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High-Order Finite-Difference Methods
for Poisson's Equation

By H. J. van Linde

Abstract. Finite-difference approximations to the three boundary value problems for
Poisson's equation are given with discretization errors of 0(h3) for the mixed boundary
value problem, 0(A3|ln h\) for the Neumann problem and 0(h*) for the Dirichlet problem,
respectively. These error bounds are an improvement upon similar results obtained by
Bramble and Hubbard; moreover, all resulting coefficient matrices are of positive type.

I. Introduction.    In  this  paper,  we  shall consider  the  solution  by  finite-
difference methods of the three boundary value problems for Poisson's equation

(1.1) -A« = /    inR,

R a bounded connected open set in the (x, y) plane with boundary C. The symbol A
denotes the Laplace operator

A = d2/dx2 + d2/dy2.

The Dirichlet problem for this equation is

(1.2) ~Au = i    inR>

u = g    on C.

It is well known that a unique solution exists under very general assumptions on R
and the known functions / and g.

The Neumann problem is

(1.3) ~Au = f    inR,

du/dn = g    on C,

d/dn denoting differentiation with respect to the outward-directed normal on C.
From Green's first identity, it follows that / and g must satisfy the relation

[ 1d*+ f
J B •> C

(1.4) fd<r+gds= 0.
J B J C

Again, under general assumptions, a solution, unique except for an additive constant,
exists.

Finally, the third (or Robin) boundary value problem can be formulated as
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370 H. J. VAN LINDE

— A« = /      onfi,

(1.5) du/dn + au = g     on Ci,

u = gx    on C2.

It is assumed here that the boundary C consists of the two parts Cx and C2. We
require that the function a be piecewise continuous on C, with a finite number of
discontinuities and twice piecewise differentiable.

Further, at all points of continuity, either a = 0 (the set CV") or a è ctm > 0,
where am is a constant (the set cV2>). We need only consider the cases where either
C2 or cV2) contains a nonempty subset of C, since, otherwise, we again have the
Neumann problem; these cases provide a unique solution under general assumptions
on R and /, g and gx.

The most accurate finite-difference schemes to date for Poisson's equation have
been devised by Bramble and Hubbard. Covering the region R by a square net with
mesh width h, they formulated finite-difference analogues with an error estimate
of 0(h4) for the Dirichlet problem [1], 0(h2 |ln h\) for the Neumann problem [2],
and 0(h2) for the Robin problem [3].

In this work, which is based upon the author's thesis [4], we shall propose a finite-
difference analogue for the third boundary value problem with an error estimate of
0(h3) and one for the Neumann problem that converges as 0(h3 |ln h\). An 0(h4)
approximation for the Dirichlet problem will be given, which is of positive type,
with an error bound which is never worse than the one proposed by Bramble and
Hubbard [1].

We shall cover the region R under consideration by a square net with mesh width
h and we shall call the crossings of the net lines mesh points. We introduce a point
set Rh, consisting of all those mesh points of R whose eight nearest neighbors are
also in R.

The intersection points of the net with the boundary C of R make up a set Ch,
subdivided for the third problem in CXk and C2k. Together, the mesh points of R
which are not in Rh form a set Ck*. This set may be divided into two sets Cu* and
C2k* for the Robin problem. The exact way in which this is done will be considered
later.

We have to define a suitable finite-difference approximation A* to the Laplace
operator A in Rh and Ck* and, in the case of the Neumann and Robin problems,
an analogue 8n for the operator d/dn on Ck. From the work of Bramble and Hubbard,
it can be inferred that, in order that the above proposed error estimates be attained,
we need an approximation Ak to A with a truncation error of 0(h*) in RK, 0(h2)
in CXh* and 0(h) in C2k*. We shall also have to find an approximation ô„ for d/dn
on Ck with a truncation error of 0(h3).

In [3], Bramble and Hubbard gave an approximation to the operator d/dn with
a truncation error of 0(h2). In Section II, we shall show that an easier proof of their
results can be given which also makes the results valid under less severe restrictions.
Moreover, this different approach makes it possible to construct an analogue to
d/dn which can be shown to have a truncation error of 0(h3), the proof of which
under the original approach would have been prohibitive.

In Section III, a suitable approximation to the Laplace operator for the set Ch*
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FINITE-DIFFERENCE METHODS FOR POISSON'S EQUATION 371

will be derived with a truncation error of 0(h2).
In Rk, we shall use the well-known nine-point approximation to A; if (x, y) is

a point of Rk, then

àkV'x.y)

(1.6)
6A1 {4[ V'x, y + h) +  Vix, y - h) +  Vix + h, y) +  Vix - h, y)]

+   Vix + h, y + h) +  Vix + h, y - h) +  Vix - h, y + h)

+  Vix - h, y - h) - 20 Vix, y)}.

For m G Ci7)(R), the inequality

(1.7) Aku(P) - Au(P) - — AAu(P) ^ ^ M,h* + 0(h5)

holds for P G Rh, using the notation

(1.8) Ms = sup  \\a,u'P)/dx<dy,-i\ \ i = 0, 1, / •

A remark may be made on the fact that (1.7) does not hold for u G C{e)(R); the
truncation error in that case is still of 0(h*), but the upper bound is greater than the
one given in (1.7).

We shall also need the inequality

(1.9) Aku(P) - Au(P) - — AA«(P) Ú \M,h3

which holds for P G Rh, if « G Cib\R).
In C2k*, we shall use the operator introduced by Shortley and Weiler [5] for

points like (x, y) in Fig. 1.1.

Figure 1.1. Situation of Mesh Points Near the Boundary

We then approximate A by
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372 H. J. VAN LINDE

A* Vix, y) = lhA       l Vix - ah, y) + j-j— V(x + h, y)
(a(l + a) 1 + a

(1.10) + ß(l l+ ß) Vix, y + ßh) + y-— Vix, y- h)

a and ß may equal 1; if a = ß = 1, the operator (1.10) becomes the usual five-point
difference analogue for the Laplace operator. Of course, the orientation may be
different from the one given in Fig. 1.1. Appropriate changes in (1.10) should then be
made.

For h G Cl3\R), we have, in a point P of Ck* (or Cu* or C2h*),

(1.11) \Aku(P) - Au(P)\ ^ §M3h.

These operators, and the ones derived in Sections II and III, shall be used in
Sections IV-VI to derive error estimates for the Robin, Neumann and Dirichlet
problems, respectively.

We shall approximate the solution of the boundary value problems (1.2), (1.3)
and (1.5) by finite-difference methods; that is, we shall solve a set of n simultaneous
linear equations in n unknowns. The operators by which the various differential
operators are approximated will be chosen in such a way that the coefficient matrix
A of the resulting system of linear equations will have a very useful property, both
for estimating the discretization error and for actually solving the systems, the matrix
being of positive type [6]. Generally, in problems of this type, one has to attend to
three things; first one has to establish the convergence of the proposed method, then
one has to show that the resulting system of linear equations, which will have a
sparse coefficient matrix, can be solved by iterative methods, and, finally, the stability
of the method has to be investigated.

The advantage of methods which lead to coefficient matrices which are of positive
type is that only one problem is left to deal with. Once one has proven the con-
vergence of the method, in which proof the fact that the matrix is of positive type
plays a crucial role, it can be concluded at once from the Stein-Rosenberg theorem
[7] that the Jacobi and Gauss-Seidel methods are both convergent, and it can also
be seen that the stability is guaranteed.

II. An 0(h3) Finite-Difference Operator for d/dn. Bramble and Hubbard
[3] are the first to have given an 0(h2) approximation to the third boundary value
problem, using an 0(h2) approximation to d/dn. Before this, a convergence proof
had only been given once, for an 0(h) approximation, in a paper by Batschelet
[8]. We shall now first inspect the operator of Bramble and Hubbard and give a
different derivation of their results, which can then be extended to yield an 0(h3)
operator.

The basis on which Bramble and Hubbard's proof rests, which also determines
the extent to which their results are valid, is the question if and under what circum-
stances the system
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FINITE-DIFFERENCE METHODS FOR POISSON'S EQUATION 373

(2.1)

X a¡yi = 1,
7-1

3

£ a,Xi[X + y.iaiP) + K(P))] = 0,
7-1

E a Ax2 - y2] = 0,

has a nonnegative solution a¡, under certain assumptions for a and K, and with
x¡, y i satisfying

(2.2)

4e > xx > yx + e > 2e,

4e >  — x2 > y2 + e > 2e,

6e = va >  |*,| + 5e.

a is the constant mentioned in (1.5), K is the signed curvature of the boundary in
the point under consideration (see [3]), and € is a given positive constant, dependent
on h, later chosen to be 3h/2.

They show, by giving bounds for the determinants connected with a slightly
modified system, that the a, satisfy the inequality

(2.3) a, > K ,[  1 - (84 \a + K\M)h 1
|_96 + (756 \a + K\M)h]

where \a + K\M = maxPeCi \a(P) + K(P)\, which places a rather heavy restriction
on h to make the a¡ nonnegative.

We shall now give a new proof for the contention that the a, satisfying (2.1) are
nonnegative, provided h is chosen sufficiently small. It will turn out that we shall
have to place hardly any restriction on h, apart from

(2.4) h < 4/51 K

which should already have been imposed for other reasons (see [3]); K is the maximum
positive curvature of C,.

We call aiP) + KiP) = q and write (2.1) as

(2.5)

y\ ^2 ys

JCi(l + gyx)    x2iX + qy2)    x3il + qy3)

2
xx

2
y\

2
x2 2

y2
2

X3 y\ .

From (2.2) it is clear that all yt > 0. This implies that the first equation in (2.1) can
always be satisfied with positive a, by appropriate scaling, without losing the positivity
of the a,. The only remaining condition now is that the vector a (with ax, a2 and a3
as its components) is perpendicular to the plane spanned by the vectors

*i(l + qy¡)

x2iX + qy2)

.^3(l + qyz).

and 2
x2

2
.Vl

y%

2
ys.
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374 H. J. VAN LINDE

A nonnegative vector a with this property can always be constructed if there is no
vector in the above-mentioned plane with the same sign for all its components.

We may consider, without loss of generality, the vector with components

(2.6) Xx,(l + qy<) + ix2 - y2),        i = 1, 2, 3.

We have to prove that this vector has, for any X, two components of opposite sign.
We shall discuss two cases, depending on the sign of q.

First, we consider the case j|0; this case occurs very often, for instance, for
all convex regions R. Let the first two components of (2.6) have the same sign, other-
wise our assertion has already been proved. It then follows directly from (2.2) that
both are positive. Now suppose that the third component is also positive. This clearly
implies \x3 > 0. Without loss of generality, we take both x3 and \ > 0. From (2.2)
then follows immediately that

(2.7) X(l + qy3) > 35e

has to be true and therefore also

(2.8) X(l + qy/) > 5e, i =  1,2,

which leads to a contradiction, because under (2.8) the first and second components
cannot both be positive. Therefore, the third component is negative, which is what
we wanted to prove.

Now consider the case q < 0. We shall conduct the proof along similar lines as
in the first case. Again, we only have to inspect the case where the first two com-
ponents have the same sign. Clearly, we have to prevent (1 + qy,) from becoming
zero for i = 1,2, otherwise we will not be able to arrive at a contradiction, because
the first and second components will then be positive, irrespective of the value of X.
We therefore take h so small that, with e = oil) as h —» 0,

(2.9) 1 + 3e<? > 0.

Then, again, the first two components are positive, and we must have

(2.10) |X| = 15t/4(l + 3tq).

Assuming that the third component is also positive, we arrive at

(2.11) iX| > 35e

using the fact that 1 + qy3 > — 1. The relations (2.10) and (2.11) lead to a con-
tradiction if

(2.12) 1 + 3tq è 3/28,
which does not violate our earlier condition (2.9). Taking e = 3A/2 as in [3], (2.12)
yields

(213) h ̂  ifeii
We have therefore proved our assertion under this condition.

We now have shown that the system (2.1) always has a nonnegative solution,
either under the earlier condition (2.4) alone, or under (2.4) and (2.13).
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FINITE-DIFFERENCE METHODS FOR POISSON'S EQUATION 375

Both conditions say that h may not be too large compared to the radius of cur-
vature, which is quite natural.

We shall now extend the above-mentioned method to construct a positive type
0(h3) approximation to the operator d/dn. Throughout, we shall assume that a
square net with mesh width h is placed over the region R.

We consider an arbitrary point 0 on the boundary C,, where C, is sufficiently
smooth, and introduce two coordinate systems with origin 0:

(a) a right-handed Cartesian coordinate system, with the x-axis tangent to Cx
at 0, and the positive y-axis along the inward-directed normal at 0,

(b) geodesic normal coordinates with s the arc-length along Cx and n the outward-
directed normal.

This situation is given in Fig. 2.1 with <p = 0 in the point 0. For a sufficiently
often differentiable function v, the following relations hold on Cx:

v, = v. cos <f> + i>„ sin <i>,

v„ = vx sin <f> — v„ cos <f>.

Subscripts denote the indicated partial differentiation.

Figure 2.1. Situation of the Coordinate Systems

Taking <p = 0 and differentiating further, we obtain the following relations between
the various partial derivatives in the point 0:

(2 ici "• = v"       vv = — v»,       o„ = — vn, + Kv„

—V,.»     =      ("ni     -       KV,),     +       KtPyy     -    t>„).

By using the same technique as in [3], now using four points instead of three, and
taking Taylor expansions including the third-order terms, we obtain the relation
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376 H. J. VAN LINDE

E aMPt) - H + x,v,a,(0) + \Ox2y¡ - y,>»s(0)MO)}
7-1

4

(2.16) = -»„(O) + E «<{ß^ - K&ÎV, - >?)*((>)] Ai>(0)
7-1

- x<y,ivn + av),iO) - iO*?* - ^)(o. + od),.(0)

+ ^y?(A»X(0) + ib^UO))
+ 0(«,A4)

between the boundary function v and some of its derivatives in the boundary point
0 and the values of v in four interior points P.-.

We want to show that it is possible to choose the />, so that a, = 0, for
i = 1, ••• ,4, because this will be useful in later applications. Apart from the fact
that they must be chosen to satisfy this condition, the i\ must satisfy two further
requirements: first, that they lie in R and, secondly, that they lie in the neighborhood
of the point 0.

Instead of

E a<{y< + U3x2y< - y3)ia + K)K} = X,

Ê «<{*. + *.J\(a + K) + \(3x\yi - y3)i2a, + K,)} = 0,
(2.17) '-»

4

E «<{(*? - *?) + î(3*2v, - J'ÏX« + 3AT)j  = 0,
7-1

4

E a¡{x3 — 3x,j>2}  = 0
¿-i

(where a, # and their derivatives are taken in the point 0) by which relations the a,
are defined, and which are used in [4] to derive (2.16), we consider the approximating
system

4

E a*yi - i >
7-1

4

E â,Xi = 0,
(2.18) <-1

4

E a<ix2 - y2) = 0,
7-1

4

E ^(x? - 3Xiy2) = 0.
7-1

The solution <z, of (2.18) will be close to a„ since the x, and y, are small. We write
(2.18) in matrix form as

(2.19)

yi

xx
2 2

xx — yx

y¡

x2

y»

x3

2 2 2
y% x3 — y3

y*

x4 — y i

Lx\ — 3xxy\    x\ — 3x2y\    x\ — 3x3y\    x\ — 3x^y\
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FINITE-DIFFERENCE METHODS FOR POISSON'S EQUATION 377

We shall now make a definite choice for the P¡ = (x,, y{), so that

3e ^ X, ^ yx + e = 2«,

(2.20)    - 3t =  ~*2 = y2 + £ = 2£'

3e = y3 è x3 + € ^ 2c,

3e ^ y4 è  -x4 + e =■ 2e.

Geometrically, this means that in Fig. 2.2, Px G I, P2 G II, P, G HI and P4 G IV.

Figure 2.2. Position of the Points Pi

It is shown in [4], using the same method of proof as was used above, that (2.18)
always yields a positive set of a¡ when the P¡ satisfy (2.20), which means that a non-
negative set of a, can be found for (2.17).

It is possible to find an upper bound for h, below which (2.17) has such a non-
negative solution. We shall however refrain from doing so. The upper bound we
were able to find is so small as to be of little practical value; while, on the other hand,
it is clear that it is certainly not optimal. For practical purposes, the absence of a
definite bound on h poses no problems, because it is always discovered, if h is taken
too large, by the occurrence of negative coefficients. In the computation of the
examples given in [4], we never met with difficulties, taking any h satisfying the other
conditions we imposed upon it.

We now have for h sufficiently small a{ = 0,       i = I, ■ ■ ■ , 4, and also

(2.21) a, < A/A"1,        i = 1, •■• ,4,

with M a fixed positive constant. The last of these two inequalities follows from
(2.17) and (2.20).
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We now define an operator Sn for points P on Cx as follows:
4

(2.22) &nV(P) =  E «.-{H + ^.«.C) + H3x,>, - >-?K.(i>)] ViP) -   ViPt)},
7-1

where the a¿ are defined by (2.17) and the P¿ satisfy (2.20).
Using (2.16), it is now clear that the function u in (1.5) satisfies

SnuiP) + *(P)u(P)

(2.23) - IgiP) + E «.KiVi - H3x2y, - y3)KiP))fiP) + x,y,g.iP)
\. ¿"I

+ l(3*2>.. - y3)g..iP) + \xiy2f.iP) - y3U(P)] è kxh3

with kx a positive constant.
We have therefore found in (2.22) an 0(h3) approximation 5„ to the operator

d/dn, which we shall use in later sections to derive some error estimates for the
various boundary value problems.

III. An 0(h2) Positive Type Finite-Difference Laplace Operator on the Set Ck*.
In section I, we mentioned that, in the set Ch*, we need an approximation Ak to the
Laplace operator A with a truncation error of 0(h2). Ck* consists of the net points
in R whose eight nearest neighbors are not all in R, roughly speaking, the net points
near but not on the boundary. Bramble and Hubbard gave such an operator in [1].
We shall, however, not use it because its application results in a coefficient matrix
which is not of positive type. To ensure that the resulting matrix has this useful
property, it is necessary that in the formula

(3.1) AkV(Q) =  E A.Í V(Qi) -  V(Q)\,

which may be considered as the general form of the approximation we have in mind,
all X; are positive. This is not the case in the above-mentioned approximation in [1].
We have shown in [4] that derivation of an approximation with positive coefficients
is possible and that, moreover, the use of this approximation for the Dirichlet prob-
lem results in an upper bound for the discretization error which is never larger than
that of Bramble and Hubbard.

In Fig. 3.1(a)-(e) we give the five fundamentally different configurations we shall
distinguish. Throughout, we assume the shaded region to be in R. We made no
restriction to convex regions, although this might seem to be the case from the
figures. The only assumption at this stage is that all a, in the above configurations
satisfy
(3.2) 0 < a, Ú 1.
In [4], we formulated further restrictions on the a¿ which are consistent with the
restrictions imposed upon h in Section II, in the sense that they are always fulfilled.

Since we stipulated that A is not too large compared to the radius of curvature,
we may exclude occurrence of a situation as in Fig. 3.2(a) while the configurations
given in Fig. 3.2(b)-(d) may be considered as special cases of the one given in Fig.
3.1(b). In Fig. 3.2(c), (d) the quantity ax from Fig. 3.1(b) should be taken equal to 1.
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x -h,y-h

x*h,y

x*h,y-h

x*h,y* h

4x*h,y

x*h,y-h

x»a. h,y+h
x*h,y*h

X*h,y

,y-h

x»h ,y*h

x+h,y

xth,y-h
x* a5h,\y-h

(e)
Figure 3.1. Configurations Under Consideration
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(c) (d)

Figure 3.2. Special Cases of Fig. 3.1(b)

Apart from this, Fig. 3.1 gives all essentially different possibilities after appropriate
rotation and reflection. For all five cases, we shall give a formula of type (3.1) with
positive X,. We shall see that, to attain this goal, a further subdivision of these five
cases will be necessary. For each subcase, we shall give an inequality of the type

(3.3) \Au(P) + F(AX, Au)u(P) - Ahu(P)\ g cM4A2 + 0(h3)

with c a constant, the value of which shall be explicitly given, and Af4 defined by
(1.8). F denotes an operator of the type h\aAx + ßAy\. We here assume Axu = fx
and A„m = /„ to be known in R.

The derivation of the formulae (3.1) has as its underlying principle that a Taylor
series expansion is made for each of the K(g,) relative to the point Q. These are then
multiplied by appropriate constants X, and summed. The X¡ must be so chosen that
after this summation all third and lower derivatives vanish or can be expressed in
terms of the Laplace operator and its derivatives. This gives a set of simultaneous
linear equations for the X,. The freedom that most of the thus obtained systems
still leave in the choice of the X, is used to make them positive and keep them as
simple as possible. The formulae (3.3) follow after some computation from (3.1)
by summing over the various fourth derivatives, again multiplied by the X,, in the
above-mentioned Taylor expansions.

Case I. The point configuration for this case is given in Fig. 3.1(a). We define
A* as

A* Vix, y) = ph'2{\x Vix + h, y) + X2 Vix, y - h) + X3 K(x + A, y + A)

(3.4) + X4 Vix - h, y - A) + X5 V'x + A, y - A)

+ X6 Vix, y + axh) + X7 V'x - a2h, y) - X8 V'x, y))
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2(2 + «2)(2 + a*)
(1 + «i)

(2 + a2)(l - at),

6(2 + a,)
a2(l + a2) '

_1_
8 + ax + a2 — axa2

For «!  =   a2  =   1,  Ak becomes the ordinary five-point Laplace operator. For
m G C<5)(R), we have

(3.5) |A«(P) - hp\3AMP) + hpXsAMP) - AkuiP)\ g tï Mía2 + 0(A3).

Case II.   The point configuration for this case is given in Fig. 3.1(b). We define
A» as

A, Vix, y) = h-2{\x Vix + A, y) + X2 Vix, y - A) + X2 Vix, y + h)

(3.6) + X3 Vix + h,y + h) + \3Vix + h, y - A)

+ X4 Vix - axh, y) - X5 Vix, y)}

with
2(2 + a2) _ 2 + ax I — a,

K - 3(1 + «,) ' Ä2 -       3      '        Á3~       3      '

X   = 2 x   m 2(3 + 2«. + a?)
ai(l + ax) ' 3a,

For m G C<5)()?), we have
(3.7a) |A«(J») - h\3AxuiP) ~ AhuiP)\ £ |A/4A2 + 0(A3)

or, if ax = 1, and we have the ordinary five-point operator

(3.7b) |A«(P) - AkuiP)\ g |A/4A2 + Oih3).

Case III.   The point configuration for this case is given in Fig. 3.1(c). We define
A„as

A, Vix, y) = p.h-2{\> Vix, y - A) + X9 V(x + A, y) + X7 Vix + A, y - A)

(3.8) + X, F(x + A, y + a,A) + X2 Vix, y + a2h)

+ X3 Vix - a3h, y) + X4 V'x - a<h, y - *) - X, K(x, v)}

with

Xi = —r¡—r—: {3 — 2a3 — at — a2a3 + a2a4},«i(l + ai)

X2 =      ,,   ,—: {6 + 2a3 + a4 + axa3 — axa4\,
a2(l + a2)

Xi = 2(2 + «0(2 + aï)
(1 + a2)

X3 = (2 + o,)(l - oa),

X5 = 4 — «! — a2 — 2aia2,

6(2 + a2)
X6 =

X8 =

«i(l + a,) '

6(a2 + a2 + 2at + 2a2)
aia2

X2 =

X4 =

X7 =
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^3 = —7,—¡-; {6 + 2a2 + ax + a2a4 — axat},
a3(l + a3)

^ =      /i    i-Ñ {3 — 2a2 — ai — a2a3 + axa3},
a4(l + a4)

X5 = a2X2 — (1 + a4)X4,   X8 = a3X3 — (1 + ax)\x,

X7 = ax\x + a4X4,        Xg = (1 + a2)X2 + (1 + a3)X.,,

_2_
ß       9 + iax — a2)ia3 — a4)

It is shown in [4] that, as in the preceding and following cases, all X, and p are non-
negative, which is not always obvious, under no further restrictions than the ones
imposed upon h in Section II. For u G C(5)(.R), we have

(3.9)
,„.        .    olAI -\- ax) .    .    ,_.    i   .    a4(l 4" a4) , ,_. ,_.AuiP) - hp. J       h AMP) + hp J       X4A„k(/>) - AkuiP)

< TTS A/4A2 + 0(A3).

Case IV.   The point configuration for this case is given in Fig. 3.1(d). We first
formulate two further conditions:

(3.10) 1 - a2 - 3a4 g 0

and
(3.11) 3a,(l - a0(a2 - a,) + (1 - a2)(l + a,)(2 -2a»- 5a, + a,a3 + a?) = 0.

The origin of these complicated conditions can be found in [4]. We now subdivide
this case:

(a) (3.10) is valid.
(b) (3.11) is valid and (3.10) is not.
(c) Neither (3.10) nor (3.11) is fulfilled,
(a) We define Ak as

A, Vix, y) = mA"2{X5 V'x + A, y) + X6 V'x, y - A) + X7 K(x + A, y - A)

(3.12) + X0 V'x + A, y + A) + X2 Vix, y + a2A)

+ X3 V'x - a3A, y) + X4 V'x - a4A, y - h) - X, V(x, y)}

with

\        i       -, _l \ 6(2 + a3)Xo = 3 — 2a3 — a4 — a2a3 -f- a2a4,        X2 =

X3 =

a2(l + a2) '

2(2 + a4)(l - a2) +18 . 2(1 - a2)(2 + a,)
«3(1 + a3) a4(l + a4)

X5 = a3X3 — 2X0, X6 = a2X2 — (1 + a4)X4,

X7 = X0 + a4X4, X8 = (1 + a2)X2 + (1 + a3)X3,

1
M = 9 + (1  - a2)ia3 - a4)
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For m G Ci5)(R), we have

(3 13)        |Am(P) ~ ^X°A*"(i>) + Ä"0 - a^2 + «3)A„m(/j) - AhuiP)\

< ^.Mth2 + 0(h3)-

(b) We define Ak as

A» V'x, y) = mA"2{X5 V'x + h,y) + Xa V(x, y - h) + X7 K(x + A, y - A)

(3.14) + Xo V'x + A, y + A) + X, F(x + a,A, y + h)

+ Xj(x, .y + a2A) + X3 K(x - a3A, j>) - X8 Vix, y)}

with

X0 = a3(l + a3)a2(l + a2)

• {3a,(l - ax)ia2 - a3) + (1 - a2)(l + a,)(2 - 2a3 - 5a, + axa3 + a2x)},

Xi = 2a2(l — a2)a3(l + a3)(2 + a3)(l + a2),

X2 = 6a,(l — a,)a3(l + a3)(2 + a3),

X3 = 2a2(l + a2)(l - a,){(6 - a,)(l + o,)(l - a2) + 3a,(2 + a,)},

X5 = a3X3 — 2X0 — 2a,X,,

X6 = (1 — a,)X, + a2X2,

X7 = Xo + a,X,,

X8 = 2(1 - a,)X, + (1 + a2)X2 + (1 + a3)X3,

= 2_
2X0 + 2X, + a2(l + a2)X2

For u G C^\R), we have

(3.15) \AuiP) - hp.\-,AxuiP) + JA/ío^I - a,)X,A„«(P) - A4ii(P)| < fA/4A2 + 0(A3).

(c) It is not certain whether this case can actually occur under the restriction
we have already made upon A. Anyway, it is unlikely that we shall meet it in practical
problems. For the sake of completeness, we shall show that a satisfying definition
for AA can be given in this case also. We shall call the operator of Case IV(a) Ak <0)
and that of Case IV(b) Ah<bl. We now define Ak as

(3.16) Ai ViP) = kaAia) V'P) + k„A(kb) ViP).

ka and kb are two constants, satisfying k„ + kb = 1 and further so chosen that the
coefficient X6 of V'x, y — h) in (3.16) is zero; ka and kb are thus both positive. The
coefficients X, in (3.16) are

X, = Â:0X,0) + kb\\b),        i = 0, ••• ,7,

using an obvious notation. Clearly, a formula of type (3.3) can also be given, which
is a linear combination of (3.13) and (3.15).

Case V.   The point configuration for this case is given in Fig. 3.1(e). Its occur-
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rence in practical computation can almost certainly be prevented by a suitable choice
of h; for completeness sake it is included.

We define AA as

Ai V'x, y) = MA~2{X6 V'x + A, y) + X7 Vix + h, y - h) + X8 V(x + A, y + A)

(3.17) + X, F(x+a,A, y+h) + X2 V(x, y+a2h) + X3 Vix-a3h, y)

+ X4 V'x, y - a4A) + X5 V'x + a5A, y - A) - X9 V'x, y)\

with

1 + 3a5 — a2 1 + 3a, — a2
Ai  — * , A2  — ,

1  — a, a2

1 + 3a5 — a2 1 + 3a, — a2
A4 — , A5 — ,

a4 a5

_ (1 + 3a5 — a2)(3 + 2a, + 3a4 — a,) + (1 + 3a, — a4)(3 + 2a5 + 3a2 — a\)
a3(l + a3)(2 + a3)

X7 = 5{a3(l + a3)X3 — (1 — a2)X, — a2X2 — a4X4 — (1 + 2a5 — a2)X5},

X8 = \{a3'X + a3)X3 — (1 + 2a, — a2)X, — a2X2 — a4X4 — (1 — a2)X5},

X6 = a3X3 — a,X, — a5X5 — X7 — X8,

X9 = (1 - a,)X, + X2 + (1 + a3)X3 + X4 + (1 - a5)X5,

_2_
a3(l + a3)X3 — a,(l — a,)X, — a5(l — a5)X5

For u G C(5,(R), we have

|A«(P) + hhp.i\7 + X8 + a,X, + a.X,)AI«(P)

(3.18) + ¿AM(a5(l - a5) - a,(l - a,))A„«(P) - A»h(P)|

^ èi A/4A2 + 0(A3).

Now that we have given all the necessary formulae, a few general remarks about
them must be made. First, it must be pointed out that the inequalities of type (3.3)
which were given above do not, for the most part, contain best possible constants.
We contented ourselves with relatively easily obtainable bounds which suffice for
the later use we have in mind.

Secondly, there is the problem that most of the difference operators given above
look rather complicated. It must therefore be emphasized that, in practical com-
putation, the frequency of the use that is made of the various formulae is almost
directly proportional to their simplicity. Let us take the unit circle as an example
for R considering, for reasons of symmetry, only a quarter of its boundary. For
h = 1/10, Ci* then contains fourteen points: eleven of type II, two of type IV(a)
and one of type I. For A = 1/20, these numbers are twenty-seven of type II, six of
type IV(a) and three of type I. The intricate formulae of type III, IV(b), (c) and V
are not used at all; the relatively simple type II occurs in three-quarters of the total
number of cases.
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Emphasis must also be put on the fact that, for our purposes, any approximation
to A giving the desired truncation error will do as long as the resulting matrix is of
positive type. The approximating operators given in this section and in Section II
only serve as an illustration of the fact that such approximations can be given under
quite general circumstances. In special cases, much easier methods leading to the
desired results may be found.

IV. The Third Boundary Value Problem. We shall now approximate the
third boundary value problem (1.5) by a finite-difference analogue, using the operators
given in Sections II and III. Consider the approximation

-Ai UiP) = f*iP),        PGRh + C?k + C2*i,

(4.1) ÔnUiP) + aiP)UiP) = g*iP),        P G Cu,

UiP) = gxiP), P G C2h,

with A* defined by (1.6) for P G Rh, by (1.10) for P G C2k* and by the appropriate
operator defined in Section III for P G CXh*; 5„ is defined by (2.22). The sets Rh,
Cih and C,i*, /' = 1,2, are as in Section I. We already mentioned the division of Ck*
into two sets C,i* and C2i*, but have not yet discussed it in detail. Points lying in
Ci* have a part of the boundary lying inside their nine-point molecule. A point
P G Ci* will be in Cih*, if this part of the boundary entirely belongs to C,, for /' = 1, 2.
If the part of the boundary lying inside the nine-point molecule does not belong
exclusively to C, or C2, the corresponding point P is in C2k* if C2 cuts a main axis or
if C2 cuts the boundary of the molecule, while the main axes are entirely in R, and
otherwise in CXk*.

The functions j*(P) and g*(P) in (4.1) are defined as

f*iP) = HP) + \i AfiP),       P G Rh,

(4 2) fiP) = KP) - hFiP), P G C,*i,

f*iP) = fiP), P G C2*i,

g*iP) = giP) + FÁP), P G C,i,
with hFiP) = F(AX, A„)m(P) (see (3.3)) and FX(P) a known function of/, g and their
derivatives defined by considering

(4.3) \dnu(P) + a(P)uiP) - giP) - FxiP)\ ^ kxh3

as an equivalent notation for (2.23).
The matrix of the system (4.1) is of positive type provided

(4.4) E at\x,y<a.(P) + i(3x2j, - v3)a..(P)] + «(P) è 0
7-1

is true for all P G Cih. Since we stipulated that a is bounded away from zero, (4.4)
can always be satisfied for A chosen sufficiently small. This matrix then possesses a
nonnegative inverse. The general idea behind the following proof concerning the
magnitude of the discretization error has been taken from Bramble and Hubbard
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[3]; since we necessarily work with a different discrete Green's function, the entire
detailed proof has to be given again for this case. As we have shown in [4], the use
of a different and more complicated Green's function may severely complicate the
proof of corresponding theorems. We now introduce the discrete Green's function
Gk(P, Q) for the region R under consideration, defined by

-AiGi(P, Q) = h~2SiP, Q),        PE Rh + C,*i + C2*i,

(4.5)        ÔnGkiP, Q) + aiQ)GhiP, Q) = h^ôiP, Q),        P G C»,
GkiP, Q) = h~lôiP, Q),        P G C2i,

with Q<ERh + Cu* + C2A* + C,i + C2h. The symbol 8(P, Q) denotes the Kronecker
delta. Here, and in the following sections, we assume the operators Ak and 5„ to be
working on the first parameter. Clearly, Gh(P, Q) is nonnegative, being the inverse
of the coefficient matrix of (4.1), multiplied by a nonnegative diagonal matrix.

We now have, for any mesh-function V,

V(P)=h2 E Gk(P,Q)[- Ai V(Q)]
,A   c\ QSRk+Ck'+C,h'(4.0)

+ A   E   GkiP, Q)[Sn ViQ) + aiQ) ViQ)] + A   E   GkiP, Q) ViQ)
sec,» 06c,i

which follows from the fact that the coefficient matrix of (4.1) is nonsingular.
It must be pointed out that we used a definition slightly different from the one

used by Bramble and Hubbard [3]. This difference consists of the inclusion of the
factors A-1 in the second and third lines of (4.5). The reason for this is, that (4.6)
is now more in agreement with the continuous representation of the solution of (1.5)
by means of kernel functions

uiP) = ff GxiP, Q)fiQ) dc + f   G2iP, Q)giQ) ds + f   G3iP, Q)gxiQ) ds.
B

We first take ViP) = 1 in (4.6), which yields

(4.7) A   E   GkiP,Q) g 1.
Q€c,h

We now suppose that a function <p G Ci3\R) exists satisfying

(4.8) -A*=1     inR'

d<p/dn + a<p =" 1    on C,.

Then, for sufficiently small A,

-Ai^P) = i,       P G Rh + C,*i + C2*i,

ôn<biP) + aiPMP) ^ h,       PGCxh.
If we now take K(P) = <p(P) in (4.6), we obtain

(4.9) A2 E Gh(P, Q) + A   E   G„iP, Q) ^ 4 \<f>\M
Q£Rh+C,k'+C,k' 06C»

with \<p\if = maxpefií+Clí-+c,i%c,i+c2» \<KP)\-
We now introduce the sets Clh** and C2h**, the subsets of CXh* and C2k* where
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Ai is represented by the ordinary five-point formula. We now define a function
W(P) by WiP) = 0 on Ck, WiP) = 1 in Rh, in CXk** and C2k**, and in those points
of (C,i* U C2i*) — (Cu** W C2i**) which do not belong to a star, the centre of
which is in CXh** \J C2h**. In the points of (C,»* U C2k*) - iCXk** U C2i**) which
belong to a star, the centre of which is in CXk** U C2i**, W(P) = 7/8. We can
then show

-AhWiP) = \h'2,       P G C,*i + C2*i,

-AkWiP)^Q, PERh-

Taking V(P) = W(P) in (4.6), we have

1 ^ A2        E        Gi(P, Ot-AxWCS)] + A   E   Gk(P, Q)lSnWiQ) + aiQ)WiQ)\
Qec,h* + c,k* aec,h

or

(4.10) E        GkiP, G) ̂  4 + 4 max     E «.-(Ö)  *   E   W. C?).
96c,,'*c,i' 3ec\» Li-i J    0€c,i

We also have (see (2.17))
4

1 = E «.{.v. + K3x2.v, - y3)ia + K)K\
7-1

(4.11) è [E «.J min{y, + \(3x2yi - y3)ia + K)K\

for sufficiently small A, for any P E Cxk. We now have E*-i a> = I*1 and this
yields, with (4.9) and (4.10),

(4.12) A       E        G»(P, Ö) á 4(A + 1 \<pU>

We shall derive a sharper bound for ß G C2i*. Take ^(P) = 0 on Ck, WiP) - 1
everywhere in PA + C,»* + C2k** and in those points of C2k* — C2k** which do
not belong to a five-point star, the centre of which is in C2i**. In the points of C2k* —
C2k** which belong to a five-point star, the centre of which is in C2i**, W(P) = 7/8.
We then have

-AkWiP) ^ \h'2,       PEC?k,

-AhWiP)^0, PERh + Cfk.

V(P) = W(P) in (4.6) then yields

(4.13) E    Gk(P,Q)ú 4.
ose,»«

We can now formulate the following theorem:
Theorem 1.   Let u E C(S\R) be the solution o/(1.5) and suppose that a function

<f> satisfying (4.8) exists. Then we have

(4.14) max \e(P)\ g it A3
p
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with <<P) = u(P) - U(P), PERh + C,i* + C2i* + C,i + C2i, U being the solution
of (4.1). The constant k used in (4.14) depends only on u and <¡> but not on h.

Proof.   In (4.6), take V(P) = e(P), then

e(P) = A2 E Gi(P, Ö)[-Ai£(Ö)]
Q£Bk+C,h* + C,h*

+ A   E   GkiP, Q)(8neiQ) + a(ß)e(ß)].

Since GA(P, Q) ^ 0, we have

|e(P)l =£     A2   E   GkiP,Q)     max |AAe(Q)|
L     oeB* J  OGB*

+    A    E    Gi(P, Ö)   • max   |AA»«(o)|
L   ceci,' J  oecSi»

+       E    Gi(P, Q)   • max   |A2AÄe(ß)|
LoeCj*« J   oec.i«

+    A   E   Gi(P, Q)   • max \5AQ) + «G3>
L    «€Ci J   see,»

(4.15)

(ß)|.

This immediately yields (4.14) using (4.9), (4.12) and (4.13) together with (1.9),
(3.3), (1.11) and (2.23).

For examples of an application of the theorems of these and the following sections,
we refer to [4].

V. The Neumann Problem. In this section, we shall consider an 0(A3|ln h\)
approximation for the Neumann problem (1.3). The solution of (1.3), when it exists,
is only unique up to an additive constant. This constant is usually determined by
a normalization relation such as

(5.1) /   u da = 0, /   u ds = 0    or    h(x0, y0) = 0.
J B J C

We shall consider the problem solved once we have found one of the solutions to (1.3).
We shall approximate the solution of (1.3) by

-Ai UiP) - f*iP),       PERÍ+ C*,

(5.2) 5n UiP) = g*iP),        PECh,

UiO) = «o.

The point 0 shall be a mesh point well in the interior of R, and we define Rk as Rh — 0.
The sets Rk, Ch* and Ch are as in Section I. The operator Ah is defined by (1.6) for
P G Rh and by the appropriate operator defined in Section III for P G C*. ôn is
defined by (2.22), which formula can now of course be written as

(5.3) 5„ ViP) = E «•■{ V(P) - npd) ■
7-1

The functions f*(P) and g*(P) are, as in Section IV, defined as
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f*iP) = KP) + ~-2 AfiP),       P E RL

(5-4) f*iP) -  fiP) - hFiP), P E Ci*

g*iP) = giP) + P,(P), P E Ch,

with F(P) and FX(P) as in (4.2); u0 is a given constant. It is easy to see that the coeffi-
cient matrix of (5.2) is of positive type.

We now define a discrete function N(P, Q) by

-AhN(P, Q) = A~25(P, Q),        PER'h + Q*,

(5.5) 8nNiP, Q) = h~l8iP, Q),        P E Ck,

NiO, Q) =  5(0, Q),

for g G Rh + Q* + Ci, with 5(P, g) the Kronecker delta. Clearly, NiP, g) =■ 0,
while, for any mesh function V(P),

V(P)=h2      E       NiP,Q)[-AhViQ)\
,c   tz\ QSRh' + Ck*

+ A  E   N(P, Q)[8n ViQ)] + NiP, 0) K(0).
06C»

A relation similar to (5.6) was given in (4.6). Taking F(P) = 1 in (5.6) yields

NiP, 0) =1,       PE Rh + Ci* + Ci,

which makes it possible to rewrite (5.6) as

(5.7) ViP)-   ViQ) =h2      E       NiP,Q)[-AkViQ)] + h  J^   NiP,Q)[8nViQ)].
QEBk. + Ci,* aeci

The following theorem is proved in [4]:
Theorem 2. Let u E C(6)(P) be the solution of (1.3) and let R be such that either

its boundary has no corners, or a function <p E C{3)(R) exists, satisfying

-A<p ^  1       in R,

(5.8) d<p/dn èl      on C - C,,

\d<p/dn\ < 5,    on Cx,

where C, is a smooth arc on C of nonzero length, whose endpoints are not corners.
Then we have

max |t(P)| ^ A:A3 |ln A|
p

with e(P) = u(P) - U(P), U(P) being the solution of (5.1), P E Rh + Ck* + Ch.
The constant k depends only on u and <f> but not on h.

Since this proof follows the same course as the proof given in [1], apart from
certain complications due to the different nature of the Green's function under
consideration, we shall give no further details here but refer once more to [4].

VI. The Dirichlet Problem. In this section we shall consider an 0(h*) ap-
proximation for the Dirichlet problem (1.2) in which we shall use the operators
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given in Section III. Bramble and Hubbard [1] have given several finite-difference
approximations for this problem, the most accurate of which has an 0(h4) discretiza-
tion error. In the interior of the region under consideration, they use the nine-point
formula (1.6), while near the boundary, where use of this formula is not possible,
an approximation is used in which not all the coefficients of the points used in ap-
proximating A for the central point have the same sign. Thus the resulting coefficient
matrix is not of positive type. As we have seen in Section I, this means that it has to
be shown separately that the system is solvable by iterative methods. Rockoff [9]
has shown that the Jacobi- and Gauss-Seidel methods for this approximation con-
verge. For the point SOR method, a range of relaxation factors can be given for
which convergence is also proved. However, no details of these proofs are given in [9].

The approximation we propose to give here has also an 0(h*) discretization
error. The error bound obtained here is in general smaller than that of Bramble and
Hubbard and under no circumstances greater. It has, moreover, a coefficient matrix
which is of positive type.

We approximate (1.2) by

,, ., -Ai UiP) = /*(P),       P E Rh + Cf.
(6.1)

UiP) = giP), P E Ci.

The function /*(P) is defined as f(P) + A2A/(P)/12 and the sets Rk, Ck* and Ck are
as in Section I. The operator Ah is defined by (1.6) for P G Rk, while for P G Ck*
the appropriate formula from Section III is chosen.

We then have the following theorem:
Theorem 3. Let u(P) E Cm(R) be the solution of (1.2) and U(P) that of (6.1).

We then have the following inequality for the discretization error e(P) = u(P) — U(P):

(6.2) max \f(P)\ ^ A4{^ M< + ^ + O(h)]

for P G Pi + Ci* + G.
The 0(A4) approximation of Bramble and Hubbard [1] cited above yields the

discretization error

(6.3) max |e(P)| g A4|| A/4 + ^- + 0(A)|-

Apart from the fact that this method has a coefficient matrix which is not of positive
type, comparison of (6.2) and (6.3) shows that our method has an upper bound which
is never greater than that of Bramble and Hubbard, and may be up to a factor four
smaller.

Again, the details of the proof are similar to those in the earlier work of Bramble
and Hubbard, and may be found in [4].
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