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Abstract. In this paper we describe the application of high-order essentially non-
oscillatory (ENO) finite difference schemes to the viscoelastic model with fading memory.
ENO schemes can capture shocks as well as various smooth structures in the solution
to a high-order accuracy without spurious numerical oscillations. We first verify the
stability and resolution of the scheme. We apply the scheme to a nonlinear problem with
a known smooth solution and check the order of accuracy. Then we apply the scheme to
a linear problem with initial discontinuities. Discontinuity locations and strengths in the
solutions of such problems can be found explicitly by making use of a pointwise estimate
obtained in this paper for the Green's function of the equations, which contains two
Dirac ^-functions decaying exponentially. We check the resolution of the discontinuities
by the scheme. After verifying that the scheme is indeed high-order accurate, produces
sharp, non-oscillatory shocks with the correct location and strength, we then proceed in
applying it to the nonlinear case with discontinuous or smooth initial conditions, and
study the local properties (in time) as well as the long time behavior of the solutions.
We conclude that the ENO scheme is a robust, accurate numerical tool to supplement
theoretical analysis to study such equations with memory terms. It should also provide
an efficient and reliable practical tool when such equations must be solved numerically
in applications.
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1. Introduction. In this paper we are interested in solving the following Cauchy
problem:

( ut-vx = 0,
< (1-1)[ vt - crx — g, x E U, t > 0,

u(x,0) = uo(x), v(x,0) = vo(x), x E TZ, (1.2)

where g(x,t) is a given function, and the function a is determined by u and its past
history through the constitutive law

a(x,t) — <j>(u(x,t)) + f a'(t — t)i/j(u(x,t)) dr (1-3)
J o

for given functions and a(t) with derivative a'. We assume that and a
are smooth, and

<j>'(u) > 0, ip'(u) > 0, 4>'(u) ~ a(0)ip'(u) > 0. (1.4)

System (1.1) is a model for the motion of an unbounded, homogeneous, viscoelastic
bar with fading memory. The functions u, v, a, and g represent the strain deformation,
velocity, stress, and body force, respectively. In the constitutive law (1.3), 4> an(l
are material functions, while the kernel a has the following form in the most important
physical application:

N
a(t) = t > 0, (1.5)

j=i
with Cj, /J,j > 0, j = 1,..., N.

System (1.1), (1.3) is hyperbolic under assumption (1.4). Particularly, it reduces
to the p-system if a(t) = 1, t E [0, oo), in (1.3). In this case, taking g = 0, it is
typical that singularities develop in a finite time, even if the initial data are smooth,
which propagate as shock waves, [8]. If a is of the form (1.5), however, the memory
term in (1.1) induces a weak dissipative mechanism. An interesting problem is how
this dissipative mechanism competes with the hyperbolic character of the system. If the
initial data Uq and vq and the body force g are smooth and small, the dissipation is
strong enough to prevent the breakdown of smooth solutions. It has been shown that
in this case the initial value problem (1.1)—(1.3) has a unique globally defined classical
solution, which decays to the equilibrium as t —> oo; see [6], [3], and [20]; also see [12]
and [4] for the initial boundary value problems. Large-time behavior of the solution has
been studied in [21]. If the initial data are smooth but large, solutions of (1.1)—(1.3)
may develop singularities in their derivatives in finite time; see [2] and [14]. Numerical
evidence also suggests that shock waves may develop in this case; see [13] and Example
3 in Sec. 4 below. If the initial data are not smooth, one has to consider weak solutions.
In the case <j> = ip and u0,v0 E L00(7Z) D L2(1Z), Nohel, Rogers, and Tzavaras, [15], have
proved the existence of the weak solutions of (1.1)—(1.3) for more general kernel a, using
the method of compensated compactness. However, there is no physical motivation
for the restriction <j> = ip. It is also interesting to consider solutions with initial data
not in L2(1Z), e.g., solutions with Riemann data. For more general systems and other
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initial data, unfortunately, there is no theory for weak solutions at all. In Sec. 3 below,
we obtain a nice point-wise estimate for the Green's function of the linearized system.
The estimate contains two Dirac ^-functions exponentially decaying in time. For linear
systems, these (^-functions provide us with all the information, the locations and the
amplitudes, of the discontinuities in the solution generated by the initial discontinuities.
For nonlinear systems, the <5-functions suggest that any initial discontinuity propagates
into the solution for all time, and decays exponentially if the initial jump is small.

Since the system (1.1)-(1.3) may have discontinuous solutions, traditional high-order
numerical methods may not be stable. In [13] a second-order Lax-Wendroff method is
proposed to solve this system, and stability and convergence are proven with the assump-
tion that the solution stays smooth. When this assumption is violated, the numerical
solution shows signs of instability such as over/under shoots and oscillations near the
discontinuity, which may pollute into smooth regions for later time (see the pictures in
[13]). Although artificial viscosity may reduce such oscillations to a certain extent, mod-
ern nonlinear "high resolution" schemes [9] are more adequate if one wants to completely
remove the oscillations while still keeping the uniform high-order accuracy in the smooth
regions.

In this paper we discuss the application of ENO (Essentially Non-Oscillatory) schemes
for solving the system (1.1)—(1.3). ENO schemes, first developed by Harten, Engquist,
Osher, and Chakravarthy [5] in the cell averaged formulation and later by Shu and Osher
[16], [17] in a simplified formulation using only point values and TVD (total variation
diminishing) Runge-Kutta type stepping, are based on an adaptive stencil interpolation
idea to automatically interpolate in a locally smoothest region, thus avoiding crossing
discontinuities or high gradient regions as much as possible, while still maintaining high-
order accuracy. We will review ENO schemes and describe their application to the
system (1.1)—(1.3) in Sec. 2. In Sec. 3 we will develop some mathematical properties of
the system (1.1)—(1.3) and its linearized version. Section 4 contains numerical examples,
first to validate the ENO scheme, then to use it as a tool to study local (in time) as well
as long-time behavior of the solutions to (1.1)—(1.3). Concluding remarks are given in
Sec. 5.

2. ENO schemes. In this section we shall first briefly review the point-wise ENO
(Essentially Non-Oscillatory) high-order finite difference method for a general hyperbolic
conservation law with shocks. More details can be found in [5] and [17]; see also [16],
[18], [19], and [1]. We shall then describe the application of ENO schemes to the system
(1-1)—(1-3)-

The first ENO schemes, developed by Harten, Engquist, Osher, and Chakravarthy [5],
are in the cell-averaged formulation, which is rather expensive for multi space dimensions.
[16], [17], [18], and [19] describe the point-wise ENO schemes. In two space dimensions,
a point-wise ENO is about four times as fast as a cell-averaged one. In three dimensions
this factor is about nine. We shall use point value ENO schemes in this paper.

We first explain how a scalar one-dimensional conservation law

ut + f(u)x = 0 (2.1)
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is solved by point value ENO schemes. Leaving, for the time being, the time variable t
undiscretized, we have the conservation scheme:

where Uj(t) approximates u(xj,t) and fJ + i is the numerical flux function. This scheme
is rth-order accurate:

^(/J+i - fj-i) = /(«)*\x=xj + 0(Axr) (2.3)

if the numerical flux /J +1 satisfies

fj+i = h(xj+i) + 0( Axr+1), (2.4)

or just 0(Axr) if this term is smooth, where the function h(x) is defined implicitly by

f(u(x)) = -±- fX+ ' h(£)dt (2.5)
 2~

where we have suppressed the time variable t. The simple proof of this fact is given
in [17]. Even if h(x) is only defined implicitly by (2.5), it is easy to approximate the
primitive of h(x) defined by H(x) = h(£) d£, since

= Ax i f(u{x k)) (2.6)
k— — oo

and f{u(xk)) are explicitly known. Notice that the lower limit —oo is irrelevant and can
be replaced by any fixed index.

The procedure to compute the flux /J+i is thus summarized as follows: Given the
point values u(xk), hence f(u(xk)), one obtains H(Xj+i) using (2.6), and then builds
a polynomial Pj+i(x), for each j, of degree r + 1 that interpolates H(xk+1) at r + 2
consecutive grid points including Xj+i. Notice that there are r + 2 choices for the stencil
of Pj+i(x), since the left-most point in the stencil can be anywhere between £j_r_i
and Xj+1. For stability considerations (upwinding), we require the stencil to contain two
points {Xj_i,Xj+i} or {Xj+1, £j+a } depending on the local wind direction. This leaves
us with r + 1 possibilities for the stencil. For all those choices, approximation theory of
polynomial interpolation tells us that

= £ff(W + 0<A*r+1> <27)

provided that the function H(x) is smooth (at least Cr+2) in the stencil of this inter-
polating polynomial Pj+i(x). One thus only needs to take /J+i = ^Pj+i{xJ+i) to
guarantee rth-order accuracy (2.4), if one uses a stencil in which H(x), or equivalently
f(u(x)), is smooth.

If the function f(u(x)) is globally smooth, one can of course choose any stencil for
Pj+\(x) to claim the required accuracy (2.4). One then is motivated to choose the stencil
with the smallest coefficient in the error term 0(Axr+1), leading naturally to the usual
central stencil (e.g., {xj_i, xJ+1, £j+2 } for the case r = 1) for all j. This is the basis for
the traditional "fixed stencil" schemes, which are linear when applied to linear problems



ESSENTIALLY NON-OSCILLATORY SCHEME FOR VISCOELASTICITY 463

and a Fourier stability analysis can be applied to obtain the stability and convergence
for either linear or nonlinear PDE's with smooth solutions. This is, for example, the
procedure adopted in [13].

However, if the function f(u(x)), hence H(x), is only piecewise smooth with shocks
in between, the fixed stencil approximation will cross the shock to build a high-order
polynomial interpolation. Not only is the accuracy totally lost in such cases, the approx-
imation also shows highly oscillatory results. This is why fixed stencil schemes, whether
they are linearly stable or not, often give poor results in the presence of shocks.

ENO interpolation tries to overcome this difficulty by adaptively choosing its stencil
so that at each Xj+1, the smoothest (in some sense) stencil out of all the r + 1 possibilities
is used. The basic idea is as follows: suppose the order of PJ + \(x) is one and we must
use Xj+1 in the stencil. There are only two possibilities for adding another adjacent
point: the stencil becomes either {Xj_i,Xj+i } or {xj+±,xj+z}. The two corresponding
first-order polynomials are given by H(Xj+i) + H[xj_i,xj+i](x — %j+i) and H(Xj+i) +
H[xj+i,xj+^\(x — Xj+i) respectively, where H[*, *j are the Newton divided differences.
Notice that these two polynomials differ only by the coefficients which in this
case are slopes and should be 0( 1) if f(u(x)) is smooth but would be 0(-^) if f(u(x))
contains a shock in the stencil. One is thus naturally led to take the one with a smaller
H[*, *] in absolute value. This idea can be easily pushed into high orders by induction,
since when one has a (k — l)th-order polynomial at hand and tries to extend it to a kth-
order one, one again only has to consider two possibilities of adding another adjacent
point into the stencil. The two corresponding fcth-order polynomials differ only by the
coefficients in the last term of the Newton form, which are the fcth-order Newton divided
differences and are of the same magnitudes as the fcth derivatives for the smooth case
but are of the order 0(1/Axk~m) if the function is Cm_1 but not Cm in the stencil. One
thus again chooses the one with a smaller kth divided difference in absolute value.

What can be proven about the ENO interpolation described above is that: for a
piece-wise smooth function, the ENO approximation is uniformly accurate up to the
discontinuities and is TVB (total variation bounded) even when the stencil must contain
two points due to upwinding, hence will cross the discontinuity in the shocked cell itself.

Some upwinding is preferred for (2.1) in gaining stability. In the simplest situation:
scalar one space dimension and f'(u) > 0, one simply requires that the stencil of PJ+i (x)
contains {xj_ i, Xj+i} in order to gain the necessary upwind biasing. The case with
f'(u) < 0 can be handled similarly. If f'(u) is not of one sign, one can do a flux
splitting /(«) = f+(u) + f~(u) where f+,{u) > 0 and f~'(u) < 0, and use upwinding on
each of them separately. The simplest such splitting is due to Lax-Friedrichs: f (u) =
|(/(u) ±au) where a = maxu |/'(w)|, and this is the one we will use in this paper. Since
for our case the conservation law (2.1) is a system, we will first find the eigenvalues and
eigenvectors of the Jacobian f'{u). Using them we can perform the scalar procedure in
the locally defined "characteristic fields". The details of this procedure can be found in
[17] and [19].

The point-wise ENO scheme described above can be easily applied to multi space
dimensions without additional difficulty. One simply approximates f(u)x along x lines
with all the other variables (y, z, etc.) fixed. The two- or three-dimensional computer
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programming is essentially only the one-dimensional code with one or two outside "do
loops".

We still have to discretize the time variable t in the ODE (2.2). We shall use the so-
called TVD (total variation diminishing) Runge-Kutta type high-order time discretiza-
tion introduced in [16]. This type of time discretization does not increase the total
variation of the spatial operator. Hence if the spatial operator is TVD or TVB, so will
the fully discretized scheme be, which is then high order in both space and time. In this
paper we use third-order accurate schemes: for the ODE (2.2) rewritten in the form

S = £(«) (2.8)
where L{u) is the spatial operator, the third-order TVD Runge-Kutta method is simply

u(1) = un + A tL{un),

UW = + \UW + \AtL(uw), (2.9)

un+1 = X + lw(2) + §A^(u(2)).

The ENO schemes as described above may change stencils more than necessary in
smooth regions near critical points, where the magnitudes of the divided differences are
small. This may affect accuracy in some cases [18]. One remedy is to use a biasing
factor when the stencil is chosen: when a point must be added to the stencil, with two
candidate divided differences a and b, if adding a to the stencil results in a more central
scheme, then a is added unless, in absolute values, it is bigger than the factor times b
[18]. The factor can be any number between 1 and 2. For factor — 1 it is the usual ENO
scheme; for factor < 2 it will produce a TVD (total variation diminishing) scheme in
the second-order case. Another further remedy is to apply a threshold: namely, if both
divided differences a and b are less than this threshold, then add the one that makes the
stencil more central. The details of these remedies can be found in [18] and [1].

Finally, we should mention how the memory terms in (1.1)—(1.3) are handled. For the
special kernel a of the form (1.5), which is the only case we consider in this paper, by
defining

Zj(x,t) = f CjHje~'1^t~T^ip(u(x,T))xdT, (2-10)
Jo

the equations (1.1)—(1.3) can be rewritten as

ut vx — 0,

vt - Hu)x = - . Zj + g, xeii,t>o, (2.ii)
L—V7 = l

. (Zj)t - CjHjtp(u)x = —fijZj, j = 1,... ,7V,

u(a;,0) = uq(x), v(x,0) — vq{x), Zj(x, 0) = 0, x £ H, j — 1,..., iV; (2.12)

see, for example, [13]. This eliminates the memory terms from the system, at the price
of N additional ODE's. Computationally this form is much more convenient and eco-
nomical. If the memory kernel a is not of the special form (1.5), then this trick cannot
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be used and one must solve the original system (1.1)—(1.3), resulting in a much heavier
storage requirement.

The left-hand side of the first two equations in (2.11) will be solved using the ENO
schemes described above, with the local characteristic decompositions. The ip{u)x term
in the last N equations in (2.11) will be the same as <fi(u)x in the second equation if
ip — <j>, or can be approximated by a scalar ENO interpolation procedure or even by
central difference. Our computational experiments in Sec. 4 indicate that the result is
not sensitive to either choice; the result shown is that obtained by using the fourth-order
central difference in approximating ip(u)x when ip <f>. Time discretization for all the
equations is by the third-order TVD Runge-Kutta method (2.9).

3. Mathematical properties. In this section we study what we can expect for
weak solutions to the initial-value problem (1.1)—(1.3). The linearized system is studied
through its Green's function, and all the information about discontinuities in the solutions
is obtained. The nonlinear system is also discussed.

Consider the following linearized system of (1.1), (1.3):

Ut — vx = 0,
rt (3.1)

vt - <f>'ux = I a'(t — T)ip'ux(x, T) dr,
Jo

where 4>' > 0,ip' > 0 are constants, a is a kernel of the form (1.5), and

p' = 4>' - a(0)rp' > 0. (3.2)

To study the solution of the Cauchy problem of (3.1), all we need is to understand
the Green's function of (3.1), by which we mean the solution matrix G(x,t) to (3.1)
satisfying the initial data

G(x, 0) = 6(x)I,

where 8 is the Dirac 6-function and I is the 2x2 identity matrix. The following is the
main theorem of this section.

Theorem 3.1. Assume that <j>' > > 0, (3.2) holds, and the kernel a is given by
(1.5). For all —oo < x < oo, t > 0, the Green's function G(x,t) of (3.1) has the property

G(x, t)
1 f (»+ty^7)2 (x-t -y/p7)2 1

my *" p--/+e~ P*-''S
^/-.w -,\_I -I f (l + ty/p7)2 Qt-fy/p7)2 1

+ 0(l)(t+l) 2t 2 I e ct + e ct j,

h'a'mt .    
+ e {S(x + + 6(x -

where p' is defined in (3.2), C > 0 is a constant independent of x and t,

(3-3)

rOO N

H = ip' a(s) ds — ip' S2 Cj/Hj, (3.4)
Jo j=1
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and
/ I +_I_\

for c > 0. (3.5)

The proof of this theorem will be outlined at the end of this section. We now discuss
what we can learn from (3.3). The solution of the Cauchy problem of (3.1) is the
convolution with respect to x of G(x, t) with the initial data. It is clear that the large-
time behavior of the solution is governed by the leading term of G, the first two heat
kernels in (3.3). Here notice that a'(0) < 0 and the last term decays exponentially. To
have a heuristic understanding of the large-time behavior, we use asymptotic expansions
to obtain a viscous approximation of the system (1.1), (1.3). Using integration by parts,
(1.1), (1.3) can be written as

lit ^X   0)

vt - <t>{u)x = -a(0)ip(u)x + a(t)ip(u(x,0))x + / a(t - r)ip(u(x, t))x
Jo

■ dr.

Here we have assumed <7 = 0. Since a decays exponentially in t, it is reasonable to replace
ip(u(x,r)) in the above integral by its Taylor approximation around t,

ip(u(x, t)) + (t - t)ip{u{x, t))t

when t is large. Using the first equation, we then arrive at an approximate system of

(1.1), (1.3):
f ut - vx = 0,

where

1 t \ i , \ ^ t3'6)y vt -p{u)x = (H{u)vx)x,

/•OO

p(u) = <p(u) — a(0)ip(u), n(u) = ip'(u) / a(s)ds. (3.7)
Jo

System (3.6), (3.7) was proposed by Liu [10] without justification. If the initial data
are smooth and small, Kawashima [7] showed that the solution to (3.6) has the same
large-time behavior in L2 as the solution to

f Ut Vx — n ILxxi

Vt -P{u)x = ^Vx
(3.8)

~2 uxx

with the same initial data. Zeng [22] further showed that this is true in Lp, 1 < p < oo,
and in fact, the leading term of the Green's function of the linearization of (3.6) is the
Green's function of the linearization of (3.8). Therefore, it is not surprising that in (3.3)
the leading term of the Green's function of (3.1) is exactly the Green's function of the
linearization of (3.8). Estimate (3.3) is a powerful tool to study the large-time behavior
of solutions to the nonlinear problem (1.1)—(1.3) when the initial data are smooth and
small. In this case it has been shown that the problems (1.1)—(1.3) and (3.8), (1.2) have
the same asymptotic solution in L2, i.e., the sum of the two diffusion waves associated
with (3.8) which are solutions to the Burgers' equation; see [21]. With (3.3), we can
obtain much better results. We can show that the difference between the solution of
(1.1)—(1.3) and the diffusion waves has a point-wise estimate both in x and t, which
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is a sum of diffusion waves of algebraic types decaying more rapidly than the solution.
Based on this estimate, not only all the Lp (1 < p < oo) decay rates of the difference are
straightforward and optimal, we can also see different decay rates in different directions
in the (x, £)-plane. The exact formulation and proof of this estimate are totally parallel
to those for hyperbolic-parabolic systems given in a recent paper by Liu and Zeng [11]
(also see [23]), and will not be discussed here.

Since local behavior of the solution is concerned, we see that in the linear case the
two ^-functions in (3.3) describe how an initial discontinuity propagates into the solution
since all the other terms smooth away immediately any initial discontinuity. These
two ^-functions are a multiple by a factor e^ a ^ ) of the Green's function of the
linearization of

[ ut-vx — 0,
,/ X n (3-9)y vt - 4>(u)x = o.

Notice that a'(0) is negative. Thus any initial discontinuity splits into two parts, propa-
gating in the directions dx/dt — respectively and decaying exponentially in time.
In Sec. 4, we have a numerical example for a linear problem with initial discontinuities.
Formula (3.3) then predicts the locations and amplitudes of the discontinuities in the
solution and how they interact. The numerical result matches the theoretical result so
well that it shows the robustness of our numerical scheme for singularities. Because of
the decay of the amplitude, a discontinuity in the linear case is more or less of local be-
havior. Indeed, system (3.9) is the elastic model with the instantaneous elastic response
in (1.3).

For nonlinear systems, certain conditions have to be satisfied when crossing a discon-
tinuity (shock wave), since (1.1) is a system of conservation laws. Here again we assume
g = 0. It has been shown that the memory term has nothing to do with these conditions.
More precisely, if a solution (u,v) of (1.1), (1.3) is discontinuous along a curve x = x(t),
then it satisfies the following jump condition:

x'(t)(ur - ui) = (vr - Vi),

x'(t)(vr - vi) = - <f>(ui)), (3.10)
(ur,vr) = (u,v)(x(t) + 0,£), {uh vi) = (u,v)(x(t) - 0,t);

see [10]. Condition (3.10) is exactly the same jump condition for the system (3.9), which
governs the local behavior. With the estimate (3.3), we further expect that any jump
generated by a small initial discontinuity decays exponentially in t.

We now consider an interesting problem, the Riemann problem (1.1)—(1.3) with the
initial data

X<®\ x<0- (3.n)
lu+, x > 0, I v+, x > 0.
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We assume that the constant states (u-,v-) and (u+,v+) consist of a 1-shock of the
inviscid system corresponding to (3.6):

f ut - vx = 0,
[vt - p{u)x = 0,

where p is defined in (3.7). That is, the shock speed c < 0 and the Riemann data (3.11)
satisfy the Rankine-Hugoniot condition and admissibility criterion:

c(u+ - u-) = -(v+ - v-), c{v+ -v-) = -(p(u+) - p(u-)),

2 p(u+) - p(u-) p(u) - p(u-) (3.13)
c =  >   for all u between and u+.

u+ —U- u — U-

Liu [10] has shown that if in addition to condition (3.13), the following nonresonance
condition

c2 < <t>'(u) for all u between w_ and u+ and u, — u± (3-14)

is satisfied, e.g., when (u+,v+) is close to (w_,w_), then system (1.1), (1.3) has a smooth
traveling wave solution

(u,v)(x,t) = (Oi,02)(x - ct), (0i,O2)(±oo) = (u±,v±), (3.15)

which is strictly monotone and unique up to a translation; if (3.13) holds but (3.14)
fails, then the system (1.1), (1.3) has a traveling wave solution (3.15) which satisfies the
following conditions across any discontinuity (ui,vf,ur,vr) contained therein:

c{ur - U() = ~{vr - vi), c(vr - v{) = ~(<p{ur) - <j>(ui)), (3.16)

<f>(ur) - <j)(ui) <f>{u) - 4>(ui) , >——   > , for all u between m and ur, (3-17)
Ur — U[ U — UI

and such a solution is monotone and unique up to translation. When we consider the
Riemann problem of (1.1), (1.3), the initial data (3.11) can be viewed as a perturbation
of the profile (0i,02) in (3.15). It is a conjecture that the solution to the Riemann
problem approaches the aforementioned traveling wave as t —* oo, where the translation is
uniquely determined by the mass of the initial perturbation (private communication with
T.-P. Liu). In Examples 4 and 5 of Sec. 4, we solve Riemann problems numerically with
initial data satisfying condition (3.13). The nonresonance condition (3.14) is satisfied by
Example 4, but not by Example 5. We do see different large-time behavior there; see
these two examples for details.

In the rest of this section we outline the proof of Theorem 3.1. The approach is similar
to that for hyperbolic-parabolic systems (see [11]): We first need a good understanding
of the Fourier transform of G, and then estimate the inverse transform. The Fourier
transform of G has been studied by Zeng, [21]. Here we cite relevant results from [21]
and refine some of the estimates for our purpose here. Once we have the desired estimates
of the Fourier transform, the estimates of the inverse transform are obtained in the same
way as for hyperbolic-parabolic systems, and the readers are referred to [11].

Following the notation in [21], we write the Laplace transform of a of the form (1.5)
as

La(s) = qi{s)/q2(s), (3.18)
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where q\ and q2 are polynomials relatively prime and of degrees to — 1 and m respectively.
For definiteness we assume that in q2 the coefficient of sm is 1. Set

d(s;£) = s2q2(s)+ip'(,2sq1(s)+p'(,2q2(s). (3.19)

Then d is a polynomial of s with degree n = m+2. From Lemma 2.1 in [21], d has exactly
n different zeros Afc(£), k — 1,..., n, except for a finite number of £. From Lemma 2.2 in
[21], we have the following expression for the Fourier transform of the Green's function:

Lemma 3.2. Under the hypotheses of Theorem 3.1, the Fourier transform G(^,t) of
G(x, t) with respect to x has the expression

n

G(Z,t) = ^2eXk(6)ipk(.£), (3.20)
fc=1

where the Afc(£) are the zeros of d(s;£) defined in (3.19),

p (t\ _ 1 ( ^^(Afc) ^92(Ak)\ /o 91 \
k^' d'(Afc;0 \i^'^qi(Xk)+p'q2(Xk)) Afe®(Afc),/'

d' is the derivative of d with respect to s, and 91,92 are as in (3.18).

Lemma 3.3. G(£,t) in Lemma 3.2 is an entire function of £.

Proof. By definition, Afc(£), k = 1,..., n, are the zeros of d(s; £). Clearly, the Afc(£) are
continuous algebraic functions in the £-plane since the coefficient of sn in d is 1. The A*,(£)
are all distinct if £ is not one of the exceptional points, where some of the Afc coincide.
As mentioned above, there are only a finite number of exceptional points in the whole
£-plane. An exceptional point is either an algebraic singularity of some of the Afc, or a
regular point of all of them. In each simply connected domain containing no exceptional
points, the Afc(£) are holomorphic; so is G(£, i). Notice that when £ describes a small
circle around an exceptional point, the A*,(£) undergo a permutation among themselves
after analytic continuation. By (3.20) and (3.21), G(£,t) is single valued. We can further
show that G(£, t) is bounded in a small neighborhood of an exceptional point, and hence
analytic there; see the proof of Lemma 2.4 in [21]. Q.E.D.

The behavior of the A&(£) and -Pfc(£) in (3.20) when £ is small determines the leading
term of G(x,t), while the behavior when £ is large determines the ^-functions in G(x,t).
The following lemma is Lemma 2.4 and part of Lemma 2.3 in [21].

Lemma 3.4. Under the hypotheses of Theorem 3.1, we have the following properties:
(i) As functions of the complex variable £, Ali2(£) and Pi,2(C) are analytic at the origin

and have the Taylor expansions

Ai,2(£) = ±i\fp'£ - + 0(£3),
(3.22)

^.2(0=1 j* 7P \+°(0

for small



470 CHI-WANG SHU and YANNI ZENG

(ii) Let £ be real and e > 0 be small. Then there exists a constant C = C(e), such
that

Ep^)eAfc (S)t
k=3

< Ce t/°, for |£| < e and t > 0, (3.23)

|G(£,£)| < Ce t^c, for |£| > e and t > 0. (3-24)

Lemma 3.5. Under the hypotheses of Theorem 3.1, as the complex variable £ —> oo, we
have

A 1^) = ±i^ + t*M + o(C1), (3.25)

Afc(0 = A°+0(r7), k = 3,...,n, (3.26)
/ i ± i \

ph2(t) = y±2^ 2fJ + c'Cm + o(r2), (3.27)

Y^eXki0tPk{0 = ex°t£~1CM + 0(£_1_7)e5(Re A°)t, (3.28)
k

where 0 < 7 < 1 is a constant, the A® are the m zeros of

q{s) = p'q2{s) + ip'sqi (s), (3.29)

the A° have negative real parts, Cm denotes a universal polynomial matrix in t with
degree not more than n — 3, and the summation in (3.28) is for all 3 < k < n such that
Afc(£) in (3.26) corresponds to the same value of A^.

Proof. This lemma is a refinement of Lemma 2.3 in [21], where it has been shown that
Ai,2(£)/£ and Ak(£) —> X°k, k = 3,..., n, as £ —> 00, and the A° have negative
real parts. Notice that Afc has algebraic singularities. If one of them is infinity, then in
(3.26) we have 0 < 7 < 1; otherwise 7 = 1. To prove (3.25), notice that Ai,2 are zeros of
d. From (3.19),

1 _ ^^1,291 (Al,2) + P'92(^1,2) to on\
e ~ a?i2®(a1i2) ■ (• }

Clearly, l/£ is an analytic function of I/A12 as Ai^ —» 00 (£ —> 00). The inverse function
theorem then implies that 1/Ai,2 are analytic functions of l/£. Hence A12 are single-
valued at infinity:

A1j2 = ±»v^ + cli2 + 0(r1), (3-31)

where C12 are constants. To determine Cij2, set

Ai,2 = Ai>2 Tiy/ftti-

Then C12 = limj_,oo Ai^- Prom (3.30) and (3.18), we have

+ Ai]2)2 = -£2(V;/Ai,2io(Ai,2) + p')-

By (3.2) and properties of the Laplace transform, we have

±2ii/^'£Ai^2 + Aj 2 = —£2(V,'Ai,2i'a(Aii2) — a(0)ip') = —(,27p'Lai(Aii2).
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Notice that lim^oo sLa*(s) = a'(0). We arrive at

r ,x v ip'a'(0)

Together with (3.31), estimate (3.25) is proved. The estimate (3.27) for Pi,2(0 is
straightforward by the estimates for A;,., k = 1,... ,n, and (3.21), where we notice that
d'{Xi,2'iO are single-valued at infinity. To prove (3.28), we assume for definiteness that
A0 = A® = • • • = A°, and A° ̂  A0 for I + 1 < k < n. By (3.25) and (3.26), we have the
following for large £:

|Ai,2(0I >
|Afc(0-A°|<e, k = 3,...,l, (3-32)
|Afc(£) - A01 > 2e, k = l + l,...,n,

where e > 0 is a fixed small number. Then by (3.21) and the residue theorem, the
element in the first row and second column of the left-hand side of (3.28) is

1 f %fS» = I + II, (3.33)
d(\k',0 2m J\\-\o\=3e/2 d{A;£)

where

T  A j. qi{X)ext
I ~ « • T :t* j. 1 / \ \C> \ /\ \n\dX,

2m J\X-A°|=3e/2 -iW(A " A°)'~2(A - A°+1) • • • (A - AO)

2ttz /,a
II= - * <72(A)eAt I" (iO

|A-A°|=3e/2 ^

+

(A-Ai(0)---(A-An(0)
1

^(A - A0)i-2(A - A?+1)... (A - A°) J

By Cauchy's formula,

dX.

1 = - 1 d}-
i£<f/(l - 3)! d\l~3

q2{X)eA t

L(A-A°+1)---(A-A°)
= c£-V \ (3.34)

\=\°

where c is a polynomial in t with degree not more than 1 — 3. To estimate II, we use
(3.25), (3.26), and (3.32) to obtain

|H| < !A_m^E/2 |92(A)eAt|0(r7)£-n+1 - 0(l)l?r1-7e5(ReA°)t (3.35)

for large £. Equations (3.33)-(3.35) and similar treatment for the other elements give us

(3.28). Q.E.D.
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With Lemmas 3.2-3.5, the proof of (3.3) is totally parallel to the case of hyperbolic-
parabolic systems: Lemmas 3.2, 3.4, and 3.5 give us

R - G(x,t) —Vrf
ip' a' (0)t

1 f (x + ty/p7)2 (a-typ7)2 ^j= Ie P-y+e P+y j

e {<5(a; + tV^)P-,4> + - ^)P+,^}
1 (I+tv7)2 (x—tv/p7)2

= 0(l)(i + 1) {e &— +6-^^—}
(3.36)

+ 0(l)(i * + \x+ tV&'\ + \x ~ tVftl + \x\)e t/C
for all —oo < x < oo, t > 0, where C > 0 is a constant; see the proof of Lemma 5.5 in
[11]. Lemmas 3.3 and 3.5 give us

1 , x2 (x + t-v/p7)2 (x —tv/p7)2
R=0{l)t~?{e-^ +e~ + e~ cV(P } (3.37)

for —00 < x < 00, t > 0 and x/t large; see the proof of Lemma 5.6 in [11]. The estimates
(3.36) and (3.37) then imply (3.3); see the proof of Theorem 5.7 in [11].

4. Numerical results. In this section we present numerical results obtained by the
third-order ENO scheme using the Lax-Friedrichs flux splitting. The CFL number (the
upper bound of maxj |Aj|^ where Aj are the eigenvalues of the Jacobian f'(u) in (2.1))
is taken as 0.5.

Example 1. This example is an accuracy test. We solve the initial-value problem
(1.1)—(1.3), where

(f>(u) = t/)(w) = u + |u3, a(t) = 0.4e_t.

The source term g(x, t) and the initial data uq{x), vo(x) are chosen such that the problem
has the exact solution

u(x, t) = e_t sin a:, v(x, t) — e~* cosx.

We compute the solution on the interval [—n, n\ up to t = 1, imposing periodic boundary
conditions. The biasing factor is taken as 2, and the threshold e is chosen to be small
and decaying with the mesh size. Table 1 shows the errors for u and v, respectively, in
the discrete L2 norm when t = 1, with the corresponding total number N of mesh points
and the threshold e. The order of accuracy is evaluated by log(e(Aa;)/e(0.5Ax))/log2.

Table 1. The accuracy for the smooth problem

N
80
160
320

10-4

10-5

10-

L error for u
6.872 x 10-6

6.589 x 10-
7.913 x 10"

Order

3.38
3.06

L error for v
1.095 x 10-5

1.110 x 10"6
1.264 x 10-7

order

3.30
3.13

Here we do see third-order convergence. We have also tested the problem with a
different set of g(x, t), Uo(x), Vo(x) such that the exact solution is non-periodic. Again
we obtain third-order accuracy. This example indicates that for smooth solutions the
scheme has the expected high-order accuracy.
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Example 2. In this example we test the resolution of discontinuities by the scheme.
We solve the linear problem (1.1)—(1.3) with

(f>(u) = ip(u) = 4u, a(t) = 0.4e_t + 0.3e~2t, g{x,t) — 0,

and a set of periodic initial data with period 2:

I \ I ^ X ̂  I \ nu°(x> = \ , n •. uo(a:)=0.I 1, 0 < x < 1,

The exact solution can be written as
'u

^j(x,t) = j G{x-y,t)(^j{y)dy,

where G(x,t) is the Green's function of the system. Applying Theorem 2.1 to this
problem, we have

G(x, t) = heat kernels + higher-order terms of heat kernels

+ e-f/2 j<5(z + 2t)(j lj+6(x-2t) "*)}.

It is clear that the first two terms in the above expression do not contribute to any
discontinuity, while the third term gives us all the information about the discontinuities in
the solution. More precisely, discontinuities propagate along the straight lines x = 2t+k
for any integer k. The jumps along these lines are:

f e-4/2 along x — =f2t,
•u = ur — Ui = <

[ — e-t/ along x = =f2t ± 1,
(4-1)

2e t//2 along x — 2t — 1 and x = —21,
[vj = vr - vi =

—2e 4/2 along x — 21 and x — —21 + 1

for one period. Notice that the first interaction time of discontinuities is |. When
t = -j, u is continuous, while v has jumps at x = =F\• The second interaction time
is 2 • When t = u has jumps at x = ±1,0; while v is continuous everywhere. In
this example, it is clear that the solution takes the constant state (—1,0) in the region
{21 — 1 < x < —2t,0 < t < -j}, and takes the constant state (1,0) in the region
{21 < x < —21 + 1,0 < t < i}; see Figure 1 on p. 474. Therefore, we can further find
out ur,ui,vr, vi along the discontinuities for t < |. Especially,

I) =1,1 (I-1) =2e_,/8' (42)

We compute the numerical solution for this example on the interval [—1,1] up to t = i ■
A periodic boundary condition is imposed. We use zero threshold and take the factor
as 1, since these tend to be more robust for long-time integration with shocks. Numerical
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Fig. 1. The pattern of discontinuities and constant regions for the
linear problem in Example 4.2.

Fig. 2. The solution u of Example 2, at t = 0, i, j, f, and ^
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Fig. 3. The solution v of Example 2, at t = 0, j, §, and

results with 1600 mesh points are given in Figures 2 and 3. When we compare the
curves in these two figures with the above given analytical results, we can see that all
the numerical discontinuities have the right locations, and the strengths match (4.1) very
well. We also see that u is continuous when t = \, and v is continuous when t —
The numerical result for t = \ also matches (4.2) very well. The good agreement of
the numerical results with the analytical results indicates that the scheme is reliable and
robust for the resolution of discontinuities.

Example 3. In this example we solve the nonlinear problem (1.1)—(1.3) with

4>(u) = ip(u) =2 u + 5 u2 + 25u3,

a(t) = 0.4e_t + 0.1e_2t, g(x,t) = 0,

u0(x) — 2 sin3 x, vo(x) = 2cos3 x.

We solve the problem numerically up to t = 0.5 on the interval [—tt, 7r], imposing periodic
boundary conditions. We again use zero threshold and take the factor as 1. Numerical
results with 1000 mesh points are given in Figures 4 and 5 (see p. 476). Notice that the
initial data in this example are smooth and large. When t = 0.05, the solution is still
smooth. When t — 0.1, we see that four numerical shocks have formed. Two of them
are near the origin, while the other two are around the boundary. When t = 0.15, these
two pairs of shocks interact near the origin and the boundary. After interaction, the two
shocks in each pair propagate in opposite directions; see the picture for t = 0.3. At this
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Fig. 4. The solution u of Example 3, at t = 0.05,0.10,0.15,0.30, and 0.45.

Fig. 5. The solution v of Example 3, at f = 0.05,0.10,0.15,0.30, and 0.45.
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time there are also kinks (discontinuities in the derivative) in the solution. When t = 0.45,
we see that on the right-hand side of the origin, the two shocks interact near x — 1.57,
and two new shocks have formed near x = 0.32 and x = 2.81; while on the left-hand
side of the origin, the two shocks have interacted and separated, and two new shocks
are about to form near x = —0.15 and x = —2.98. This example shows that shocks
may develop if the initial data are smooth but large. In [13] there is a similar example
solved by the Lax-Wendroff scheme. Here, however, our scheme captures shocks much
more sharply without oscillations, and the high resolution allows us to compute to a
long time, hence finding shock interactions and the generation of more shocks. At this
point we want to point out that there is no rigorous theoretical justification about the
shocks in this example. However, considering that the scheme is stable and produced
nice agreement with theory in the last example, there is a high fidelity in the numerical
results.

EXAMPLE 4. This example is a Riemann problem. We consider (1.1)—(1.3) with
.34>{u) = ip(u) = u + |u"

a(t) = 0.4e * -|- O.le 2t, g(x,t) = 0,

and

(4.3)

  J 2 > X < 0,
2, x > 0,

«o(s) = ^' .; «o(z)H ; (4.4)

The Riemann data (4.4) consist of a 1-shock of the hyperbolic system

( ^ I. Vx — 0,
(4.5)[ vt - p(u)x = 0,

where

p(u) = <fr(u) - a(0)ip(u) — i(w + 5M3). (4.6)

The shock speed c = —1.0206 and the Riemann data satisfy the Rankine-Hugoniot
condition and admissibility criterion (3.13). Moreover, the nonresonance condition (3.14)
is also satisfied. From Sec. 3 we know that system (1.1), (1.3) possesses a smooth and
strictly monotone traveling wave with speed c. It is our conjecture that this traveling wave
is the asymptotic solution of our Riemann problem, where the translation is determined
by the initial perturbation. As we see in Sec. 3, the local behavior of the Riemann
problem is governed by the hyperbolic system

(ut - vx — 0,

vt — <t>(u)x — 0.

With (j) given by (4.3), we see by solving the Riemann problem (4.7), (4.4) that for
infinitesimal t, the initial discontinuity decomposes into two waves, a back shock with
speed s = —1.396 and a front rarefaction with speeds 1.705 < x/t < 1.803. Then as these
two waves propagate, the strengths decay in t. Especially, if the asymptotic solution is
indeed the aforementioned smooth traveling wave, the amplitude of the back shock must
decay to zero and the speed s must approach to — ̂ /^>'(0.5) = —1.118.
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1.0

0.5 t=0.0: °-
t=0.1, Example 4: A-
t=0.1, Example 5:-

-0.2 -0.1 0.0 0.1 0.2 0.3

Fig. 6. The solution v. The initial condition t = 0, and the result
at t = 0.1 for Example 4 and Example 5.

We compute the solution up to t = 24 on the interval [—48,48], using 4800 grid points.
The numerical boundary condition is taken as the Riemann data; again the threshold is
zero and the factor is 1. One of the curves in Fig. 6 is the result of component v when
t — 0.1. We can see a back shock with speed around —1.39 and a front rarefaction-like
wave, which is compatible with the aforementioned rarefaction for infinitesimal t.

The result for u for t up to 24 is given in Fig. 7; the result for v is similar and hence
not shown to save space.

Figure 8 is a blow-up of the rarefaction region of Fig. 7, where we can see clearly
the initial rather rapid decay of the rarefaction-like wave. It seems that the decay slows
down after a while, and it is not clear whether the solution will approach a monotone
asymptotic solution.

Figure 9 (see p. 481) is a blow-up of the shock region in Fig. 7, where we can see clearly
the decay of the shock. In fact, when t = 19.2, the solution is practically continuous. It
is easy to see from (1.1), (1.3) that in front of the shock, the solution takes the constant
state (|,0). Hence the shock locations are easily identified in Fig. 7. Comparing the
curves for t — 21.6 and t = 24, a blow-up in the shock area (not shown to save space)
shows that the shock speed s approaches —1.118 indeed. From Fig. 7, we see that the
asymptotic solution is smooth if it exists. Again, comparing the curves for t = 21.6 and
t = 24, we find that the wave center is moving with a speed of —1.02, which is very close
to the traveling wave speed c mentioned above. All these show that the scheme handles
shocks as expected.
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Fig. 7. The solution u of Example 4, at t = 0.0,2.4,4.8,7.2,9.6,
12.0,14.4,16.8,19.2, 21.6, and 24.0.

Fig. 8. The blow-up of Fig. 7, for the solution u, near the
rarefaction region, of Example 4, at t = 0.0,2.4,4.8,7.2,9.6,
12.0,14.4,16.8,19.2, 21.6, and 24.0.
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Example 5. This example is a Riemann problem with <t> and ip different. We solve
problem (1.1)—(1.3), where

4>{u) — \u + , ip(u) = jU3,

a(t) = 0.5e_t + 0.5e_2t, g(x,t) = 0, ^ ^

and uo,vo are given by (4.4). For such and a, the corresponding p defined by (4.6)
is exactly the same function as in Example 4. The Riemann data consist of a 1-shock of
system (4.5). This time, however, the nonresonance condition (3.14) fails:

c2 = 1.0416 > <(>' (|) = 0.875.

Prom Sec. 3, system (1.1), (1.3) has a monotone traveling wave with speed c such that
any discontinuity contained therein is a 1-shock of system (4.7) propagating with the
same speed c. Again it is a conjecture that this traveling wave is the time-asymptotic
solution of our Riemann problem, where the translation is determined by the initial
perturbation. The local behavior of the solution is similar to that in Example 4: For
infinitesimal t, there are a back shock with speed s = —1.3909 and a front rarefaction
with speeds 1.8407 < x/t < 1.9685.

In this example again we use zero threshold, take the factor as 1 and use the Riemann
data as the numerical boundary condition. We first compare the local behavior with
Example 4 by computing the solution for t — 0.1, using the same interval and the
same number of grid points. The result is given in Fig. 6. We see that the shock area
almost overlaps the one of Example 4 since the two shock speeds are almost equal. The
rarefaction-like wave, however, moves faster than that of Example 4, due to a greater
speed. We then compute the solution up to t = 50 on the interval [—100,100] using 4800
grid points. The result of u is given in Fig. 10. The result of v is similar and hence not
shown to save space.

Figure 11 (see p. 482) is a blow-up of the rarefaction region of Fig. 10, where we can
see the decay of the rarefaction-like wave. Again, the decay seems to slow down after
a while, and it is not clear whether the solution will approach a monotone asymptotic
solution.

Figure 12 (see p. 482) is a blow-up of the shock area in Fig. 10. We see that the picture
is different from Example 4: The shock strength decays at the beginning, and then tends
to a limit. From a blow-up of the last two curves in Fig. 10 (not shown to save space), we
find that the shock speed is about —1.03 for 45 < t < 50, and the profile moves with a
speed about —1.02 in this time period. Both speeds are very close to the traveling wave
speed c = —1.0206 mentioned above. The nondecay of the shock may be explained as
follows: at the beginning, the shock generated by the initial discontinuity tends to decay,
which we know from the Green's function. As it propagates, the shock reduces speed.
The traveling wave then catches up with the shock, and the hyperbolicity of the system
comes to play, which may generate singularities; see Example 3. Notice that in Exam-
ple 4, the traveling wave never catches up with the shock. The numerical results in this
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Fig. 9. The blow-up of Fig. 7, for the solution u, near the

shock region, of Example 4, at t = 0.0,2.4,4.8,7.2,9.6,12.0,
14.4,16.8,19.2,21.6, and 24.0.

Fig. 10. The solution u of Example 5, at t — 0,5,10,15,20,
25,30,35, 40,45, and 50.
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u
1.510 r

1.500

1.490

1.480

1.470

1.460

t increases

40 60 80

Fig. 11. The blow-up of Fig. 10, for the solution u, near the rarefac-
tion region, of Example 5, at t = 0,5,10,15, 20,25, 30, 35,40,45, and
50.

Fig. 12. The blow-up of Fig. 10: the solution u, near the shock
region, of Example 5, at i = 0, 5,10,15, 20, 25, 30, 35,40,45, and 50.
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example again match the theoretical prediction, and serve as a tool to verify theoretical
conjectures, which again shows the usefulness of the scheme.

5. Concluding remarks. High-order ENO schemes are suitable for the numerical
solution of viscoelasticity equations with fading memory. Computational results verify
the theory about shock location and strength, and smooth region resolution, when such
information is known. This gives us confidence about the reliability of the scheme. The
scheme is then applied to nonlinear equations whose solution is not known. The scheme
should provide a robust numerical tool to study such equations when rigorous analysis is
not available, and it should provide a useful practical tool when numerical solutions for
such type of equations are needed in applications.
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