

s
B−1

t Sta (t, St) f (y (t, T, xt)) ∂xV (t, St , xt , Pt,T) dWQ,1
t

+
Z t

s
B−1

t l (t, u, xt) ∂yV (t, St , xt , Pt,T) dWQ,2
t

+
Z t

s
B−1

t ΞT (t, Pt,T) ∂zV (t, St , xt , Pt,T) dWQ,0
t .

Taking the conditional expectation with respect to the risk neutral measure, we have that

EQ
h

B−1
t V (t, St, xt, Pt,T) | Gs

i

= Vs +EQ

[

Z t

s
B−1

t LVV (t, St , xt , Pt,T) dt | Gs

]

.

Notice that the previous expression is a martingale if, and only if, LVV (t, St, xt, Pt,T) ≡ 0, for all

t 2 [0, T] .
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Appendix A

Source Codes

This appendix section aims to provide some of the source codes used in the
simulations performed in each of the papers. The programing language chosen
was Matlab and the codes are also available in the following repository http:

//www.mlagunas.com/my-work

A.1 Paper I

The simulation of a self-exciting multifractional gamma process was implemented
through the code named SEMGamma.m in the following way:

1 function [ D X ] = SEMGamma(N)

2

3 % INPUT Variables

4 % N -> number of partitions of the interval [0,T]

5

6 % OUTPUT Variables

7 % X -> Values of the process

8 % D -> Differences of the process (X(i+1) - X(i))

9

10

11 N = 100;

12 T = 5;

13

14

15 %Hurst Function definition

16 %h = @(x) ((1/2)+(1/2)/(1+power(x,2)));

17 h = @(x) (1/(1+power(x,2)));

18 alpha = 10;

19

20 %hurst function plot

21 figure();

22 fplot(h,[-20,20],’k’);

23 title(’Hurst Function Graph’);

24 legend(’h(x)’);

25 ylabel(’Range of h=(0,1)’);

26 grid on

27

28

29 %Initializing Variables

30 dt = 1/N; %Increment size of the partition

31 t = 0:dt:T*N;% Time vector

32 Norm = randn(length(t),1); %N(0,1) simulation

33 X = repmat(0,length(t),1); % Initial X vector centered at 0

34 D = repmat(0,length(t),1); % Initial D vector of 0’s

35 H = repmat(h(X(1)),length(t),1); % Initial H vector of H(X(0))

36

37
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A. Source Codes

38 %Computation of the series X, D, H.

39

40 for i=2:length(t)

41 Term = 0;

42 for j=1:i-1

43 Term(j) = exp(-alpha*dt*(i-j))*power(dt*(i-j),h(X(j))-1/2)*Norm(j)*sqrt

(dt);

44 end

45 X(i) = X(1)+sum(Term);

46 D(i) = X(i)-X(i-1);

47 H(i) = h(X(i));

48 end

49

50

51

52 %Small plot of the Process and its variations against the Hurst parameter

53 figure

54 my_col = repmat(linspace(0,1,10)’,1,3); % create your own gray colors color

map

55

56 subplot(2,1,1)

57 yyaxis right

58 plot(t/N,X,’k’);

59 ylabel(’X_t’);

60 yyaxis left

61 plot(t/N,D,’color’,my_col(7,:));

62 ylabel(’Increments’);

63 title([’SEM-Gamma Process Simulation’]);

64 legend(’Process Increments’,’X_t Process’);

65 xlabel(’time (t)’);

66 grid on

67

68 subplot(2,1,2)

69 %yyaxis right

70 axis([0 t(end)/N 0 1]);

71 plot(t/N,H,’r’);

72 grid on

73 title(’Hurst Function’);

74 legend(’h(x(t))’);

75 xlabel(’time (t)’);

76 hold on

77

78 end

A.2 Paper II

The code to compute a second order approximation is provided below and can
be found in the repository under the name of HestonApprox2nd.m.

1 %Approximation Heston 2nd Order

2

3 function Price = HestonApprox2nd(S0,K,v0,r,tau,kappa,theta,sigma,rho)

4

5 kt=kappa.*tau;

6 D = exp(-kt);

7

142



Paper II

8 %We define av0 as the average initial variance

9 av0= theta + ((v0-theta)./(kappa*tau)).*(1-D);

10

11 %We use the average initial volatility instead of initital

12 %volatility

13 [BS,temp]= BSeuCall_Approx(S0,K,sqrt(av0),r,tau);

14

15 %The following variable corresponds to rho/2 L[W,M]

16 U=0.5*rho...

17 .*(sigma./kappa.^2 .*(theta.*kappa.*tau-2*theta+v0+D.*(2*theta-v0)-

kappa.*tau.*D.*(v0-theta)));

18

19 %The following variable corresponds to 1/8 D[M,M]

20 R=0.125.*(sigma./kappa).^2 .*(theta.*tau+(v0-theta)./kappa .*(1-D)...

21 -2*theta./kappa.*(1-D)-2*(v0-theta).*tau.*D...

22 +theta./(2*kappa).*(1-D.^2)+(v0-theta)./kappa.*(D-D.^2));

23

24 %The following variable corresponds to rho*L[W, rho/2 L[W,M]]

25 L_UW=(rho^2 * sigma^2)*(2*(v0 + theta*(kt -3))...

26 + D*(theta*(kt^2 + 4*kt + 6) - v0*(kt^2 + 2*kt +2)))/(4*kappa^3);

27

28 Price=BS+ temp(3).*U + temp(5).*R + (1./2).*temp(7).*(U.^2)+ temp(4).*L_UW;

29

30 end

31

32 function [BS,temp]= BSeuCall_Approx(S0,K,sigma, r, tau)

33 % Black-Scholes formula:

34 d1 = (log(S0./K) +(r+(sigma.^2)/2).*tau)./(sigma.*sqrt(tau));

35 d2 = d1- sigma.*sqrt(tau);

36

37 BS = S0.*normcdf(d1,0,1)-K.*exp(-r.*tau).*normcdf(d2,0,1);

38

39 st=sigma.*sqrt(tau);

40 st2pi=sigma.*sqrt(2*pi.*tau);

41

42 temp=zeros(7,1);

43

44

45 temp(3)=(S0*exp(-(d1^2)./2)./st2pi)...

46 *(1-d1./st); %DeltaGamma

47 temp(5)=(S0*exp(-(d1^2)/2)/st2pi)...

48 *((d1^2)/(st^2) - d1/st - 1/(st^2) );%Gamma^2

49 temp(4)=(S0*exp(-(d1^2)/2)/st2pi)...

50 *((1-d1/st)^2 - 1/(st.^2)); %Delta^2Gamma

51 temp(7)=(S0*exp(-(d1^2)/2)/st2pi)...

52 *((d1^4)/(st^4)-3*((d1^3)/(st^3))...

53 +((d1^2)/(st^2))*(3-6/(st^2))...

54 +(d1/st)*(9/(st^2)-1)...

55 +(3/(st^2))*(1/(st^2) -1) ); %Delta^2Gamma^2

56

57 end
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A.3 Paper III

The file HestonFwdVarVasicek.m provides unit-linked policy prices for different
strike prices as a result of a MonteCarlo simulation using a full truncation scheme.
It also plots a price surface resulting of the fit for mortality rates.

1 %MonteCarlo Simulation using Full-truncated Scheme

2

3 B = @(t,T,k) ((1/k)*(1-exp(-k*(T-t))));

4

5

6 % SIMULATION PARAMETERS

7 T = 10; %Maturity

8 N = 1000; %Number of subintervals of [0,T]

9 dt = T/N; %Stepsize

10 n = 10000; %number of simulations (1.000.000)

11

12

13 %% Classical Heston Model

14

15 %MODEL PARAMETERS

16

17 %VASICEK PARAMETERS

18

19 k = 0.3; %Speed of mean reversion

20 theta = 0.01; %Long term mean level

21 sigma = 0.02; % Volatility term

22 r_0 = 0.01; %spot rate initial value

23

24 %HESTON MODEL in FWD VARIANCE FORM PARAMETERS

25

26 %Instantaneous vol parameters

27 kappa = 0.001; %Speed of mean reversion

28 nu = 0.01; %Long term mean level

29 eta = 0.01; % Vol of vol

30 V_0 = 0.04; %Instantaneous vol initial value

31

32 %Price parameters

33 mu = 0.015; %drift parameter

34 S_0 = 100; %Price initial value

35

36 %Fwd Variance

37 fV_0 = nu + exp(-kappa*T)*(V_0-nu);

38

39 %STRIKES

40 K = 60:1:140; % Option Strike Prices

41

42 %Correlation Structure

43 rho_01 = 0;

44 rho_02 = 0;

45 rho_12 = 0;

46 rho = [[1, rho_01, rho_02];[rho_01,1,rho_12];[rho_02, rho_12,1]];

47

48 corrMat = chol(rho,’lower’); %cholesky factorization

49 check = corrMat*corrMat’-rho; %if check = 0 then the matrix is positive

definite

50
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51

52 %Simulation of indep. random variables

53 indep_rate_BM = randn(n,N); % Brownian Motion simulations for spot rate

54 indep_price_BM = randn(n,N); %Brownian Motion simulations for price

55 indep_vol_BM = randn(n,N); %Brownian Motion simulations for vol/variance

56

57 %Correlate the random variables

58 rate_BM = zeros(n,N); %initialization of correlated BM for rate

59 price_BM = zeros(n,N); %initialization of correlated BM for price

60 vol_BM = zeros(n,N); %initialization of correlated BM for vol/variance

61

62 for i=1:1:N

63 A = [indep_rate_BM(:,i),indep_price_BM(:,i),indep_vol_BM(:,i)]*corrMat

’;

64 rate_BM(:,i)=A(:,1);

65 price_BM(:,i) = A(:,2);

66 vol_BM(:,i) = A(:,3);

67 end

68

69

70 %Initialize rates/prices/variance/fwdvariance and gamma vectors

71 r = repmat(r_0,n,N);

72 S = repmat(S_0,n,N);

73 V = repmat(V_0,n,N);

74 fV = repmat(fV_0,n,N);

75 gamma0 = zeros(n,N);

76 gamma1 = zeros(n,N);

77 gamma2 = zeros(n,N);

78

79 %Compute trajectories

80 for i=1:1:n

81 for j=1:1:N-1

82 b = B(j*dt,T,k);

83 gamma0(i,j) = ((1-power(rho_12,2))/(1-power(rho_12,2)-power(rho_01

,2)+2*rho_02*rho_12*rho_01-power(rho_02,2)))...

84 *((-1/(sigma*b))*((1-b*k)*r(i,j)+b*k*theta-0.5*power(b,2)*power

(sigma,2)))...

85 +(1/(1-power(rho_12,2)-power(rho_01,2)+2*rho_02*rho_12*rho_01-

power(rho_02,2)))...

86 *((rho_02*rho_12-rho_01)*((r(i,j)-mu)/(sqrt(V(i,j))))+(rho_01*
rho_12-rho_02)*((r(i,j)*fV(i,j))/(eta*exp(-kappa*(T-j*dt))*
sqrt(V(i,j)))));

87 gamma2(i,j) = (1/(1-power(rho_12,2)))*...

88 (((r(i,j)*fV(i,j))/(eta*exp(-kappa*(T-j*dt))*sqrt(V(i,j))))...

89 -rho_12*((r(i,j)-mu)/(sqrt(V(i,j))))...

90 +gamma0(i,j)*(rho_12*rho_01-rho_02));

91 gamma1(i,j) = ((r(i,j)-mu)/(sqrt(V(i,j))))-rho_01*gamma0(i,j)-

rho_12*gamma2(i,j);

92

93 %Non-tradable assets

94 r(i,j+1) = r(i,j) + k*(theta-max(r(i,j),0))*dt + sigma*sqrt(dt)*
rate_BM(i,j);

95 V(i,j+1) = V(i,j)+kappa*(nu-max(V(i,j),0))*dt + eta*sqrt(max(V(i,j)

,0))*sqrt(dt)*vol_BM(i,j);

96

97 %Tradable assets

98 S(i,j+1) = S(i,j) + (r(i,j)+sqrt(max(V(i,j),0))*...
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99 (gamma1(i,j)+rho_01*gamma0(i,j)+rho_12*gamma2(i,j)))*S(i,j)*dt

+...

100 S(i,j)*sigma*sqrt(max(V(i,j),0)*dt)*vol_BM(i,j);

101 fV(i,j+1) = fV(i,j) + r(i,j)*fV(i,j)*dt...

102 + eta*exp(-kappa*(T-j*dt))*sqrt(max(V(i,j),0)*dt)*vol_BM(i,j);

103

104 end

105 end

106 S_Heston = S;

107 V_Heston = V;

108 %Compute Expectations

109

110 %Heston_Optprice = max(repmat(S(:,end),1,length(K))-repmat(K,n,1),0);

111 Heston_Optprice = max(repmat(S(:,end),1,length(K)),repmat(K,n,1));

112 time = [dt:dt:T];

113 DF = zeros(n,1);

114 for i=1:1:n

115 DF(i)=exp(-trapz(time,r(i,:)));

116 end

117 DF = repmat(DF,1,length(K));

118 avg_Heston_Optprice = mean(DF.*Heston_Optprice);

119

120

121

122 %% Black-Scholes Model

123

124 %Model Parameters

125 sigma = sqrt(V_0);

126 rate = 0; %rate

127 %sigma = Vo;

128 %Simulation of Price BM

129 BSprice_BM = randn(n,N); %Brownian Motion simulations for price

130

131 %Initialize Price vector

132 S_BS = repmat(S_0,n,N);

133

134 %Compute trajectories

135 for i=1:1:n

136 for j=1:1:N-1

137 S_BS(i,j+1) = S_BS(i,j)*exp((rate-0.5*sigma.^2)*dt + sigma*sqrt(dt)

*BSprice_BM(i,j));

138 end

139 end

140

141 %Compute Expectations

142

143 %BS_Optprices = max(repmat(S_BS(:,end),1,length(K))-repmat(K,n,1),0);

144 BS_Optprices = max(repmat(S_BS(:,end),1,length(K)),repmat(K,n,1));

145 avg_BS_Optprice = mean(BS_Optprices);

146

147

148

149 %% Insurance: Mortality rates and prices

150

151 mu = @(x) (exp(-9.13275+8.09438*power(10,-2)*x-1.10180*power(10,-5)*power(x

,2)));

152 lifespan = 120;
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153 P = zeros(lifespan,1);

154

155 for i=1:1:lifespan

156 P(i) = exp(-integral(mu,i-1,i-1+T));

157 end

158

159

160

161 %% PLOTS

162

163 % PLOT 1

164 figure();

165

166 %Upper Plot: Option Prices

167 subplot(2,1,1);

168 plot(K,avg_BS_Optprice,’:k’);

169 hold on

170 plot(K,avg_Heston_Optprice, ’--k’);

171 hold off

172 xlabel(’Guarantee (Strike Price)’);

173 ylabel(’Unit-Linked Price’);

174 legend([’BS Model T=’ num2str(T)],[’ Classic Heston Model T=’ num2str(T

)]);

175 title([’Unit-Linked Price using a MC Scheme with ’ num2str(n) ’

simulations’]);

176 axis([K(1) K(end) 80 250]);

177 grid on

178

179

180 %Lower Plot: Price error:

181 subplot(2,1,2);

182 error1 = rdivide(abs(avg_BS_Optprice - avg_Heston_Optprice),

avg_BS_Optprice);

183 plot(K,error1,’r’);

184 grid on

185 xlabel(’Guarantee (Strike Price)’);

186 ylabel(’Error (%)’);

187 legend(’Error Heston vs BS’);

188 title(’Model error’);

189 axis([K(1) K(end) 0 1]);

190

191 %PLOT 2 (Unit-Linked price surface)

192

193 Price = P*avg_Heston_Optprice;

194 figure();

195 surf(K,1:1:lifespan,Price);

196 xlabel(’Guarantee (Strike Price)’);

197 ylabel(’Age’);

198 zlabel(’Unit-Linked Price’);

199 title([’ Unit-Linked Price under Heston Model for T=’ num2str(T)]);
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