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Abstract Modal analysis of the flux reconstruction (FR) formulation is performed to obtain

the semi-discrete and fully-discrete dispersion relations, using which, the wave properties

of physical as well as spurious modes are characterized. The effect of polynomial order,

correction function and solution points on the dispersion, dissipation and relative energies

of the modes are investigated. Using this framework, a new set of linearly stable high-

order FR schemes is proposed that minimizes wave propagation errors for the range of

resolvable wavenumbers. These schemes provide considerably reduced error for advection

in comparison to the Discontinuous Galerkin scheme and benefit from having an explicit

differential update. The corresponding resolving efficiencies compare favorably to those of

standard high-order compact finite difference schemes. These theoretical expectations are

verified by a comparison of proposed and existing FR schemes in advecting a scalar quantity

on uniform as well as non-uniform grids.

Keywords High-order · Flux reconstruction · Discontinuous Galerkin · dispersion ·

Dissipation · Wave propagation
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1 Introduction

In the last two decades, high-order methods have emerged as a feasible option for high

accuracy solutions in fluid mechanics, particularly in aeroacoustics [1–3] and, to limited

extent, in turbulence [4]. The error in the numerical solution for a formally N th order method

is asymptotically bounded above by a term of order hN+1 where h is the grid spacing. The

exponential dependence on N enables high-order methods to provide higher accuracy for the

same number of degrees of freedom [5] as compared to conventional 2nd order methods.
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Owing to their ease of implementation, compact finite difference schemes [6] have been

employed widely for high-order computing, and extensions to curvilinear and deforming

meshes have also been proposed [7]. However, the application of finite difference schemes

to modern industrial problems remains limited due to the difficulty involved in generating

structured meshes for complex geometries. A popular instance of high-order methods that

can treat general unstructured meshes while retaining a compact mass matrix is the Dis-

continuous Galerkin (DG) method [8–10]. The method has been extensively analyzed and

applied to several conservation laws including the Navier–Stokes equations. Recently, Huynh

[11] proposed a flux reconstruction (FR) approach that provides a differential framework for

discontinuous finite element schemes. Besides the advantage of an identity mass matrix, the

FR framework, at least for linear fluxes, recovers the collocation based nodal DG method

as well as the Spectral Difference (SD) method [12,13]. The general framework allows for

the definition of new schemes as well, which has led to the development of energy stable FR

schemes for linear [14] as well as non-linear fluxes [15]. The approach has been extended to

triangular [16,17] and tetrahedral elements [18] and to general advection-diffusion problems

[19].

For problems involving propagation of disturbances in physical variables, a relevant mea-

sure of accuracy can be based on the the fraction of resolvable wavenumbers for which

constituent waves would be propagated with negligible numerical dispersion and dissipa-

tion. Such problems appear naturally in aeroacoustics and time dependent viscous flows

involved in transition studies. The non-conservative form of a hyperbolic system of equa-

tions provides a functional dependence of the wavespeeds on wavenumber which is denoted

as the analytical dispersion relation [20]. Similarly, the discrete numerical system corre-

sponding to a particular numerical scheme provides a numerical dispersion relation. Spectral

analysis of the numerical dispersion relation was first utilized by Tam et al. [21] to obtain

dispersion relation preserving finite difference schemes for aeroacoustics, which facilitated

the development and optimization of several implicit compact difference schemes [6,22–25]

with near-spectral resolution. Although schemes with high formal accuracy generally pro-

vide higher spectral resolution than their low-order counterparts, this is not always true as

was shown by Lele [6] who showed that an optimized 4th order scheme can provide higher

spectral resolution than a 10th order explicit central difference scheme. With the exception

of spectral methods [26], most numerical methods preserve the dispersion relation only for

low wavenumbers, and introduce significant dispersion and/or dissipation beyond a critical

wavenumber denoted as the resolving efficiency. However, spectral methods are not easily

applicable to complex flow geometries where the DG method and finite volume schemes

have obtained great success. An analysis of the DG method for wave propagation problems

was carried out by Hu et al. [27]. It was shown that the Pth order DG method applied to

linear advection results in one physical mode and P spurious or parasitic modes which get

damped out quickly on account of relatively high dissipation. In [28], the wave-properties

for DG in the case of non-uniform grids were investigated by specifying temporal frequen-

cies and studying the numerical spatial waves. It was shown that the dispersion error for the

physical mode is of order 2P + 3 and the dissipation error is of order 2P + 2. The variation

of dispersion and dissipation errors with polynomial order P was further rigorously estab-

lished by Ainsworth [29] who proved that for a fixed mesh of spacing h, these errors decay

at an exponential rate when 2P + 1 ≈ κkh, where k is the wavenumber and κ > 1 is some

constant.

Focusing on FR schemes, the first insight into spectral properties was provided by Huynh

himself [11], wherein Fourier analysis applied to 1-D advection, with fully upwinded Rie-

mann flux at the interface, was utilized to recognize the presence of principal and spurious
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eigenvalues. Taylor expansion of the principal eigenvalue was used to define an order of

accuracy in the spectral space and it was proven that this order is independent of the choice

of solution points. Additionally, the variation of the principal eigenvalue over the range

of resolvable wavenumbers was used to ascertain numerical stability limits for several FR

schemes. Another study was conducted by Vincent et al. [30] where Fourier analysis was

employed to study the wave properties of energy stable schemes known as ESFR or VCJH

[14,15] schemes. In that investigation, the authors employed an automated procedure based

on modal analysis to combine all the numerical modes into a single functional relationship

between the wavespeed and the wavenumber. It was suggested that this functional relationship

is representative of the dispersive and dissipative properties of the scheme and that multiple

modes should not be identified distinctly. A highlight of the study was the identification of

the ‘c+’scheme that offers the highest CFL limit obtained when the ESFR parameter c is

chosen to be equal to c+ for a given polynomial order.

In this paper, we first perform a direct modal analysis of the FR formulation to obtain

the semi-discrete dispersion relation which provides dispersion and dissipation properties

for all the P + 1 numerical modes, where P is the polynomial order. Modal decomposition

of the initial condition is carried out to ascertain that the spurious modes contain non-zero

energy especially at high wavenumbers. It is shown that in addition to polynomial order and

choice of correction function, the choice of solution points is also important even for linear

fluxes. The second part of the paper deals with an optimization problem to provide correction

functions that minimize wave propagation errors for a given polynomial order. The resolving

efficiency of these optimal schemes offer significant improvement over the DG scheme and

compare well with conventional compact finite difference schemes.

The paper is formatted as follows. In Sect. 2, the FR formulation is applied to 1-D advection

and modal analysis is performed to determine dispersion, dissipation and energy fractions cor-

responding to the numerical modes. In Sect. 3, the relevant minimization problem is defined

and optimal FR schemes are computationally derived that minimize wave propagation errors.

In Sect. 4, the limiting CFL values for these schemes are compared with those for existing FR

schemes. Finally, in Sect. 5, advection of a wave packet on uniform and non-uniform grids

is considered as a test case to verify the analytical expectations.

2 Fourier Analysis of FR Schemes: Energy Distribution Between the Physical Mode

and Spurious Modes

We begin with a very brief description of the FR formulation to arrive at the update equation

for 1-D advection which forms the governing system for all subsequent analysis. Bloch waves

are introduced into the update to obtain the semi-discrete dispersion relation, which in turn

provides dispersion and dissipation for each of the numerical modes. These results are then

utilized to study the effect of polynomial order, correction function and solution points on the

dispersion properties. The discrete initial condition is modally expanded in the eigenvector

basis to obtain the initial distribution of energy among the numerical modes as a function of

wavenumber. This distribution is important as it determines the relative weights of numerical

modes in the overall numerical solution. Since the spurious numerical modes are highly

dispersive and quite dissipative at low to moderate wavenumbers, the loss in accuracy of

the numerical solution is directly related to the fraction of energy captured by these modes.

Moreover, for high wavenumbers, the numerical dissipation associated with the spurious

modes can be lower than that for the physical mode, so that after enough time, the high

wavenumber components of the numerical solution become totally spurious.
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2.1 FR Formulation for 1-D Advection

A detailed account of the FR framework can be found in [11,30]. Consider a 1-D scalar

conservation law

∂u

∂t
+

∂ f (u)

∂x
= 0 in Ω ∈ R, t > 0 (1)

u(x, 0) = u0(x)

where the flux f (u) is possibly non-linear. The domain Ω is partitioned into nel elements

Ω =
⋃nel

j=1 Ω j of variable width h j = x j+1 − x j . Each element is discretized into P + 1

solution points {x j,1, x j,2, . . . x j,P+1} distributed variably. The discontinuous solution and

flux are both defined as interpolating polynomials in the j th element

uδ
j (x) =

P+1
∑

p=1

uδ
j,pl j,p(x) (2)

f δ
j (x) =

P+1
∑

p=1

f (uδ
j,p)l j,p(x) (3)

where l j,p is the pth Lagrange polynomial in the j th element, and the superscript δ denotes a

numerically evaluated quantity. Conservation is explicitly incorporated into the formulation

by first defining common interface fluxes between elements

f int (x j ) = f int(uδ
j−1(x j ), uδ

j (x j ))

f int (x j+1) = f int(uδ
j (x j+1), uδ

j+1(x j+1)) (4)

and then correcting the discontinuous flux through correction functions. These correction

functions, gL(x) and gR(x), are of order P + 1, being binary on the boundaries (the left

correction function gL(x) is 1 on the left boundary, 0 on the other and vice-versa) and

approximate zero internally. The corrected flux, denoted by superscript (δ, c), then becomes

f
δ,c
j (x) = f δ

j (x) + ( f int (x j ) − f δ
j (x j ))gL (x) + ( f int (x j+1) − f δ

j (x j+1))gR(x) (5)

and takes the common interface values at the edges but is not necessarily equal to the dis-

continuous flux values internally. For convenience, an isoparametric mapping is introduced

from the physical domain x ∈ Ω j = [x j , x j+1] to the parent domain ξ ∈ [−1, 1] as

ξ |Ω j
(x) = 2

x − x j

x j+1 − x j

− 1 (6)

such that the pth Lagrange function l j,p(x) transforms as l j,p(ξ) and the solution points

become {ξ j,1, ξ j,2, . . . ξ j,P+1}. The discrete numerical solution can now be updated using the

derivative of the corrected flux at the solution points. Owing to the differential construction,

the update step does not involve a mass matrix. Denoting uδ
j as the discrete solution in the

j th element and fδ
j as the discrete flux, the update can be expressed as

dδ

dt
uδ

j = −J j
−1
[

Dj fδ
j + ( f int (x j ) − f δ

j (x j ))gL,ξ + ( f int (x j+1) − f δ
j (x j+1))gR,ξ

]

(7)

where J j = h j/2 is the Jacobian, Dj is the discrete derivative operator such that D j p,m
=

dl j,m

dx
(ξ j,p), and gL,ξ , gR,ξ are the derivatives of the correction functions at the solution points.
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The dδ

dt
operator denotes that the time derivative is not exact but is approximated numerically

during the update.

The control parameters in the FR formulation are (i) choice of solution points ξp for p =

1, 2, . . . , P + 1, (ii) choice of the interface flux f int , and most importantly (iii) choice of cor-

rection functions gL(x) and gR(x). With Gauss–Legendre points as solution points, selecting

the left boundary correction as the right Radau polynomial, and vice versa, recovers the DG

scheme at least for linear fluxes. Similarly, selecting the correction functions to have zeros

at the flux collocation points recovers a version of the SD scheme, again, at least for linear

fluxes.

The 1-D FR formulation above can be applied to advection by considering the linear

flux f (u) = au, so that the conservation equation, in some (x ′, t ′) coordinates, becomes
∂u
∂t ′

+ a ∂u
∂x ′ = 0. For the sake of simplicity, assume that the grid is uniform, h j = h for j =

1, 2, . . . , nel , and that the distribution of solution points is identical among elements. Non-

dimensionalize the equation using the length scale as the element width x = x ′/h, and the

velocity scale as the advection speed t = t ′a/h, so that the conservation equation becomes

∂u

∂t
+

∂u

∂x
= 0 (8)

Since the direction of information propagation is explicitly known for advection, the flux can

be fully upwinded so that f int (x j ) = uδ
j−1(x j ). The numerical update can then be rewritten

with explicit coupling between the elements

dδ

dt
uδ

j = −J j
−1
[

C0 uδ
j + C−1 uδ

j−1

]

(9)

where

C0 = D − gL,ξ lL
T

C−1 = gL,ξ lR
T (10)

and lL and lR are the vectors containing the values of the Lagrange polynomials at the left

and right interfaces respectively.

2.2 Bloch Waves and Semi-discrete Dispersion Relation

For a monochrome initial condition, eikx of wavelength 2π/k, Eq. (8) admits an analytical

solution of the form

u(x, t) = eik(x−t) (11)

which are essentially Bloch waves of wavenumber k and can be expressed conveniently in

the parent domain as

u(x ∈ Ω j , t) = eik( j−t)eik
(ξ+1)

2 (12)

using the isoparametric map in Eq. (6) and noting that h = 1 due to the choice of non-

dimensionalization. Modal analysis of finite difference schemes [6,21,25] employ this

explicit form directly into the numerical update step. However, by construction, the dis-

continuous solution in the FR framework is restricted to the function space spanned by the

Lagrangian polynomial basis. Since the exponential Bloch wave is infinitely dimensional in

polynomial space, it must be projected [27,29,30] to obtain a relevant general form of the

numerical solution. The discrete solution can then be expressed as

uδ
j (t) = eik( j−aδ(k)t)v (13)
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where aδ(k) ∈ C is the wavespeed with which the numerical solution advects, and v is the

unknown vector associated with the projection (discussed further in Sect. 2.5). Admission of

this general numerical solution into the FR vectorial update step Eq. (9), with an exact time

derivative operator, provides the semi-discrete dispersion relation

Mv = aδv (14)

where M = −2i
k

(

C0 + e−ikC−1

)

.

Owing to the multiplicity in the degrees of freedom available within each element, the

numerical dispersion relation manifests as a P + 1 dimensional eigenvalue problem for each

wavenumber k. As is typical of finite element schemes, one obtains P + 1 numerical modes

where the corresponding eigenvalues aδ
p(k) = aδ

pr
(k) + iaδ

pi
(k) for p = 1, 2, . . . , P + 1

relate directly to the numerical wavespeeds. The analytical solution Eq. (11) provides the

exact dispersion relation as ar = 1, ai = 0 which implies that all wavenumbers must advect

at the advection velocity without change in amplitude. Expanding the numerical solution as

uδ
j (t) = e

kaδ
pi

t
e

ik( j−aδ
pr

t)
v (15)

allows one to define dispersive and dissipative errors as e
ik(1−aδ

pr
t)

and e
kaδ

pi
t

respectively,

which can be obtained from the solution of the eigenvalue problem, Eq. (14).

Figure 1a, b plot the real and imaginary parts of the numerical wavespeeds corresponding

to all the numerical modes for the DG scheme recovered via FR for P = 2 on Gauss–

Legendre solution points. The real part of the numerical wavespeed is plotted in the form of

an effective wavenumber ke f f = k aδ
r /(P + 1) while the imaginary part is plotted directly.

The wavenumber is normalized by the number of intra-element degrees of freedom to have

the Nyquist limit as π . For reference, the analytical wavespeed components are also included.

These modes are in good agreement with the results of Hu et al. [27] where the analysis was

performed starting directly from the DG framework. As noted in [27], only one of the P + 1

numerical modes follows the analytical expectation and is hereafter referred to as the physical

mode. This mode preserves the dispersion relation till about a third of the resolved spectrum.

For higher wavenumbers, upwinding in the scheme adds numerical dissipation (Fig. 1b) while

numerical dispersion (Fig. 1a) causes the corresponding Bloch waves to move faster than the

advection velocity until a crossover point whereafter they slow down to zero at the Nyquist

limit.

The other P modes are spurious and are characterized by excessive dispersion errors

(e
ik(1−aδ

pr
t)

) as can be seen from Fig. 1a. Corresponding plots for P = 5 are provided in

Fig. 2a, b. For a given polynomial order, half of the spurious modes (even numbered modes

for odd P and vice versa) are least dissipative at high wavenumbers and have a smaller,

possibly negative, real part of the wavespeed. Fortunately, these modes are the least energetic

as well (Sect. 2.5). The other half of the spurious modes are more dissipative, particularly at

high wavenumbers, and are characterized by a crossover point where they cross the analytical

expectation. These modes can have a considerable fraction of the energy at high wavenumbers.

2.3 Effect of Polynomial Order

Figure 3a, b plot the real and imaginary part of the numerical wavespeed corresponding to the

physical mode for the DG scheme recovered via FR for P = 1 to 5 against the normalized

wavenumber. The range of resolvable wavenumbers, defined by the Nyquist limit, increases

in proportion to the number of degrees of freedom within each element. Interestingly, even

the range of normalized wavenumbers k/(P + 1) over which are the dispersion relation is
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Fig. 1 a Effective wavenumber ke f f = k aδ
r /(P + 1) and b imaginary part aδ

i
of the numerical wavespeed

for the 3 numerical modes for DG scheme via FR for P = 2

approximately preserved, increases with polynomial order. While higher polynomial order

results in greater overshoot (Fig. 3a) suggesting a lower CFL limit, the dominant effect is that

of reduced dissipation (3b), leading to an increase in resolving efficiency. These results are

again in agreement with those of Hu et al. [27] for the DG scheme, and with Ainsworth [29]

who shows that the leading coefficient of dispersion and dissipation errors decreases rapidly

with increasing polynomial order.

2.4 Effect of Correction Function

Figure 4a, b plot the real and imaginary part of the numerical wavespeed corresponding

to the physical mode for the DG, SD and Huynh’s g2 [14] scheme recovered via FR for

P = 3 against the normalized wavenumber. The choice of correction function has a critical

impact on both the real and imaginary parts of the numerical wavespeed for the physical
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Fig. 2 a Effective wavenumber ke f f = k aδ
r /(P + 1) and b imaginary part aδ

i
of the numerical wavespeed

for the 6 numerical modes for DG scheme via FR for P = 5

mode. For these three schemes, a competing effect can be observed between the dispersion

and dissipation errors. In comparison to DG, for the SD scheme, while the real part of the

wavespeed stays nearly accurate for a larger range of wavenumbers, the imaginary part starts

deviating earlier, suggesting the possibility of an optimal choice somewhere in between.

These results are identical to the observations of Vincent et al. [30] wherein the authors

used an automated modal energy based sampling procedure, following Van den Abeele [31],

to recover a single Fourier mode for any polynomial order. This suggests that the modal

reconstruction procedure employed therein, in fact recovered the physical mode.

2.5 Effect of Solution Points and Relative Modal Energies

Conventionally, the spurious modes are often disregarded as they are usually quite dissipative,

for low to moderate wavenumbers, and do not significantly contaminate the physical mode.

123



J Sci Comput (2015) 62:913–944 921

k / (P+1)

(k
/(

P
+

1
))

 a
r

0 0.5 1 1.5 2 2.5 3

0

1

2

3 P = 1

P = 2

P = 3

P = 4

P = 5

Exact

(a)

k / (P+1)

a
i

0 0.5 1 1.5 2 2.5 3

-2

-1.5

-1

-0.5

0

P = 1

P = 2

P = 3

P = 4

P = 5

Exact

(b)

Fig. 3 Effect of polynomial order: a effective wavenumber ke f f = k aδ
r /(P + 1) and b imaginary part aδ

i
of

the numerical wavespeed for the physical mode for DG scheme via FR for P = 1 to 5

However, the fraction of energy contained within the spurious modes is lost. Moreover, from

Fig. 1b and 2b, one notes that, for FR schemes, spurious modes can possibly have very

low dissipation at high wavenumbers. Hence, after a long enough time, the solution at high

wavenumbers may get constituted entirely from spurious modes once the physical mode has

decayed.

The distribution of energy among the P + 1 modes is determined by the projection of the

initial condition onto the polynomial basis. Owing to the Lagrangian nature of the basis, the

numerical initial condition is exact at the solution points which define the interpolant in Eq.

(2). This can be expressed using Eqs. (12) and (13) as

u(x j,p, 0) = uδ(x j,p, 0)

eik j eik
(ξp+1)

2 = eik jvp for p = 1, 2, . . . , P + 1 (16)
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Fig. 4 Effect of correction function: a Effective wavenumber ke f f = k aδ
r /(P + 1) and b imaginary part aδ

i
of the numerical wavespeed for the physical mode for DG, SD and Huynh’s g2 scheme (via FR) for P = 3

which yields

vp = eik
(ξp+1)

2 (17)

The discrete numerical initial condition can now be expressed vectorially in modal coordi-

nates

eik
(ξ+1)

2 =

P+1
∑

p=1

λpvδ
p = VΛ (18)

where the modal coefficients λp are the respective weights of the P + 1 eigenvectors, and

ξ = [ξ1, ξ2, . . . , ξP+1]
T is the vector of solution points. Since the energy of a traveling wave

is proportional to square of the amplitude, a measure of the relative energy among modes

can be defined as
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Fig. 5 Effect of solution points on relative energies: Distribution of energy among numerical modes β1 to

βP+1 for DG scheme via FR for P = 2 on a Gauss–Legendre, b equidistant, and c Gauss–Lobatto solution

points

βp =
|λp|

2

∑P+1
q=1 |λq |2

(19)

Figure 5a plots β for the 3 eigenmodes for DG scheme via FR for P = 2 at Gauss–

Legendre solution points. We see that for low wavenumbers, the physical mode contains all

the solution energy while at higher wavenumbers the fraction of energy in the spurious modes

rises, eventually becoming a significant fraction near the Nyquist limit.

Huynh [11] proved that the eigenvalues of the FR eigensystem Eq. (14) are independent of

the choice of solution points by showing that the corresponding Fourier matrices are similar.

However, from Figs. 5b, c we see that the energy distribution changes significantly when

the solution points are chosen to be equidistant or Gauss–Lobatto points respectively. While

equidistant points do slightly better at preserving maximum energy in the physical mode,
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for DG scheme via FR for P = 1 to 5 on Gauss–Legendre solution points
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Fig. 7 Effect of correction function on relative energies: Fraction of energy retained in the physical mode β1
for DG, SD and Huynh’s g2 scheme (via FR) for P = 2 on Gauss–Legendre solution points

their use is still limited due to aliasing errors [15]. In the case of Gauss–Lobatto points, one

notes the presence of a crossover point whereafter one of the spurious modes captures a

higher fraction of energy than the physical mode.

Figure 6 plots β for the physical mode for DG scheme via FR for P = 1 to 5 at Gauss–

Legendre solution points. Here again, a competing effect can be observed with increase in

polynomial order. While the point of departure from near unit energy fraction in the physical

mode is pushed towards high normalized wavenumbers, the energy content for the highest

wavenumbers decreases with increase in P . The dependence of energy content on the choice

of correction function is relatively weaker as can be seen in Fig. 7 which plots β for the

physical mode for the DG, SD and Huynh’s g2 correction functions.
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2.6 Dispersion and Energy Distribution for Central Interface Fluxes

As can be seen from Eqs. (9), (10) and (14), the semi-discrete numerical dispersion rela-

tion is directly dependent upon the nature of the interface flux. While a fully upwinded flux

is naturally admitted by the 1-D advection equation, results for a central flux ( f int (x j ) =

(uδ
j−1(x j ) + uδ

j (x j ))/2) have also been included for completion. The corresponding eigen-

value problem in this case can be written as

−2i

k

(

C0 + e−ikC−1 + eikC+1

)

v = aδv (20)

where

C0 = D −
1

2
gL,ξ lL

T −
1

2
gR,ξ lR

T

C−1 =
1

2
gL,ξ lR

T

C+1 =
1

2
gR,ξ lL

T (21)

We find that the imaginary parts of the numerical wavespeeds aδ
i are identically zero for all the

numerical modes (physical as well as spurious) and for all correction functions. This result

concurs with the theoretical analysis of Vincent et al.[14] wherein it was shown that the broken

Sobolev norm of the type in Eq. (27) remains unchanged if a central flux is chosen. This also

suggests that the only source of dissipation in the FR framework arises from the upwinding in

the Riemann solve at each interface. Figure 8 plots the real part of the numerical wavepseed

for the DG scheme recovered via FR for P = 2 on Gauss–Legendre solution points. These

are again in good agreement with the results of Hu et al. [27]. We see that for a significant

fraction of the resolvable wavenumbers the physical mode exhibits a negative wavespeed. In

fact, it is characterized by excessive dispersion for k/(P + 1) ≥ 1.047. However, numerical

results with a Gaussian initial condition (see Section 4.1.3 in [14]) suggest that central

k / (P+1)

(k
/(

P
+

1
))

 a
r

0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

3

Mode 1 (Physical)

Mode 2 (Spurious)

Mode 3 (Spurious)

Exact 

Fig. 8 Effect of central flux on dispersion: Effective wavenumber ke f f = k aδ
r /(P + 1) of the numerical

wavespeed for the 3 numerical modes for DG scheme via FR for P = 2 when using a central flux. The

imaginary part of the wavespeed is exactly zero
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Fig. 9 Effect of central flux on relative energies: distribution of energy among numerical modes β1 to βP+1
for DG scheme via FR for P = 2 on Gauss–Legendre solution points when using a central flux

fluxes perform reasonably well even for long times. This can be understood from Fig. 9 by

observing the partition of energy among the three numerical modes. For this case, we see that

the fraction of energy contained in the physical mode falls rapidly beyond the point where

it starts exhibiting large dispersion errors. In fact, one of the spurious modes receives the

dominant share of energy beyond this point. While this spurious mode is highly dispersive

for lower wavenumbers, it shows relatively small dispersion errors thereafter which causes

the central flux to do relatively well on the whole.

3 Spectrally Optimal FR Schemes

In this section we utilize the results of Sect. 2 to propose a set of new FR schemes that provide

minimum wave-propagation error for the range of resolvable wavenumbers. These schemes

are obtained through optimal choices of correction function by solving a relevant mini-

mization problem in the spectral space. Unlike spectrally optimal finite-difference schemes,

the formal order of accuracy is retained to be the same (O(h P+1)) as those of regular FR

schemes. As a simple first case, optimal ESFR schemes [14] are obtained by optimizing over

the free parameter ‘c’. Thereafter, the general problem of optimizing over the free zeros of

the correction function is considered, and linearly stable, optimal schemes are recovered in

the process.

3.1 Wave Propagation Error and Constrained Minimization Problem

Conventionally, spectrally optimal finite-difference schemes [6,23,25] have been obtained

by relaxing the formal order of accuracy in order to obtain free parameters that can be

tuned to maximize the region over which the analytical dispersion relation is preserved.

Since traditional explicit as well as implicit compact schemes had a central stencil, there

was no added numerical dissipation and only dispersive errors had to be minimized. A direct

approach [21] has been to minimize the absolute deviation of the numerical wavespeed from
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the analytical wavespeed across the range of resolved wavenumbers η =
∫ π

k=0 |aδ − 1|2dk.

However, owing to the upwinding present implicitly in the Riemann solve at each interface,

FR schemes result in a negative imaginary part associated with numerical dissipation. An

objective function of this form would not be suitable since it employs an algebraic weighting of

the dispersive and dissipative errors that may lead to a biased optimum. Instead of prescribing

weights for the two types of errors, it is convenient to select the error function directly as the

error associated with wave propagation. Since the analytical form of the exact solution [Eq.

(12)] and numerical solution [Eq. (13)] are available, we can express the error at time t as

|e(k, t)| = |u(k, t) − uδ(k, t)|

=

∣

∣

∣
eik j

(

eik(x−t) − eik(x−aδ t)
)∣

∣

∣

= |1 − eik(1−aδ)t | (22)

The time of error determination t can be chosen based on the characteristic time associated

with the non-dimensionalization of the problem tc = h/c = 1. This is the time required by

the exact solution to travel one element width. For the present analysis, we are interested in

schemes for long time integration that would provide low errors for propagation across the

entire domain (which, for external flows in most engineering problems, is of the order of

100 grid points or more). For this reason, we have chosen t = 100 tc so that η =
∫ π

k=0 |1 −

ei 100 k(1−aδ)|dk.

An objective function for the FR optimization process can now be specified as the L1 error

summed over all the P +1 modes weighted by their relative energy fractions, integrated over

the range of resolvable wavenumbers

η =
1

(P + 1)2

P+1
∑

p=1

(P+1)π
∫

k=0

|1 − ei 100k(1−aδ
p(k))|βp(k)dk (23)

where the factor of 1/(P + 1)2 is used to normalize the error across polynomial order. The

optimization problem with the stability criterion can be stated as follows

min η(g(ξ)) given P, ξ

subject to aδ
pi

(k) ≤ 0 ∀ k ∈ [0, (P + 1)π], p = 1, 2, . . . , P + 1 (24)

where g(ξ) is the correction function in the parent domain and ξ = [ξ1, ξ2, . . . , ξP+1]
T is

the vector of solution points.

3.2 Spectrally Optimal Energy Stable FR Schemes (OESFR)

We begin by optimizing within the class of energy stable flux reconstruction (ESFR) schemes

[14] that are linearly stable by construction. For ESFR schemes, the solution points are taken

to be Gauss–Legendre points while the left and right boundary correction functions are

defined as

gL =
(−1)P

2

[

L P −

(

µP L P−1 + L P+1

1 + µP

)]

gR =
1

2

[

L P +

(

µP L P−1 + L P+1

1 + µP

)]

(25)
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Fig. 10 OESFR: Variation of the objective function with the ESFR parameter c for P = 3 denoting the

presence of a minimum close to the DG value of c = 0

where

µP = c
2P + 1

2

(

(2P)!

2P (P)!

)2

(26)

Here, L P is the Legendre polynomial of degree P , and c ∈ [c−,∞) is the free parameter of

the scheme. The left bound, c−, is the lowest value of c that yields a legitimate energy norm

which, for the non-dimensionalization defined in Sect. 2.1, is of the form

‖uδ‖P, 2 =

⎡

⎢

⎣

nel
∑

j=1

∫

Ω j

(uδ
j )

2 +
c

2

(

∂ P uδ
j

∂x P

)2

dx

⎤

⎥

⎦

1/2

(27)

The DG scheme is recovered from ESFR by choosing c = 0. The choice of c = c+ yields

the scheme that offers the highest CFL limit for a given polynomial order. Optimal ESFR

schemes (OESFR) can be obtained by optimizing over c for any given P . The minimization

problem is unconstrained as the family is guaranteed to be linearly stable.

As noted in [30], we see that as c is increased beyond 0, a competing effect is observed

regarding the point of departure from the exact dispersion relation. While the departure of

the real component of wavespeed gets pushed to higher k, that for the imaginary component

gets pulled to lower k. This suggests the presence of a minimum of the error close to c = 0.

Figure 10 plots the variation of the objective function against c for P = 3. The objective

function is very well behaved and records a discernible minimum close to c = 0 as expected.

This optimal value along with the value of the objective function is tabulated in Table 1. The

real and imaginary components of the wavespeed for the OESFR scheme are plotted in Fig.

11a, b for P = 4 and Fig. 12a, b for P = 5. These figures have been discussed in detail in

the next section for the sake of comparison.
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Table 1 Objective function (relative to DG) and internal zeros for the OESFR and OFR schemes

P
ηO E SF R

ηDG

ηO F R
ηDG

cO E SF R {ζO E SF R} {ζO F R}

1 0.9997 0.9997 8.40 ×10−3 {-0.324947954} {−0.324947954}

2 0.9169 0.9168 5.83 ×10−4 {-0.687046768, {−0.683006984,

0.294921433} 0.302192636}

3 0.9279 0.9183 3.17 ×10−5 {−0.820508633, {−0.839877076,

−0.174051445, −0.202221672,

0.580238407} 0.518569180}

4 0.8806 0.7658 9.68 ×10−7 {-0.883539936, {−0.856985048,

−0.437806887, −0.447652425,

0.177747440, 0.180019034,

0.725821574} 0.638102912}

5 0.8497 0.7216 1.02 ×10−8 {−0.919029563, {−0.897887439,

−0.598291572, −0.577293821,

−0.115071988, −0.101190260,

0.398821159, 0.354120544,

0.806299103} 0.760380824 }

3.3 Spectrally Optimal General FR Schemes (OFR)

A general form of the correction function on the left boundary can be expressed using the

internal zeros of the correction polynomial

gL(ξ) =

P
∏

q=1

(ξ − ζq)

1 + ζq

(ξ − 1)

2
(28)

which ensures that the function is unity on the left boundary. The solution space of free zeros

< ζ >= {ζ1, ζ2, . . . , ζP+1} is of dimension P and recovers the ESFR family as a semi infinite

contour beginning at the set of zeros corresponding to the ESFR scheme with c = c−. The

most general optimal FR schemes (OFR) can be obtained by minimizing over 〈ζ 〉 subject to

the constraint that the resulting scheme is linearly stable. The resulting optimization problem

is solved using an interior-point method [32,33] with the help of MATLAB’s optimization

toolbox [34] and is stiff in that the constraints are satisfied only within subsets of much lower

dimension. This made a grid search seeding approach [35] infeasible as the initial guesses

usually violated the constraints. In order to circumvent this issue, the initial guess points

were taken to be the zeros of the corresponding OESFR schemes. Hence, while the resulting

solutions might not be globally optimal, the results that follow suggest them to be locally

optimal at the least.

Table 1 enlists the internal zeros of the OFR correction function along with the minimum

of the objective function. For P = 1, the OFR optimization process converges to the zeros

of the OESFR correction function, which is expected owing to a single degree of freedom.

For P ≥ 2, the optimization process converges to zeros that are not traced by the ESFR

family. Since the constraint is strictly satisfied, we obtain linearly stable FR schemes that

have minimum wave propagation error. The real and imaginary components of the wavespeed

for the OFR scheme are plotted in Fig. 11a, b for P = 4 and Fig. 12a, b for P = 5. The
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Fig. 11 Optimal schemes: a effective wavenumber ke f f = k aδ
r /(P + 1) and b imaginary part aδ

i
of the

numerical wavespeed for the physical mode for DG, OESFR and OFR schemes for P = 4. Note that all three

schemes are of the same formal order

contrast between OFR and OESFR or DG grows with polynomial order due to the increase

in degrees of freedom.

Figure 13a, b plot the left boundary correction functions for the DG, OESFR and OFR

schemes for P = 4, 5 respectively. We note that the zeros of the OFR scheme are located in a

manner that tends to minimize the deviation of the function from zero. This can be expected

from Huynh’s [11] observation that correction functions tend to approximate zeros in the

interior of the domain.

A quantitative measure of the fraction of the spectrum along which the dispersion relation

is approximately preserved can be expressed in the form of resolving efficiency of the physical

mode defined by Lele in [6]

e1 =
k f

(P + 1)π
(29)
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Fig. 12 Optimal schemes: a effective wavenumber ke f f = k aδ
r /(P + 1) and b imaginary part aδ

i
of the

numerical wavespeed for the physical mode for DG, OESFR and OFR schemes for P = 5. Note that all three

schemes are of the same formal order

where k f is such that

|aδ(k) − 1| ≤ ε, for k ≤ k f (30)

Table 2 compares the resolving efficiencies of the DG, OESFR, OFR and c+ [30] schemes for

P = 3 to 5. For P ≤ 2, as the OFR scheme converges to the OESFR scheme, which in turn is

only marginally better than DG, the resolving efficiencies for all three schemes are identical.

However for P > 2, the OFR scheme provides higher resolution for either measure of the

resolving efficiency. An improvement of about 20% is achieved through the use of OFR over

DG for P = 4, 5. On the other hand, the c+ scheme suffers from a poor resolving power due

to excessive dissipation. In fact, from Table 2 we see that the 4th order OFR scheme provides

similar resolution to the 6th order c+ scheme. Note that the FR scheme of polynomial order

P is formally P + 1 order accurate.
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Fig. 13 Left boundary correction functions for DG, OESFR and OFR schemes for a P = 4 and b P = 5

Table 2 Resolving efficiency e1 for ε = 0.01, 0.001 for DG, OESFR, OFR and c+ schemes

P ε = 0.01 ε = 0.001

DG OESFR OFR c+ DG OESFR OFR c+

1 0.145 0.145 0.145 − 0.066 0.066 0.066 −

2 0.263 0.263 0.263 0.128 0.160 0.160 0.160 0.070

3 0.339 0.339 0.352 0.228 0.233 0.233 0.249 0.149

4 0.391 0.391 0.477 0.300 0.287 0.287 0.409 0.214

5 0.428 0.428 0.511 0.351 0.328 0.328 0.444 0.264

It is interesting to compare the resolving efficiency of the OFR schemes with standard Padé

type compact finite difference schemes. Since the time complexity of the 1-D FR formulation

is O(nel , P2) for large nel , P and O(P) for moderate P , it is consistent to compare against
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Table 3 Limiting CFL values for the DG, OESFR, OFR and c+ schemes for RK44 and RK45

P RK44 RK45

DG OESFR OFR c+ DG OESFR OFR c+

1 0.464 0.470 0.470 − 0.679 0.686 0.686 −

2 0.235 0.238 0.241 0.688 0.352 0.356 0.361 0.864

3 0.139 0.148 0.126 0.376 0.220 0.224 0.191 0.473

4 0.100 0.103 0.108 0.245 0.152 0.158 0.164 0.311

5 0.068 0.076 0.085 0.174 0.110 0.117 0.128 0.223

Table 4 Limiting CFL values for the DG, OESFR, OFR and c+ schemes for RK33 and SSPRK(4,3)

P RK33 Optimal SSPRK(4,3)

DG OESFR OFR c+ DG OESFR OFR

1 0.411 0.415 0.415 − 0.594 0.601 0.601

2 0.210 0.212 0.210 0.623 0.308 0.311 0.316

3 0.130 0.133 0.109 0.334 0.191 0.196 0.166

4 0.080 0.091 0.095 0.212 0.133 0.138 0.144

5 0.061 0.068 0.074 0.149 0.098 0.101 0.112

Note that the c+ scheme [30] has been derived only for RK3, RK44 and RK45

Table 5 Numerical test cases employed in Sect. 5

Case Schemes P Soln. pts. Grid Initial condition

1 DG, OESFR, OFR, c+ 5 Gauss–Legendre Uniform e−38.6x2

2 DG, OESFR, OFR, c+ 5 Gauss–Legendre Uniform e−0.1x2
cos(3πx)

3 DG, OESFR, OFR, c+ 5 Gauss–Legendre Non-uniform e−38.6x2

4 DG 2 Gauss–Legendre,

Equidistant,

Gauss–Lobatto

Uniform e−9.64x2

compact difference schemes that are at maximum tridiagonal in structure. Table III in [6]

lists the resolving efficiencies of 2nd order explicit, 4th order explicit and implicit, 6th order

explicit and implicit and 8th order implicit difference schemes, all of which have linear

time complexity in evaluating the derivative. On comparing, we note that the OFR scheme

provides significantly higher resolution than the explicit difference schemes of the same

order for either efficiency measure. In comparison to the implicit difference schemes, the

OFR scheme provides similar resolution for ε = 0.01 but a higher resolution for ε = 0.001.

In fact, for ε = 0.001, the 6th order OFR scheme provides similar resolution to the 8th order

implicit compact difference scheme.

4 Time Integration and CFL Restriction

In this section, we determine CFL restrictions for the proposed schemes and compare them

with existing FR schemes. In the process, the numerical operator dδ

dt
is expanded for the
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Fig. 14 Case 1: Snapshots of the numerical solution for the DG, OESFR, OFR and c+ schemes at intervals

of a quarter-period

case of a general N-stage explicit Runge Kutta type scheme which modifies the eigenvalue

problem in Eq. (14). The new eigenvalue problem represents the numerical dispersion relation

for the fully-discrete form of the FR update.

4.1 Multi-stage time Scheme and Fully-Discrete Dispersion Relation

The semi-discrete dispersion relation Eq. (14) assumed exact integration in time. However,

during an actual numerical update, the time-derivative operator dδ

dt
in Eq. (9) is numerically

approximated. The update equation can be rewritten using the Eq. (13) as

dδ

dt
uδ

j = Q uδ
j (t) (31)

where Q = −2
(

C0 + e−ikC−1

)

. Owing to the differential form of FR, Eq. (31) can be

updated using a general N-stage explicit Runge Kutta type scheme
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Fig. 15 Case 1: Evolution of L2 norm of the error for the DG, OESFR, OFR and c+ schemes

uδ
j (t + ∆t) =

(

N
∑

n=0

αn

(Q∆t)n

n!

)

uδ
j (t)

= R uδ
j (t) (32)

where ∆t is the numerical time step, α is the vector of coefficients of the RK scheme and N

is the number of stages. The presence of a numerical time integration operator modifies the

associated eigenvalue problem to provide the fully-discrete numerical dispersion relation as

R v = e−i kaδ∆t v (33)

Note that, since e−i kaδ∆t = 1 − i kaδ∆t + O(∆t2) and Q = −i k M, Eq. (33) reduces to

Eq. (14) in the limit ∆t → 0 where only the first order terms survive.

4.2 CFL Restriction

Equation (33) represents a discrete linear dynamical system whose stability criterion can be

expressed in terms of the spectral radius ρ

ρ(R) ≤ 1 ∀ k ∈ [0, (P + 1)π] (34)

Table 3 provides limiting CFL values for the DG, OESFR, OFR and c+ schemes for the stan-

dard 4 stage, 4th order RK scheme RK44 and the enhanced stability 5 stage, 4th order scheme

RK45 [36]. The corresponding values for 3rd order schemes including the 3 stage standard

RK scheme RK33 and the optimal four stage, low storage, strong-stability-preserving scheme

SSPRK(4,3) of Kubatko et al. [37] have also been provided in Table 4. We begin by noting

that the CFL limit for the OESFR scheme is higher than DG via FR for all polynomial orders.

This is expected as the CFL limit increases with c from c = 0 to c = c+ as shown in [30]

and that the optimal c value for OESFR was found to be greater than 0. We also note that the

CFL limit for the OFR scheme compares well to that for the DG scheme, thereby suggesting

that the additional accuracy obtained through tuning of the zeros of the correction function

does not come at the expense of linear stability. While the c+ scheme has a much higher CFL
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Fig. 16 Case 1 with refined grids: Snapshots of the numerical solution for the DG, OESFR schemes using 61

elements, OFR scheme using 45 elements and c+ scheme using 76 elements at intervals of a quarter-period

limit as expected, it suffers from significantly larger dispersion errors that makes it ill-suited

for wave propagation problems. The next section provides numerical examples outlining this

aspect.

5 Numerical Test: Linear Advection of a Wave Packet

This section presents the results of numerical tests to validate the analytical expectations

derived in the previous sections. Since a salient feature of the FR formulation is its applica-

bility to complex geometries with non-uniform grids, it is important to show that the advantage

of using the proposed schemes that have been optimized for a uniform grid is retained even on

arbitrarily stretched non-uniform grids. Additionally, a test case is included to demonstrate

the importance of choice of solution points even for linear fluxes. Table 5 lists the various

cases that have been investigated in this study.
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Fig. 17 Case 2: Snapshots of the numerical solution for the DG, OESFR, OFR and c+ schemes at intervals

of a quarter-period

5.1 Case 1: Advection of a Sharp Gaussian on a Uniform Grid

The first case deals with linear advection of a Gaussian on a uniform grid. The non-

dimensional length and velocity are the same as defined in Sect. 2.1. The domain is defined

on [−10, 10] and the number of elements is taken to be 20 which conveniently normalizes

the grid spacing to unity. The polynomial order P is 5 and the solution points within each

element are chosen to be the Gauss–Legendre points in the parent domain. The initial condi-

tion u0(x) = e−38.6x2
is a Gaussian with zero mean, unit peak and variance σ 2 = 1/(77.2)

which is chosen so that û0(k = (P +1)π)/û0(k = 0) = 0.1, where (û0) denotes the Fourier

transform of u0(x). This ensures that the initial condition spans the entire range of resolvable

wavenumbers with 10% amplitude at the Nyquist limit. This problem is solved using the DG

scheme as reference, the proposed OESFR and OFR schemes, and the c+ scheme. For all

schemes, the CFL number is chosen to be half of the maximum allowable CFL number for

the DG scheme. The boundary conditions are taken to be periodic and the solution is made

to advect for a full period T = |Ω| = 20. Figure 14 provides snapshots of the numerical
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Fig. 18 Case 2: Evolution of L2 norm of the error for the DG, OESFR, OFR and c+ schemes

solution for the employed schemes at intervals of a quarter period T/4. The exact solution

is included for reference. As expected from optimality in spectral space, the OFR scheme

provides the least dissipated solution, followed by the OESFR scheme which almost overlaps

with the DG solution. This suggests that optimization within the ESFR family provides little

advantage over the DG scheme. The c+ scheme which had the highest stability limit is the

most dissipative in this set of schemes. A quantitative comparison among the schemes can

be carried out through the standard L2 function norm

‖u − uδ‖2 =

⎛

⎜

⎝

nel
∑

j=1

∫

Ω j

(u(x ∈ Ω j ) − uδ
j (x))2dx

⎞

⎟

⎠

1/2

(35)

Figure 15 compares the evolution of the L2 error for the employed schemes. As expected,

the error for all of the schemes rises with time due to the dispersion and dissipation errors

committed at each update. The small scale periodicity in the error is a consequence of the

piecewise nature of the FR solution. The errors are lower when the Gaussian peak is located

at the interfaces between elements and higher when the peak is centered within any element.

The uniformity in the periods is on account of the uniformity in the grid. Here again, we see

that the OFR scheme provides a considerably lower error than the DG scheme while the c+

scheme provides larger ones at all times during the period.

The resolving capabilities of these schemes can alternatively be compared by the grid reso-

lution that each of them requires to accurately advect this steep Gaussian for a full period. Such

a measure of resolution is directly related to the resolving efficiency e1 evaluated in Sect. 3.3.

From Table 2, we note that for the DG (via FR) scheme, for P = 5, to accurately resolve the

wavelength at the Nyquist limit for the grid in Case 1, we require 20/e1|
DG
ε=0.001,P=5 ≃ 61

elements. Similarly, for the OFR scheme we require 45 elements, and for the c+ scheme,

we require 76 elements. Note that there would still be some numerical error as the spectrum

of the initial condition extends beyond the original Nyquist limit by construction. Figure

16 provides snapshots of the numerical solution for the employed schemes at intervals of a
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Fig. 19 Case 3: a Variation of element size h j across the perturbed, non-uniform grid, b Evolution of L2
norm of the error for the DG, OESFR, OFR and c+ schemes

quarter period T/4 where the number of elements for each scheme is chosen as described

above. As can be seen, each of the schemes resolve the Gaussian reasonably well through

their respective grids. In this case, the advantage received by using the spectrally optimal

OFR scheme is that it provides accurate solutions at coarser grids.

5.2 Case 2: Advection of a High Wavenumber Packet on a Uniform Grid

The second case is chosen to highlight the advantage of using the proposed scheme in

advecting moderately high wavenumber components. For this reason, the initial condition

u0 = e−0.1x2
cos(3πx) is a packet centered in the spectral space about k = (P +1)π/2, half
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Fig. 20 Case 3: Snapshots of the numerical solution for the DG, OESFR, OFR and c+ schemes at intervals

of a quarter-period

of the Nyquist limit. The remaining parameters of the case are identical to the previous one.

Figure 17 provides snapshots of the numerical solution for the four schemes. We see that

even in one quarter of the period, the excessive dissipation in the c+ scheme has completely

dissipated the solution, while the DG and OESFR schemes also cause substantially larger

dissipation as well as dispersion errors than the OFR scheme. At the end of one period, the

DG and OESFR solutions have decayed completely. Figure 18 compares the evolution of the

L2 error demonstrating the flattening of the norm once the solution has decayed. Note that

the apparently small improvement achieved via optimization results in a significant reduction

in physical error.

5.3 Case 3: Advection of a Sharp Gaussian on a Non-uniform Grid

Having confirmed the advantage of optimality on uniform grids, we now deal with the case

of a randomly stretched non-uniform grid. The grid for this case is constructed by randomly

perturbing the uniform grid in Case 1, x ′
j = x j +0.99hθ , where x j is the left interface location
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Fig. 21 Case 4: Snapshots of the numerical solution for the DG scheme on Gauss–Legendre, equidistant and

Gauss–Lobatto points at intervals of a sixteenth-period

of the j th element and θ is uniformly distributed in [0, 1]. A bar chart of the resulting element

widths is given in Fig. 19a. All other parameters, including the initial condition are identical

to the first case. Figure 20 provides similar plots as for the uniform grid case. The results

are qualitatively similar but the difference between the schemes is lesser than before. The

evolution of the error norm in Fig. 19b is directly affected by the non-uniformity in the grid.

The solution suffers large errors every time the Gaussian has to pass through an element of

relatively large width. While the OFR scheme still provides lower errors than the other FR

schemes, the improvement is limited by the presence of highly stretched elements.

5.4 Effect of the Choice of Solution Points

Finally, we consider a case to examine the effect of the choice of solution points. The poly-

nomial order is taken to be 2 in order to complement the analysis provided in Sect. 2.5. The

domain is taken to be the same as before, discretized by a uniform grid. As in Case 1, the
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Fig. 22 Case 4: Evolution of L2 norm of the error for the DG scheme via FR on Gauss–Legendre, equidistant
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initial condition u0 = e−9.64x2
is chosen to span the range of resolvable wavenumbers with

10 % amplitude at the Nyquist limit. The problem is solved using the DG correction function

on Gauss–Legendre, equidistant and Gauss–Lobatto points as solution points. Figures 21 and

22 plot the evolution of the solution and the error norm respectively. Since the numerical

wavespeeds for all three cases are identical, the difference in solutions is entirely attributed

to the different distribution of energy among the numerical modes. As explained in Sect. 2.5,

the choice of Gauss–Lobatto points for P = 2 results in a spurious mode with dominant

energy content at high wavenumbers. As this mode decays away, the numerical solution

loses a sizable portion of its overall energy leading to the dissipated state in Fig. 21. The

results in the case of equidistant and Gauss–Legendre points nearly overlap, which is to be

expected as the energy content for a large portion of the spectrum is similar for these two

choices. This example highlights the importance of the choice of solution points even for

simple linear fluxes.

6 Conclusions

The contributions of this study can be divided into two categories. The first is concerned with

a complete modal analysis of the FR formulation and the second with the identification of

spectrally optimal FR schemes. We provide here a summary of the important conclusions.

Similar to the DG method, a Pth order FR scheme results in P +1 numerical eigenmodes,

P of which are spurious. For each of these modes, the dispersion and dissipation properties

are obtained from the semi-discrete dispersion relation. The linear decomposition of the

initial condition into the eigenvectors provides the relative energy distribution among the

modes. With increase in polynomial order, the resolving efficiency increases primarily due

to the reduction in dissipation at moderate wavenumbers. Additionally, the fraction of energy

retained in the physical mode stays close to unity for a larger range of wavenumbers. The

choice of correction function strongly affects the dispersion and dissipation properties, but
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weakly affects the distribution of energy content between the modes. Finally, contrary to

expectation, the choice of solution points is critical in that it strongly affects the distribution

of energy among the modes. In particular, the choice of Gauss–Lobatto solution points can

cause a cross-over point such that for a range of high wavenumbers, one of the spurious modes

captures the dominant energy fraction. This energy gets lost due to the highly dissipative

nature of spurious modes.

Spectrally optimal FR schemes are obtained by minimizing the error associated with wave

propagation over the range of resolvable wavenumbers using a novel objective function that

accounts for the multi-modal nature of the solution. The optimal member in the ESFR family

provides little advantage over the DG scheme. However, optimization over the entire range

of available zeros of the correction function yields linearly stable FR schemes that provide

considerably higher resolving efficiency than DG for P ≥ 4. These schemes have the same

formal order and achieve greater accuracy through optimal choices of the correction function.

The resolving efficiency for these schemes is higher than standard implicit compact finite

difference tridiagonal schemes as well. In particular, the 6th order OFR scheme provides

similar resolution to the 8th order standard implicit compact difference scheme. CFL limits

for the optimal schemes compare well with the DG scheme thereby ensuring that no extra

effort is required in obtaining higher accuracy. Linear advection of wave-packets suggest that

the advantage of using the proposed schemes applies to non-uniform grids as well. Due to

the enhanced resolution, the greatest benefit is received for moderately high wavenumbers

at about half the Nyquist limit.

The scope for future work includes the evaluation of spectrally optimal schemes on multi-

dimensional elements. While it is intuitive to expect that the present schemes would continue

to be optimal for quadrilaterals and hexahedra, using tensor products, an analytical proof

or similar computational exercise should be carried out to ascertain this. The extension to

simplex elements is more complicated. A characterization of the wave properties for triangles

and tetrahedra would be an important step in understanding the wave properties of the FR

formulation.
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