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HIGH ORDER FINITE VOLUME SCHEMES
BASED ON RECONSTRUCTION OF STATES

FOR SOLVING HYPERBOLIC SYSTEMS
WITH NONCONSERVATIVE PRODUCTS.

APPLICATIONS TO SHALLOW-WATER SYSTEMS

MANUEL CASTRO, JOSÉ M. GALLARDO, AND CARLOS PARÉS

Abstract. This paper is concerned with the development of high order meth-
ods for the numerical approximation of one-dimensional nonconservative hy-
perbolic systems. In particular, we are interested in high order extensions of
the generalized Roe methods introduced by I. Toumi in 1992, based on WENO
reconstruction of states. We also investigate the well-balanced properties of
the resulting schemes. Finally, we will focus on applications to shallow-water
systems.

1. Introduction

The motivating question of this paper was the design of well-balanced high order
numerical schemes for PDE systems that can be written under the form

(1.1)
∂w

∂t
+

∂F

∂x
(w) = B(w)

∂w

∂x
+ S(w)

dσ

dx
,

where the unknown w(x, t) takes values on an open convex subset D of R
N , F is

a regular function from D to R
N , B is a regular matrix-valued function from D to

MN×N (R), S is a function from D to R
N , and σ(x) is a known function from R to

R.
System (1.1) includes as particular cases: systems of conservation laws (B = 0,

S = 0), systems of conservation laws with source term or balance laws (B = 0),
and coupled systems of conservation laws.

More precisely, the discretization of the shallow-water systems that govern the
flow of one layer or two superposed layers of immiscible homogeneous fluids was
focused. The corresponding systems can be written respectively as a balance law
or a coupled system of two conservation laws. Systems with similar characteristics
also appear in other flow models, such as boiling flows and two-phase flows (see
[13]).
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1104 MANUEL CASTRO, JOSÉ M. GALLARDO, AND CARLOS PARÉS

It is well known that standard methods that correctly solve systems of conser-
vation laws can fail in solving (1.1), especially when approaching equilibria or near
to equilibria solutions. In the context of shallow-water equations, Bermúdez and
Vázquez-Cendón introduced in [2] the condition called conservation property or C-
property : a scheme is said to satisfy this condition if it correctly solves the steady
state solutions corresponding to water at rest. This idea of constructing numeri-
cal schemes that preserve some equilibria, which are called in general well-balanced
schemes, has been extended in different ways; see, e.g., [3], [6], [7], [8], [12], [14],
[17], [18], [21], [22], [26], [28], [29], [30], [35].

Among the main techniques used in the derivation of well-balanced numerical
schemes, one of them consists in first choosing a standard conservative scheme for
the discretization of the flux terms and then discretizing the source and the coupling
terms in order to obtain a consistent scheme which correctly solves a predetermined
family of equilibria. This was the approach in [2] where the authors proved, in the
context of shallow-water equations, that numerical schemes based on Roe methods
for the discretization of the flux terms and upwinding the source term exacly solve
equilibria corresponding to water at rest. In [12] it was shown that the technique
of modified equations can be helpful in the deduction of well-balanced numerical
schemes.

This procedure has been succesfully applied to obtain high order numerical
schemes for some particular cases of (1.1) (see, for instance, [4], [38] and [39]).
The main disadvantage of this first technique is its lack of generality: the calcula-
tion of the correct discretization of the source and the coupling terms depends on
both the specific problem and the conservative numerical scheme chosen.

Another technique to obtain well-balanced first order schemes for solving (1.1)
consists in considering piecewise constant approximations of the solutions that are
updated by means of Approximate Riemann Solvers at the intercells. In particular,
Godunov’s methods, i.e., methods based on Exact Riemann Solvers, have been used
in the context of shallow-water systems in [1], [9], [10], [15], [21], [22]. This approach
was also used in [5], where the flux and the coupling terms of a bilayer shallow-water
system were treated together by using a generalized Roe linearization.

If this second procedure is followed, the main difficulty both from the mathemat-
ical and the numerical points of view comes from the presence of nonconservative
products, which makes difficult even the definition of weak solutions: in general,
the product B(w)wx does not make sense as a distribution for discontinuous so-
lutions. This is also the case for the product S(w)σx when piecewise constant
approximations of σ are considered.

A helpful strategy in solving these difficulties consists in considering system (1.1)
as a particular case of a one-dimensional quasilinear hyperbolic system:

(1.2)
∂W

∂t
+ A(W )

∂W

∂x
= 0, x ∈ R, t > 0.

In effect, adding to (1.1) the trivial equation
∂σ

∂t
= 0,

system (1.1) can be easily rewritten under this form (see [17], [18], [21], [22]).
In [11], Dal Maso, LeFloch, and Murat proposed an interpretation of non-

conservative products as Borel measures, based on the choice of a family of paths
in the phases space. After this theory it is possible to give a rigorous definition of
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weak solutions of (1.2). Together with the definition of weak solutions, a notion of
entropy has to be chosen as the usual Lax’s concept or one related to an entropy
pair. Once this choice has been done, the classical theory of simple waves of hy-
perbolic systems of conservation laws and the results concerning the solutions of
Riemann problems can be extended to systems of the form (1.2).

The introduction of a family of paths does not only give a way to properly define
the concept of weak solution for nonconservative systems, it also allows us to extend
to this framework some basic concepts related to the numerical approximation of
weak solutions of conservation laws. For instance, in [36] a general definition of Roe
linearizations was introduced, also based on the use of a family of paths. In [28] a
general definition of well-balanced schemes for solving (1.2) was introduced. It was
shown that the well-balanced properties of these generalized Roe methods depend
on the choice of the family of paths. Moreover, this general methodology was
applied to some systems of the form (1.1) related to shallow-water flows, recovering
some known well-balanced schemes, or resulting in new schemes.

The goal of this paper is to obtain the general expression of a well-balanced
high order method for (1.2) based on the use of a first order Roe scheme and
reconstruction of states. The interest of such a general expression is that, once
obtained, particular schemes can be deduced for any system of the form (1.1), where
the numerical treatment of source and coupling terms is automatically derived. To
our knowledge, the present work is the first attempt to obtain well-balanced high
order numerical schemes following this procedure.

The paper is organized as follows. In Section 2 we give some basic definitions
and results about nonconservative systems, Roe linearizations and generalized Roe
schemes, for which we will follow [28] closely. High order versions of the Roe
schemes, based on reconstruction operators, are introduced in Section 3. Next,
Section 4 is devoted to the analysis of the well-balanced properties of the high
order schemes previously constructed. In Section 6, the WENO method is applied
to build the reconstruction operators. Applications to a family of systems that
generalize (1.1) are presented in Section 5, with particular interest in some shallow-
water systems with one and two layers of fluid. Finally, Section 7 contains numerical
results to test the performances of our high-order schemes. In particular, the high
order well-balanced property is numerically verified.

2. Roe methods for nonconservative hyperbolic systems

Consider the system in nonconservative form

(2.1) Wt + A(W )Wx = 0, x ∈ R, t > 0,

where we suppose that the range of W (x, t) is contained inside an open convex
subset Ω of R

N , and W ∈ Ω �→ A(W ) ∈ MN (R) is a smooth locally bounded map.
The system (2.1) is assumed to be strictly hyperbolic: for each W ∈ Ω the matrix
A(W ) has N real distinct eigenvalues λ1(W ) < · · · < λN (W ). We also suppose
that the jth characteristic field Rj is either genuinely nonlinear:

Rj(W ) · ∇λj(W ) �= 0, ∀W ∈ Ω,

or linearly degenerate:

Rj(W ) · ∇λj(W ) = 0, ∀W ∈ Ω.
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1106 MANUEL CASTRO, JOSÉ M. GALLARDO, AND CARLOS PARÉS

For discontinuous solutions W , the nonconservative product A(W )Wx does not
make sense as a distribution. However, the theory developed by Dal Maso, LeFloch
and Murat ([11]) allows us to give a rigorous definition of nonconservative products,
associated to the choice of a family of paths in Ω.

Definition 2.1. A family of paths in Ω ⊂ R
N is a locally Lipschitz map

Φ: [0, 1] × Ω × Ω → Ω

that satisfies the following properties:
(1) Φ(0; WL, WR) = WL and Φ(1; WL, WR) = WR, for any WL, WR ∈ Ω.
(2) Given an arbitrary bounded set B ⊂ Ω, there exists a constant k such that∣∣∣∣∂Φ

∂s
(s; WL, WR)

∣∣∣∣ ≤ k|WL − WR|,

for any WL, WR ∈ B and for almost every s ∈ [0, 1].
(3) For every bounded set B ⊂ Ω, there exists a constant K such that∣∣∣∣∂Φ

∂s
(s; W 1

L, W 1
R) − ∂Φ

∂s
(s; W 2

L, W 2
R)

∣∣∣∣ ≤ K(|W 1
L − W 2

L| + |W 1
R − W 2

R|),

for each W 1
L, W 1

R, W 2
L, W 2

R ∈ B and for almost every s ∈ [0, 1].

Suppose that a family of paths Φ in Ω has been chosen. Then, for W ∈
(L∞(R×R

+)∩BV (R×R
+))N , the nonconservative product can be interpreted as

a Borel measure denoted by [A(W )Wx]Φ. When no confusion arises, we will drop
the dependency on Φ.

A weak solution of system (2.1) is defined as a function W ∈ (L∞(R × R
+) ∩

BV (R × R
+))N that satisfies the equality

Wt + [A(W )Wx]Φ = 0.

In particular, a piecewise C1 function W is a weak solution of (2.1) if and only if
the two following conditions are satisfied:

(i) W is a classical solution in the domains where it is C1.
(ii) Along a discontinuity W satisfies the jump condition

(2.2)
∫ 1

0

(
ξI − A(Φ(s; W−, W+))

)∂Φ
∂s

(s; W−, W+) ds = 0,

where I is the identity matrix, ξ is the speed of propagation of the discon-
tinuity, and W−, W+ are the left and right limits of the solution at the
discontinuity.

Note that in the particular case of a system of conservation laws (that is, A(W )
is the Jacobian matrix of some flux function F (W )) the jump condition (2.2) is
independent of the family of paths, and it reduces to the usual Rankine-Hugoniot
condition:

(2.3) F (W+) − F (W−) = ξ(W+ − W−).

In the general case, the selection of the family of paths has to be based on
the physical background of the problem under consideration. Nevertheless, it is
natural from the mathematical point of view to require this family to satisfy some
hypotheses concerning the relation of the paths with the integral curves of the
characteristic fields. For instance, if WL and WR are linked by an integral curve
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HIGH ORDER FINITE VOLUME SCHEMES 1107

of a linearly degenerate field, the natural choice of the path is a parametrization of
that curve, as this choice assures that the contact discontinuity

(2.4) W (x, t) =

{
WL if x < ξt,

WR if x > ξt,

where ξ is the (constant) value of the corresponding eigenvalue through the integral
curve, is a weak solution of the problem, as would be the case for a system of
conservation laws.

Due to these requirements, the explicit calculation of the path linking two given
states WL and WR can be difficult: in most cases, the explicit expression of the
solution of the Riemann problem related to the states is needed (see [28]).

Together with this definition of weak solutions, a notion of entropy has to be
chosen, either as the usual Lax’s concept or one related to an entropy pair (see
[16] for details). Once this choice has been done, the theory of simple waves of
hyperbolic systems of conservation laws and the results concerning the solutions
of Riemann problems can be naturally extended to systems of the form (2.1) (see
[11]).

Some of the usual numerical schemes designed for conservation laws can be
adapted to the discretization of the more general system (2.1). This is the case
of Roe schemes (see [31]): in [36] a general definition of Roe linearization was
introduced, based again on the use of a family of paths.

Definition 2.2. Given a family of paths Ψ, a function AΨ : Ω × Ω → MN (R) is
called a Roe linearization of system (2.1) if it verifies the following properties:

(1) For each WL, WR ∈ Ω, AΨ(WL, WR) has N distinct real eigenvalues.
(2) AΨ(W, W ) = A(W ), for every W ∈ Ω.
(3) For any WL, WR ∈ Ω,

(2.5) AΨ(WL, WR)(WR − WL) =
∫ 1

0

A(Ψ(s; WL, WR))
∂Ψ
∂s

(s; WL, WR) ds.

Note again that if A(W ) is the Jacobian matrix of a smooth flux function F (W ),
(2.5) is independent of the family of paths and reduces to the usual Roe property:

(2.6) AΨ(WR − WL) = F (WR) − F (WL).

Once a Roe linearization AΨ has been chosen, in order to construct numerical
schemes for solving (2.1), computing cells Ii = [xi−1/2, xi+1/2] are considered; let
us suppose for simplicity that the cells have constant size ∆x and that xi+ 1

2
= i∆x.

Define xi = (i− 1/2)∆x, the center of the cell Ii. Let ∆t be the constant time step
and define tn = n∆t. Denote by Wn

i the approximation of the cell averages of the
exact solution provided by the numerical scheme, that is,

Wn
i
∼=

1
∆x

∫ xi+1/2

xi−1/2

W (x, tn) dx.

Then, the numerical scheme advances in time by solving linear Riemann problems
at the intercells at time tn and taking the averages of their solutions on the cells at
time tn+1. Under usual CFL conditions, it can be written as follows (see [28]):

(2.7) Wn+1
i = Wn

i − ∆t

∆x

(
A+

i−1/2(W
n
i − Wn

i−1) + A−
i+1/2(W

n
i+1 − Wn

i )
)
.
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1108 MANUEL CASTRO, JOSÉ M. GALLARDO, AND CARLOS PARÉS

Here, the intermediate matrices are defined by

Ai+1/2 = AΨ(Wn
i , Wn

i+1),

and, as usual,

L±
i+1/2 =

⎡⎢⎢⎣
(λi+1/2

1 )± · · · 0
...

. . .
...

0 · · · (λi+1/2
N )±

⎤⎥⎥⎦ , A±
i+1/2 = Ki+1/2L±

i+1/2K
−1
i+1/2,

where Li+1/2 is the diagonal matrix whose coefficients are the eigenvalues of Ai+1/2:

λ
i+1/2
1 < λ

i+1/2
2 < · · · < λ

i+1/2
N ,

and Ki+1/2 is an N × N matrix whose columns are associated eigenvectors.
In the particular case of a system of conservation laws, (2.7) can be written

under the usual form of a conservative numerical scheme. First, the numerical flux
is defined by

Gi+1/2 = G(Wn
i , Wn

i+1) =
1
2
(
F (Wn

i ) + F (Wn
i+1)

)
− 1

2

∣∣Ai+1/2

∣∣ (Wn
i+1 − Wn

i ),

where ∣∣Ai+1/2

∣∣ = A+
i+1/2 −A−

i+1/2.

Then, the following equalities can be easily verified:

F (Wn
i+1) − Gi+1/2 = A+

i+1/2(W
n
i+1 − Wn

i ),(2.8)

Gi+1/2 − F (Wn
i ) = A−

i+1/2(W
n
i+1 − Wn

i ).(2.9)

Finally using these equalities in (2.7) we obtain:

Wn
i+1 = Wn

i +
∆t

∆x

(
Gi−1/2 − Gi+1/2

)
.

The best choice of the family of paths Ψ appearing in the definition of Roe
linearization is the family Φ selected for the definition of weak solutions. In effect,
Roe methods based on the family of paths Φ can correctly solve discontinuities in
the following sense: let us suppose that Wn

i and Wn
i+1 can be linked by an entropic

discontinuity propagating at speed ξ; then, from (2.5) and (2.2) we deduce that

Ai+1/2

(
Wn

i+1 − Wn
i

)
= ξ

(
Wn

i+1 − Wn
i

)
,

i.e., ξ is an eigenvalue of the intermediate matrix and Wn
i+1 − Wn

i is an associ-
ated eigenvector. As a consequence, the solution of the linear Riemann problem
corresponding to the intercell xi+1/2,⎧⎪⎨⎪⎩

Ut + Ai+1/2Ux = 0,

U(x, tn) =

{
Wn

i if x < xi+1/2,

Wn
i+1 if x > xi+1/2,

coincides with the solution of the Riemann problem⎧⎪⎨⎪⎩
Ut + A(U)Ux = 0,

U(x, tn) =

{
Wn

i if x < xi+1/2,

Wn
i+1 if x > xi+1/2.
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HIGH ORDER FINITE VOLUME SCHEMES 1109

Both solutions consist of a discontinuity linking the states and propagating at ve-
locity ξ.

Nevertheless, the construction of these schemes with Ψ = Φ can be difficult or
very costly in practice. In this case, a simpler family of paths Ψ has to be chosen
as the family of segments

(2.10) Ψ(s; WL, WR) = WL + s(WR − WL), s ∈ [0, 1].

In [28] it was remarked that, in this case, the convergence of the numerical scheme
can fail when the weak solution to approach involves discontinuities connecting
states W− and W+ such that the paths of the families Φ and Ψ linking them are
different.

As in the case of a system of conservation laws, the scheme (2.7) has to be used
with a CFL condition:

max
{
|λi+1/2

l |, 1 ≤ l ≤ N, i ∈ Z

} ∆t

∆x
≤ γ,

with 0 < γ ≤ 1. An entropy fix technique, as the Harten-Hyman one ([24], [25]),
also has to be included.

3. High order schemes based on reconstruction of states

In the case of systems of conservation laws

(3.1) Wt + F (W )x = 0,

there are several methods to obtain higher order schemes based on the use of a re-
construction operator. In particular, methods based on the reconstruction of states
are built using the following procedure: given a first order conservative scheme with
numerical flux function G(U, V ), a reconstruction operator of order p is considered,
that is, an operator that associates to a given sequence {Wi} two new sequences,
{W−

i+1/2} and {W+
i+1/2}, in such a way that, whenever

Wi =
1

∆x

∫
Ii

W (x) dx

for some smooth function W , we have that

W±
i+1/2 = W (xi+1/2) + O(∆xp).

Once the first order method and the reconstruction operator have been chosen,
the method of lines can be used to develop high order methods for (3.1): the idea is
to discretize only in space, leaving the problem continuous in time. This procedure
leads to a system of ordinary differential equations which is solved using a standard
numerical method. In particular, we assume here that the first order scheme is a
Roe method.

Let W j(t) denote the cell average of a regular solution W of (3.1) over the cell
Ii at time t:

W i(t) =
1

∆x

∫ xi+1/2

xi−1/2

W (x, t) dx.

The following equation can be easily obtained for the cell averages:

W
′
i(t) =

1
∆x

(
F (W (xi−1/2, t)) − F (W (xi+1/2, t))

)
.
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1110 MANUEL CASTRO, JOSÉ M. GALLARDO, AND CARLOS PARÉS

This system is now approached by

(3.2) W ′
i (t) =

1
∆x

(
G̃i−1/2 − G̃i+1/2

)
,

with
G̃i+1/2 = G(W−

i+1/2(t), W
+
i+1/2(t)),

where Wi(t) is the approximation to W i(t) provided by the scheme, and W±
i+1/2(t)

is the reconstruction associated to the sequence {Wj(t)}.
Let us now generalize this semi-discrete method for a nonconservative system

(2.1). Observe that, in Section 2, the key point to generalize both the Rankine-
Hugoniot condition (2.3) and the Roe property (2.6) to system (2.1) was to replace
a difference of fluxes by an integral along a path. Let us apply the same technique
here. First of all, as the first order scheme is a Roe method, using the equalities
(2.8) and (2.9) (replacing Wn

i and Wn
i+1 by W−

i+1/2(t) and W+
i+1/2(t), respectively)

we can rewrite (3.2) as follows:
(3.3)

W ′
i (t) = − 1

∆x

(
A+

i−1/2(W
+
i−1/2(t) − W−

i−1/2(t))

+ A−
i+1/2(W

+
i+1/2(t) − W−

i+1/2(t)) − F (W+
i−1/2(t)) + F (W−

i+1/2(t))
)
,

where Ai+1/2 is the intermediate matrix corresponding to the states W−
i+1/2(t) and

W+
i+1/2(t).
Let us now introduce, at every cell Ii, any regular function P t

i such that

(3.4) lim
x→x+

i−1/2

P t
i (x) = W+

i−1/2(t), lim
x→x−

i+1/2

P t
i (x) = W−

i+1/2(t).

Then, (3.3) can now be written under the form

(3.5)
W ′

i (t) = − 1

∆x

(
A+

i−1/2(W
+
i−1/2(t) − W−

i−1/2(t))

+ A−
i+1/2(W

+
i+1/2(t) − W−

i+1/2(t)) +

∫ xi+1/2

xi−1/2

d

dx
F (P t

i (x)) dx

)
.

Note now that (3.5) can be easily generalized to obtain a numerical scheme for
solving (2.1):
(3.6)

W ′
i (t) = − 1

∆x

(
A+

i−1/2(W
+
i−1/2(t) − W−

i−1/2(t))

+ A−
i+1/2(W

+
i+1/2(t) − W−

i+1/2(t)) +

∫ xi+1/2

xi−1/2

A(P t
i (x))

d

dx
P t

i (x) dx

)
,

where the intermediate matrices are defined by means of a Roe linearization based
on a family of paths Ψ and P t

i is again a regular function satisfying (3.4).

Remark 3.1. It is important to note that for conservative problems, the numerical
scheme (3.6) is equivalent to the conservative numerical scheme (3.3) if, and only
if, the integral term is computed exactly. However, the formulation (3.6) is useless
when working with conservative problems, as we would get involved with a more
complex expression of the numerical scheme. The numerical scheme (3.6) is useful
only for problems with nonconservative products, as it allows us to deduce numerical
schemes for particular problems, using numerical quadratures if necessary.
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There is an important difference between the conservative and the nonconser-
vative case: in the conservative case the numerical scheme is independent of the
functions P t

i chosen at the cells, but this is not the case for nonconservative prob-
lems. As a consequence, while the numerical scheme (3.2) has the same order of
the reconstruction operator, in the case of the scheme (3.6) it seems clear that, in
order to have a high order scheme, together with a high order reconstruction oper-
ator, the functions P t

i and their derivatives have to be high order approximations
of W (·, t) and its partial derivative W (·, t)x.

In practice, the definition of the reconstruction operator gives the natural choice
of the function P t

i , as the usual procedure to define a reconstruction operator is
the following: given a sequence {Wi} of values at the cells, first an approximation
function is constructed at every cell Ii, based on the values of Wi at some of the
neighbor cells (the stencil):

Pi(x; Wi−l, . . . , Wi+r),

for some natural numbers l, r. These approximations functions are calculated by
means of an interpolation or approximation procedure. Once these functions have
been constructed, W−

i+1/2 (resp. W+
i+1/2) is calculated by taking the limit of Pi

(resp. Pi+1) to the left (resp. to the right) of xi+1/2. If the reconstruction operator
is built following this procedure (as we will assume in the sequel), the natural choice
of P t

i is

P t
i (x) = Pi(x; Wi−l(t), . . . , Wi+r(t)).

Let us now investigate the order of the numerical scheme (3.6). Note first that,
for regular solutions W of (2.1), the cell averages at the cells {W j(t)} satisfy

(3.7) W
′
i(t) = − 1

∆x

∫ xi+1/2

xi−1/2

A(W (x, t))Wx(x, t) dx.

Thus, (3.6) is expected to be a good approximation of (3.7). This fact is stated in
the following result:

Theorem 3.2. Let us assume that A is of class C2 with bounded derivatives and
AΨ is bounded. Let us also suppose that the p-order reconstruction operator is such
that, given a sequence defined by

Wi =
1

∆x

∫
Ii

W (x) dx

for some smooth function W , we have that

Pi(x; Wi−l, . . . , Wi+r) = W (x) + O(∆xq), ∀x ∈ Ii,

d

dx
Pi(x) = W ′(x) + O(∆xr), ∀x ∈ Ii.
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Then (3.6) is an approximation of order at least γ = min(p, q + 1, r + 1) to the
system (3.7) in the following sense:

A+
i−1/2(W

+
i−1/2(t) − W−

i−1/2(t))

+ A−
i+1/2(W

+
i+1/2(t) − W−

i+1/2(t))

+
∫ xi+1/2

xi−1/2

A(P t
i (x))

d

dx
P t

i (x) dx

=
∫ xi+1/2

xi−1/2

A(W (x, t))Wx(x, t) dx + O(∆xγ),

(3.8)

for every smooth enough solution W , W±
i+1/2(t) being the associated reconstructions

and P t
i the approximation functions corresponding to the sequence

W i(t) =
1

∆x

∫ xi+1/2

xi−1/2

W (x, t) dx.

Proof. On the one hand, as the reconstruction operator is of order p, we have

A+
i−1/2

(
W+

i−1/2(t) − W−
i−1/2(t)

)
+ A−

i+1/2

(
W+

i+1/2(t) − W−
i+1/2(t)

)
= O(∆xp).

On the other hand,∫ xi+1/2

xi−1/2

A(P t
i (x))

d

dx
P t

i (x) dx −
∫ xi+1/2

xi−1/2

A(W (x, t))Wx(x, t) dx

=
∫ xi+1/2

xi−1/2

(
A(P t

i (x)) −A(W (x, t))
) d

dx
P t

i (x) dx

+
∫ xi+1/2

xi−1/2

A(W (x, t))
(
Wx(x, t) − d

dx
P t

i (x)
)
dx

= O(∆xr+1) + O(∆xq+1).

The equality (3.8) is easily deduced from the above equalities. �

Remark 3.3. For the usual reconstruction operators one has r ≤ q ≤ p, and thus
the order of (3.6) is r + 1 for nonconservative systems and p for conservation laws.
Therefore a loss of accuracy can be observed when a technique of reconstruction
giving order p for systems of conservation laws is applied to a nonconservative
problem.

4. Well-balanced property

In this paragraph we investigate the well-balanced properties of schemes of the
form (3.6). Well-balancing is related with the numerical approximation of equilibria,
i.e., steady state solutions. System (2.1) can only have nontrivial steady state
solutions if it has linearly degenerate fields: if W (x) is a regular steady state solution
it satisfies

A(W (x)) · W ′(x) = 0, ∀x ∈ R,

and then 0 is an eigenvalue of A(W (x)) for all x and W ′(x) is an eigenvector.
Therefore, the solution can be interpreted as a parametrization of an integral curve
of a linearly degenerate characteristic field whose corresponding eigenvalue takes
the value 0 through the curve. In order to define the concept of well-balancing,
let us introduce the set Γ of all the integral curves γ of a linearly degenerate
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field of A(W ) such that the corresponding eigenvalue vanishes on Γ. According to
[28], given a curve γ ∈ Γ, a numerical scheme is said to be exactly well-balanced
(respectively well-balanced with order k) for γ if it solves exactly (respectively up
to order O(∆xk)) regular stationary solutions W satisfying W (x) ∈ γ for every
x. The numerical scheme is said to be exactly well-balanced or well-balanced with
order k if these properties are satisfied for any curve γ of Γ (see [28] for details).

In the cited article, it has been shown that a Roe scheme (2.7) based on a family
of paths Ψ is exactly well balanced for a curve γ ∈ Γ if, given two states WL and
WR in γ, the path Ψ(s; WL, WR) is a parametrization of the arc of γ linking the
states. In particular, if the family of paths Ψ coincides with the one used in the
definition of weak solutions Φ, the numerical scheme is exactly well balanced. On
the other hand, the numerical scheme is well balanced with order p if Ψ(s; WL, WR)
approximates with order p a regular parametrization of the arc of γ linking the
states. In particular, a Roe scheme based on the family of segments (2.10) is well
balanced with order 2. Moreover, it is exactly well balanced for curves of Γ that
are straight lines.

The definition of a well-balanced scheme introduced in [28] can be easily extended
for semi-discrete methods.

Definition 4.1. Let us consider a semi-discrete method for solving (2.1):

(4.1)

{
W ′

i (t) = 1
∆xH(W(t); i),

W(0) = W0,

where W(t) = {Wi(t)} represent the vector of approximations to the cell averages
of the exact solution, and W0 = {W 0

i } the vector of initial data. Let γ be a curve
of Γ. The numerical method (4.1) is said to be exactly well balanced for γ if, given
a regular stationary solution W such that

W (x) ∈ γ, ∀x ∈ R,

the vector W = {W (xi)} is a critical point for the system of differential equations
in (4.1), i.e.,

H(W; i) = 0, ∀ i.

Also, it is said to be well balanced with order p if

H(W; i) = O(∆xp), ∀ i.

Finally, the semi-discrete method (4.1) is said to be exactly well balanced or well
balanced with order p if these properties are satisfied for every curve γ of the set Γ.

For the particular case of the numerical schemes based on reconstruction of states
(3.6) we have

H(W; i) = A+
i−1/2(W

+
i−1/2 − W−

i−1/2) + A−
i+1/2(W

+
i+1/2 − W−

i+1/2)

+
∫ xi+1/2

xi−1/2

A(Pi(x))
d

dx
Pi(x) dx,

where W±
i+1/2 are the reconstructions associated to the sequence W and Pi the

corresponding approximation functions. Hereafter, we give two results concerning
the well-balanced property of this scheme, but first we introduce a new definition.
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Definition 4.2. A reconstruction operator based on smooth approximation func-
tions is said to be exactly well balanced for a curve γ ∈ Γ if, given a sequence {Wi}
in γ, the approximation functions satisfy

(4.2) Pi(x) ∈ γ, ∀x ∈ [xi−1/2, xi+1/2],

for every i.

Theorem 4.3. Let γ belong to Γ. Let us suppose that both the generalized Roe
method and the reconstruction operator chosen are exactly well balanced for γ. Then
the numerical scheme (3.6) is also exactly well balanced for γ.

Proof. Let W be a regular stationary solution satisfying

W (x) ∈ γ, ∀x,

and W = {W (xi)}. From (4.2) and the exactly well-balanced character of the
generalized Roe method, we obtain

A±
i+1/2

(
W+

i+1/2 − W−
i+1/2

)
= 0.

On the other hand, using (4.2), Pi can be understood as a parametrization of an arc
of γ, which is an integral curve of a linearly degenerate field whose corresponding
eigenvalue is zero. Therefore,∫ xi+1/2

xi−1/2

A(Pi(x))
d

dx
Pi(x) dx = 0.

The proof is easily deduced from the two equalities above. �

Theorem 4.4. Under the hypotheses of Theorem 3.2, the scheme (3.6) is well
balanced with order at least γ = min(p, q + 1, r + 1).

Proof. The proof is similar to that of Theorem 3.2 �

Remark 4.5. Note that well-balanced properties for the Roe scheme or the recon-
struction operator are not required in this latter result.

5. Applications

We consider in this section systems of the form

(5.1)
∂W

∂t
+

∂F

∂x
(W, σ) = B(W, σ) · ∂W

∂x
+ S̃(W, σ)

dσ

dx
,

where

W (x, t) =

⎡⎢⎢⎢⎣
w1(x, t)
w2(x, t)

...
wN (x, t)

⎤⎥⎥⎥⎦ ∈ R
N .

Here, σ(x) is a known function from R to R, F is a regular function from Ω×R to
R

N , Ω is an open convex subset of R
N , B is a regular matrix-valued function from

Ω × R to MN (R), and S̃ is a function from Ω to R
N . We can assume without loss

of generality that S̃ has the form

S̃(W, σ) = S(W, σ) +
∂F

∂σ
(W, σ),

for some regular function S.
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We denote by J (W, σ) the Jacobian matrix of F (·, σ):

J (W, σ) =
∂F

∂W
(W, σ).

System (5.1) includes as particular cases systems of conservation laws (B =
0, S = 0) whose flux function may depend on x via the function σ, systems of
conservation laws with source term or balance laws (B = 0), or coupled systems of
conservation laws as defined in [5]. In this latter case, J is block-diagonal and the
blocks of B corresponding to the nonzero diagonal blocks of J are zero.

Following the idea developed in [17], [18] for conservation laws with source terms,
if we add to (5.1) the trivial equation

∂σ

∂t
= 0,

the problem can be written under the form (2.1):

(5.2) W̃t + Ã(W̃ ) · W̃x = 0,

where W̃ is the augmented vector

W̃ =
[

W
σ

]
,

and the block structure of the (N + 1) × (N + 1) matrix Ã(W̃ ) is given by

Ã(W̃ ) =
[

A(W̃ ) −S̃(W̃ , σ)
0 0

]
.

Here A(W̃ ) represents the N × N matrix

A(W̃ ) = J (W, σ) − B(W, σ).

We assume that the matrix A(W̃ ) has N real distinct eigenvalues

λ1(W̃ ) < · · · < λN (W̃ )

and associated eigenvectors Rj(W̃ ), j = 1, . . . , N . If these eigenvalues do not van-
ish, (5.2) is a strictly hyperbolic system: Ã(W̃ ) has N + 1 distinct real eigenvalues

λ1(W̃ ), . . . , λN (W̃ ), 0,

with associated eigenvectors

R̃1(W̃ ), . . . , R̃N+1(W̃ ),

given by

R̃i(W̃ ) =
[

Ri(W̃ )
0

]
, i = 1, . . . , N, R̃N+1(W̃ ) =

[
A(W̃ )−1 · S(W̃ )

1

]
.

Clearly, the (N +1)-th field is linearly degenerate and, for the sake of simplicity, we
will suppose that it is the only one. The integral curves of the linearly degenerate
field are given by those of the ODE system

dW̃

ds
= R̃N+1(W̃ ).
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Remark 5.1. Note that, in this case, the set Γ defined in the previous section is
simply the set of all the integral curves of the linearly degenerate field, as the
corresponding eigenvalues always take the value 0. Let us illustrate in this case
the relation between these integral curves and the stationary solutions. Let γ be
an integral curve of the linearly degenerate field and let us suppose that it can be
described implicitly by a system of N equations:

(5.3) gj(w1, . . . , wN , σ) = 0, 1 ≤ j ≤ N.

As σ is a known function, for every x, (5.3) is a system of N equations with
N unknowns w1, . . . , wN . The stationary solutions associated to the curve γ are
obtained by searching solutions {w1(x), . . . , wN (x)} of system (5.3) which depend
smoothly on x.

For the definition of weak solutions of system (5.2) and the choice of the family
of paths, we refer the interested reader to [28] and the references therein. Let us
only mention that the complete definition of the path linking two states is not easy,
as it requires the explicit knowledge of the solution of the corresponding Riemann
problem. Therefore, the construction of Roe schemes based on the family of paths
used in the definition of weak solutions is, in general, a difficult task.

Thus we consider the general case in which the family of paths Ψ̃ used for the
construction of Roe matrices is different to that used in the definition of weak
solutions. In particular, in the applications the family of segments (2.10) has been
considered.

The following notation will be used:

Ψ̃(s; W̃n
i , W̃n

i+1) =

[
Ψ(s; W̃n

i , W̃n
i+1)

ΨN+1(s; W̃n
i , W̃n

i+1)

]
=

⎡⎢⎢⎢⎢⎣
Ψ1(s; W̃n

i , W̃n
i+1)

...
ΨN (s; W̃n

i , W̃n
i+1)

ΨN+1(s; W̃n
i , W̃n

i+1)

⎤⎥⎥⎥⎥⎦ .

Let us suppose that, for any fixed value of σ, Roe matrices can be calculated for
the system of conservation laws corresponding to B = 0 and S = 0, i.e., we assume
that, given Wn

i , Wn
i+1 and σ, we can calculate a matrix J σ

i+1/2 such that

J σ
i+1/2 · (Wn

i+1 − Wn
i ) = F (Wn

i+1, σ) − F (Wn
i , σ).

Let us also suppose that it is possible to calculate a value σi+1/2 of σ, a N × N
matrix Bi+1/2, and a vector Si+1/2, such that the following identities hold:

(5.4) F (Wn
i+1, σi+1) − F (Wn

i+1, σi+1/2) + F (Wn
i , σi+1/2) − F (Wn

i , σi)

=
∫ 1

0

∂F

∂σ

(
Ψ̃(s; W̃n

i , W̃n
i+1)

)
· ∂ΨN+1

∂s
(s; W̃n

i , W̃n
i+1) ds,

Bi+1/2 · (Wn
i+1 − Wn

i ) =
∫ 1

0

B
(
Ψ̃(s; W̃n

i , W̃n
i+1)

)
· ∂Ψ

∂s
(s; W̃n

i , W̃n
i+1) ds,

Si+1/2(σi+1 − σi) =
∫ 1

0

S
(
Ψ̃(s; W̃n

i , W̃n
i+1)

)
· ∂ΨN+1

∂s
(s; W̃n

i , W̃n
i+1) ds.

Then, it can be easily shown (see [28]) that the matrix

Ãi+1/2 =
[

Ai+1/2 −Si+1/2

0 0

]
,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HIGH ORDER FINITE VOLUME SCHEMES 1117

where

Ai+1/2 = J σi+1/2

i+1/2 − Bi+1/2,

is a Roe matrix provided that it has N + 1 distinct real eigenvalues.
Once the Roe matrices have been calculated, the reconstructions are added to

go to higher order. We will use the following notation:

P̃ t
i =

[
P t

i

pt
i,N+1

]
=

⎡⎢⎢⎢⎣
pt

i,1
...

pt
i,N

pt
i,N+1

⎤⎥⎥⎥⎦ .

Some straightforward calculations allow us to rewrite the scheme (3.6) under a form
closer to that of WENO-Roe methods for conservation laws:

W ′
i =

∆t

∆x

(
G̃i−1/2 − G̃i+1/2

)
+

∆t

2∆x

(
Bi−1/2 · (W+

i−1/2 − W−
i−1/2) + Bi+1/2 · (W+

i+1/2 − W−
i+1/2)

)
+

∆t

∆x

(
P+

i−1/2Si−1/2(σ
+
i−1/2 − σ−

i−1/2) + P−
i+1/2Si+1/2(σ

+
i+1/2 − σ−

i+1/2)
)

+
∆t

2∆x

(
Vi−1/2 + Vi+1/2

)
+

∆t

∆x

(
IB,i + IS,i

)
,

(5.5)

where

G̃i+1/2 =
1
2
(
F (W−

i+1/2, σ
−
i+1/2) + F (W+

i+1/2, σ
+
i+1/2)

)
− 1

2

∣∣Ai+1/2

∣∣ · (W+
i+1/2 − W−

i+1/2)

and

P±
i+1/2 =

1
2
(
I ±

∣∣Ai+1/2

∣∣A−1
i+1/2

)
.

These latter matrices can be also be written under the form

P±
i+1/2 =

1
2
Ki+1/2

(
I ± sgn(L)i+1/2

)
K−1

i+1/2,

where Ki+1/2 is the N×N matrix whose columns are the eigenvectors Ri+1/2,1, . . . ,
Ri+1/2,N and sgn(L)i+1/2 is the diagonal matrix whose coefficients are the signs of
the eigenvalues λi+1/2,1,. . . , λi+1/2,N . Besides,

Vi+1/2 =F (W+
i+1/2, σ

+
i+1/2) − F (W+

i+1/2, σi+1/2)

+ F (W−
i+1/2, σi+1/2) − F (W−

i+1/2, σ
−
i+1/2),

or, equivalently (see (5.4)),

Vi+1/2 =
∫ 1

0

∂F

∂σ

(
Ψ̃(s; W̃−

i+1/2, W̃
+
i+1/2)

)
· ∂ΨN+1

∂s
(s; W̃−

i+1/2, W̃
+
i+1/2) ds.
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Finally,

IB,i =
∫ xi+1/2

xi−1/2

B(P̃ t
i (x))

d

dx
P t

i (x) dx,

IS,i =
∫ xi+1/2

xi−1/2

S(P̃ t
i (x))

d

dx
pt

i,N+1(x) dx.

Remark 5.2. In this context, the meaning of the well-balanced property of the
reconstruction operator can be understood as follows: let us suppose, as in Remark
5.1, that an integral curve γ of the linearly degenerate field can be described by a
system of equations (5.3). Let us suppose that W̃ (x) = (w1(x), . . . , wN (x), σ(x)) is
a stationary solution such that W̃ (x) ∈ γ for all x, i.e.,

gj(w1(x), . . . , wN (x), σ(x)) = 0, j = 1, . . .N, ∀x.

If we now apply a well-balanced reconstruction operator to the sequence {W̃ (xi)},
then the approximation functions P̃i have to satisfy

gj(pi,1(x), . . . , pi,N (x), pi,N+1(x)) = 0, j = 1, . . . N, ∀x ∈ Ii.

6. WENO-Roe methods

In this section we consider numerical schemes of the form (3.6), in which the
approximation functions used in the reconstruction operator are built by means
of a WENO interpolation procedure using stencils with r points; we denote this
method simply as r-WENO, and the resulting scheme as r-WENO-Roe. For the
details about WENO interpolation, see [23], [27], [33], [34]. The reconstructions
proposed in the r-WENO method are as follows:

W−
i+1/2 =

r−1∑
k=0

ω−
k qk(xi+1/2), W+

i−1/2 =
r−1∑
k=0

ω+
k qk(xi−1/2),

where each qk is the derivative of an interpolation polynomial that uses the values
of the sequence Wn

i at the stencil

Sr
k = {xi−k, . . . , xi−k+r−1}.

The weights ω±
k satisfy

w±
k ≥ 0,

r−1∑
k=0

w±
k = 1.

These weights are calculated so that, on the one hand, the reconstruction operator
is of order 2r − 1 and, on the other hand, the weight ωk is near to zero when the
data on the stencil Sr

k indicate the presence of a discontinuity.
In order to construct the approximation function at the cells, let us first define

P−
i+1/2(x) =

r−1∑
k=0

ω−
k qk(x), P+

i−1/2(x) =
r−1∑
k=0

ω+
k qk(x)

(see Figure 1).
We have to define a function Pi at the cell Ii satisfying

lim
x→x+

i−1/2

Pi(x) = W+
i−1/2, lim

x→x−
i+1/2

Pi(x) = W−
i+1/2.
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Figure 1. Approximation functions P±
i+1/2(x).

A first possibility is given by

(6.1) Pi(x) =

{
P+

i−1/2(x) if x ∈ [xi−1/2, xi),
P−

i+1/2(x) if x ∈ (xi, xi+1/2].

This first definition does not fit into the framework defined in Section 3, as Pi is,
in general, discontinuous:

W−
i = P+

i−1/2(xi) �= P−
i+1/2(xi) = W+

i .

Due to this fact, if a WENO-Roe scheme (3.6) is used to design a high order
numerical method for a problem of the form (5.1), when the numerical scheme is
written under the form (5.5), an extra term has to be added at the right-hand side:

F (W+
i ) − F (W−

i ).

Nevertheless, this difference of fluxes is of order r, and it can be neglected.
A second definition avoiding this discontinuity is the following:

(6.2) Pi(x) =
1

∆x

(
(xi+1/2 − x)P+

i−1/2(x) + (x − xi−1/2)P−
i+1/2(x)

)
.

Due to the definition of the reconstruction operator, the functions Pi given by
(6.1) or (6.2) provide only approximations of order r at the interior points of the
cells, while their derivatives give approximations of order r−1. Therefore, applying
Theorem 3.2, the method (3.6) has only order r, while it has order 2r − 1 when it
is applied to systems of conservation laws.

Remark 6.1. If, instead of a WENO method the r-ENO reconstruction operator
is chosen, the expected order of the numerical scheme is r, since in this case the
approximation functions coincide with interpolation polynomials constructed on
the basis of stencils with r points. Nevertheless, as commented in [34], the use of
WENO approximations has several advantadges: it gives smoother operators, it is
less sensible to round-off errors, and it avoids the use of conditionals in its practical
implementation, being optimal for the vectorization of the algorithms.

It is however possible, performing some slight modifications on the WENO in-
terpolation procedure, to obtain a method of order 2r − 1. The idea is as follows:
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instead of choosing the usual WENO reconstructions we consider the functions

P̃−
i+1/2(x) =

r−1∑
k=0

ω̃−
k (x)qk(x), P̃+

i−1/2(x) =
r−1∑
k=0

ω̃+
k (x)qk(x),

where the weights now depend on x and are calculated following the usual procedure
in WENO reconstruction, so that the order of approximation is 2r − 1 in the cell.
Unfortunately, the derivatives of these approximation functions are not easy to
obtain. Instead, we substitute these derivatives by new WENO approximation
functions

Q̃−
i+1/2(x) =

r−1∑
k=0

γ̃−
k (x)q′k(x), Q̃+

i−1/2(x) =
r−1∑
k=0

γ̃+
k (x)q′k(x),

where, again, the weights are calculated, for every x, following the usual procedure
in WENO reconstruction. Therefore, we again obtain order 2r − 2 in the cell.

Once these functions have been defined, we introduce the new approximation
functions at the cells given either by

P̃i(x) =

{
P̃+

i−1/2(x) if x ∈ [xi−1/2, xi),
P̃−

i+1/2(x) if x ∈ (xi, xi+1/2],

Q̃i(x) =

{
Q̃+

i−1/2(x) if x ∈ [xi−1/2, xi),
Q̃−

i+1/2(x) if x ∈ (xi, xi+1/2],
or

P̃i(x) =
1

∆x

(
(xi+1/2 − x)P̃+

i−1/2(x) + (x − xi−1/2)P̃−
i+1/2(x)

)
,

Q̃i(x) =
1

∆x

(
(xi+1/2 − x)Q̃+

i−1/2(x) + (x − xi−1/2)Q̃−
i+1/2(x)

)
,

depending on the chosen approach.
Once these functions have been defined, the integral appearing in (3.6) is replaced

by ∫ xi+1/2

xi−1/2

A(P̃i(x))Q̃i(x) dx.

In practice, this integral is approached by means of a Gaussian quadrature of order
at least 2r−1. As a consequence, the weights ω±(x) and γ±(x) have to be calculated
only at the quadrature points.

Following the same steps as in the case of the r-WENO-Roe method, it can be
easily shown that the resulting scheme (that will be denoted as modified r-WENO-
Roe) is well balanced with order 2r − 1.

The computational cost of this modified numerical scheme is higher than those
corresponding to standard WENO reconstructions, as two set of weights have to
be calculated at every quadrature point. Moreover, the positivity of the weights is
only ensured at the intercells, due to the choice of stencils. Therefore, in some cases
negative weights may appear at interior quadrature points giving rise to oscillations
and instabilities. For handling these negative weights, if necessary, the splitting
technique of Shi, Hu and Shu ([32]) can be applied. However, in some cases (see,
e.g., Section 7.7) this technique does not completely remove the oscillations, and
the scheme eventually crashes. The causes of this problem are currently under
investigation.
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We finish this section with a remark about time-stepping. As is usual in WENO
interpolation based schemes, in order to obtain a full high resolution scheme it is
necessary to use a high order method to advance in time. In the schemes considered
here we have taken optimal high order TVD Runge-Kutta schemes ([19], [33]).

6.1. Shallow-water equations with depth variations. The equations govern-
ing the flow of a shallow-water layer of fluid through a straight channel with constant
rectangular cross-section can be written as

(6.3)

⎧⎪⎨⎪⎩
∂h

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
q2

h
+

g

2
h2

)
= gh

dH

dx
.

The variable x makes reference to the axis of the channel and t is time, q(x, t)
and h(x, t) represent the mass-flow and the thickness, respectively, g is gravity, and
H(x) is the depth function measured from a fixed level of reference. The fluid is
supposed to be homogeneous and inviscid.

The system (6.3) can be rewritten under the form (5.1) with N = 2,

W =
[

h
q

]
, F (W ) =

⎡⎣ q
q2

h
+

g

2
h2

⎤⎦ , S(W ) =
[

0
−gh

]
,

B = 0 and σ = H. Observe that, in this case, the flux and the coefficients of the
source term do not depend on σ.

We can also write system (6.3) under the nonconservative form (5.2) with

W̃ =

⎡⎣ h
q
H

⎤⎦ , Ã(W̃ ) =

⎡⎣ 0 1 0
−u2 + c2 2u −c2

0 0 0

⎤⎦ ,

where u = q/h is the averaged velocity and c =
√

gh.
If the family of segments (2.10) is chosen as the family of paths, a family of Roe

matrices for system (6.3) is given by (see [28])

Ã(W̃0, W̃1) =

⎡⎣ 1 0 0
−ũ2 + c̃2 2ũ −c̃2

0 0 0

⎤⎦ ,

where

ũ =
√

h0 u0 +
√

h1 u1√
h0 +

√
h1

, c̃ =

√
g
h0 + h1

2
.

For system (6.3), stationary solutions are given by

(6.4) q = q0, h +
q2
0

2gh2
− H = C,

where q0 and C are constants. In the particular case of water at rest, we have the
solutions

(6.5) q = 0, h − H = C.

Therefore, solutions corresponding to still water define straight lines in the h-q-H
space. As a consequence, Roe methods based on the family of segments are exactly
well balanced for still-water solutions and well balanced with order 2 for general
stationary solutions (see [2], [28]).
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The reconstruction operator proposed here to get higher order schemes is based
on WENO reconstruction related to the variables q, H and η = h−H (this variable
represents the water surface elevation). That is, given a sequence (qi, hi, Hi) we
consider the new sequence (qi, ηi, Hi) with ηi = hi − Hi and apply the r-WENO
reconstruction operator to obtain polynomials

p±i+1/2,q, p±i+1/2,η, p±i+1/2,H ;

then, we define
p±i+1/2,h = p±i+1/2,η + p±i+1/2,H .

This reconstruction is exactly well balanced for stationary solutions corresponding
to water at rest. In effect, if the sequence (qi, hi, Hi) lie on the curve defined by
(6.5), then qi = 0 and ηi = C. As a consequence,

p±i+1/2,q ≡ 0, p±i+1/2,η ≡ C,

so we have
p±i+1/2,q ≡ 0, p±i+1/2,h − p±i+1/2,H = C,

and thus the reconstruction operator is well balanced (see Remark 5.2).
Applying Theorems 4.3 and 4.4, we deduce that the corresponding WENO-Roe

schemes satisfy the C-property, i.e., they are exactly well balanced for still-water
solutions, and well balanced with order r for general stationary solutions. To obtain
a well-balanced numerical scheme with order 2r−1, we have to add to the numerical
scheme the modifications proposed in Section 6.

6.2. The two-layer shallow-water system. We now consider the equations of
a one-dimensional flow of two superposed inmiscible layers of shallow-water fluids
studied in [5]:

(6.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂h1

∂t
+

∂q1

∂x
= 0,

∂q1

∂t
+

∂

∂x

(
q2
1

h1
+

g

2
h2

1

)
= −gh1

∂h2

∂x
+ gh1

dH

dx
,

∂h2

∂t
+

∂q2

∂x
= 0,

∂q2

∂t
+

∂

∂x

(
q2
2

h2
+

g

2
h2

2

)
= −ρ1

ρ2
gh2

∂h1

∂x
+ gh2

dH

dx
.

In the equations, index 1 refers to the upper layer and index 2 to the lower one.
We assume that the fluid occupies a straight channel with constant rectangular
cross-section and constant width. The variable x refers to the axis of the channel,
t is time, g is gravity and H(x) is the depth function measured from a fixed level
of reference. The constants ρ1 and ρ2 are the densities of each layer, where it is
supposed that ρ1 < ρ2. Finally, hi(x, t) and qi(x, t) are, respectively, the thickness
and the mass-flow of the ith layer at the section of coordinate x at time t.

Problem (6.6) can be written again under the form (5.1) with N = 4, σ = H,

W =

⎡⎢⎢⎣
h1

q1

h2

q2

⎤⎥⎥⎦ , F (W ) =

⎡⎢⎢⎢⎢⎢⎣
q1

q2
1

h1
+

g

2
h2

1

q2

q2
2

h2
+

g

2
h2

2

⎤⎥⎥⎥⎥⎥⎦ , S(W ) =

⎡⎢⎢⎣
0

gh1

0
gh2

⎤⎥⎥⎦ ,
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and

B(W ) =

⎡⎢⎢⎣
0 0 0 0
0 0 −gh1 0
0 0 0 0

−ρgh2 0 0 0

⎤⎥⎥⎦ ,

where ρ = ρ1/ρ2.
Also it can be put into the nonconservative form (5.2) with

W̃ =

⎡⎢⎢⎢⎢⎣
h1

q1

h2

q2

H

⎤⎥⎥⎥⎥⎦ , Ã(W̃ ) =

⎡⎢⎢⎢⎢⎣
0 1 0 0 0

−u2
1 + c2

1 2u1 c2
1 0 −c2

1

0 0 0 1 0
ρc2

2 0 −u2
2 + c2

2 2u2 −c2
2

0 0 0 0 0

⎤⎥⎥⎥⎥⎦ ,

where ui = qi/hi and ci =
√

ghi.
The stationary solutions of system (6.6) are given by

(6.7)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q1 = constant,
u2

1

2
− u2

2

2
+ gρh1 = constant,

q2 = constant,
u2

1

2
+ g(h1 + h2 − H) = constant,

where gρ = (1 − ρ)g is the reduced gravity.
In [28] Roe matrices for system (6.6), based on the choice of paths as segments,

were constructed. The resulting Roe scheme was proved to be well balanced with
order 2 for general stationary solutions, and exactly well balanced for solutions
representing water at rest or vacuum.

For the reconstruction process, a strategy similar to that in Section 6.1 is fol-
lowed. Specifically, we reconstruct the elevations

η1 = h1 + h2 − H, η2 = h2 − H,

instead of the thickness h1 and h2. As a consequence, the resulting WENO-Roe
scheme (3.6) is exactly well balanced for solutions representing water at rest or
vacuum, and well balanced with order r (or 2r − 1 if the modified WENO method
is used) for general stationary solutions.

7. Numerical results

7.1. Verification of the C-property. The objective of this section is to test the
C-property of the scheme (3.6) stated in Section 6.1. We have considered two
examples, corresponding to one-layer and two-layer shallow-water systems.

We first consider the one-layer system given by (6.3). The depth function H(x)
is given by an exponential perturbed with a random noise (see Figure 2); as initial
conditions we have taken h(x, 0) = H(x) and q(x, 0) = 0, x ∈ [0, 1]. The modified
3-WENO-Roe scheme has been applied with ∆x = 0.01 and CFL number 0.9. For
time-stepping, an optimal three-step TVD Runge-Kutta method ([19], [33]) has
been considered.

As expected from Section 6.1, the numerical scheme (3.6) preserves the steady
state solution exactly up to machine accuracy. This fact can be observed in Table
1.
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Table 1. Verification of the C-property: one layer.

Precision L1 error h L1 error q

single 7.33 × 10−7 5.12 × 10−7

double 1.28 × 10−15 3.65 × 10−15

Table 2. Verification of the C-property: two layers.

Precision L1 error h1 L1 error q1 L1 error h2 L1 error q2

single 8.21 × 10−7 1.33 × 10−7 6.27 × 10−7 5.97 × 10−7

double 1.42 × 10−15 6.64 × 10−16 2.47 × 10−15 2.65 × 10−15

0 0.2 0.4 0.6 0.8 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
h−H
−H

Figure 2. Stationary solution in test case 7.1 for the one-layer
system. Elevation η = h − H and bottom topography −H.

Next, we consider the two-layer shallow-water system (6.6) with the same depth
function as before, and initial conditions h1(x, 0) = 0.4, h2(x, 0) = H(x), q1(x, 0) =
q2(x, 0) = 0, x ∈ [0, 1]; the ratio of densities is ρ = 0.99805. In Table 2 we show the
results obtained with the modified 3-WENO-Roe method, with the same settings
as in the previous example.

In both examples, similar results are obtained when the 3-WENO-Roe method
is applied.

7.2. Well-balancing test: Steady subcritical flow. The purpose of this ex-
periment is to verify numerically the well-balanced property of scheme (3.6). We
consider the shallow-water system (6.3) with the depth function given by

H(x) = 2 − 0.2 e−0.16(x−10)2 , x ∈ [0, 20],

and the initial condition corresponding to the steady subcritical flow with discharge
q(x, 0) = 4.42. The solution is represented in Figure 3, and it can be computed
analytically using (6.4). This solution should be preserved.
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Table 3. Test case 7.2 solved with the 3-WENO-Roe method.

N. cells L1 error h L1 order h L1 error q L1 order q

20 6.11 × 10−4 – 4.48 × 10−3 –
40 5.14 × 10−5 3.57 2.77 × 10−4 4.01
80 1.44 × 10−6 5.15 2.03 × 10−5 3.77
160 2.30 × 10−8 5.96 2.61 × 10−6 2.96
320 1.99 × 10−9 3.55 3.34 × 10−7 2.96

Table 4. Test case 7.2 solved with the modified 3-WENO-Roe method.

N. cells L1 error h L1 order h L1 error q L1 order q

20 2.55 × 10−3 – 4.48 × 10−2 –
40 1.01 × 10−4 4.66 1.67 × 10−3 4.75
80 1.84 × 10−6 5.78 4.34 × 10−5 5.26
160 3.78 × 10−8 5.61 1.54 × 10−6 4.81
320 7.29 × 10−10 5.69 5.01 × 10−8 4.95

0 5 10 15 20

−2

−1.5

−1

−0.5

0

h−H
−H

Figure 3. Stationary solution in test case 7.2. Elevation η =
h − H and bottom topography −H.

In the experiment, we have taken CFL coefficient 0.9 and WENO reconstructions
with r = 3. The integral terms have been approximated by means of a Gaussian
quadrature with three points. To advance in time, an optimal three-step TVD
Runge-Kutta method has been applied.

Following Section 6.1, the 3-WENO-Roe scheme (3.6) should be well balanced
with order 3, and the modified 3-WENO-Roe scheme with order 5. The numerical
results obtained with each scheme can be seen in Tables 3 and 4, respectively.

In this case, the negative weights appearing in the modified 3-WENO-Roe method
do not cause any instability, so no special treatment has been applied to handle
them.
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Table 5. Test case 7.3 solved with the 3-WENO-Roe method.

N. cells L1 error h L1 order h L1 error q L1 order q

50 1.66 × 100 – 9.78 × 10−1 –
100 3.84 × 10−1 2.11 2.33 × 10−1 2.08
200 7.69 × 10−2 2.32 4.83 × 10−2 2.26
400 1.32 × 10−2 2.54 8.71 × 10−3 2.47
800 1.74 × 10−3 2.92 1.19 × 10−3 2.88
1600 2.17 × 10−4 3.01 1.51 × 10−4 2.97

Table 6. Test case 7.3 solved with the modified 3-WENO-Roe method.

N. cells L1 error h L1 order h L1 error q L1 order q

50 1.51 × 100 – 6.75 × 10−1 –
100 1.96 × 10−1 2.95 1.02 × 10−1 2.72
200 2.68 × 10−2 2.87 1.80 × 10−2 2.51
400 2.21 × 10−3 3.60 1.50 × 10−3 3.58
800 9.75 × 10−5 4.50 6.80 × 10−5 4.47
1600 3.28 × 10−6 4.89 2.35 × 10−6 4.85

7.3. Accuracy test. In order to verify numerically that the proposed schemes in
this work are indeed high order accurate, here we consider a test problem with
depth function

H(x) = 5 − cos(πx/5)

and initial conditions

h(x, 0) = 5 − cos(πx/5) + 0.1 sin(πx/5), q(x, 0) = 0,

in the domain x ∈ [0, 20], with periodic boundary conditions. The solution of this
problem is smooth.

As the exact solution for this problem is not known, we use as a reference solution
a numerical solution computed with the modified 3-WENO-Roe scheme with 25600
cells. In Tables 5 and 6, the L1 errors obtained at time t = 1 with the 3-WENO-
Roe and the modified 3-WENO-Roe schemes, respectively, are shown. As can be
observed, the schemes give the order of accuracy predicted by the theory.

Again, in this case, the negative weights appearing in the modified 3-WENO-Roe
method do not cause any instability, so no special treatment has been applied to
handle them.

7.4. Steady flow over a bump. The test problem analyzed in this section is the
classical one of a steady flow over a bump in a rectangular channel with constant
breadth [37], [38].

System (6.3) is considered in the computational domain [0, 20] with depth func-
tion given by

H(x) =

{
0.05(x − 10)2 if 8 ≤ x ≤ 12,

0.2 otherwise,
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Table 7. Test case 7.4: comparison with respect to the exact solution.

N. cells L1 error h L1 error q

100 1.28 × 10−2 1.43 × 10−2

200 4.78 × 10−3 1.44 × 10−3

300 4.29 × 10−3 3.57 × 10−3

400 2.24 × 10−3 2.74 × 10−3

500 1.83 × 10−3 4.84 × 10−4

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
exact
h−H
−H

(a) Elevation η = h − H and bottom −H.

0 2 4 6 8 10 12 14 16 18 20
0.178

0.18

0.182

0.184

0.186

0.188

0.19

0.192

0.194

0.196
exact
q

(b) Mass-flow q.

Figure 4. Hydraulic jump over a bump. Comparison between
the solution computed with the modified 3-WENO-Roe method
and the exact solution, at time T = 200.

and initial conditions q(x, 0) = 0, h(x, 0) = 0.13 + H(x). With respect to the
boundary conditions, a water thickness of h = 0.33 is imposed downstream and a
mass-flow of q = 0.18 upstream. The solution of this problem consists of a steady
transcritical flow with a smooth transition followed by a hydraulic jump.

We have considered space step ∆x = 0.1 and the same settings as in Section 7.2.
The results obtained with the modified 3-WENO-Roe scheme at time T = 200,
where the steady state has been reached, are shown in Figure 4.

We have also compared the solution obtained at time T = 200 with the exact
steady state solution of the problem (see [20]). In Table 7 the L1 errors obtained
with a different number of cells are shown.

Observe that, in this case, as the solution is not smooth, the high order con-
vergence is not achieved. As in previous sections, no special treatment of negative
weights is needed, as the modified WENO scheme has a good behavior.

7.5. Small perturbation of steady state water. In order to test the perfor-
mances of our schemes on a rapidly varying flow over a smooth bed, we consider a
problem proposed by LeVeque in [26]. Specifically, a steady state solution is per-
turbed by a pulse that splits into two waves propagating in opposite directions over
a continuous bed. The left-going wave travels over a horizontal bottom while the
right-going wave propagates over a bump.
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0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1
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h−H
−H

Figure 5. Initial condition in LeVeque’s problem with ∆h = 0.2.

System (6.3) is considered on the computational domain [0, 2]. The depth func-
tion is given by

H(x) =

{
−0.25(cos(10π(x − 0.5)) + 1) if 1.4 ≤ x ≤ 1.6,

0 otherwise,

while the initial conditions are q(x, 0) = 0 and

h(x, 0) =

{
1 + ∆h + H(x) if 1.1 ≤ x ≤ 1.2,

1 + H(x) otherwise.

Here ∆h is the height of the perturbation that takes the values ∆h = 0.2 (big pulse;
see Figure 5) or ∆h = 0.001 (small pulse). Outflow boundary conditions have been
considered.

0 0.5 1 1.5 2
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
modified 3−WENO−Roe
Roe

(a) Elevation η = h − H and bottom −H.

0 0.5 1 1.5 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4 modified 3−WENO−Roe
Roe

(b) Mass-flow q.

Figure 6. LeVeque’s problem with big pulse ∆h = 0.2. Com-
parison between the modified 3-WENO-Roe method and the Roe
method at time T = 0.2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HIGH ORDER FINITE VOLUME SCHEMES 1129

0 0.5 1 1.5 2
0.9999

1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006
3−WENO−Roe
Roe

(a) Elevation η = h − H.
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(b) Mass-flow q.

Figure 7. LeVeque’s problem with small pulse ∆h = 0.01. Com-
parison between the 3-WENO-Roe method and the Roe method
at time T = 0.2.
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(a) Elevation η = h − H.
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(b) Mass-flow q.

Figure 8. LeVeque’s problem with small pulse ∆h = 0.01. Com-
parison between the 3-WENO-Roe methods with and without
modifications. Note that the modified 3-WENO-Roe method pro-
duces incorrect results

The computations have been performed with ∆x = 0.01, CFL coefficient 0.9,
WENO interpolation with r = 3 and three-step TVD Runge-Kutta time integra-
tion. In this case, the use of the modified WENO procedure gives rise to incorrect
results when the scheme is applied to the problem with small pulse, even if the
technique of Shi et al. ([32]) is applied; see Figure 8. Thus, for the small pulse
problem we only consider the 3-WENO-Roe method.

Remark 7.1. Note that the numerical treatment of the source term is identical
in both the 3-WENO-Roe and the modified 3-WENO-Roe schemes. As the first
scheme works well for this problem, we think that the incorrect results produced
by the modified scheme are due to the appearance of negative weights. Although
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negative weights are always present in the modified 3-WENO-Roe scheme, their
influence in the problem with the small pulse seems to be stronger than in the big
pulse case. The cause of this fact is currently under study.

The results obtained at time T = 0.2 with the scheme (3.6) are shown in Figures
6 and 7, for ∆h = 0.2 and ∆h = 0.01, respectively. We have compared these
solutions with that produced by the first order Roe method.

7.6. Well-balancing test for the two-layer system. In this section, we test the
well-balanced property of scheme (3.6) when it is applied to the two-layer shallow-
water system introduced in Section 6.2. We consider the steady state solution (6.7)
with depth function

H(x) = 2 − 0.5e−x2
, x ∈ [−3, 3].

To compute the constants in (6.7), we consider the initial data

h1(0, 0) = 0.5, h2(0, 0) = H(0) − 0.5, q1(0, 0) = 0.15 andq2(0, 0) = −0.15.

The density ratio has been taken as ρ = 0.98. The solution is shown in Figure 9.
As in Section 7.2, we have applied both the 3-WENO-Roe and the modified

3-WENO-Roe methods, a three-step TVD Runge-Kutta method, and a Gaussian
quadrature with three points. The CFL coefficient has been taken as 0.9. The
results obtained with the 3-WENO-Roe method are shown in Tables 8 and 9, while
those corresponding to the modified 3-WENO-Roe method are given in Tables 10
and 11. It can be seen that the schemes are well balanced with the predicted order.

Again, no special treatment of negative weights in the WENO procedure was
needed.

In this case, the exact solution is not easy to compute because a nonlinear system
of algebraic equations must be solved.

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5
h1+h2−H
h2−H
−H

Figure 9. Stationary solution in test case 7.6. Elevations η1 =
h1 + h2 − H, η2 = h2 − H and bottom topography −H.
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Table 8. Test case 7.6 solved with the 3-WENO-Roe method. h1

and h2.

N. cells L1 error h1 L1 order h1 L1 error h2 L1 order h2

20 1.20 × 10−3 – 1.50 × 10−3 –
40 1.20 × 10−4 3.32 1.18 × 10−4 3.66
80 1.22 × 10−5 3.30 1.28 × 10−5 3.21
160 1.52 × 10−6 3.00 1.41 × 10−6 3.17

Table 9. Test case 7.6 solved with the 3-WENO-Roe method. q1

and q2.

N. cells L1 error q1 L1 order q1 L1 error q2 L1 order q2

20 4.65 × 10−4 – 2.64 × 10−4 –
40 5.12 × 10−5 3.18 6.12 × 10−6 5.43
80 2.62 × 10−6 4.28 6.01 × 10−7 3.34
160 6.13 × 10−8 5.42 5.65 × 10−8 3.41

Table 10. Test case 7.6 solved with the modified 3-WENO-Roe
method. h1 and h2.

N. cells L1 error h1 L1 order h1 L1 error h2 L1 order h2

20 1.25 × 10−3 – 1.67 × 10−3 –
30 1.86 × 10−4 4.69 1.84 × 10−4 5.44
40 4.73 × 10−5 4.76 4.65 × 10−5 4.78
60 6.74 × 10−6 4.81 6.61 × 10−6 4.81
80 1.66 × 10−6 4.87 1.63 × 10−6 4.87

Table 11. Test case 7.6 solved with the modified 3-WENO-Roe
method. q1 and q2.

N. cells L1 error q1 L1 order q1 L1 error q2 L1 order q2

20 5.10 × 10−4 – 2.48 × 10−4 –
30 1.51 × 10−5 8.68 1.90 × 10−5 6.34
40 5.10 × 10−6 3.77 6.09 × 10−6 3.95
60 7.90 × 10−7 4.60 9.45 × 10−7 4.60
80 1.85 × 10−7 5.05 2.27 × 10−7 4.96

7.7. Internal dam break. We consider the two-layer shallow-water system in
Section 6.2, with constant depth function H(x) = 2 and initial conditions given by

h1(x, 0) =

{
1.8 if x < 0,

0.2 if x ≥ 0,

h2(x, 0) = 2 − h1(x, 0) and q1(x, 0) = q2(x, 0) = 0 (see Figure 10(a)).
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(a) Initial condition.
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Figure 10. Internal dam break problem. Elevations η1 = h1 +
h2 − H, η2 = h2 − H and bottom topography −H.

In Figure 10(b), the results obtained at time T = 25 with the 3-WENO-Roe
method and the Roe method in nonconservative form ([28]) are shown. The in-
terface of the solution consist in three constant states, with two jumps and two
rarefaction waves between them. We have considered ∆x = 0.05, CFL coefficient
0.9 and density ratio ρ = 0.99805. As commented in Section 6, in this case the
modified 3-WENO-Roe method produces oscillations and instabilities, even if the
technique of [32] is applied, leading to a crash of the scheme at time T ∼= 4.5. For
this reason, we have considered only the 3-WENO-Roe method, so the accuracy
reduces to third order. For time-stepping, we have again used a three-step TVD
Runge-Kutta method.
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(91j:65142)

[26] R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov meth-
ods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998), 346–365.
MR1650496 (99j:65182)

[27] X.D. Liu, S. Osher and T. Chan, Weighted essentially nonoscillatory schemes. J. Comput.
Phys. 115 (1994), 200–212. MR1300340

[28] C. Parés and M. Castro, On the well-balanced property of Roe’s method for nonconservative
hyperbolic systems. Applications to shallow water systems. ESAIM: M2AN 38(5) (2004),
821–852. MR2104431

[29] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source
term. Calcolo 38(4) (2001), 201–231. MR1890353 (2002k:76109)

[30] B. Perthame and C. Simeoni, Convergence of the upwind interface source method for hyper-
bolic conservation laws, Proc. of Hyp. 2002, Hou and Tadmor ed., Springer, 2003. MR2053160

[31] P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes. J. Com-
put. Phys. 43 (1981), 357–371. MR0640362 (82k:65055)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1483893
http://www.ams.org/mathscinet-getitem?mr=1483893
http://www.ams.org/mathscinet-getitem?mr=1410987
http://www.ams.org/mathscinet-getitem?mr=1410987
http://www.ams.org/mathscinet-getitem?mr=1753567
http://www.ams.org/mathscinet-getitem?mr=1753567
http://www.ams.org/mathscinet-getitem?mr=1820677
http://www.ams.org/mathscinet-getitem?mr=1820677
http://www.ams.org/mathscinet-getitem?mr=1443118
http://www.ams.org/mathscinet-getitem?mr=1443118
http://www.ams.org/mathscinet-getitem?mr=1377240
http://www.ams.org/mathscinet-getitem?mr=1377240
http://www.ams.org/mathscinet-getitem?mr=1472206
http://www.ams.org/mathscinet-getitem?mr=1472206
http://www.ams.org/mathscinet-getitem?mr=1391627
http://www.ams.org/mathscinet-getitem?mr=1391627
http://www.ams.org/mathscinet-getitem?mr=0707200
http://www.ams.org/mathscinet-getitem?mr=0707200
http://www.ams.org/mathscinet-getitem?mr=1077828
http://www.ams.org/mathscinet-getitem?mr=1077828
http://www.ams.org/mathscinet-getitem?mr=1650496
http://www.ams.org/mathscinet-getitem?mr=1650496
http://www.ams.org/mathscinet-getitem?mr=1300340
http://www.ams.org/mathscinet-getitem?mr=2104431
http://www.ams.org/mathscinet-getitem?mr=1890353
http://www.ams.org/mathscinet-getitem?mr=1890353
http://www.ams.org/mathscinet-getitem?mr=2053160
http://www.ams.org/mathscinet-getitem?mr=0640362
http://www.ams.org/mathscinet-getitem?mr=0640362
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