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We develop a new class of schemes for the numerical solution of first-order steady
conservation laws. The schemes are of the residual distribution, or fluctuation-split-
ting type. These schemes have mostly been developed in the context of triangular or
tetrahedral elements whose degrees of freedom are their nodal values. We work here
with more general elements that allow high-order accuracy. We introduce, for an
arbitrary number of degrees of freedom, a simple mapping from a low-order mono-
tone scheme to a monotone scheme that is as accurate as the degrees of freedom will
allow. Proofs of consistency, convergence and accuracy are presented, and numerical
examples from second, third and fourth-order schemes.

KEY WORDS: Upwind stabilized schemes; hyperbolic problems; residual distribu-
tive schemes; finite elements; high order schemes.

1. INTRODUCTION

In this paper, we consider high order discretization of the problem

div(f(u))=0 x ¥ W (1)

with Dirichlet boundary conditions on the inflow part of the domain W … Rd

u=uC
− x ¥ C− (2)

Here, f is a C2 vector valued function, and u is a real valued function. The inflow
boundary C− is defined as

C−={x ¥ “W, nF(x) · lF > 0}

where nF(x) is the inward normal vector at x ¥ “C.



We consider entropy weak solutions of (1). Throughout the paper, we assume
that uC

− in Eq. (2) is regular enough so that the boundary conditions can be set
strongly. This assumption is only aimed at simplifying the text.

An approximate solution of (1) is sought on a triangular mesh Th. The nodes
or Th are denoted by {Mi} and T is a generic triangle.

There are many schemes for approximating (1), but here we consider upwind
residual schemes, as in [1–3]. These schemes are distributive schemes; in their
simplest forms they can be written as

C
T, Mi ¥ T

FT
i =0. (3)

In practical calculations, the solution of (3) is sought for as the limit, when the
iteration count n tends to infinity, of the pseudo unsteady scheme

|Ci |
un+1

i − un
i

Dt
+ C

T, Mi ¥ T
FT

i =0. (4)

Here, |Ci | is the area of the dual cell associated with Mi.
In the schemes (3) or (4) the sum is over those triangles T that share the vertex

Mi. On each triangle T we define a residual

FT=F
T

div fh(uh) dx. (5)

We also define FT
i as the amount of FT associated with vertex Mi, such that a con-

servation property is satisfied

C
i, Mi ¥ T

FT
i =FT (6)

Roe [4] refers to FT as the fluctuation in triangle T and to the quantities FT
i as

signals sent to the vertices. It is known, see [1, 5, 6], how to construct second order
accurate schemes for steady problems. The unsteady case has been considered more
recently, see for example [7, 6].

One major objective of this paper is to generalize this form in order to get
higher accurate schemes, i.e., more than second order accurate schemes, for steady
problems. The unsteady case will be considered elsewhere. To do so, each triangle is
equipped with additional degrees of freedom in addition to the values at the ver-
tices, and signals and fluctuations are defined in order to get a very high order
accurate scheme. For example, values can be assigned to the mid-points of the
sides.

In this paper, we give precise conditions on fh and the signals for which, under
the conditions of a Lax Wendroff theorem, the limit solution of a scheme of the
type (4) is a weak solution of

“u
“t

+div f(u)=0.
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We note that under the same conditions, the limit solution of the scheme (3) is a
weak solution of (1). Then, we provide conditions for which the solution is formally
high order accurate. In particular, we explain in details the difference between
steady and unsteady problems. In a second part, we consider from this perspective
some known examples having second order accuracy, including some that are
monotonicity preserving. Then we show a stability property of these schemes, in the
case f(u)=lFu, that yields an error estimate in some cases. Using these principles,
we construct third- and fourth-order monotonicity preserving schemes and give
some numerical applications. This construction can be formally extended to any
order of accuracy, so these schemes can be seen as an alternative to the DG
schemes. However, we believe that our schemes will prove less expensive, especially
for very high-order and/or three-dimensional cases.

2. NOTATIONS AND BASIC CONCEPTS

2.1. Notation and Degrees of Freedom

We explain our notations, and specify the degrees of freedom. In a mesh T

whose triangles are denoted by T, and whose vertices by Mj, we seek a solution that
is piecewise polynomial of degree k in each triangle, and therefore need to provide
each T with (k+1)(k+2)/2 degrees of freedom. A simple way to do this is to use
Pk elements whose degrees of freedom are the values of the solution at the points
whose barycentric coordinates within T are {i/k, j/k, (k − i − j)/k} for 0 [ i, j [ k.
This creates k2 subtriangles within T; denote a typical subtriangle by T −

T. See Fig. 1
for the cases k=1 and k=2.

This way of adding points in T provide a natural sub-triangulation of T. The
collection of all these sub-triangles furnishes a natural conformal refined triangula-
tion of W.

We denote by s a point that may belong to the set Mj, or which may be one of
the additional points introduced by the sub-triangulation. In the case of a P1 inter-
polation, the degrees of freedom are the vertices Mj of T and we will not use the

Fig. 1. Sub-triangles of P1 and P2 interpolation.
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notation s. For any triangle T, we denote by hT its diameter, |T| its area and
h=maxT hT.

The schemes that we study here are of the following form: for any degree of
freedom s

un+1
s =un

s −
Dt

|C −

s |
C

T, s ¥ T
YT

s with

YT
s = C

T −

T … T, s ¥ T −

T

FT −

T
s

(7)

Once more, C −

s is the dual control volume associated with any new or original
point s of the refined mesh. The residuals {FT −

T
s } satisfy the conservation relation

C
s ¥ T

YT
s = C

s ¥ T
C

T −

T … T, s ¥ T
FT −

T
s =F

T
div fh(uh) dx.

For k=1, the only subtriangle of T is t itself; for k=2 the subtriangles are
TI, TII, TIII, TIV, and so on.

2.2. Consistency, Accuracy

Very natural questions are then

• Under which assumptions do we have consistency, and can we exhibit a
Lax–Wendroff theorem under reasonable assumptions,

• What accuracy can we reach in principle and how could this be achieved in
practice?

In this section, we assume that the problem

“u
“t

+div f(u)=0 (8)

is vector valued: u ¥ Rp × R+ is defined on Rd. The flux f=(f1, ..., fd) is also
defined on Rd, and fi ¥ Rp.

2.2.1. A Lax Wendroff Theorem

Under which reasonable conditions can the scheme (7) converge towards a
weak solution of (8)? To answer this question, we give a Lax Wendroff-like
theorem. Let us give some conditions on the mesh, the fluctuations FT −

T
s , and define

some notations and functional spaces.

Assumption 2.1. The mesh Th is conformal and regular. By regular we mean
that all triangles are roughly the same size, more precisely that there exist constants
C1 and C2 such that for any triangle

T, C1 [ sup
T ¥ Th

h2

|T|
[ C2
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where for this purpose the triangles considered are those at the finest level of sub-
triangulation. Of course, if the original triangulation is regular in this sense, so is
the subtriangulation. We say that two triangles are neighbors if they have a
common edge.

Let Th be a triangulation satisfying Assumption 2.1, and Ch be a set of dual
volumes associated with the degrees of freedom s. Then we define the following
subspaces,

Vk
h ={vh ¥ C0(R2)p; vh |T polynomial of degree k, - T ¥ Th}

Xh={vh; vh |C constant ¥ Rp, - C ¥ Ch}.

Here, f|T denotes the restriction of f to T.
We denote by p1

hv the piecewise linear interpolation of a continuous function.
Let Lh: Vk

h Q Xh be the mass lumping operator, Lh(v)=;s v(xs) qs where qs is the
characteristic function of the cell Cs.

We assume that the residual FT−

T
s and the numerical solution satisfy the follow-

ing conditions.

Assumption 2.2. Let Th be a triangulation satisfying the Assumption 2.1. For
any C ¥ R+, there exists CŒ(C, Th) ¥ R+ which depends only on C and Th such that
for any u ¥ (Xh)2, with ||u||L.(R

2) [ C we have

-T, -s, ||FT−

T
s || [ CŒ(C, Th) h C

sŒ ¥ T
||u(sŒ) − u(s)||. (9)

Remark 2.1. One should see this assumption as asserting continuity of the
residual components (or signals) FT−

T
s with respect of the nodal values of u; in par-

ticular, when u is constant, FT −

T
s =0. The proof of Theorem 2.2 when FT −

T
s satisfy

Assumption 2.2 is still valid if the number of arguments in FT −

T
s is bounded inde-

pendently of h and the triangle T. In practice, this is always true if the triangulation
is uniform, since the arguments of FT −

T
s are contained in some neighborhood of s

comprising a finite number of points.

Assumption 2.3. There exists an approximation fh of the flux f such that

(i) -uh ¥ Xh, FT :=>T div fh(uh) dx=;T −

T … T ;s ¥ T −

T
FT −

T
s (uh),

(ii) -uh ¥ Xh, -T1, T2 neigbors,

fh(uh)|T1
· nF=fh(uh)|T2

· nF p.p. on T1 5 T2

where nF is a normal of T1 5 T2.
(iii) For any C > 0, there exists CŒ(C) such that for any uh ¥ Xh

with ||uh||L.(R
2) [ C, one has for T ¥ Th and fh

T=fh
|T, ||div fh

T(uh)|| [
C −

h ;s, sŒ ||uh
s − uh

sŒ || a.e. on T.
(iv) For any sequence (uh)h bounded in L.(R2 × R+)p independantly of h and

convergent in L2
loc(R2 × R+)p to u, we have

lim
h

||fh(uh) − f(u)||L1
loc(R

2 × R
+)p=0.
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Later, we give examples of schemes that satisfy the previous assumptions. We
have the following result,

Theorem 2.2. Let be u0 ¥ L.(Rd)p and uh the approximation given by (7). We
assume that the scheme satisfies the Assumptions 2.2 and 2.3. We also assume there
exists a constant C that depends only on C1, C2 and u0 and a function u ¥

(L2(Rd × R+))p such that

sup
h

sup
x, y, t

|uh(x, y, t)| [ C

lim
h

||u − uh ||L2
loc(R

d × R
+)p=0

Then u is a weak solution of (8).

The proof of Theorem 2.2 is given in Appendix A.

2.2.2. Accuracy

Here, we consider the steady case

div f(u)=0 x ¥ W

Dirichlet boundary conditions on the inflow boundary
(10)

and derive a formal sufficient condition that ensures the scheme is r+1-th order.
In the following, we denote by ks the Lagrange basis function of degree r

associated with the degree of freedom s, and for any smooth function j, we denote
by jh the interpolant

jh=C
s

j(s) ks.

We also introduce FT
s =>T ks div fh(uh).

Consider any test function j ¥ C r+1(Rd)p and FT
s defined in (7). We have

C
s

j(s) C
T, s ¥ T

YT
s =C

T
C

s ¥ T
j(s) YT

s

=C
T

C
s ¥ T

j(s) FT
s +C

T
C

s ¥ T
j(s)(YT

s − FT
s )

=F jh div fh(uh)+C
T

C
s ¥ T

j(s)(YT
s − FT

s )

We note that ;s ¥ T YT
s =;s ¥ T FT

s , so, for any sŒ ¥ T, we have

C
s ¥ T

j(s)(YT
s − FT

s )= C
s ¥ T

(j(s) − j(sŒ))(YT
s − FT

s )
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If N is the number of degrees of freedom in T, and we assume here that it is inde-
pendant of T, there are C=N(N+1)

2 such possibilities. Finaly we get the truncation
error

C
s

j(s) C
T, s ¥ T

YT
s =F jh div fh(uh)+

1
C

C
T

C
s, sŒ ¥ T

(j(s) − j(sŒ))(YT
s − FT

s ).

(11)

Then we notice that >T ks div f(uh)=O(h r+2) for a steady problem if uh is the
interpolant of a regular enough function, say u ¥ H s for s large enough. In fact, if uh

represents the interpolant of such a function u, then

F
T

ks div f(uh) dx=F
“T

ks fh(uh) · nF dl − F
T

Nks fh(uh)

=F
“T

(fh(uh) − f(u)) · nF dl − F
T

Nks(fh(uh) − f(u))

=O(h) ×O(h r+1)

if fh(uh) is a r+1th approximation of f. Similarly,

F j div f(u)=F jh div fh(uh)+O(h r+1)

under the same assumptions.
If we assume that Fq

s=O(h r+2) for a steady state solution, it is clear that the
term

C
s, sŒ ¥ T

(j(s) − j(sŒ))(YT
s − FT

s )

is O(h r+3), and proceeding as in [5], we conclude that

:C
s

C
T, s ¥ T

j(s) Fs − F
W

j(x) div f(u) dx : [ C(T) ||Nj||. h r+1

where C(T) is a constant that depends on the constants C1 introduced in the
Assumption 2.1.

We have been rather vague on how the boundary conditions are implemented
in practice. Since they are given on the inflow part of “W, we set strongly at the
inflow nodes. Doing that, we assume they are smooth enough, and the calculation
of the truncation error becomes valid.

Hence, we have shown the following result

Proposition 2.3. Let be r > 0 an integer, and consider the steady problem
(10). Under the following assumptions

1. The mesh satisfy Assumption 2.1,

2. For any H r+1 function u, denoting by uh its interpolant of degree r, fh(uh)
is an approximation of order r+1 in the L. norm,
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3. For any triangle T and any sub-triangle T −

T of T, the sub-residuals FT −

T
s

evaluated at uh, the interpolant of the steady solution of div f(u)=0
satisfy FT −

T
s =O(h r+2).

Then for any test function j ¥ C r+1(W), we have the following consistency estimate

:C
s

C
T, s ¥ T

j(s) Fs − F
W

j(x) div f(u) dx : [ C(T) ||Nj||. h r+1.

If so, we say that the scheme is r+1th order accurate.

Remark 2.4. It is important to see that the facts that (i) uh is an interpolant
of the steady solution and (ii) fh(uh) is a good approximation of the true flux play a
key role. In particular, the result is not true if one wishes to generalize it to
unsteady problems with the same assumptions on the residuals. Here, what plays
the role of residuals should include the time ‘‘residual’’ “u

“t in addition to the space
residual div f(u). This has been done for second order accuracy in [6]. If this is not
done properly, the scheme is only first order accurate.

In Section 3, we recall schemes that are second order (for steady state) and
monotonicity preserving. In Section 5, we construct similar schemes for r \ 3 and
provide a general construction method.

3. EXAMPLES OF SCHEMES

For second order accurate schemes, the degrees of freedom are the vertices of
Th: we do not use the notation s but Mi instead.

We recall the N schemes, LDA and PSI schemes developed by Roe, Deconinck
and coworkers in the context of non-refined grids and P1 elements [2]. They are
examples of upwind schemes, meaning that the residuals FT are split into signals FT

i

in a manner that reflects the local flow of information by enhancing those signals
when Mi is a downwind node of T. These schemes satisfy the technical require-
ments of the previous sections. The PSI scheme is the only one that is both second-
order and monotone. Schemes having both of these properties must be constructed
in an essentially nonlinear way to avoid the restrictions of Godunov’s Theorem,
that linear monotone schemes are only first order. See for example [8].

We begin this section by a systematic construction of high order monotone
scheme. Then we provide examples for linear and non linear problems.

3.1. Monotone Schemes

To begin with, assume that FT
i , the part of the fluctuation assigned to the ith

vertex, can be written as

FT
i = C

j, Mj ¥ T
cT

ij(ui − uj).
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The coefficients cT
ij may be independent of the data (linear schemes) or may depend

on the data (non linear schemes.) The scheme is monotonicity preserving provided
cij \ 0 under the CFL like condition

Dt 5;T, Mi ¥ T ;Mj ¥ T cT
ij

|Ci |
6 [ 1 for any Mi.

It is possible to construct monotonicity preserving second-order schemes for
steady problems, but we have already noted that Godunov’s Theorem states that
they cannot be linear. A systematic construction is to begin with a monotone,
linear, and therefore first-order scheme, and then to modify it so that it achieves
higher-order accuracy.

In order to simplify the notations, from now on, unless explicitely mentionned,
all the summations will refer to the vertices or degree of freedom within one given
element. Similarily, we omit the superscript T in the residuals, since all the calcula-
tions refer to a single generic element.

Denote by FM
i the part of the fluctuation assigned by some monotone scheme

to the jth vertex, and by FH
i the part assigned by a nonlinear high-order scheme.

The requirements are that

C
j

FH
j =C

j
FM

j =F Conservation

FH
j FM

j \ 0 Monotonicity preserving property

We get second order accuracy under the following conditions

FH
j =O(F) and

F=O(h3) at steady state for smooth solutions.

The two conditions are important from the analysis of Section 2.2.2; in particular
they impose second order accuracy constraints on the flux approximation fh(uh).

After introducing

bj=
fM

j

f
, b̂j=

fH
j

f

these conditions can be reformulated as constraints on the weights with which the
residuals are distributed to the nodes

C
N

j=1
bj= C

N

j=1
b̂j=1 Conservation

bjb̂j \ 0 Monotonicity

b̂j is bounded High-order accuracy if fT is small enough

Our procedure is to impose these constraints on a mapping, which takes a set
of weights {bj} corresponding to a monotone scheme (which may only be first-
order accurate) to a set of weights {b̂j} corresponding to a scheme that is both

High Order Fluctuation Schemes on Triangular Meshes 11



monotone and of maximum accuracy. In reformulating, we allow for an arbitrary
number N of degrees of freedom per triangle. The mapping from the N-vector {bj}
to the N-vector{b̂j} cannot be linear, because of the Godunov Theorem, but there
are many such nonlinear mappings. They are the truly multidimensional analogues
of limiter functions [9] and we expect their thorough investigation to take consid-
erable time.

Here, we simply offer two examples for the case N=3, presenting the vectors
b=(b1, b2, b3) and b̂=(b̂1, b̂2, b̂3) as the barycentric coordinates of a point in
space with respect to an equilateral triangle. To ensure boundedness, we insist that,
for all j, 0 [ b̂j [ 1, so that the point b lies within the triangle, or on its boundary.
A weaker condition, constraining the point b to a finite neighborhood of the
triangle, seems possible but has not yet been explored.

If the monotone weights are all positive, then b already lies within the triangle,
and it is natural to take simply b̂=b. If b lies outside the triangle, one possibility is
simply to project b onto the boundary of the triangle. For example, we may take

b̂j=
b+

j

; j b+
j

with x+=max(0, x) (12)

In Fig. 2 this is shown geometrically on the left. The mapping from b to b̂ is always
a translation toward one of the vertices.

An alternative is to take b̂ as the point on the boundary of the triangle that is
closest to b where the reference triangle (1, 2, 3) of Figure is materialized by an
equilateral triangle. The following logic accomplishes that

1. If b1, b2, b3 are positive, define b̂j=bj,

2. Else

(a) If b1 is negative, define bg
2 =b2+b1

2 and bg
3 =b3+b1

2

(i) If bg
2 [ 0, b̂1=b̂2=0, b̂3=1

Fig. 2. Geometrical illustration of the two limiters.

12 Abgrall and Roe



(ii) If bg
3 [ 0, b̂1=b̂3=0, b̂2=1

(iii) If bg
2 \ 0 and bg

3 \ 0, b̂1=0, b̂2=bg
2 and b̂3=bg

3

(b) If b2 is negative, consider (a) with the transformation of indices and
change the indices according the rules 1 Q 2, 2 Q 1, 3 Q 3.

(c) If b2 is negative, consider (a) with the transformation of indices and
change the indices according the rules 1 Q 3, 2 Q 2, 3 Q 1

Since b̂j is homogeneous of degree 1 in xj, this can be coded without division.
In Fig. 2 this map is shown geometrically on the right. Extension to N \ 4 is
straightforward for both maps.

3.2. Case of a Linear Flux

We start by f(u)=lFu where lF is some constant vector. If uh is a piecewise
linear function, the residual on T, F, can be written

F= C
Mi ¥ T

kiui (13)

where

ki=F
T

NLi · lF dx=1
2 lF · nFi.

The vector nFi is the inward normal vector to T opposite the vectex Mi, see Fig. 3.

3.2.1. The N Scheme

The N scheme may be written in several ways, one of which is

Fi=k+
i (ui − ũ). (14)

For consistency with the definition (13) we must have

C
j

k+
j uj −1C

j
k+

j
2 ũ=C

j
kjuj

Fig. 3. Inward normal vectors nFi.
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so that

−1C
j

k+
j
2 ũ=C

j
k−

j uj

because kj=k+
j +k−

j . Since ; jkj=0 because ; j nj=0, we have

ũ=1C
j

k−
j
2−1 1C

j
k−

j uj
2 . (15)

The N scheme is defined by Eqs. (14) and (15). We define

n=1C
j

k−
j
2−1

[ 0

and note that yet another definition of the N scheme would be

FT
i =C

j
k+

i nk−
j (ui − uj)=C

j
cij(ui − uj). (16)

where cij=k+
i nk−

j . Since cij \ 0, the N scheme is monotonicity preserving under the
constraint

Dt
|T|

max
i

C
T, Mi ¥ T

C
Mj ¥ T

cij [ 1.

There are two types of triangles : those for which only one kj is positive, and
those for which two of the kj s are positive. In the first case, the triangle is called
one target ; in the second case, it is a two target triangle. For a one target triangle,
assume k1 > 0, k2, k3 [ 0, so that

FT
1 =FT, FT

2 =0, FT
3 =0.

In this case the point b lies at one vertex of the triangle; either of the above map-
pings will leave it there . In a two target triangle, say k1, k2 > 0 and k3 < 0. We have

FT
1 =k1(u1 − u3), FT

2 =k2(u2 − u3), FT
3 =0.

In this case b lies at one side of the triangle, but not necessarily between the ver-
tices. In fact, in a two target case, we have, in a smooth steady state, FT=O(h3),
but FT

1 , FT
2 =O(h2). So the point b may lie arbitrarily far from the triangle. This

example shows that the scheme is only first order accurate at steady state, and this
is confirmed by numerical experiments.

3.2.2. The LDA Scheme

A second order upwind scheme is the LDA (Low Diffusion Advection) scheme
defined by

Fi=−nk+
i F. (17)
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Since FT
i =; j − (k+

i nkj)(ui − uj)=; j cij(ui − uj) where cij=−k+
i nkj, we see that cij

may be either positive or negative, so that the LDA is not a monotonicity preserv-
ing scheme in general. However, (17) shows that each Fi is of the same order as FT,
and the scheme should be second-order in the steady state. Again this is confirmed
by numerical experiments. However, we see that in the one target case, the two
schemes coincide.

3.2.3. The PSI Scheme

The PSI (Positive Streamwise Invariant) scheme of Struijs [2] is constructed
from the N scheme using one of the limiter presented in paragraph 3.1. Remarkably
the scheme does not depend on which of the two limiters is chosen! This is because,
in the two target case, b lies on an edge, and if it is outside the triangle, either
limiter will move it to the nearest vertex. This gives precisely the successful PSI
scheme of Struijs.

3.3. Case of a Non Linear Flux

Similar schemes can be constructed for the problem

div f(u)=0

provided we can find, for each element T, a local linearization, that is to say, a
vector lF̂ such that, for a piecewise interpolant uh,

F
T

div f(uh) dx=F
T

lF̂ · Nuh dx.

In the case of Burgers’ equation f(u)=(u2/2, u), which we employ later as a test
problem in numerical examples, a solution is given by lF̂=(u1+u2+u3

3 , 1), (u1, u2, u3)
being the values at the three vertices.

4. VARIATIONAL FORMULATION OF THE PSI AND LDA SCHEMES

In this section, we describe, for the linear PDE, a variational formulation of
the PSI and LDA schemes that is useful in the sequel. The case of a non linear flux
can be discussed in the same way, at least formaly.

We assume that uC
− is a trace, that of a function also denoted by uC

− . The
solution u of the problem (1–2) can be rewritten as u=uC

− +v, and v satisfies

lF · Nv=g x ¥ W

v=0 on C−.
(18)

with g=lF · NuC
− . For the sake of simplicity, we assume that W is polygonal, and

that the mesh is adapted to the boundary (“W=“(1T ¥ yh
T)). To be consistent with

the previous sections, the unknown function v in (18) is still denoted by the letter u
in the rest of this section.
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Taking j piecewise linear, we have

C
i

j(xi) C
T, Mi ¥ T

Fi=0, for Mi ¨ C−,

ui=0 if Mi ¥ C−

(19)

We assume that the residual Fi is

Fi=biF, F=F
T

(lF · Nuh − g) dx

with ; j bj=1 and bj bounded. The relation (19) can be rewritten as

C
i

j(xi) C
T, Mi ¥ T

Fi=C
T

1 C
Mj ¥ T

bjj(xj)2 F

Then, we have

C
T

1 C
Mj ¥ T

bjj(xi)2 F=F
W

a(j)(lF · Nuh − g) dx (20)

where, for any triangle T,

a(j)|T= C
Mj ¥ T

bjj(xj).

Consider the following space V1
h={uh piecewise linear and continuous,

uh
|C − =0} equipped with the graph norm

||uh||2
V1

h
=F

W

(lF · Nuh)2.

Compared to Section 2.2.1, we have introduced the homogeneous Dirichlet
boundary condition in the definition of V1

h .
We denote by a the bilinear form on V1

h × V1
h defined by

a(uh, vh)=F
W

a(vh) lF · Nuh dx.

An element of V1
h is a solution of (19) in V1

h if and only if for any vh ¥ V1
h we

have

a(uh, vh)=F
W

a(vh) g

This is the variational formulation of (19).
We specialise now to the PSI scheme. The case of the LDA scheme is similar.

The first remark is that for any vertex Mi, there is at least one triangle having Mi

as vertex that is one target on Mi.
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Fig. 4. There is at least one one–target triangle.

To prove that, consider all the triangle T sharing Mi. As in Fig. 4, we number
the triangles in the positive orientation. Consider T a triangle, its vertices are
{Mi, A, B}. The triangle T is one target to Mi if lF belongs to the angular sector
defined by MF iA, MF iB, that is if det(lF, MF iA) > 0 and det(lF, MF iB) < 0. There is
clearly at least one one-target triangle because as a point A rotates completely
around Mi, the value of det(lF, MF iA) must change sign twice (when MF iA is parallel
or antipallel to lF). One of the sectors must span the transition from positive to
negative. The proof extends to 3D.

The consequence of that is, denoting by TMi
the one–target triangle at Mi, that

F
W

a(vh)2 dx \ C
i

|TMi
| (vh

i )2.

If the mesh is regular, there exist a positive constant C such that

C
i

|TMi
| (vh

i )2 \ C F
W

(vh)2 dx

(here we use the fact that vi=0 on C−), so we get

F
W

a(vh)2 dx \ C F
W

(vh)2 dx. (21)

Using this remark, we show in Appendix 2, Proposition 2.1, that there exists
C > 0 such that

sup
vh ¥ V1

h

>W a(vh) lF · Nuh

`>W (vh)2
\ C =F

W

(lF · Nuh)2. (22)

The inequality (22) shows that we have a uniform inf–sup condition, that is we
have stability of the scheme (see [10]).

High Order Fluctuation Schemes on Triangular Meshes 17



Moreover, it is possible to derive an error estimate. First, we notice that

a(uh, vh) [ ||uh||V1
h

||a(vh)||L2 [ ||uh||V1
h

||vh||V1
h
.

The last inequality comes from the fact 0 [ bi [ 1.
By Céa’s lemma, we have the inequality

||uh − u||V1
h

[ 11+
1
C
2 inf

wh
¥ V1

h

||u − wh||V1
h
. (23)

In particular, if u ¥ H1(W), we have the existence of CŒ such that

||uh − u||V1
h

[ CŒh. (24)

The important fact are the relation (20) and the inequality (21). This inequality
comes from the upwind property of the scheme and enables us to show the coerci-
vity of the scheme. We note that this proof works also for the LDA scheme.

5. CONSTRUCTION OF HIGH ORDER UPWIND MONOTONICITY
PRESERVING RESIDUAL DISTRIBUTIVE SCHEME

We show the explicit construction of a third order scheme. The extension to
higher order accuracy is straightforward.

Denote V2
h the space of continuous functions that are quadratic in each

triangle T and are vanishing on the inflow boundary C−. The space V2
h is equipped

with the graph norm. We want to construct a scheme whose variational formulation
reads: find uh ¥ V2

h such that

-vh ¥ V2
h , F

W

a(vh) l · Nuh=F
W

a(vh) g.

We need to specify the mapping a. The key is to have an inequality of the type (22).
If so, the error estimate (23) is obvious, and (20) becomes

||uh − u||V2
h

[ CŒh2. (25)

Consider T a triangle, and TI, TII, TIII and TIV as in Fig. 1, and we still denote
by s the degrees of freedom of uh. We can construct the N scheme on the sub-
triangles of T. We denote by FT−

T
s for T −

T=I, II, III, IV the corresponding signals
sent to the points contained in T. Then we consider

FT −

T
=F

T −

T

lF · Nuh.

Since uh is now quadratic,

FT −

T
] C

s ¥ T −

T

FT −

T
s ,

but we still can use the N scheme for a comparison purpose. We insist that the
signals sent by the subtriangles to their vertices be limited to the same order of
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magnitude as the restriction of the high-order residual FT −

T
. Thus we define the

scheme by a set of modified signals

YT −

T
s =bT −

T
s FT −

T
(26)

with

bT −

T
s =

1FT −

T
s

FT −

T

2+

C
sŒ ¥ T −

T

1FT −

T
sŒ

FT −

T

2+
(27)

and

Ys= C
T −

T, s ¥ T−

T

YT −

T
s . (28)

The conservation relation is

C
s ¥ T

Ys= C
T −

T … T

F
T−

T

lF · Nuh=F
T

lF · Nuh.

Provided the stability conditions of the Lax Wendroff condition are true, the
scheme will be convergent: uh is continuous across the edges of T, thanks to the
continuity of uh, so is the flux fh(uh)=lF · Nuh.

Let us come back to the stability property of the scheme. The variational for-
mulation is given by

a(vh)T −

T
= C

s ¥ T −

T

bT −

T
s vh(s).

The series of inequality (21–22) works, so that we get the stability and the error
estimate (25). The proof is given in Appendix 2.

An extension of the LDA scheme (which has been tested and provide similar
error curves, but the results are not reported here) is the following. Consider
T −

T … T, define kT −

T
s =lF · nFT −

T
s where nFT −

T
s is the inward normal to T −

T opposite to s. In
(26), we replace bT −

t
s by

bT −

T
s =−(kT −

T
s )+ 1 C

sŒ ¥ T −

T

(kT −

T
sŒ )+2−1

.

This defines a high order LDA scheme. It is not monotone.

6. SOME NUMERICAL RESULTS

In each figure, all the degrees of freedom are ploted.
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6.1. Linear Advection

We consider the problem

− y
“u
“x

+x
“u
“y

=0 (x, y) ¥ [ − 1, 1] × [0, 1]

u(x, 0)= 30 if x ¨ [0.1, 0.7]

sin (p x − 0.1
0.6 ) x ¥ [0.1, 0.7]

(29)

The exact solution is, with r=`x2+y2, u(x, y)=sin(p r − 0.1
0.6 ) if r ¥ [0.1, 0.7] and 0

elsewhere. The numerical solution is computed with a pseudo-time marching algo-
rithm where the initial solution is u0=2.

On each sub-triangle T −

T, we employ the scalar N scheme. The average velocity
is defined by

(−ȳ, x̄)=F
T

(−y, x) dx dy.

Three schemes are compared: the standard second order PSI scheme, a third order
scheme and a fourth order one. The high order schemes are constructed using P3

and P4 interpolation with the first limiter of Section 5. The mesh has 628 vertices
and 1162 elements and is displayed on Fig. 5.

The isolines of the solutions are displayed on Fig. 6. The circular shape of the
solution is perfectly well respected in each case. What is more interesting is a plot in
the exit section, i.e., for x=0 and y [ − 1. This is given in Fig. 7 with a comparison
with the exact one. We also provide a zoom of the solution around (x, y)=
(0, −0.5) where the solution is maximum. This figure shows clearly that an increase
of the formal accuracy of the scheme does improve its effective accuracy. The
fourth order scheme is almost perfect.

Fig. 5. Mesh for the linear circular advection problem.
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Fig. 6. Isolines of the exact and computed solutions.

Last we provide errors for the advection problem lF=(0, 1)T and the boundary
condition u(x, y)=cos px on [ − 1, 1] × [0, 1]. On Fig. 8, we provide the L2 errors
for the second order PSI scheme (Fig. 8a), the third order one (Fig. 8b) and the
fourth order one (Fig. 8c). We see that the error slope of the r+1 th order scheme is
between r+1/2 and r+1. This is not in contradiction with the expected theoretical
r+1/2 order of accuracy. On Fig. 9, we display the L. errors: the second order PSI
scheme (Fig. 9a), the third order one (Fig. 9b) and the fourth order one (Fig. 9c).
We see that the L. errors are closer from the slope r+1/2, which seems to indicate
that there is no clipping phenomena as in ‘‘standard’’ schemes. However, the fourth
order schemes does not provide the expected accuracy, see Fig. 9c. This may be a

Fig. 7. Plot of the solutions in the interval [ − 1, 0], and zoom around the maximum.
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Fig. 8. L2 error of the: (a) second order, (b) third order and (c) fourth order PSI schemes.

implementation error, or some roundoff problem (the computations have been per-
formed on a 1Ghz Pentium IV processor with the Intel Fortran 90 compiler, and we
have already experienced similar problems on this processor).

To obtain these results, a careful implementation of the limiter function

b̂i=

1Fi

F
2+

C
3

j=1

1Fj

F
2+

is needed. The first numerical results did not quite deliver the expected accuracy. It
seems more important for the higher order schemes than for the the second order
PSI scheme that ; j b̂j=1 exactly. We have chosen to compute the revised weights
(in pseudo fortran) as

b̂i=
(1+sign(1., FiF)) Fi+E

;3
j=1 (1+sign(1., FjF)) Fj+3E

with E=10−10 in double precision.
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Fig. 9. L. error of the: (a) second order, (b) third order and (c) fourth order PSI schemes.

6.2. Burger Equation

We consider the Burger equation

1
2

“u2

“x
+

“u
“y

=0, x ¥ [0, 1] × [0, 1]

u(x, y)=1.5 − 2x on the inflow boundary

The exact solution is

u(x, y)=˛ − 0.5 if y [ 0.5 and − 2(x − 3
4)+y − 1

2 [ 0

1.5 − if y [ 0.5 and − 2(x − 3
4)+y − 1

2 \ 0

max 1 − 0.5, min 11.5,
x − 3

4

y − 1
2

22 else

High Order Fluctuation Schemes on Triangular Meshes 23



Fig. 10. Mesh for the Burger’s equation.

Fig. 11. Isolines of the exact and computed solutions.
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Fig. 12. Plot of the solutions across the shock, y=0.75.

Once more, the solution is computed with a pseudo-time marching algorithm, the
initial condition is set to u=−0.5. We represent the solutions computed for the
mesh represented on Fig. 10 with 1041 vertices and 1960 triangles.

The isolines of the solutions are displayed on Fig. 11.
We also display cross sections for y=0.75 across the discontinuity (Fig. 12)

and y=0.25 across the fan (Fig. 13).
Last, we give a zoom of the cross-section y=0.25 around the corner of the fan

on Fig. 14. We see a very clear improvement of the quality of the solution with the
increase of the accuracy order.

7. CONCLUSIONS

We have presented and analyzed a class of schemes for hyperbolic problems,
with a particular emphasis on scalar problems. We have provided a very general
condition that ensures that the limit solution, if it exists, is a weak solution of the
problem. Then we have discussed the construction of second-order monotone
schemes from a new perspective that extends very naturally to higher-order. It is,
however, not the only possible extension; it should be compared with proposals
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Fig. 13. Plot of the solutions across the fan, y=0.25.

recently put forward by Caraeni [7] (see also [11]). It also has many points of
similarity with ideas being developed in a finite-volume context by Wang [12].
Many variations of the present method are also possible, in particular the use of
other function spaces for representing the solution. The extension to quadrangular
meshes can be conducted by cutting every quadrangle into two triangles. Exploring
these possibilities may lead to robust, high-order, methods that are less costly than
the currently popular Discontinuous Galerkin methods.

Fig. 14. Zoom across the fan, around the corner.
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The extension to systems can proceed in several ways. The underlying N
scheme can be extended formally by treating the coefficient kj in Section 3 as matrix-
valued [13]. Another method is to decompose a vector-valued residual into com-
ponents associated with scalar advection problems and Cauchy-Riemann systems,
treating each of these components independently, as discussed in [11].

APPENDIX A. PROOF OF THEOREM 2.2

For the sake of simplicity, we assume d=2, the generalisation is immediate.
To begin with, we recall the notations of Section 2.2.1. If Th is a mesh, T is a

generic triangle, T −

T is any of the sub-triangles constructed from the degrees of
freedom of the scheme (7)

un+1(s)=un(s) −
Dt

|C −

s |
C

T −

T … T, s ¥ T −

T

FT −

T
s

and Ch is the set of dual control volumes associated to them.
We also need the two spaces

• Vk
h ={vh ¥ C0(R2)p; vh |T polynomial of degree k, - T −

T … T ¥ Th}

• Xh={vh; vh |C constant ¥ Rp, - C ¥ Ch}.

Last, pk
h is the Pk interpolation defined on Vk

h .
We start by a lemma that is inspired from [15].

Lemma A.1. Let y > 0 and N the integer part of y
Dt . We consider Q … R2, a

bounded domain. Let (uh)h be a sequence such that uh( . , tn) ¥ (Xh)p for any n [ N.
We assume there exists a constant C independant of h and u ¥ L2

loc(Q× [0, y])p such
that

sup
h

sup
x, y, t

|uh(x, y, t)| [ C, lim
h

||uh − u||L2(Q× [0, T])=0.

Then

1. limh (;N
n=0 Dt ;T … Q ;T −

T … T |T −

T | ;s, sŒ ¥ T −

T
||uh(s) − uh(sŒ)||)=0.

2. ũh=p1
huh satisfies limh h ||Nũh||L2(Q× [0, T])=0.

Proof. It is enough to prove the lemma for real valued functions v and (vh)h

that satisfies the assumptions.

First claim. For any sub-triangle T −

T, we define (w being a cycle on the three
vertices of T −

T)

vh
|T= C

s ¥ T
vh(s) qCs 5 T

wh
|T= C

s ¥ T
vh(w(s)) qCs 5 T.

High Order Fluctuation Schemes on Triangular Meshes 27



This enables to define two functions on R2 × R+ that are bounded independantly
of h. Moreover,

|T| C
s ] sŒ

|vh(s) − vh(sŒ)|=3 F
T

|vh − wh| dx.

The ‘‘3’’ comes form the definition of the dual cells,
We have

C
N

n=0
Dt C

T … Q

C
T −

T … T
|T −

T | C
s, sŒ ¥ T −

T

|(vh(s))n − (vh(sŒ))n|

=3 F
tN

0
F

2 T … Q

|vh − wh| dx dt

[ 3 F
y

0
F

2 T … Q

|vh − wh| dx dt.

Since (vh) is bounded, there exists vŒ ¥ L.(Q× [0, y]) such that vh
Q vŒ for the weak

star topology. Similarly, the exists w ¥ L.(Q× [0, y]), with wh
Q w for the weak star

topology.
Since vh Q v in L2

loc, we have vŒ=v because Q× [0, y] is bounded and
C.

0 (Q× [0, y]) is dense in L1(Q× [0, y]).
Let us show that w=v. Let be f ¥ C.

0 (R2 × R+)p We have

F
y

0
F
Q

vhf dx dt=F
y

0
C

T, T 5 Q ] ”

C
T −

T … T
C

s ¥ T −
T

vh
s F

Cs 5 T −
T

f(x, t) dx dt

=F
y

0
C

T, T 5 Q ] ”

C
T −

T … T
C

s ¥ T −
T

wh
s F

Cw − 1(s) 5 T
f(x, t) dx dt

=F
y

0
F
Q

whf dx dt+F
y

0
C

T, T 5 Q ] ”

C
T −

T … T
C

s ¥ T−
T

× wh
s
1F

Cw − 1(s) 5 T
f(x, t) dx dt − F

Cs 5 T
f(x, t) dx dt2

We can also write

F
Cs 5 T −

T

f dx dt=|Cs 5 T −

T | f(s), F
Cw − 1(s) 5 T −

T

f dx dt=|Cs 5 T −

T | f(sŒ)

for s ¥ Cs 5 T −

T and sŒ ¥ Cw
− 1(s) 5 T −

T
well chosen. Since Nf is bounded on Q× [0, y]

and vh is bounded, since |Cs 5 T −

T |=|Cw
− 1(s) 5 T −

T |,3 we have

3 See Remark A.2

:F y

0
F
Q

vhf dx dt − F
y

0
F
Q

whf dx dt : [ Ch

where C is independant of h. Hence, w=vŒ=v.
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The same technique shows that (v2
h) and (w2

h) have the same weak star limit.
Let us show it is v2. By density of C.

0 (Q× [0, y]) in L1(Q× [0, y]) and since v2
h is

bounded independantly of h, we may choose test functions f in C.

0 (Q× [0, y])p.
The function f is bounded in Q× [0, y]. Hence, we have

F
Q× [0, y]

|v − vh |2 f dx dt Q 0,

and then

F
Q× [0, y]

v2f dx dt − 2 F
Q× [0, y]

vvhf dx dt+F
Q× [0, y]

v2
hf dx dt Q 0.

By the Cauchy Schwarz inequality, vf ¥ L1(Q× [0, y]); the second term tends
towards

F
Q× [0, y]

v2f dx dt.

and the v2
h Q v2 in L. weak star.

Last, by the same argument for f=1, since w2
h Q v2 in L. weak star, we obtain

F
Q× [0, y]

|wh − v|2 dx dt Q 0,

and finally,

F
Q× [0, y]

|wh − vh |2 dx dt Q 0.

The conclusion comes because Q× [0, y] is bounded, hence L1(Q× [0, y])
… L2(Q× [0, y]).

Second claim. We have

Nṽ |T −

T
h =

1
2 |T −

T |
(us1

nFT −

T
s1

+us2
nFT −

T
s2

+us3
nFT −

T
s3

)

=
1

2 |T −

T |
((us2

− us1
) nFT −

T
s2

+(us3
− us1

) nFT −

T
s3

),

thus

Dt C
N

0
F
Q

||Nṽn
h ||2 dx dt=Dt C

N

0
C

T, T … Q

|T| C
T −

T … T
||(Nṽn

h)|T −
T
||2

[ C1Dt C
N

0
C

T, T … Q

C
T −

T … T
C

s, sŒ ¥ T −
T

|vn
s − vn

sŒ |
2

because the triangulation is regular (Assumption 2.1). We conclude by the same
arguments as before. i
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Remark A.2. One can consider distributive schemes that are formulated on
non triangular meshes. In this case, the arguments remain similar, as soon as we
assume that the elements in the mesh have a number of edges that is bounded
independantly of h, and that the area of the elements satisfies for any W bounded

C
Ts 5 W ] ”

C
(T −

T)sl
neighbor of (T −

T)si

| |(T −

T)si
| − |(T −

T)sil
| | Q 0

when h Q 0.

Lemma A.3. Let j ¥ Ck+1
0 (R2 × R+). With the assumptions of Theorem 2.2,

one has

C
n

Dt C
s

|Cs | (un+1
s − un

s) j(s, tn)+F
R

2 × R
+

u
“j

“t
dx dt+F

R
2

u0(x) j(x, 0) Q 0

when h Q 0.

The proof is classical: it is the same as in the proof of the classical Lax
Wendroff theorem.

Let us introduce ks the basis function at s and YT
s , YT −

s T
the signals

YT
s =F

T
ks div fh(uh),

YT −

s T
=F

T −

T

ks div fh(uh).

We have

Lemma A.4. Let j ¥ Ck+1
0 (R2 × R+), f ¥ (C1(Rm))d, d=2. Assume that fh

satisfies the Assumption 2.2(iii), and that uh satisfies those of Theorem 2.2. Then

Dt C
n, T

C
s ¥ T −

T … T

j(s, tn) YT −

T
s (un

h)+F
R2 × R

+
f(u(x, t)) div j(x, t) dx dt Q 0

when h Q 0.

Proof. Let j ¥ C1
0(R2 × [0, +.[). Let W and y such that supp(j) …

W × [0, y]. Consider T ¥ Th Now pk
h j is the interpolation of j of degree k. We have:

Dt C
n, T

C
s ¥ T −

T

j(s, tn) YT −

T
s (un

h)=C
n, T

F
tn+1

tn
F

T
pk

h j(x, tn) div fh
T(un

h) dx dt

One can apply the Green formula,

C
T

F
T

pk
h j(x, tn) div fh

T(un
h) dx dt= − C

T
F

T
N(pk

h j)(x, tn).fh
T(un

h) dx

+C
T

F
“T

pk
h j(x, tn) fh

T(un
h).nF dx.
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Since pk
h j is continuous and from Assumption 2.2(iii), the second sum on the right

hand side cancels.
Moreover, j is Ck+1 and the triangulation is regular: N(pk

h j) is uniformly
bounded by a constant C independant of h. Thus we have

:C
n, T

F
T × [tn, tn+1]

N(pk
h j)(x, tn).fh

T(un
h) dx dt − C

n, T
F

T × [tn, tn+1]
Nj .f(u) dx dt :

[ C C
n, T

F
T × [tn, tn+1]

||fh(uh) − f(u)|| dx dt

+C
n, T

F
T × [tn, tn+1]

||Npk
h j − Nj|| ||f(uh)|| dx dt

The first sum is less than ||fh(uh) − f(u)||L1(W × [0, y]) and tends to 0 because ||uh ||. is
bounded independantly of h, f is C1 and uh Q u in L2

loc.
Similarly, since uh is bounded and f is continuous, f(uh) is bounded uniformly

in h by a constant C. The second term of the right hand side sum is bounded by the
L1 norm of Npk

h j − Nj that tends to 0 since the triangulation is uniform. i

Proof of Theorem 2.2. We multiply (7) by j(s, tn) |Cs |, where the test func-
tion j belongs to Ck+1

0 (R2 × [0, +.[), such that supp(j) … W × [0, y] for W and T
well chosen (nDt [ T). Then we sum up on J the set of (s, tn) such that (s, tn) ¥ W:

C
(s, tn) ¥ J

|Cs | (un+1
s − un

s) j(s, tn)+Dt C
(s, tn) ¥ J

C
T −

T; s ¥ T −

T

FT−

T
s (un

h) j(s, tn)=0,

From Lemma A.3, we have

C
(s, tn) ¥ J

|Cs | (un+1
s − un

s) j(s, tn)=−F
R

2 × R
+

u
“j

“t
− F

R
2

u0j(., 0)+o(1).

For the space term, we write:

C
(s, tn) ¥ J

C
T−

T; s ¥ T −
T

FT −

t, n
s j(s, tn)

= C
T … W

1 C
s ¥ T−

T … T

j(s, tn)(FT, n
s − YT −

T, n
s )2+ C

T … W

C
s ¥ T −

T … T

j(s, tn) YT −
T, n

s ,

By the conservation relation, we have

C
T −

T … T

C
s ¥ T−

T

(FT −

T, n
s − YT −

T, n
s )=0,
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so we have, whatever sŒ degree of freedom in T,

C
T −

T … T

C
s ¥ T −

T

j(s, tn)(FT, n
s − YT −

T, n
s )

= C
T −

T … T

C
s ¥ T −

T

j(s, tn)(FT, n
s − YT −

T, n
s ) − j(sŒ, tn) C

T −

T … T

C
s ¥ T −

T

(FT −

T, n
s − YT −

T, n
s )

= C
T −

T … T

C
s ¥ T −

T

(j(s, tn) − j(sŒ, tn))(FT−

T, n
s − YT −

T, n
s ).

Thanks to this relation, we can rewrite the second term of the previous sum as

k(k+1)
2

C
T … W

1 C
s, sŒ ¥ T

(j(s, tn) − j(sŒ, tn))(FT, n
s − YT, n

s )2

By Lemma A.4, we have

Dt C
n=0, N

C
s ¥ J

C
T; s ¥ T

FT, n
s j(s, tn)=−F

R
2 ×R

+
f(u(x, t)) div j(x, t) dx dt+o(1).

Last, from Assumption 2.1 and Lemma A.1, setting FT, n
s − YT, n

s =ST, n
s to simplify,

we have

Dt :C
n, T

C
s ] sŒ ¥ T −

T

ST, n
S (j(s, tn) − j(sŒ, tn)) :

[ Ch Dt C
n=0, N

C
T … W

|ST
s (un

h)|

[ Ch2 Dt C
n=0, N

C
T … W

C
s, sŒ ¥ T

|un(s) − un(sŒ)| Q 0,

because both Ys and Fs satisfy Assumption 2.3. This ends the proof. i

Remark A.5. If we assume only the continuity of the fluctuations and a
regular mesh, the last part of the proof remains identical since it is sufficient to show
that the translated of un

h which come in the computation of fT
s converge to u at least

for a subsequence and almost everywhere. As for the classical Lax–Wendroff
theorem, this is proved via Lemma A.1.

APPENDIX B. STABILITY PROOF

Define Vk
h being the space of continuous functions made of piecewise poly-

nomials of degree k on each triangle T with Dirichlet boundary conditions on the
inflow boundary of W. We consider the following bilinear form defined on Vk

h × Vk
h

a(vh, uh)=F
W

a(vh) lF · Nuh dx,
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where, following the notations of Section 5, we have defined

aT −

T
(vh)= C

s ¥ T −

T

bT −

T
s vh(s).

We assume that for any degree of freedom, there is at least one sub-triangle T −

T for
which bT −

T
sŒ =0 except for s where bT −

T
s =1. We note that a maps Vk

h on the set of L2

functions that are constant on each T −

T.
We know that there exists c > 0 such that

F
W

a(vh)2 dx \ c2 F
W

(vh)2.

In this appendix, we show that

Proposition B.1. With Vk
h defined as above, there exists a constant Ck > 0

such that

inf
uh

¥ Vk
h

sup
vh

¥ Vk
h

a(vh, uh)

`>W (vh)2 dx `>W (lF · Nvh)2
\ Ck > 0.

Proof. We denote by || . ||0, W the L2 norm. First, we have

sup
vh

¥ Vk
h

a(vh, uh)
||vh||0, W

= sup
vh

¥ Vk
h

1 a(vh, uh)
||a(vh)||0, W

||a(vh)||0, W

||vh||0, W

2\ c sup
vh

¥ Vk
h

a(vh, uh)
||a(vh)||0, W

=||Pa(lF ·Nuh)||

where Pa denote the L2 projection on the space a(Vk
h ) … L2(W).

The problem is to estimate ||Pa(lF · Nuh)||, that is

sup
vh

¥ Vk
h

>W a(vh) lF · Nuh

||a(vh)||0, W

.

We first note that for any vh ¥ Vk
h , we have

F
W

a(vh) lF · Nuh dx=F
W

a(vh) U dx

where U is the piecewise constant function defined on each T −

T by

U|T −

T
:=

>T −

T
lF · Nu dx
|T −

T |
. (30)

The second thing is to note that

F
W

a(vh) U dx=C
T

C
T−

T … T

F
T −

T

a(vh) UT −

T
dx=C

T
C

T −

T … T

F
T −

T

a(vh
1) UT −

T
dx

where vh
1 is the continuous function, linear on each sub-triangle T −

T, that interpolate
{vh(s)}s ¥ T −

T
. The remark enables to reduce the problem to the case k=1.

From now on, the symbol vh denotes a continuous piecewise linear function
defined on the conformal triangulation of W made by all the sub-triangles
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{{T −

T}T −

T … T}T … W. By abuse of notation, we still denote this space of functions as V1
h .

As a consequence, the degrees of freedom that define the functions of V1
h are the

degrees of freedom s.
Then, we show the existence of C > 0 such that for any vh piecewise linear and

continuous,

sup
vh

¥ V1
h

>W a(vh) U dx
||vh||0, W

\ C \ a =C
T −

T

|T −

T | U2
T −

T

where U is the piecewise constant function defined by (30).
We have, for any U piecewise constant on each T,

>W a(vh) U

`>W a(vh)2 dx
=

;T −

T
|T −

T | a(vh)|T −

T
UT −

T

`;T −

T
|T −

T | a(vh)2
|T −

T

.

We have also

a(vh)2
|T −

T
[ 1 C

s ¥ T−

T

(bT −

T
s )221 C

s ¥ T −

T

vh(s)2 [ C C
s ¥ T −

T

vh(s)2

for some C > 0 independant of h because bT −

T
s \ 0. Thus we have

C C
T −

T

|T −

T | 1 C
s ¥ T −

T

vh(s)22 \ F
W

a(vh)2 dx,

and then

>W a(vh) U

`>W a(vh)2 dx
\ C−1

;T−

T
|T −

T | (;s (UT −

T
bT −

T
s ) vh(s))

;T −

T
|T −

T | (;s ¥ T −

T
vh(s)2)

.

Taking the supremum of these inequalities, we get

sup
vh

¥ V1
h

a(vh, uh)
||vh||0, W

\ C−1 =C
T −

T

|T −

T | U2
T−

T
1C

s

(bT −

T
s )22 .

Since ;s ¥ T −

T
bT −

T
s =1 and bT −

T
s \ 0, there exists a constant a > 0 such that

sup
vh

¥ V1
h

>W a(vh) U dx
||vh||0, W

\ a =C
T −

T

|T −

T | U2
T −

T
.

Coming back to the original problem, we have shown the existence of C > 0
such that

C =C
T

C
T −

T … T

(>T−

T
lF · Nuh)2

T −

T

[ ||Pa(lF · Nuh)||0, W. (31)

If k=1, we have UT=lF · Nuh, so (31) is nothing more than

C ||lF · Nuh||0, W [ ||Pa(lF · Nuh)||0, W.
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In all cases k > 1, the left hand side of (31) is quadratic in uh, and it is easy to
prove that if

C
T −

T … T

(>T −

T
lF · Nuh)2

T −

T

=0,

the k2 > (k+1)(k+2)/2− 2 terms4 of the sum are all vanishing so that lF · Nuh=0 in

4 The vector space of functions spanned by lF · Nuh with uh ¥ Vk
h is of dimension (k+1)(k+2)

2 − 2.

the vector space of polynomials of degree k on T, denoted Pk(T).
This shows that on the finite dimensional space Pk(T), the two quadratic forms

F
T

(lF · Nuh)2

and

C
T −

T … T

(>T −

T
lF · Nuh)2

T −

T

are equivalent. Hence, there exists ck > 0 such that

C
T−

T … T

(>T −

T
lF · Nuh)2

T −

T

\ ck F
T

(lF · Nuh)2.

This ends the proof: there exists Ck > 0 such that

inf
uh

¥ Vk
h

sup
vh

¥ Vk
h

a(vh, uh)

`>W (vh)2 dx `>W (lF · Nvh)2
\ Ck > 0. i
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