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Abstract

This paper considers a family of spatially discrete approximations,
including boundary treatment, to initial boundary value problems in
evolving bounded domains. The presented method is based on the
Cartesian grid embedded Finite-Difference method, which was initially
introduced by Abarbanel and Ditkowski [24] [25], for initial boundary
value problems on constant irregular domains.

We perform a comprehensive theoretical analysis of the numeri-
cal issues, which arise when dealing with domains, whose boundaries
evolve smoothly in the spatial domain as a function of time. In this
class of problems the moving boundaries are impenetrable with either
Dirichlet or Neumann boundary conditions, and should not be con-
fused with the class of moving interface problems such as multiple
phase flow, solidification, and the stefan problem.

Unlike other similar works on this class of problems, the resulting
method is not restricted to domains of up to 3-D, can achieve higher
then 2nd-order accuracy both in time and space, and is strictly stable
in semi-discrete settings. The strict stability property of the method
also implies that the numerical solution remains consistent and valid
for a long integration time.

A complete convergence analysis is carried in semi-discrete settings,
including a detailed analysis for the implementation of the diffusion
equation. Numerical solutions of the diffusion equation, using the
method for a 2nd and a 4th-order of accuracy are carried out in one
dimension and two dimensions respectively, which demonstrates the
efficacy of the method.
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1 Introduction

This paper considers numerical solutions of initial boundary value problems

(IBVPs), on domains with time moving boundaries. Such problems occur

in many science and engineering problems, and can generally be divided into

two types:

Moving Interface Problems: The physical domain is divided into

several non-overlapping connected sub-domains, each representing distinct

material (such as water and oil) or state (such as water and ice). The pa-

rameters in the governing differential equations are typically discontinuous

across the interfaces separating the distinct sub-domains. Usually the inter-

faces are only known at some initial time point, and must be determined as

part of the solution as it evolves with time. Multiple phase flow, and Hele-

Shaw cells for pattern formation are some of the better known examples [1]

[2] [3].

Moving Impenetrable Boundary Problems: The physical domain

is either subject to time evolving deformation, and/or contains moving solids

whose interior is not governed by a differential equation. Typically the mov-

ing boundary is considered impenetrable with either Dirichlet or Neumann

boundary conditions, and it’s movement is either given or known explic-

itly from the solution. Flow with moving solid bodies, and heat transfer in

arbitrary moving geometries, are typical examples [2] [3].

For both types of problems the shape of the boundary/interface can be

complex, and can undergo change, merge, and breakup during the course of

the simulation. Consequently it is both difficult and computationally expen-

sive to use body-fitted grid methods, which require an adaptive processes of

grid generation and adjustment to the evolving boundary/interface. A fixed

cartesian grid, where the boundary/interface can cut through the grid line is

often used, this approach greatly reduces the complexity of the computation,

and can be implemented much more easily.

The class of methods, which employ a fixed cartesian grid with the

boundary/interface embedded into the scheme are termed Embedded Meth-

ods. The most popular methods used are, among others, the immersed
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boundary method (IBM) originally developed by Peskin [5] for simulating

blood flow in the heart (see review by Peskin [6]), the ghost fluid method

(GF) of Fedkiw et al. [7][8][9], and the immersed interface method (IIM),

which was initially introduced by LeVeque and Li [11] for elliptic interface

problems [12]. A similar idea to the IIM was used earlier by Mayo [10].

When using a fixed cartesian grid, one inevitably has to deal with grid

crossing events, which occurs when the boundary/interface passes over some

grid-point. This phenomena implies different numerical considerations for

each type of problem: In the case of Moving Interface Problems, this means

that grid points are shifting from one side of the interface to the opposite

side, but remain at all time within the computational domain. In the case

of Moving Impenetrable Boundary Problems, this means that grid points

are entering or exiting the computational domain, which usually requires

an extrapolation procedure to initialize values that are uncovered as the

boundary moves.

Though this paper considers only Moving Impenetrable Boundary Prob-

lems, it should be mentioned that for Moving Interface Problems the re-

quirement to determine the location of the interfaces using a fixed cartesian

grid employs a boundary capture technique, which attempts to follow the

boundary motion against a fixed computational grid. An important method

used for the boundary capturing is the Level-Set method [14] [15]. Both

The IBM and the IIM have been incorporated in the level-set method (for

example see [13]).

Concerning Moving Impenetrable Boundary Problems the IIM and other

sharp interface methods have been developed for flow with moving solid

bodies [16][17][18][19][20]. For the heat equation on irregular time depen-

dent domains, Colella et al. [21][22], presented a solution algorithm using

a Finite-Volume approach. However, all these methods attained up to 2nd-

order accuracy, were validated for geometrically simple domains of up to

3-D, and without a rigorous proof of convergence.

In this work we present a method based on the Cartesian grid embedded

Finite-Difference method, which was initially introduced by Abarbanel and

Ditkowski [24] [25], for initial boundary value problems on constant irregular
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domains. We perform a comprehensive theoretical analysis of the numeri-

cal issues, that arise when dealing with time dependent domains, including

treatment of mergers, and breakups of the moving boundary, which may

occur during the course of the simulation. A complete convergence anal-

ysis is given in semi-discrete settings, and the resulting method is shown

to be strictly stable and applicable to irregular time dependent domains of

arbitrary finite dimension. We impose few restrictions as possible on the

boundary movement. This paper summarizes the results presented in ”Em-

bedded Finite-Difference Schemes for Initial Boundary Value Problems in

Time Dependent Complex Domains” [4].

The subsequent sections are organized as follows:

In section 2, we present the framework for constructing finite-difference ap-

proximations using Cartesian grids on moving-boundary geometries. In sec-

tion 3, we deal with the geometric aspects of approximating functions on

Cartesian grids in complex moving geometries. In section 4, we analyze the

convergence of semi-discrete approximations, which maintain the order of

accuracy with a strict stability. In section 5, we establish the notations and

assumptions for applying the method. In section 6, we apply the method for

the diffusion equation, with Dirichlet boundary conditions. Numerical ex-

amples of 2nd-order and 4th-order accurate schemes are presented in section

7.
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2 General Theory and Concepts

In this section a general theory and concepts of applying the Embedded

Finite-Difference Method for IBVPs with moving boundaries, are pre-

sented.

2.1 Problem Formulation

2.1.1 IBVP with Moving Boundaries

Let us consider the problem,

∂u

∂t
= L (u) + f(x, t), (2.1)

u(x, 0) = u0(x), (2.2)

B (u(x, t)) |∂Ω(t) = uB(t), (2.3)

where B and L are linear differential operators. The problem is assumed to

be well posed, and defined for all x ∈ Ω(t) ⊂ Rd and all t ≥ 0, where Ω(t)

is a time-dependent domain.

2.1.2 Domain and Boundary Curve Properties

For the multi-dimensional case we assume:

• The boundary is a smooth curve, given by a known function,

∂Ω(t) =
{
Γ(t) ∈ C

(
Rd

)}
, Γ(t) ∈ Rd, ∀ t ≥ 0, (2.4)

which satisfies

|∂nΓ| ≤ c and RΓ(t) > Rmin ∀ t ≥ 0, (2.5)

where RΓ(t) denotes the Radius of Curvature at Γ(t) ∈ ∂Ω(t).

This requirement assures that using a fine enough grid, the set of

internal grid-points, which are valid for the numerical approximation is

maximized. Furthermore, this set of valid internal grid points, always

maintains a certain bounded proximity to the boundary (see section

2.2.1 for details).

• The domain is a connected bounded set in Rd for all t ≥ 0.
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2.2 A Brief Introduction to Embedded Finite-Difference

The particular approach we use was originally developed by Abarbanel and

Ditkowski [24] [25], which generalized [23]. The method has been applied

successfully to IBVPs on constant domains by embedding the boundary

operator into the numerical scheme in a penalty-based approach, see for

example [26], [27], [28], [29].

2.2.1 The One-Dimensional Model

Consider a one-dimensional problem, with Dirichlet boundary conditions,

∂u
∂t

= L(u) + f(x, t), (2.6)

u(x, 0) = u0(x), (2.7)

u(ΓL/R, t) = gL/R(t), (2.8)

Let us spatially discretize (2.6) on the following uniform grid:

x x x x x x x1 2 j−1 j j+1 N−1 N
ΓL ΓR

γ
L h ∆x = h γ

R h

x

Figure 2.1: One Dimensional Spatial Discretization

where the internal grid points are set by xj+1 − xj = h for 1 ≤ j ≤ N , with

respect to the boundary points:

x1 − ΓL = γLh, ΓR − xN = γLh

such that 0 ≤ γL, γR ≤ 1. Note that, the boundary points, ΓL and ΓR, do

not necessarily coincide with the the extremal grid-points, x1 and xN .

The projection of the exact solution onto the grid is uj(t) :=u(xj , t) and

similarly fj(t):=f(xj , t) is the projection of the inhomogeneous term. Let

LN be a matrix approximating the differential operator, L, at internal grid-

points, then the semi-discrete form of (2.6) becomes:

dU

dt
= (LNU + T.E.) + (BNU + E.E.) + F (t), (2.9)
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where U and F are gridfunction vectors of the exact solution and the inho-

mogeneous term respectively:

U := (u1, u2...uN )T , F := (f1, f2...fN )T

T.E. is the truncation error of the numerical approximation at internal grid

points, BN is a numerical boundary operator, and E.E. is the extrapolation

error of BN near the boundary. Accordingly, we set the boundary operator

by

BNU = −TL (ALU −GL)− TR (ARU −GR) , (2.10)

where GL/R := (1, 1, . . . 1)T gL/R are boundary value vectors, TL/R are diago-

nal weights matrices, and AL/R are extrapolations to the boundary matrices

satisfying the relation

AL/RU = GL/R + E.EL/R, (2.11)

i.e, each row in AL/R is an extrapolation functional, which extrapolates

B(u), and the extrapolation error is then given by E.EL/R.

By omitting the truncation error, T.E., and the extrapolation error, E.E.,

we get the following semi-discrete scheme:

dV

dt
= MV + G + F , (2.12)

where V is the gridfunction of the approximate solution, M := LN−TLAL−
TRAR, and G := TLGL + TRGR. Accordingly, we seek weights matri-

ces, TL and TR, for which the matrix M is Negative-Definite (N.D) for

a parabolic operator and Non-Positive-Definite (N.P.D) for a hyperbolic

operator, which implies strict-stability of the scheme (2.12).

2.2.2 The Multi-Dimensional Model

For a general multi-dimensional problem, whose differential operator does

not have mixed derivatives, L =
∑d

r=1 L(xr), we may set a separate numer-

ical operator in each coordinate direction.

Indeed, when the matrix representation in each coordinate direction is N.D

(N.P.D) then the overall scheme is represented by an N.D (N.P.D) matrix,

since the sum of two N.Ds (N.P.Ds) is N.D (N.P.D). This is the sense in

which such schemes are ‘modular’.
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2.2.3 The Error Boundness Property

Denoting E := U − V and subtracting (2.12) from (2.9), we have

d

dt
|E| ≤ −c |E|+ |T | , |E| = 〈E, E〉1/2 , (2.13)

where 〈·, ·〉 denotes the standard scalar product, T denotes the total of the

extrapolation and truncation errors, and

c := −max
{
σ

(
MS

)}
, MS :=

(
M + MT

)/
2, (2.14)

where σ (T ) denotes the spectrum of the operator T.

Accordingly, by Gronwall’s lemma, we have

|E| ≤ ‖T ‖∞
{

hm 1−e−ct

c if M is N.D.
hmt if M is N.P.D.

(2.15)

‖T ‖∞ := max
0≤s≤t

|T (s)| /hm, (2.16)

where h is the spatial mesh size and m is the spatial order of accuracy.

2.3 The Embedded Finite-Difference for Moving Boundaries

The major difficulty in applying the Embedded Finite-Difference Method for

IBVP with Moving Boundaries accounts for the uniform fixed grid employed

by the algorithm. Indeed, as the boundary evolves with time, we need to

deal with events of grid-points entering or exiting the domain, which greatly

complicates the analysis and implementation of the scheme.

2.3.1 The Algorithm

In practice, the approximation V is obtained by applying some multi-stage

or multi-step method with (2.12), where stability is assured under conditions

given in Kreiss and Wu [30] or Levy and Tadmor [31].

For simplicity, we assume V is evaluated at constant time steps,

t0 := 0 , tn := n · k ∀n ∈ N, (2.17)

and opt to apply the following algorithm at every temporal sub-interval,

Tn := (tn, tn+1):
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1. Suspension: tag as suspended any grid-point which enters or exits

the domain at some t∗ ∈ Tn.

2. Numerical solution: apply a numerical solution over VI(tn), the

vector of the approximate gridfunction solution at tn, on internal and

not suspended grid-points, and obtain VI(tn+1).

3. Extrapolation for the next temporal subinterval: insert the

approximate solution at the newly entered grid-points at tn+1, via

polynomial extrapolation for Tn+1.

3 Geometric Consideration

In this section the geometric considerations for applying the Embedded

Finite-Difference Method in a time-dependent domain, are discussed. We

distinguish between a genuine one-dimensional domain, and a one-

dimensional section of a multi-dimensional domain.

3.1 The One Dimensional Model

3.1.1 Domain Properties

Now, at a given time point t ≥ 0, we expect, the following representation of

the domain:

Ω(t) := {x ∈ Ω(q)(t) | q = 1, 2 . . . qf} =
qf⋃

q=1

Ω(q)(t), Ω(q)(t) := (Γ(q)
L ,Γ(q)

R ),

(3.1)

where
{
Ω(q)(t)

}
are spatial non-overlapping open intervals, whose boundary

points,
{

Γ(q)
L/R

}
, evolve smoothly with t. The boundary’s evolution in time

inserts and extracts grid-points into and from the domain, which are tagged

as suspended within each temporal sub-interval, Tn.

Moreover, since we opt to use the one-dimensional model as a building block

for multi-dimensional problems, we expect qf , the number of open intervals,

to vary in time, due to the following events:

• Sub-Domains Merger: at some time point, t∗, two boundary points

belonging to sequential sub-domains join together, thus the two sub-

domains merge to one-sub-domain, as displayed in Figure 3.1.
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• Sub-Domain Split: at some time point, t∗, a new boundary is emerg-

ing in the interior of the domain, thus a sub-domain is split into two

sub-domains, as displayed in Figure 3.1.

• Sub-Domain Depletion: at some time point, t∗, two boundary

points of the same sub-domain join together and from that point on,

the sub-domain is depleted and removed from the domain, as displayed

in Figure 3.2.

• Sub-Domain Emergence: at some time point, a new boundary is

emerging outside the domain, and a new sub-domain is emerging, as

displayed in Figure 3.2.

L

L

R

x

t

Γ Γ

Γ

ΓL
(q) (q) (q+1)

(q+1)Γ ΓR R
(q) (q+1)ΓL

(q)

ΓR
(q+1)

Sub−domain Split

Ω(t)Sub−domains Merger

Figure 3.1: Permissible Events

L

R

x

t

Γ

Γ

(q)

(q+1)ΓR

(q+1)

ΓL

(q)

(t) Sub−domain Emergence

Sub−domain Depletion

Ω(t)

Ω

Figure 3.2: Impermissible Events

If the given problem is genuinely one-dimensional, i.e. the domain is purely

one-dimensional,

• Merger/Split events may insert/extract into/from the domain grid-

points, which reside spatially far from the boundary.
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• Depletion/Emergence events lead inevitably to scarcity of grid-

points in the sub-domain, which implies degraded accuracy and non-

existence of a CFL condition. Hence, are considered impermissible.

If the problem is multi-dimensional, i.e. the one-dimensional domain is a

one-dimensional section of a multi-dimensional domain:

• Merger/Split events insert/extract into/from the domain grid-points,

with spatial proximity to the boundary in at least one coordinate di-

rection.

• Depletion/Emergence events need not be considered impermissible,

if the Radius of Curvature has a uniform lower bound. See sub-section

3.2.1 for details.

3.1.2 Boundary Movement

The algorithm suggested in section 2.3.1 is applicable assuming the bound-

ary’s position moves slowly with respect to ∆x/∆t = h/k. Accordingly, for

a genuine one-dimensional problem, we require

max
t∈[tn,tn+1]

∣∣∣∣
d

dt
Γ(q)

L/R(t)
∣∣∣∣ <

h

2k
⇒ sup

t∈Tn

∣∣∣Γ(q)
L/R(t)− Γ(q)

L/R(tn)
∣∣∣ <

h

2
, (3.2)

Hence, at each Tn,

inf {|∂Ω(t)− xj | | xj ∈ XI(t)} ≤ 3h/2, (3.3)

where XI(t) denotes the set of internal and not suspended grid-points at t ∈
Tn. Note that, (3.2) is the maximal lower bound, for which a Merger/Split

event may insert/extract into/from the domain, at most one grid-point, as

displayed in Figure 3.3.

3.2 The Multi-Dimensional Model

Let S := 2s+1 be the number of grid-points required by the scheme’s stencil

in any coordinate direction, xr, for some s ∈ N. Accordingly,

• We say that a sequence of internal grid-points in any coordinate di-

rection, containing more than 2s grid-points, is an S-line.
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n+1

ΓL

t
3h/2 x = h∆

h/2 h/2h/2

suspended grid−point suspended grid−point

x

n

t

t

Figure 3.3: One-Dimensional Boundary Movement

• We say an internal grid-point, xj , intersected only by S-lines, is an

admissible grid-point.

3.2.1 Domain Properties

We minimize the set of internal non-admissible grid-points, by applying the

following requirements:

1. Intersection condition: An S-line may intersect a non-S-line, only

at the S-line’s extreme grid-points. Hence, narrow slots with respect

to mesh size ,as displayed in Figure 3.4, are prohibited.

Ω (t)

non S−lines

S−line

Figure 3.4: Narrow Slot Example

2. Curvature condition: at any boundary point, Γ(t), the Radius of

Curvature, RΓ(t), must satisfy

RΓ(t) > Rmin := h
(
1/4 + s2

)
. (3.4)
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Hence, as displayed in Figure 3.5,

inf {|∂Ω(t)− xj | | xj ∈ XA(t)} ≤ 3h/2, (3.5)

where XA(t) denotes the set of admissible grid-points at t ≥ 0.

Ω

h/2

yi+1

yi
3h/2

x

y

xj

s  h s  h. .

(t)
(t)Rγ Rγ(t)

Γ(t) Non Admissible Grid−Point

Figure 3.5: Radius of Curvature Example

Though this property is preserved over XI(tn), for all n, it may not

be preserved over XI(t), for all t ∈ Tn, due to the multi-dimensional

nature of the boundary’s movement.

3.2.2 Boundary Movement

Analogously to the one-dimensional case, we require the following bound

over the normal derivative of the boundary:

∀n max
t∈[tn,tn+1]

|∇n∂Ω(t)| < h

2k
, (3.6)

However, this requirement does not ensure that the boundary’s movement of

any one-dimensional section of the domain satisfies the requirement of the

genuine one-dimensional case. For example consider the boundary move-

ment of the two dimensional domain as displayed in Figure 3.6.

Although the normal derivative of the boundary’s movement is bounded,

the one dimensional y-section of the domain at y1 exhibits a much faster

movement, which does not satisfy requirement (3.2).

Such extreme cases may occur when the boundary has a very large (or in-

finite) radius of curvature with a front parallel to one of the axes. Hence,
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Ω
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0
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y
2
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3

y
4

y
5

x
0 x1 x2 x3 x4 x5 x6 x

7
x8 x9 x

10
x11

(t)

Boundary at  tn

Inserted line of grid−points

Boundary at  tn+1

Figure 3.6: Multi-Dimensional Boundary Movement

unlike the genuine one-dimensional case, we may encounter an almost un-

bounded boundary velocity of any one-dimensional section of the domain,

due to small movement of the boundary in the normal direction. In partic-

ular this implies that refining the mesh or/and taking a smaller time step,

will not ensure, or will require an impractically fine grid to ensure, that each

one-dimensional section of the domain satisfies requirement (3.2).

4 Convergence Analysis

In this section a convergence analysis is carried out for semi-discrete schemes.

4.1 Semi-Discrete Analysis

For the sake of analysis, we assume the following inner product is applied

at each Tn:

( · , · )n :=
〈Rn(t) · , · 〉

N(n)

(
‖·‖n :=

(
( · , · )

1
2
n

))
, Rn(t) ∈ MatSym

N(n), (4.1)

where Rn(t) is a Positive-Definite (P.D) piecewise constant matrix, N(n)

is the total number of internal and non-suspended grid-points at Tn, and

MatSym
N(n) denotes the sub-space of N(n)×N(n) symmetric matrices.

Similar to the Constant Boundary case, we have

d

dt
E = ME + T ∀ t ∈ Tn, (4.2)
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where E := U−V ∀ t ∈ Tn. Accordingly, taking the inner product, ( · , · )n,

of E with (4.2) yields

d

dt
‖E‖2

n = (E,ME)n + (E,T)n (4.3)

≤ −cn · ‖E‖2
n + |(E,T)n| , (4.4)

where cn is the minimal eigenvalue of − [RnM ]S at Tn,

cν := − max
tν≤t≤tν+1

{
σ

(
[RnM ]S

)}
, ν = 0, 1, 2 . . . n, (4.5)

and [RnM ]S :=
(
RnM + [RnM ]T

)
/2. Using Schwartz’s inequality, dividing

by ‖E‖n and applying Gronwall’s Lema, we get

‖E(t)‖n ≤ ‖T ‖n,∞ hm 1− e−cn(t−tn)

cn
+ ‖E(tn)‖n e−cn(t−tn), (4.6)

‖T ‖ν,∞ := sup
t∈Tν

‖T ‖ν/hm. (4.7)

Note that, for cn = 0, we take (4.6) as the limit of cn → 0+,

‖E(t)‖n ≤ ‖T ‖n,∞ hm(t− tn) + ‖E(tn)‖n . (4.8)

Accordingly,

• The extrapolation step at the end of every Tn implies

‖E(tν+1)‖ν+1 ≤ ‖E(tν+1)‖ν + εν+1 |O (hm)| , (4.9)

where εν := εν√
N(ν)

, and εν denotes the number of newly entering

grid-points at tν .

• Similar to (4.6), we have

‖E(tν+1)‖ν ≤ ‖T ‖ν,∞ hm 1− e−cν ·k

cν
+ ‖E(tν)‖ν · e−cν ·k. (4.10)

Hence, (4.6) combined with (4.9) and (4.10) gives a Recurrence inequality

with the following solution:

‖E(t)‖n ≤
n∑

ν=1

[(
βν

αν
‖T ‖n,∞ hm +

εν · |O(hm)|√
N(ν)

)(
n∏

µ=ν

αµ

)]
, (4.11)
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where

αν :=
{

e−cν ·k if ν < n

e−cn·(t−tn) if ν = n
, βν :=

1− αν

cν
→

cν→0+

{
k if ν < n,

t− tn if ν = n
.

(4.12)

Indeed, we generally have
{

cν = 0 ∀ 0 ≤ ν ≤ n if (2.6) is hyperbolic,
cν ≥ c > 0 ∀ 0 ≤ ν ≤ n if (2.6) is parabolic.

(4.13)

Thus,

‖E(t)‖n ≤
{(‖T ‖∞ +

∣∣O (
ε
k

)∣∣) · hmt if (2.6) is hyperbolic,(‖T ‖∞ +
∣∣O (

ε
k

)∣∣) · hm 1−e−c·t
c if (2.6) is parabolic,

(4.14)

where

‖T ‖∞ := max
0≤ν≤n

‖T ‖ν,∞, ε := max
0≤ν≤n

εν . (4.15)

4.2 Multi-Dimensional Considerations

In general, constructing matrices M and Rn(t) in the event of Merger/Split,

for which c ≥ 0, is easily done in the genuine one-dimensional case, but

becomes excessively complicated in the multi-dimensional case.

Accordingly, for the multi-dimensional Case, we set Rn(t) ≡ I, but apply the

numerical solution over XA(t), where V at admissible suspended grid-points

is evaluated at every stage using extrapolation on neighboring boundary

and grid-points. Note that, admissible suspended grid-points are always

spatially proximate to the boundary in the multi-dimensional case, thus the

extrapolated values are assured to have a small enough error.

5 General Scheme Analysis and Numerical Con-
siderations

In this section, we underlay the notation and fundamental assumptions for

analysis, and discuss some numerical considerations.

5.1 Fundamental Assumptions

Since we use one-dimensional problems as building blocks for a general multi-

dimensional problems, we apply the analysis for a one-dimensional problem
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at a time point t ∈ Tn, characterized by the following properties, as displayed

in Figure 5.1:

• Two real boundaries: Γ1 := ΓL(t) and Γqf
:= ΓR(t),

• qf − 1 mergers, which occurred before t,

• Γq − Γq−1 À S for q = 1, 2 . . . qf ,

where {Γq}qf−1
1 denote the boundary join points, and,

γL(t) :=
x1 − ΓL(t)

h
, γR(t) :=

ΓR(t)− xN

h
, (5.1)

where x1 and xN are the admissible non-suspended grid-points most spatially

proximate to the boundary points ΓL and ΓR respectively.

n

n+1t
t

t x

t

ΓL RΓ

0Γ Γq
f

x = h∆γ
L h γ

R h

Γ1 Γ2 Γq 1f
−

xx n1

Figure 5.1: The General One-Dimensional Model

5.2 General Matrix Formulation

For Dirichlet boundary conditions, the general form of M is given by

M = LN +
qf−1∑

q=1

C
(q)
N − TLAL − TRAR, (5.2)

where

• LN , the inner part of the scheme, is a block-diagonal differentiation

matrix

LN =




L
(1)
N

L
(2)
N

. . .

L
(qf )
N




, (5.3)

and each block, L
(q)
N , is a differentiation sub-matrix applied over X

(q)
I (t) :=

{xj ∈ XI(t) | Γq−1 < xj < Γq}.
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•
{

C
(q)
N

}qf−1

q=1
are continuity operator applied over neighboring grid-points

of Γq.

• TL, TR and AL, AR are diagonal weights matrices and boundary value

extrapolation matrices respectively, for Dirichlet boundary conditions,

as described in section 2.2.1,

TL :=




τ
(1)
L

τ
(2)
L

. . .

τ
(N)
L




, TR :=




τ
(N)
R

τ
(N−1)
R

. . .

τ
(1)
R




,

(5.4)

AL :=




a
(1)
L · · · a

(pf )
L 0 · · ·

a
(1)
L · · · a

(pf )
L 0 · · ·

...
. . .

...
...

. . .

a
(1)
L · · · a

(pf )
L 0 · · ·




, AR :=




· · · 0 a
(pf )
R · · · a

(1)
R

· · · 0 a
(pf )
R · · · a

(1)
R

. . .
...

...
. . .

...
· · · 0 a

(pf )
R · · · a

(1)
R




.

(5.5)

Though, in principle, the penalty terms
(
AL/RV −GL/R

)
are added to each

point, in practice, they are added just near the boundaries, i.e

∃jf ∈ N : τ
(j)
L/R = 0 ∀ j > jf , jf ¿ N(n). (5.6)

5.3 Vanishing Boundaries and Continuity Operators

When a Merger event occurs at some time point t∗ ∈ Tn, we replace the

relevant numerical boundary operator with a requirement of continuity along

ghost-points, which represent extensions of the vanishing boundaries.

For simplicity, we implement the continuity operator by setting some

local differentiation operator for t > t∗, which is equivalent to a requirement

for solution continuity along discontinuous, and perpendicular to the x-axis

ghost-points extensions, as displayed in Figure 5.2.

6 Application: the Diffusion Equation

In this section, we analyze and construct numerical schemes of the diffusion

equation for both 2nd-order and 4th-order approximations. The analysis is

18



tn+1

t n

t*

RΓ ΓL

ΓΓL2 L1 ΓR1 ΓR2

x

Figure 5.2: Vanishing Boundaries Discontinuous Extension

applied to a one-dimensional normalized equation, with Dirichlet boundary

conditions,

∂u
∂t

=
∂2u
∂x2

+ f(x, t), (6.1)

u(x, 0) = u0(x), (6.2)

u(ΓL/R(t), t) = gL/R(t), (6.3)

such that Ω(t) ⊂ [0, 1], ∀ t ≥ 0.

6.1 2nd-Order Approximation

For the 2nd-order case, we have (see section 5.2)

L
(q)
N :=

1
h2




1 −2 1
1 −2 1

1 −2 1
. . .
1 −2 1

1 −2 1
1 −2 1




, (6.4)

where a 2nd-order symmetric approximation to ∂2

∂x2 is used at internal points,

and a 1st-order (not symmetric) approximation to ∂2

∂x2 is used near the edges.

Note that, the lower accuracy near the edges does not affect the overall

accuracy, as does the order of the imposed boundary conditions that are

one less than that of the inner scheme (see [32], [33], [34] for details).
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By setting p = 3, we have

a
(1)
L/R :=

1
2
(γL/R + 1)(γL/R + 2),

a
(2)
L/R := −γL/R(γL/R + 2),

a
(3)
L/R :=

1
2
γL/R(γL/R + 1),

and, for jf = 1, we may designate

τ
(1)
L/R :=

1
h2
· −3γL/R + 9
(γL/R + 1)(γL/R + 2)

(
τ

(j)
L/R = 0 ∀j > jf = 1

)
. (6.5)

Hence, the general form of the matrix, becomes as displayed in Figure 6.1.

N−6

= MM
S

1

2
h

1

1

1

1

3 x 3

3 x 3

M
L

S

M
R

S

S

C

N−6

x

Figure 6.1: General Matrix Form - 2nd-Order

Accordingly, for the eigenvalues bound analysis, we define two matrices, D
(0)
2

and D
(1)
2 ,

D
(0)
2 :=




−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1




, D
(1)
2 :=




−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2




,

(6.6)

where D
(1)
2 is N.D, and D

(0)
2 is N.P.D with the eigenvalue 0 of algebraic

multiplicity 1 (see appendix A for details).

20



6.1.1 Case 1: No Merger

For this case, no Merger took place ∀ t∗ ∈ (tn, t), hence no continuity oper-

ators are applied. Accordingly, it can be easily verified that

εm(γL, γR) := sup
{

ε ∈ (0, 1)
∣∣∣∣ MS − 1

h2

[
εD

(1)
2 + (1− ε)D(0)

2

]
≤ 0

}

(6.7)

satisfies

εm(γL, γR) >
12
25

∀ (γL, γR) ∈ [0, 3/2]× [0, 3/2], (6.8)

where the matrix D
(0)
2 is set by positioning the blocks

[
φ2, D

(0)
2 , φ2

]
along

the main diagonal, as displayed in Figure 6.2, and φν denotes a ν × ν zeros

matrix.

:=D 2

(0)

2 x 2

2 x 2

D2

(0)

φ

φ

x
N−4

N−4

2

2

Figure 6.2: The D
(0)
2 Matrix - 2nd-Order

Consequently, since D
(0)
2 is N.P.D then D

(0)
2 is N.P.D as well, then cn, the

minimal eigenvalue of −MS at Tn, satisfies (see appendix A for details)

cn = − max
tn≤t≤tn+1

{
σ

(
MS

)} ≥ −εm max
{

σ

(
1
h2

D
(1)
2

)}
> 12

(π

5

)2
.

(6.9)

6.1.2 Case 2: Mergers without Entering Grid-Points

For a single Merger, as displayed in Figure 6.3, we apply

• Boundary operators in the neighborhood of Γjoin, for tn < t < t∗.

• Continuity operators at the neighborhood of Γjoin, for t∗ < t < tn+1.
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tn+1

t n

Γ
L
(2)ΓR

(1)ΓL
(1)

t

t*

x1 x x x x xN

ΓR

(2)

joinΓ

j+2j−1 j j+1

Figure 6.3: Merger Without an Entering Grid-Point

Accordingly, we embed the continuity operators along ghost-points at xj−1

and xj+1 in the following manner:

[LNV ]j − τ
(1)
R

∣∣∣
γR=1

[(
a

(3)
R · vj−2 + a

(2)
R · vj−1 + a

(1)
R · vj

)∣∣∣
γR=1

− vj+1

]
,

(6.10)

[LNV ]j+1 − τ
(1)
L

∣∣∣
γL=1

[(
a

(3)
L · vj+3 + a

(2)
L · vj+2 + a

(1)
L · vj+1

)∣∣∣
γL=1

− vj

]
,

(6.11)

where [W ]i denotes the ith coordinate of the vector W , and get

d

dt
vj =

vj−1 − 2vj + vj+1

h2
,

d

dt
vj+1 =

vj − 2vj+1 + vj+2

h2
. (6.12)

Hence, regardless to the number of Mergers, the minimal eigenvalue analysis

of the matrix −MS remains identical to Case 1:

MS
C = D

(1)
2 ⇒ cn := − max

tn≤t≤tn+1

{
σ

(
MS

)}
> 12

(π

5

)2
. (6.13)

6.1.3 Case 3: Mergers with Entering Grid-Points

Considering a single Merger with a single entering grid-point, xj , as dis-

played in Figure 6.4, we apply, without the loss of generality, the continuity

operator on κ ¿ NL/R grid-points to the left and to the right of xj . Hence,

in the general matrix form ,MS
C , is as displayed in Figure 6.5.

We are going to show that, in this case, the assumptions so far lead

inevitably to indefiniteness of MS in the standard norm, 〈·, ·〉1/2.

Indeed showing that MS
C , the central block of the matrix MS , is indefinite,

implies that MS is also indefinite regardless of the choice of the boundary
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Γ
(1)

L

ΓR
(1)

Γ (2)
L Γ(2)

R

joinΓ

n+1

t

t*

nt

x1 x j−2 x j−1 xj xj+1 xN

t

Figure 6.4: Merger With an Entering Grid-Point

=M
C

N  +2

N  +2

x

N  +2

N  +2

R

R

x

L

L

κ

κ
MJ

S

M
S

M
S

1

−2

1

1

−2

1

1

1

1

−2 1

1 −2 1

1 −2 1

1

−2

1 −2 1

1

−2

C,L

C,R

S

j−1

j+1

Figure 6.5: Case 3 General Matrix Form - 2nd-Order

terms. The inequality analysis employed in Case 1 is not subtle enough,

and, for this case, we employ a more accurate analysis in the following sub-

sections.

Isolation by Congruence Equivalency

In this sub-section, we seek a symmetric matrix, M
S
C , congruent with MS

C ,

MS
C = CT M

S
CC, det (C) 6= 0, (6.14)

such that the local differentiation block, MS
J , becomes isolated. Accordingly,

we set the congruence matrix, C, as displayed in Figure 6.6:
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1

1
1

1

1
1

1
1

1
1

zR

Lz N  +2L

N  +2R

2κ
x

2κ
C:=

Figure 6.6: The Congruence Matrix - 2nd-Order

where the elements of the columns,

zL :=
(
z
(NL)
L , z

(NL−1)
L , . . . z

(−1)
L

)T
, (6.15)

zR :=
(
z
(−1)
R , z

(0)
R , . . . z

(NR)
R

)T
, (6.16)

are determined uniquely by solving the difference equation,

z
(j)
L/R = 2z

(j−1)
L/R − z

(j−2)
L/R , j ∈ {1, 2, . . . NL/R}, (6.17)

constrained by the following initial and terminal conditions:

−2z
(−1)
L/R + z

(0)
L/R = 1, (6.18)

−2z
(NL/R)

L/R + z
(NL/R−1)

L/R = 0. (6.19)

Accordingly, the congruent matrix, M
S
C =

(
C−1

)T
MS

CC−1, takes the form

as displayed in Figure 6.7, where the corner supplements, δL/R, are given by

δL/R = −z
(−1)
L/R =

(NL/R + 1) + 1
(NL/R + 2) + 1

≈ 1− 1
NL/R + 2

. (6.20)

The Fixed Sub-Space Property of MJ

By definition MJ is a 2κ× 2κ differentiation sub-matrix, applied over a

uniform mesh with a missing grid-point. Hence, for any κ ∈ N, it satisfies
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=

δ

δ

∆

M S

MMS
J

M S

S
J MJ

S +

L
0

J

0

R

M
S

=
C

C,L

C,R

Figure 6.7: The Congruent Central Matrix - 2nd-Order

the following relation:



1

MJ

1




wκ+1
i =

{
0 if i = 0, 1

i · (i− 1) ·wκ
i−2 if i = 2, 3

(6.21)

where wl
i :=

(
(−l)i, (−l + 1)i, . . . (−1)i, 1, 2i, . . . (l − 1)i, li

)T .

This implies that any MJ we may designate satisfies

∀ w ∈ W κ
4 ∃ !w̃ ∈ R2κ : MJw = w̃, (6.22)

where

W l
p := Span

{
wl

0,w
l
1, w

l
2, . . . w

l
p−1

}
. (6.23)

Conclusion: Indefiniteness of MS

By denoting εL/R := 1 − δL/R, we get from (6.20) that εL/R ≈ 1
NL/R+2 ,

and, by choosing the vector,

w∗ := −
√

8
3
κ5/2wκ

0 +

√
3
2
κ−1/2wκ

2 ∈ W κ
4 , (6.24)

25



we have, using (6.22),
〈
w∗ , M

S
Jw∗

〉
=

〈
w∗ ,

[
MJ + ∆J

]
w∗〉 = 1 + O

(
κ5 (εL + εR)

)
. (6.25)

Hence, a construction of a N.D matrix, M , is not feasible under the assump-

tions so far.

Solution: Local Norm Modifications

For a genuine one-dimensional problem, we may set a norm associated

with the matrix Rn(t), that applies local modification blocks, R, on MJ

blocks along the main diagonal as displayed in Figure 6.8,

MR

ML

M

M

D2
(1)

D2
(1)

D2
(1)

1
1

1
1

1
1

1
1

1
1

1
1

R

R
1

1

1

1

1

1

1

1

1

1

1

1

1

1

M nR  (t)

J

J

Figure 6.8: The Norm Matrix - 2nd-Order

where, for a 2κ× 2κ MJ block, R is set as a 2(κ− 1)× 2(κ− 1) block.

Indeed, we set κ = 3, and

R :=




1
5/4 1/4
1/4 5/4

1


 > 0 , R ∈ MatSym

4 , (6.26)

which satisfies 〈VJ , RVJ〉 =
〈
V J , V J

〉
, where

VJ := (v−2, v−1, v1, v2)
T , V J :=

(
v−2, v−1,

v−1 + v1

2
, v1, v2

)T

. (6.27)
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Thus, by setting

MJ :=




−2 1
1 −2 1

5/6 −4/3 2/3 −1/6
−1/6 2/3 −4/3 5/6

1 −2 1
1 −2




, (6.28)

we get that the minimal eigenvalue analysis of the matrix −MS remains

identical to Case 1:

cn := − max
tn≤t≤tn+1

{
σ

(
[RnM ]S

)}
≥ −εm max

{
σ

(
1
h2

D
(1)
2

)}
> 12

(π

5

)2
,

(6.29)

where [RnM ]S :=
(
[RnM ] + [RnM ]T

)
/2, εm is defined by

εm := sup
{

ε ∈ (0, 1)
∣∣∣∣ [RnM ]S − 1

h2

[
εD

(1)
2 − (1− ε)D

(0)

2

]
≤ 0

}
= εm,

(6.30)

and the matrix D
(0)

2 is set by positioning
[
φ2, D

(0)
2 , φ4, D

(0)
2 , . . . φ4, D

(0)
2 , φ2

]

blocks along the main diagonal, as displayed in Figure 6.9.

MR

ML

M

M

D2
(1)

D2
(1)

D2
(1)

1
1

1
1

1
1

1
1

1
1

1
1

1
1

M D2
(0)

D2

D2

D 2

(0)

(0)

(0)

J

J

2

φ

φ

4

φ4

φ2

Figure 6.9: The D
(0)

2 Matrix - 2nd-Order
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6.2 4th-Order Approximation

For the 4th-order case, we apply a 4th-order symmetric approximation at

internal points, and a 3rd-order (not symmetric) approximation near the

edges,

L
(q)
N :=

1
12h2




35 −104 114 −56 11 0 0 · · · 0
11 −20 6 4 −1 0 0 · · · 0
−1 16 −30 16 −1 0 0 · · · 0
0 −1 16 −30 16 −1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 −1 16 −30 16 −1 0
0 · · · 0 0 −1 16 −30 16 −1
0 · · · 0 0 −1 4 6 −20 11
0 · · · 0 0 11 −56 114 −104 35




,

(6.31)

where L
(q)
N is a differentiation sub-matrix as described in section 5.2.

By setting p = 5, we have the following extrapolation to the boundary

coefficients:

a
(1)
L/R :=

1
24

(γL/R + 1)(γL/R + 2)(γL/R + 3)(γL/R + 4),

a
(2)
L/R := −1

6
γL/R(γL/R + 2)(γL/R + 3)(γL/R + 4),

a
(3)
L/R :=

1
4
γL/R(γL/R + 1)(γL/R + 3)(γL/R + 4),

a
(4)
L/R := −1

6
γL/R(γL/R + 1)(γL/R + 2)(γL/R + 4),

a
(5)
L/R :=

1
24

γL/R(γL/R + 1)(γL/R + 2)(γL/R + 3),

and, for jf = 2, we may designate the following weights:

τ
(1)
L/R :=

1
h2
·

220γ2
L/R − 520γL/R + 400

(γL/R + 1)(γL/R + 2)(γL/R + 3)(γL/R + 4)
, (6.32)

τ
(2)
L/R :=

1
h2
·

−100γ2
L/R + 200γL/R − 110

(γL/R + 1)(γL/R + 2)(γL/R + 3)(γL/R + 4)
. (6.33)

(
τ

(j)
L/R = 0 ∀ j > jf

)

Hence, the general form of the matrix, becomes as displayed in Figure 6.10.
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x

16

16

−1

−1

−1

−1

16

16

−1

−1

−1

−1

M
S

R

C

S

5 x 5

5 x 5

M
L

S

MM
S

=
1

12h 2

N−10

N−10

Figure 6.10: General Matrix Form - 4th-Order

Accordingly, we define two matrices, D
(0)
4 and D

(1)
4 , analogously to the

2nd-order case as displayed in Figure 6.11,

DD
(1)

4

−1

16 −1

−1 16 −30 16 −1

−1 16 −30 16 −1

−1

−1

−1

−1

16

16

16

−30

−30

16

16

−1

−1

4

(0)

−1

16 −1

−1 16 −30 16 −1

−1 16 −30 16 −1

−1 16 −30 16 −1

−1 16 −30 16 −1

−1 16

−1

−30 16

16 −30

−30 16

16 −30

a0 b0

b0
c0

c0 b0

b0 a0

:= :=

Figure 6.11: The Fundamental Matrices - 4th-Order

where D
(1)
4 is N.D, and the corners of D

(0)
4 ∈ MatSym

N0
are set by

(
a0 b0

b0 c0

)
=

( −7 + 4
√

3 8− 4
√

3
8− 4

√
3 −23 + 4

√
3

)
− 8

√
3

(
7 + 4

√
3
)N0−2

(
1 −1
−1 1

)
,

(6.34)

which assures that D
(0)
4 is N.P.D, with the eigenvalue 0 of algebraic
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multiplicity 2 (see appendix A for details).

6.2.1 Case 1: No Merger

As in the 2nd-order case, no continuity operators are applied, and it can be

easily verified that

εm(γL, γR) := sup
{

ε ∈ (0, 1)
∣∣∣∣ MS − 1

12h2

[
εD

(1)
4 + (1− ε)D(0)

4

]
≤ 0

}

(6.35)

satisfies, for all N > 15,

εm(γL, γR) >
1
25

∀ (γL, γR) ∈ [0, 3/2]× [0, 3/2], (6.36)

where the matrix D
(0)
4 is set by positioning the blocks

[
φ3, D

(0)
4 , φ3

]
along

the main diagonal, as displayed in Figure 6.12.

:=D
(0)

D
(0)

4 4

φ

3 x 3

3 x 3

N−6

N−6
x

φ3

3

Figure 6.12: The D
(0)
4 Matrix - 4th-Order

Accordingly, since D
(0)
4 is N.P.D, then D

(0)
4 is N.P.D as well, thus cn, the

minimal eigenvalue of −MS at Tn, satisfies (see appendix A for details)

cn := − max
tn≤t≤tn+1

{
σ

(
MS

)} ≥ −εm max
{

σ

(
1

12h2
D

(1)
4

)}
>

(π

5

)2
.

(6.37)

6.2.2 Case 2: Mergers without Entering Grid-Points

For a single Merger, as in the 2nd-order case we apply

• Boundary operators at the neighborhood of Γjoin, for tn < t < t∗.
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• Continuity operator at the neighborhood of Γjoin, for t∗ < t < tn+1.

By setting the continuity operator, represented as embedded continuity

along ghost-points at xj−2, xj−1, xj+1 and xj+2, in the following manner:

[LNV ]j−1 − τ
(2)
R

∣∣∣
γR=1







5∑

p=1

a
(p)
R · vj+1−p




∣∣∣∣∣∣
γR=1

− vj+1




=
−vj−3 + 16vj−2 − 30vj−1 + 16vj − vj+1

12h2
, (6.38)

[LNV ]j − 16
12h2







5∑

p=1

a
(p)
R · vj+1−p




∣∣∣∣∣∣
γR=1

− vj+1




+
1

12h2







5∑

p=1

a
(p)
R · vj+1−p




∣∣∣∣∣∣
γR=2

− vj+2




=
−vj−2 + 16vj−1 − 30vj + 16vj+1 − vj+2

12h2
, (6.39)

[LNV ]j+1 − 16
12h2







5∑

p=1

a
(p)
L · vj+p




∣∣∣∣∣∣
γR=1

− vj




+
1

12h2







5∑

p=1

a
(p)
L · vj+p




∣∣∣∣∣∣
γR=2

− vj−1




=
−vj−1 + 16vj − 30vj+1 + 16vj+2 − vj+3

12h2
, (6.40)

[LNV ]j+2 − τ
(2)
L

∣∣∣
γL=1







5∑

p=1

a
(p)
L · vj+p




∣∣∣∣∣∣
γL=1

− vj−1




=
−vj + 16vj+1 − 30vj+2 + 16vj+3 − vj+4

12h2
, (6.41)

we get that the minimal eigenvalue analysis of the matrix −MS remains

identical to Case 1:

MS
C = D

(1)
4 ⇒ cn := − max

tn≤t≤tn+1

{
σ

(
MS

)}
>

(π

5

)2
. (6.42)
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6.2.3 Case 3: Mergers with Entering Grid-Points

As in the 2nd-order case, we consider a single Merger with a single entering

grid-point, xj , and apply the continuity operator on κ grid-points to the left

and to the right of xj , as shown in Figure 6.13.

κ

−30161

16−30161 −1

16 −1

−1 16

−1

−1

16 −1

−1 16

−1

−30 16 −1

16 −30 16 −1

M
J

S

κ

Figure 6.13: Case 3 General Matrix Form - 4th-Order

Indeed, applying similar analysis to the 2nd-order case, we get that the

assumption κ ¿ NL/R and previous assumptions lead inevitably to indefi-

niteness of MS in the standard norm.

Isolation by Congruence Equivalency

To Isolate the local block, MS
J , we apply a congruence transformation,

MS
C = CT M

S
CC, with the congruence matrix given in Figure 6.14.

The elements of the columns,

zLi :=
(
z
(NL)
Li , z

(NL−1)
Li , . . . z

(−2)
Li , z

(−3)
Li

)T
, (6.43)

zRi :=
(
z
(−3)
Ri , z

(−2)
Ri , . . . z

(NR−1)
Ri , z

(NR)
Ri

)T
, (6.44)

are determined uniquely by solving a difference equation,

z
(j)
Li/Ri = 16z

(j−1)
Li/Ri−30z

(j−2)
Li/Ri+16z

(j−3)
Li/Ri−z

(j−4)
Li/Ri , j ∈ {1, 2, . . . NL/R}, (6.45)

with the following initial conditions:

−z
(−1)
Li/Ri + 16z(−2)

Li/Ri − 30z
(−3)
Li/Ri =

{
16 if i = 1
−1 if i = 2

, (6.46)
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Figure 6.14: The Congruence Matrix - 4th-Order

−z
(0)
Li/Ri + 16z

(−1)
Li/Ri − 30z(−2)

Li/Ri + 16z
(−3)
Li/Ri =

{
−1 if i = 1
0 if i = 2

, (6.47)

and the following terminal conditions:

−30z
(NL/R)

Li/Ri + 16z
(NL/R−1)

Li/Ri − z
(NL/R−2)

Li/Ri = 0, (6.48)

16z
(NL/R)

Li/Ri − 30z
(NL/R−1)

Li/Ri + 16z
(NL/R−2)

Li/Ri − z
(NL/R−3)

Li/Ri = 0. (6.49)

This choice yields a congruent form as displayed in Figure 6.15, where the

corner supplements, ∆L/R, are 2× 2 P.D symmetric matrices, satisfying

∆L ≈
(

23− 4
√

3 −8 + 4
√

3
−8 + 4

√
3 7− 4

√
3

)
− 1

NL + 4

(
7 + 4

√
3 −1

−1 7− 4
√

3

)
,

(6.50)

and

∆R ≈
(

7− 4
√

3 −8 + 4
√

3
−8 + 4

√
3 23− 4

√
3

)
− 1

NR + 4

(
7− 4

√
3 −1

−1 7 + 4
√

3

)
.

(6.51)
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∆
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0
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0

=MC
S

C,L

C,R

L∆

∆R

Figure 6.15: The Congruent Central Matrix - 4th-Order

Conclusion: Indefiniteness of MS

Applying similar analysis to the 2nd-order case, it can be shown that

any MJ we may designate satisfies

∀ w ∈ W κ
5 ∃ !w̃ ∈ R2κ : MJw = w̃, (6.52)

where W κ
5 is as defined in (6.23). So, by denoting

EL := ∆L −
(

23− 4
√

3 −8 + 4
√

3
−8 + 4

√
3 7− 4

√
3

)
, (6.53)

ER := ∆R −
(

7− 4
√

3 −8 + 4
√

3
−8 + 4

√
3 23− 4

√
3

)
, (6.54)

we have
〈
w∗ , M

S
Jw∗

〉
=

〈
w∗ ,

[
MJ + ∆J

]
w∗〉 = 1 + O

(
κ6 (εL + εR)

)
, (6.55)

where

w∗ :=

(
16

6− 4
√

3
κ3 − 4κ2 + 4κ +

3 + 94
√

3
144

)
wκ

0 +
(
6 + 4

√
3
)

wκ
2 ∈ W κ

5 ,

(6.56)

and

εL := sup
{

ε ∈ (0, 1)
∣∣∣∣EL + ε

(
7 + 4

√
3 −1

−1 7− 4
√

3

)
≥ 0

}
≈ 1

NL + 4

εR := sup
{

ε ∈ (0, 1)
∣∣∣∣ER + ε

(
7− 4

√
3 −1

−1 7 + 4
√

3

)
≥ 0

}
≈ 1

NR + 4
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Hence, a construction of a N.D matrix M is not feasible under the assump-

tions so far.

Solution: Local Norm Modifications

For a genuine one-dimensional problem we may set a norm associated

with the matrix Rn(t) that applies local modifications on MJ blocks along

the main diagonal, as displayed in Figure 6.16, where the orthodiagonal

ML

D(1)

M

4

D(1)
4

MR

D(1)
4

M

1

1

1

1

1

R

1

1

1

M R  (t)n

R
1

1

1

1

HR

HL

H

H

H

H

L

L

R

R

H

H

H

H

L

L

R

R

H

H

L

R

J

J

Figure 6.16: The Norm Matrix - 4th-Order

blocks, HL and HR, are given by

HL :=
( −1 16

0 −1

)
, HR :=

( −1 0
16 −1

)
. (6.57)

For a 2κ× 2κ MJ block, R is set as a 2(κ− 2)× 2(κ− 2) block, thus setting

κ = 4, and

R :=
1
36




37 −4 −4 1
−4 52 16 −4
−4 16 52 −4
1 −4 −4 37


 > 0 , R ∈ MatSym

4 , (6.58)

assures the 〈VJ , RVJ〉 =
〈
V J , V J

〉
, where

VJ := (v−2, v−1, v1, v2)
T , V J :=

(
v−2, v−1,

−v−2 + 4v−1 + 4v1 − v2

6
, v1, v2

)T

.

(6.59)
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Accordingly, by setting

MJ :=




−30 16 −1
16 −30 16 −1
−69

70
556
35 −148

5
76
5 −4

5
2
5 − 4

35
1
70

− 2
35

2
35

54
5 −89

5
56
5 −26

5
37
35 − 2

35
− 2

35
37
35 −26

5
56
5 −89

5
54
5

2
35 − 2

35
1
70 − 4

35
2
5 −4

5
76
5 −148

5
556
35 −69

70
−1 16 −30 16

−1 16 −30




, (6.60)

we get that the minimal eigenvalue analysis of the matrix −MS remains

identical to Case 1:

cn := − max
tn≤t≤tn+1

{
σ

(
MS

)} ≥ −εm max
{

σ

(
1
h2

D
(1)
2

)}
>

(π

5

)2
,

(6.61)

where [RnM ]S :=
(
[RnM ] + [RnM ]T

)
/2, εm is defined by

εm := sup



ε ∈ (0, 1)

∣∣∣∣∣∣
[RnM ]S − 1

h2


εD

(1)
4 − (1− ε)D

(0)

4

12


 ≤ 0



 = εm

(6.62)

and the matrix D
(0)

4 is set by positioning
[
φ3, D

(0)
4 , φ4, D

(0)
4 , . . . φ4, D

(0)
4 , φ3

]

blocks along the main diagonal, as displayed in Figure 6.17.

D(1)

M

4

D(1)
4

D(1)
4

M

M L

R

D4

D4

(0)

(0)

D4
(0)

D
(0)
4M

HL

HR

HL

HR

H

H

H

H

L

L

R

R

H

H

L

R

H

H

L

R

M

J

J

φ

φ

3

4

4φ

φ3

Figure 6.17: The D
(0)

4 Matrix - 4th-Order
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7 Numerical Examples

In this section two numerical examples are given: in 1-D and in 2-D. Note

that, by the CFL condition, the temporal step satisfies k = O(h2), inde-

pendently of the boundary’s position.

7.1 One-Dimensional Example

Consider the one-dimensional diffusion equation with Dirichlet boundary

condition,

∂u
∂t

=
1
4

∂2u
∂x2

+ f(x, t) (7.1)

u(x, 0) = sin(π/8), (7.2)

u(x, t) |∂Ω(t) = uB(t). (7.3)

We attempt to numerically solve it on a time dependent domain, Ω(t) ⊂
I1 := [0, 1], which is defined by,

Ω(t) := Ωi(t) if i−1
4 ≤ t ≤ i

4 ∀ t ∈ [0, 1] (7.4)

where:

Ω1(t) :=
(

2− sin(5πt)
16

,
5 + 48t2

16

)
(7.5)

∪
(

8 + e−4t sin(8πt)
16

,
7 +

√
t

8

)
, (7.6)

Ω2(t) :=

(
2− sin(5πt)

16
,
16 + e(t−1/4)/4

16

)
, (7.7)

Ω3(t) :=
(

2− sin(5πt)
16

,
10− sin(π(t− 1/2))

16

)
(7.8)

∪
(

10 + sin(π(t− 1/2))
16

,
16− e(t−1/4)/4

16

)
,

Ω4(t) :=
(

2− sin(5πt)
16

,
12− sin(2π(t− 3/4))

32

)

∪
(

3
8

+
sin(8π(t− 3/4))
16/(5/4− t))

,
10− sin(π(t− 1/2))

16

)

∪
(

10 + sin(π(t− 1/2))
16

,
16− e(t−1/4)/4

16

)
, (7.9)
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as displayed in Figure 7.1.
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t [
1]

Ω (t) 

Figure 7.1: One-Dimensional Domain: Numerical Example

In order to have an exact error analysis, we set both the inhomogeneous

term, f(x, t), and the boundary values, {uB(t)}, such that the exact solution

is given by:

u = sin

(
4πtx + π

(
t− 1

2

)3
)

(7.10)

We propagate the solution in time from t = 0 to t = 1 using mesh spacing

h and corresponding time step k = h2

4 for each of the following values:

h =
1
50

,
1
75

,
1

100
,

where these values of h and the ratio k
h2 = 1

4 , can be shown to satisfy the

bound requirement on the boundaries movement (3.2).

Since k = O(h2) it may be sufficient to use first order accurate time step

scheme for the 2nd-order spatial solution, and a second order time stepping

scheme for the 4th-order spatial solution. However, since our convergence

analysis was done in semi-discrete settings, we take extra precaution and

use RK2 and RK4 for the 2nd-order and 4th-order spatial approximations

38



respectively. For each run (with a different h value from t = 0 to t = 1),

we compute the exact local error at each time step, which is simply the

difference between the computed solution and the exact solution at every

grid point. We analyze the results by displaying them on two graphs in the

standard form of ln ‖error‖ vs. ln |1/h|:

3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7
−13

−12

−11

−10

−9

−8

−7

−6
1−D example: Order of Convergence − L2 Norm

ln |1/h|

ln
 ||

er
ro

r|
|

2nd Order
polyfit: −2.5519 ln |1/h| + 3.8161
4th Order
polyfit: −4.5417 ln |1/h| + 8.2688

Figure 7.2: One-Dimensional Numerical Result - L2 Norm at t = 1
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1−D example: Order of Convergence − Max L2 Norm

ln |1/h|

ln
 ||

er
ro

r|
|

2nd Order
polyfit: −2.1131 ln |1/h| + 2.1063
4th Order
polyfit: −4.5417 ln |1/h| + 8.2688

Figure 7.3: One-Dimensional Numerical Result - Max L2 Norm over time
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In figure 7.2, the norm ‖·‖, is ‖·‖n (as defined in 4.1) for each mesh size h at

t = 1, and in figure 7.3, the norm ‖·‖, is taken as the max0≤ν≤n ‖·‖ν norm

for each mesh size h, and for 0 ≤ t ≤ 1.

The poly-fitted slopes of the error graphs indicate that the method is

indeed 2nd-order and 4th-order convergent, with respect to the accuracy

order of the spatial approximation.

Note, that in both figures the poly-fitted error graph of the 4th-order spatial

solution is identical, this result is due to the fact that for this particular

example we got the maximal error at the final time point, t = 1.

7.2 Two-Dimensional Example

In this example, we consider the two-dimensional diffusion equation with

Dirichlet boundary condition,

∂u
∂t

=
1
4

[
∂2u
∂x2

+
∂2u
∂y2

]
+ f(x, y, t) (7.11)

u(x, 0) = 0, (7.12)

u(x, t) |∂Ω(t) = uB(t). (7.13)

on the following two-dimensional domain:

Ω(t) := Ωs(t) ∩ Ωm(t) ⊂ I2 := [0, 1]× [0, 1], (7.14)

where:

Ωs(t) :=

{
(x, y) ∈ R2

∣∣∣∣∣
(

x− 1
2

)2

+
(

y − 1
2

)2

<

(
5
12

)2
}

, (7.15)

Ωm(t) :=

{
(x, y) ∈ R2

∣∣∣∣∣
(

x−
(

1
2

+
1
6

cos(2πt− π)
))2

(7.16)

+
(

y −
(

1
2

+
1
6

sin(2πt)
))2

>

(
1
12

)2
}

, (7.17)

as described graphically in Figure 7.4.

As in the one-dimensional example, we set the inhomogeneous term, f(x, t),

and the boundary values, {uB(t)}, such that the exact solution is given by:

u = sin (t) cos
(
2π(x2 + y2)

)
(7.18)
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Figure 7.4: Two-Dimensional Domain: Numerical Example

We propagate the solution in time from t = 0 to t = 1 using mesh spacing

h and time step k = h2

4 for the same values of h as in the previous example.

These settings can be shown to satisfy both the bound requirement on the

boundaries movement (3.2) for every one-dimensional section of the domain,

and the relevant multi-dimensional requirements (i.e. the Intersection and

Curvature Conditions as described in section 3.2.1).

We apply the scheme with RK2 for the 2nd-order spatial approximation,

and RK4 for the 4th-order spatial approximation. The results are displayed

in the same manner as in the previous example in Figures 7.5 and 7.6.

As in the previous example, the poly-fitted slopes of the error graphs indicate

that the method is indeed 2nd-order and 4th-order convergent, with respect

to the accuracy order of the spatial approximation.
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4th Order
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Figure 7.5: 2-D Numerical Result - L2 Norm at t = 1
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4th Order
polyfit: −4.129 ln |1/h| + 3.1414

Figure 7.6: 2-D Numerical Result - Max L2 Norm over time

8 Conclusions

In this work we have addressed the problem of finding numerical solutions to

parabolic and hyperbolic equations on irregular multi-dimensional domains

with time evolving impenetrable boundaries. We performed a comprehensive

theoretical study of the numerical issues, that arise when dealing with time
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dependent domains. Compared to other works, which deal with Embedded

Methods for moving boundary problems, this work contains some significant

contributions:

• Applies to very complex moving geometries, including mergers and

breakups of the moving boundaries.

• Contains a through convergence analysis, which applies to multi-dimensional

geometries of any finite dimension.

• Can be implemented with high orders of, both temporal and spatial

accuracies, as has been demonstrated in this article.

• The resulting method is strictly stable, which implies that the solution

remains consistent and valid for long integration time.

Two major difficulties had to be dealt with. The first, was a result of the

multi-dimensional boundary movement. It was shown that no matter how

small the boundary may move in the normal direction, very large variations

of boundary points can occur at some one-dimensional section of the do-

main. The second, became apparent when we attempted to implement the

theoretical study for the diffusion equation - events of mergers and breakups

of the moving boundaries, led to Indefiniteness of the numerical operator in

the standard euclidian inner product. This phenomena is fundamentally

problematic, because the Negative Definiteness property of the numerical

operator was required for both the strict stability analysis, and the applica-

bility of the method to multi-dimensional domains.

These difficulties were tackled by:

• Introducing a new inner product for the genuine one-dimensional case.

• Inserting entering grid-points as they become admissible within the

multi-stage solution method, for the multi-dimensional case.

The numerical examples, indeed, demonstrated the efficiency of the method

for multi-dimensional high-order of accurate solutions. For future study

there are, still, several unresolved issues, which are, among others:

43



• Introduction of a proper inner product, which allows preservation of

the Negative-Definiteness of the numerical operator, without reinser-

tion of grid-points in the multi-dimensional case.

• Extension of the method to allow treatment of other boundary condi-

tions, as well as moving interface problems, such as the Stefan problem.
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A The Fundamental Matrices

In this appendix we analyze the matrices resulting from the application

of the algorithm with the diffusion equation. The main concerns are N.D

(N.P.D) analysis of the matrices, and the approximation of the maximal

eigenvalue.

A.1 The 2nd-Order Numerical Diffusion Operator

The general structure we wish to explore is given by the N0 ×N0 matrix:

D2(a) :=




a 1
1 −2 1

. . . . . . . . .
1 −2 1

1 a




, a ∈ R. (A.1)

A.1.1 Analysis of D
(1)
2

The first observation is that D
(1)
2 = D2(−2) is indeed N.D., since it satisfies

D
(1)
2 ≤ −UT

2 U2 < 0, (A.2)

where U2 is an N0 ×N0 non-singular matrix:

U2 :=




1 −1
1 −1

. . . . . .
1 −1

1




, −UT
2 U2 =




−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2




.

(A.3)

Indeed, for N0 À 1, we have

max
[
σ

(
D

(1)
2

)]
= − π2

(N0 + 1)2
+ O

(
1

N4
0

)
, (A.4)

see [25] for details.

A.1.2 Analysis of D
(0)
2

The matrix D
(0)
2 is the matrix satisfying

D
(0)
2 = D2(a0) : D

(0)
2 is N.P.D, (A.5)
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for some a0 > −2. We denote by D2,L(a0) the upper-left (N0−1)× (N0−1)

block of D2(a0) as displayed in Figure A.1.

1

1

1−2

1

1

1

1

1

1

1

1

1

1

1−2

−2

−2

−2

D
2,L

(a  )0

−2

a0

a0

Figure A.1: The Upper-Left Block - 2nd-Order

Assuming D2,L(a0) < 0, we may apply a congruence transformation,

CT D2(a0)C = D2(a0), (A.6)

with a non-singular matrix C, which is constructed as displayed in Figure

A.2,

N

=C

1

1

1

1

1

1

1

z

z

z

z

z

z

1

0

−1

N−2

N−1

Figure A.2: The Fundamental Congruence Matrix - 2nd-Order

where N := N0 − 3, and the elements {zj}N
j=−1 are uniquely determined by
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the difference equation,

zj = 2zj−1 − zj−2 , j ∈ {1, 2, . . . N}, (A.7)

with an initial and a terminal conditions

z0 − 2z−1 = 1, (A.8)

a0 · zN + zN−1 = 0. (A.9)

This yields a congruent matrix, D2(a0), as displayed in Figure A.3,

D
D 2,L

=0(a  )

a 0

(a  )0

2

Figure A.3: The Equivalent Matrix D2(a0)

whose 1× 1 lower-right corner is given by

a0 = a0 + δ0, δ0 := −z−1 =
(a0 + 1)(N0 + 1)− 1
(a0 + 1)(N0 + 2)− 1

. (A.10)

Indeed, it is easily seen that, for any N0 sufficiently large,
{
−1 < a0 < −2 −→ a0 < 0
a0 = −1 −→ a0 = 0

, (A.11)

hence,

D
(0)
2 = D2(a0 = −1). (A.12)

Note that, by the analysis for D
(1)
2 , we have a0 = −1 ⇒ D2,L(a0) < 0,

thus by (A.3) the congruence transformation is justified, and the elements

{zj}N
j=−1 are uniquely determined.
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A.2 4th-Order Numerical Diffusion Operator

The general structure we wish to explore is given by the N0 ×N0 matrix:

D4(a, b, c) :=




a b −1
b c 16 −1
−1 16 −30 16 −1

. . . . . . . . . . . . . . .
−1 16 −30 16 −1

−1 16 c b
−1 b a




. (A.13)

A.2.1 Analysis of D
(1)
4

The first observation is that D
(1)
4 = D4(−30, 16,−30) is indeed N.D, since

it satisfies,

D
(1)
4 ≤ −UT

4 U4 < 0, (A.14)

where U4 is an N0 ×N0 non-singular matrix, given by

U4 :=




2−√3 −4 2 +
√

3
2−√3 −4 2 +

√
3

2−√3 −4 2 +
√

3
. . . . . . . . .

2−√3 −4 2 +
√

3
2−√3 −4

2−√3




,

(A.15)

whose −UT
4 U4 multiplication satisfies the equality given in Figure A.4,

0

−H
−1

16 −1

−1 16 −30 16 −1

−1 16 −30 16 −1

−1 16 −30 16 −1

−1 16 −30 16

−1 16 −30

=
4

T
−U U 4 <

Figure A.4: The Matrix −UT
4 U4
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where the block H is given by,

H :=
(

7− 4
√

3 −8 + 4
√

3
−8 + 4

√
3 23− 4

√
3

)
> 0. (A.16)

We have D
(1)
4 = 12D

(1)
2 −

(
D

(1)
2

)2
+ E, where

E :=




−1
0

. . .
0

−1



≤ 0, (A.17)

hence, D
(1)
4 < 12D

(1)
2 , and consequently using section (A.1.1) we get

max
[
σ

(
D

(1)
4

)]
< 12maxσ

(
D

(1)
2

)
≈ −12

π2

(N0 + 1)2
. (A.18)

A.2.2 Analysis of D
(0)
4

The matrix D
(0)
4 is the matrix satisfying

D
(0)
4 = D4(a0, b0, c0) : D

(0)
4 is N.P.D, (A.19)

for some a0, b0, c0 ∈ R. We denote by D4,L(a0, b0, c0), the (N0−2)×(N0−2)

upper-left block of D4(a0, b0, c0) as displayed in Figure A.5.

−1

16 −1

−1 16 −30 16 −1

−1 16 −30 16 −1

−1 16 −30 16 −1

−1 16 −30 16 −1

−1 16

−1

a

b c

b

c b

b a

0

0

0

0 0

0

0 0

4,LD   (a  ,b  ,c  )0 0 0

Figure A.5: The Upper-Left Block - 4th-Order
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Assuming D4,L(a0, b0, c0) < 0, we may apply a congruence transformation,

CT D4(a0, b0, c0)C = D4(a0, b0, c0), (A.20)

using a non-singular matrix C, which is constructed as displayed in Figure

A.6,

(2)

=C

1

1

1

1

z

z

zN−2

N−1

N

1

1

1

z

zz−3

−2

(1)

(1)

−3

z −2
(2)

(2)

z

z

z N

N−1

N−2
(1)

(1)

(1)

(2)

(2)

Figure A.6: The Fundamental Congruence Matrix - 4th-Order

where N := N0 − 6. The elements
{

z
(i)
j

}N

j=−3
are uniquely determined by

the difference equation,

z
(i)
j = 16z

(i)
j−1 − 30z(i)

j−2 + 16z
(i)
j−3 − z

(i)
j−4, i = 1, 2, j ∈ {1, 2, . . . N},

(A.21)

with the initial conditions:

−z
(i)
−1 + 16z

(i)
−2 − 30z

(i)
−3 =

{
16 if i = 1
−1 if i = 2

, (A.22)

−z
(i)
0 + 16z(i)

−1 − 30z
(i)
−2 + 16z(i)

−3 =

{
−1 if i = 1
0 if i = 2

, (A.23)

and the terminal conditions:

a0z
(i)
N + b0z

(i)
N−1 − z

(i)
N−2 = 0, (A.24)

b0z
(i)
N + c0z

(i)
N−1 + 16z(i)

N−2 − z
(i)
N−3 = 0. (A.25)

This yields an equivalent matrix, D4(a0, b0, c0), as displayed in Figure A.7,
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H

=

0

D4 (a  ,b  ,c  )0 0 0

D (a  ,b  ,c  )0 0 04,L

Figure A.7: The Equivalent Matrix D4(a0, b0, c0)

whose 2× 2 lower-right corner, H0, is given by

H0 =
(

c0 b0

b0 a0

)
+ ∆0, ∆0 :=

(
−16z

(1)
−3 + z

(1)
−2 z

(1)
−3

z
(1)
−3 z

(2)
−3

)
. (A.26)

Accordingly, by denoting

−H0 :=
(

a0 b0

b0 c0

)
≤ −H, (A.27)

it can be shown that

H0 = −H =⇒ ∆0 = H
R
, (A.28)

H0 = −H =⇒ ∆0 = HR, (A.29)

where H is as given in (A.16), and H is given by

H :=
(

7 + 4
√

3 −8− 4
√

3
−8− 4

√
3 23 + 4

√
3

)
≥ H > 0. (A.30)

The symbol [ ]R denotes a reflection operator at the secondary diagonal

HR :=
(

c1 b1

b1 a1

)
∀ H =

(
a1 b1

b1 c1

)
∈ MatSym

2 . (A.31)

Indeed, by setting:

H0 = −εH − (1− ε)H < 0 ∀ ε ∈ [0, 1], (A.32)

51



it can be shown that

∆0 =
εHR · λN+4

1 + (1− ε)HR · λN+4
2

ε · λN+4
1 + (1− ε) · λN+4

2

, λ1,2 := 7± 4
√

3, (A.33)

and in particular we have




0 ≤ ε < ε0 −→ H0 ≥ 0
ε = ε0 −→ H0 = 0
ε0 < ε ≤ 1 −→ H0 ≤ 0

, ε0 :=
1

1 + λN+4
1

, (A.34)

hence,

D
(0)
4 = D4(a0, b0, c0)|H0=−ε0H−(1−ε0)H . (A.35)

Note that,

−ε0H − (1− ε0)H = −H − 8
√

3
(
7 + 4

√
3
)N0−2

(
1 −1
−1 1

)
(A.36)

≤ −H, (A.37)

hence, by the analysis for D
(1)
4 , we have

H0 ≤ −H ⇒ D4,L(a0, b0, c0) < 0, (A.38)

which assures that the congruence transformation is justified, and the ele-

ments
{

z
(i)
j

}N

j=−3
are uniquely determined.
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