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Abstract. We construct a covariant and gauge-invariant framework to deal with arbitrary
high-order perturbations of a spherical spacetime. It can be regarded as the generalization to
high orders of the Gerlach and Sengupta formalism for first-order nonspherical perturbations.
The Regge-Wheeler-Zerilli harmonics are generalized to an arbitrary number of indices and
a closed formula is deduced for their products. An iterative procedure is given in order to
construct gauge-invariant quantities up to any perturbative order. Focusing on second-order
perturbation theory, we explicitly compute the sources for the gauge invariants as well as for
the evolution equations.

1. Introduction
Perturbation theory is very useful in many branches of theoretical physics. General Relativity
is not an exception, among other reasons because the equations of motion of the full theory are
too complicated to be analytically solved. During several years, perturbation theory has been
used to analyze the stability of black-hole and cosmological solutions to the Einstein equations.
It also can be used to check the stability of the different formulations of equations implemented
in numerical codes, since a numerical error can be interpreted as a small departure from the
solution that one is considering. Another important application is in the obtention of waveforms
produced in certain astrophysical scenarios.

For background spacetimes with spherical symmetry, perturbation theory has provided very
good approximations to many situations of physical interest. Already in the early fifties Regge
and Wheeler (RW) [1] analyzed the non-spherical perturbations of the Schwarzschild spacetime.
As we will see below, the gravitational waves have two kinds of polarity: axial and polar. Regge
and Wheeler were able to find a wave equation for the axial degree of freedom. Some years
later, Zerilli [2] achieved the same goal for the polar degree of freedom. Moncrief [3] was the
first person to study the problem using variables that are invariant under a change of gauge, for
the particular case of the Schwarzschild background. Gerlach and Sengupta (GS) [4] generalized
all these results to generic spherically symmetric backgrounds. Their formalism possesses many
nice features. They performed a 2+2 splitting of the background spacetime and decomposed
the perturbations in the Regge-Wheeler-Zerilli (RWZ) basis of harmonics, which absorbs all the
dependence on the coordinates of the sphere. The GS formalism is covariant, i.e., it does not
require fixing any privilege system of coordinates. In addition, it makes use of gauge-invariant
objects to describe the perturbations. The aim of our work is to generalize this formalism in
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order to have an efficient tool to deal with the problem of high-order perturbations of spherical
spacetimes.

There are several reasons that justify the convenience of going beyond first order in
perturbation theory. The most obvious motivation is the desire to attain more accuracy in
the numerical simulations, as well as to validate regions and quantitative errors for the first-
order results. Besides, the non-linearity of the full theory will be reflected in the coupling of
first-order modes. Owing to this non-linearity, intrinsic scales may appear in certain problems.

The calculations involved in problems with high-order perturbations are very complicated.
This explains why, until very recently, it has been impossible to study these high-order
corrections. Nowadays, computer algebra is developed to a point that permits one to face
this kind of computations. In this context, another goal of our work is to provide a suitable
computer framework to cope with the study of high-order perturbations of spherical spacetimes.
This framework is composed by two Mathematica packages [5] that essentially consist in the
algebraic implementation of the theory presented in this article.

The rest of this article is organized in six sections. Section 2 discusses high-order perturbation
theory for a generic background. In Section 3, the GS notation for the spherical background
is introduced. Section 4 deals with the tensor spherical harmonics. In particular, the RWZ
harmonics are presented and generalized to any rank. A product formula is also obtained for
them. In Section 5 the perturbations are decomposed using the RWZ harmonics and a procedure
to construct gauge-invariant variables is given. Section 6 studies in detail the second-order case
and in Section 7 we summarize the main results and conclude.

2. High-order perturbation theory in General Relativity
We start by considering a family of spacetimes that depend on a dimensionless parameter ε. Each
spacetime is composed by a four dimensional manifold M̃(ε), a metric g̃µν(ε) and some matter
fields that are abstractly denoted by Φ̃(ε). In particular, the stress-energy tensor T̃ (ε) is given
in terms of these matter fields. We call background manifold the manifold with vanishing ε and
denote all the objects defined in it without tildes, that is, {M̃(0), g̃µν(0), Φ̃(0)} ≡ {M, gµν , Φ}.
Besides, the background metric gµν and the stress-energy tensor Tµν are supposed to provide a
known solution of the Einstein equations.

We then introduce a perturbative hierarchy by expanding all the ε-dependent objects into
power series. In order to do this, we assume that the dependence on ε is sufficiently smooth
(e. g. Cn if we want to work up to order n):

g̃µν(ε) = gµν +
∞

∑

n=1

εn

n!
{n}hµν , (1)

Φ̃(ε) = Φ +
∞

∑

n=1

εn

n!
{n}Φ, (2)

T̃µν(ε) = Tµν +
∞

∑

n=1

εn

n!
{n}Tµν . (3)

It is convenient to define a formal perturbative operator ∆, with the properties of a derivative,
acting on any ε-dependent tensor Ω̃,

∆n[Ω] ≡ dnΩ̃(ε)
dεn

∣

∣

∣

∣

∣

ε=0

. (4)
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In this way, the tensor Ω̃(ε) can be expanded in the following way

Ω̃(ε) = Ω +
∞
∑

n=1

εn

n!
∆n[Ω]. (5)

In particular, it is clear from expansion (1) that, by definition, ∆[gµν ] ≡ {1}hµν and ∆[ {n}hµν ] ≡
{n + 1}hµν . We have been able to deduce closed formulas for the action of the operator ∆n on all
the curvature tensors of interest. Details can be found in reference [6]. For instance, the nth
perturbation of the inverse of the metric and of the Christoffel symbols are given by

∆n[gµν ] =
∑

(ki)

(−1)m n!
k1! ... km!

{km}hµα {km−1}hα
β ... {k2}hτ

ρ {k1}hρ
ν , (6)

∆n[Γα
µν ] =

∑

(ki)

(−1)m+1 n!
k1! ... km!

{km}hαβ {km−1}hβγ ... {k2}hτρ
{k1}hρ

µν , (7)

where the sums run over the 2n−1 sorted partitions of the number n into (ki) positive
integers. This means that we have to consider all the combinations of integers (ki) such that
k1 + ... + km = n for all m ≤ n. It is worth noting that all the derivatives of the metric
perturbations in formula (7) are encoded in the three-index perturbation {k1}hρ

µν :

{n}hρ
µν ≡

1
2

(

{n}hρ
µ;ν + {n}hρ

ν;µ − {n}hµν
;ρ) . (8)

3. Spherical background. Gerlach and Sengupta notation
We will only consider spherically symmetric backgrounds and use the notation introduced by
GS [4]. We take the four-dimensional background manifold M and write it as the product
M2 × S2, where M2 is a two-dimensional Lorentzian manifold with boundary (this boundary
will be associated with the center of symmetry) and S2 the two-sphere. We will use Greek indices
for the four dimensional manifold and choose a coordinate system adapted to this decomposition
xµ ≡ (xA, xa). Capital Latin indices denote basis indices on the manifold M2, xA ≡ (x0, x1),
and lowercase Latin letters indicate indices on the two sphere, xa ≡ (x2, x3). We will make all
the calculations using this covariant notation, so that the equations presented in this paper are
valid in any coordinate system.

Any spherically symmetric metric and stress-energy tensor can be respectively written as

gµν(xλ)dxµdxν = gAB(xD)dxAdxB + r2(xD) γab(xd)dxadxb,

Tµν(xλ)dxµdxν = tAB(xD)dxAdxB +
1
2
r2(xD) Q(xD) γab(xd)dxadxb,

where gAB is the metric of the manifold M2, γab is the round metric of the sphere and r is
a scalar defined on M2. We also define the following notation for the covariant derivatives
associated with each metric:

gµν;ρ = 0, gAB|D = 0, γab:d = 0. (9)

For future convenience, we introduce the Newman and Penrose basis of vectors on the sphere
[7] that are defined by

ma =
1√
2
(eθ

a + ieφ
a), and m̄a =

1√
2
(eθ

a − ieφ
a), (10)

where eθ
a and eφ

a are the unit coordinate basis vectors. These vectors are null, γabmamb =
γabm̄am̄b = 0, and their product can be decomposed as

m̄amb =
1
2
(γab + iεab). (11)
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4. Spherical tensor harmonics
4.1. Regge-Wheeler-Zerilli harmonics
The scalar spherical harmonics are defined as the eigenfunctions of the Laplacian operator

γabY m
l :ab = −l(l + 1)Y m

l , (12)

where γab is the inverse of the round metric and l a non-negative integer that has a covariant,
coordinate-independent, meaning. The other harmonic label m is an integer such that −l ≤
m ≤ l and its definition relies on the choice of a fixed Z axis

∂φY m
l = imY m

l . (13)

These scalar harmonics have the following behavior under a parity transformation,

Y m
l (π − θ, π + φ) = (−1)lY m

l (θ, φ). (14)

In order to construct a basis of vectors on the sphere, one can first take the covariant derivative
of the scalar harmonics Y m

l :a. The basis can be completed with vectors orthogonal to these ones,
obtained by means of the Levi-Civita tensor, Xm

l a ≡ εabγbcY m
l :c. In this way, a basis for the

vector fields on the sphere is given by {Y m
l :a, Xm

l a}. These objects have a well-defined parity,
inherited from the scalar harmonics

Y m
l :a(π − θ, π + φ) = (−1)lY m

l :a(θ, φ), (15)
Xm

l a(π − θ, π + φ) = (−1)l+1Xm
l a(θ, φ), (16)

and are split into two polarity families. Those which change sign as (−1)l under a parity
transformation form the polar family and those which change sign as (−1)l+1 the axial family.
There exist other names for the polarity families, for instance Regge and Wheeler used the
names even and odd, instead of polar and axial, respectively.

The basis used by Regge and Wheeler for the rank-two symmetric tensors is given by [1]

{Y m
l :ab, Xm

l ab ≡ Xm
l (a:b), Y

m
l γab}. (17)

(Note that there is a difference in a factor of 2 between Xm
l ab and the harmonic used by GS.)

The problem of this basis is that, for the particular case l = 1, Y m
1 :ab and Y m

1 γab are linearly
dependent. This is why Zerilli defined the alternate harmonic

Zm
l ab ≡ (Y m

l :ab)STF = Y m
l :ab +

l(l + 1)
2

Y m
l γab, (18)

where the superscript STF means the symmetric and trace-free part. In this way, the elements
of the basis {Zm

l ab, Xm
l (a:b), Y m

l γab} for the symmetric two-tensors are linearly independent for
all the values of the labels l and m. Besides, all these elements have a well-defined parity; Zm

l ab
and Y m

l γab are polar, whereas Xm
l (a:b) is axial.

We will refer to the basis obtained in this section as the RWZ basis of harmonics. This basis
proves sufficient if we want to study linear perturbation theory. But in order to do higher-order
perturbation theory we have to face two problems. The first one is that we have to know how
to expand the product between any pair of these harmonics as a linear combination of other
harmonics. The second problem is that, to construct such linear combinations, we will need
harmonics with more than two indices. We will solve these two problems by generalizing the
RWZ harmonics to any rank and giving a closed formula for the product of any pair of them.

XXIXth Spanish Relativity Meeting (ERE 2006) IOP Publishing
Journal of Physics: Conference Series 66 (2007) 012011 doi:10.1088/1742-6596/66/1/012011

4



4.2. Generalization of the Regge-Wheeler-Zerilli harmonics
In order to define a basis for the tensors of rank s defined on the sphere, we need a basis with
2s elements. Two of these elements will be given by the two symmetric traceless tensors on the
sphere that are defined in the following way:

Zm
l a1...as ≡ (Y m

l :a1...as)
STF, (19)

Xm
l a1...as ≡ ε(a1

bZm
l ba2...as), (20)

valid for −l ≤ m ≤ l and 1 ≤ s ≤ l. In all other cases, these harmonics are defined to be
identically zero, except for s = 0, when Zm

l ≡ Y m
l . Since the parity of the scalar harmonics

Y m
l , the round metric γab and the Levi-Civita tensor εab is respectively (−1)l, +1 and −1 and

since taking covariant derivatives does not change the parity, the harmonic Zm
l a1...as is polar and

Xm
l a1...as is axial. The rest of elements for the basis of rank s tensors are given by independent

linear combinations of products between γab and εab with the basis for the tensors of rank
(s− 2). For instance, the basis of the tensors with three indices is formed by Zm

l abc, Xm
l abc and

six independent combinations of γabZm
l c, γabXm

l c, εabZm
l c, εabXm

l c and their index permutation.

4.3. Product formula
The product between two scalar harmonics can be expanded as

Y m′
l′ Y m

l =
l′+l
∑

l′′=|l′−l|

E0
0

l
l′

m
m′ l′′ Y

m+m′

l′′ , (21)

where we have defined the symbol

E0
0

l
l′

m
m′ l′′ ≡

√

(2l + 1)(2l′ + 1)
4π(2l′′ + 1)

Cm′
l′

m
l

m′+m
l′′ C0

l′
0
l
0
l′′ , (22)

with Cm1
l1

m2
l2

m1+m2
l being the Clebsch-Gordan coefficients.

In order to obtain a similar formula for any pair of the RWZ generalized harmonics, we will
introduce the so-called pure-spin harmonics that are very closely related to the Wigner rotation
matrices, for which a product formula is well known.

The rank two pure-spin harmonics were defined by Zerilli [8] and we generalize them up to
any rank s in the following way,

Ys,m
l a1...as ≡ (−1)sk(l, s)D(l)

s,m(0, θ, φ)ma1 ...mas , (23)

Y−s,m
l a1...as ≡ k(l, s)D(l)

−s,m(0, θ, φ)m̄a1 ...m̄as , (24)

where D(l)
m1,m2 are the Wigner matrices, that is, the irreducible representations of the rotation

group in terms of the Euler angles (α, β, γ). In addition, the normalization factors

k(l, s) =

√

(2l + 1)(l + s)!
2s+2 π (l − s)!

, (25)

are chosen in such a way that the relation between the pure-spin harmonics and the generalized
RWZ ones is (for s ≥ 1)

Zm
l a1...as = Ys,m

l a1...as + Y−s,m
l a1...as , (26)

−iXm
l a1...as = Ys,m

l a1...as − Y
−s,m
l a1...as . (27)
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For the case s = 0, one has Zm
l = Y0,m

l = Y m
l . Because of the properties of the vectors ma and

m̄a, the pure-spin harmonics are symmetric and trace-free tensors.
It is well known that a product between two Wigner matrices, with the same Euler angles

(α, β, γ), can be decomposed in the following way

D(j1)
m′

1m1
(α, β, γ) D(j2)

m′
2m2

(α, β, γ) =
∑

j

Cm1
j1

m2
j2

m1+m2
j Cm′

1
j1

m′
2

j2
m′

1+m′
2

j D(j)
m′

1+m′
2,m1+m2

(α, β, γ). (28)

Making use of this formula, it is straightforward to find that the product between two pure-spin
harmonics with the same sign is given by

Y±s′,m′

l′ a1...as′Y
±s,m
l b1...bs =

l′+l
∑

l′′=|l−l′|

E±s′
±s

l′
l

m′
m l′′Y

±(s′+s),m′+m
l′′ a1...as′b1...bs , (29)

with

Es
s′

l
l′

m
m′ l′′ ≡

k(l′, |s′|)k(l, |s|)
k(l′′, |s + s′|)

Cm′
l′

m
l

m′+m
l′′ Cs′

l′
s
l
s′+s
l′′ . (30)

We also obtain the following decomposition for the product between pure-spin harmonics
with different sign (assuming, without loss of generality, that s′ ≥ s),

Y∓s′,m′

l′ a1...as′Y
±s,m
l b1...bs =

l′+l
∑

l′′=|l−l′|

E∓s′
±s

l′
l

m′
m l′′Y

∓(s′−s),m′+m
l′′ as+1...as′T

±s
a1b1...asbs , (31)

where we have defined the tensors

T s
a1b1...asbs ≡ (−1)sm̄a1mb1 ...m̄asmbs , (32)

T−s
a1b1...asbs ≡ (−1)sma1m̄b1 ...masm̄bs , (33)

that must be expanded using relation (11). By definition T 0 ≡ 1.
From formulas (29) and (31) and relations (26)–(27), it is easy to find a similar formula for

the product between any pair of RWZ generalized harmonics.

5. Non-spherical perturbations
5.1. Harmonic decomposition of the perturbations
Making use of the RWZ harmonics, we decompose the perturbations of the metric {n}hµν and
those of the stress-energy tensor {n}Tµν in the following way:

{n}hµν ≡
∑

l,m

(

{n}Hm
l AB Zm

l
{n}Hm

l A Zm
l b + {n}hm

l A Xm
l b

Sym. {n}Km
l r2γabZm

l + {n}Gm
l r2Zm

l ab + {n}hm
l Xm

l ab

)

, (34)

{n}Tµν =
∑

l,m

(

{n}Tm
l AB Zm

l
{n}Tm

l A Zm
l b + {n}tml A Xm

l b

Sym. {n}T̃m
l r2γabZm

l + {n}Tm
l Zm

l ab + {n}tml Xm
l ab

)

. (35)

Note that the axial (polar) harmonic coefficients are denoted in lowercase (uppercase) letters.
This convention will be followed from now on and will be very useful for identifying the polarity
of the objects under consideration. These decompositions reproduce those of reference [4] up to
the mentioned normalization in the axial tensor Xm

l ab and some changes in notation.
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5.2. Gauge freedom
In dealing with perturbation theory, one always has to face the problem of how perturbed and
unperturbed tensors can be compared. Since they are defined in different manifolds and there is
no preferred structure that one could use as a reference, an arbitrary mapping has to be given.
Different choices of this mapping are related by gauge transformations. The nth order gauge
transformation of any tensor is given by [9]

∆n[Ω] =
n

∑

m=1

n!
(n−m)!

∑

(Km)

1
2k2 ...(m!)kmk1!...km!

Lk1
{1}ξ

...Lkm
{m}ξ

∆n−m[Ω], (36)

where Ω is any background tensor field, (Km) = {(k1, ..., km) ∈ N/
∑m

i=1 iki = m} and the over-
bar quantity denotes the perturbation of the tensor Ω defined in another gauge. In particular if
we apply that formula to the metric tensor up to second order the result is

{1}hµν − {1}hµν = L {1}ξgµν , (37)

{2}hµν − {2}hµν =
(

L {2}ξ + L2
{1}ξ

)

gµν + 2L {1}ξ
{1}hµν . (38)

The most important consequence of these formulas is that the gauge freedom is encoded in a
vector {n}ξ for each perturbative order. Making the harmonic decomposition of these vectors

{n}ξµ =
∑

l,m

(

{n}Φm
l A Zm

l , r2 {n}Φm
l Zm

l a + r2 {n}ξm
l Xm

l a
)

, (39)

we realize that there are one axial and three polar gauge degrees of freedom per order.
In order to extract this non-physical freedom from our perturbations, we can take two

approaches. Following RW [1] we can fix the gauge by choosing

{n}Hm
l A = 0, {n}Gm

l = 0 {n}hm
l = 0. (40)

We have proven [6] that this gauge, the so-called RW gauge, can be imposed up to any
perturbative order and, because of the properties of the spherical harmonics, leads to a full
metric g̃µν such that

g̃Ab:c gbc = 0, g̃ab = K̃gab, (41)

where K̃ is a generic function that depends on all of the four coordinates of the background
manifold.

As an alternative we can instead follow Moncrief [3] and, making linear combinations of the
harmonic coefficients appearing in equations (34) and (35), construct gauge-invariant quantities.
These gauge invariants are conceptually different from those defined in reference [10], since they
are tied to the RW gauge (40). We note that this gauge is almost rigid, in the sense that
it exhausts all the gauge freedom except for the cases l = 0, 1 that have to be treated in a
different way. We have succeeded in constructing a procedure to generalize these gauge-invariant
quantities for any tensor up to the desired order in perturbation theory [11]. In order to explain
this procedure, let us define a tensor {n}Kµν that obeys the RW gauge (40) and, therefore, is
decomposed in harmonics as

{n}Kµν =
∑

l,m

(

{n}Km
l AB Zm

l
{n}κm

l A Xm
l b

Sym. {n}Km
l r2γabZm

l

)

. (42)

The gauge invariants will be the harmonic coefficients of this tensor in terms of the coefficients
of the decomposition (34) [and (35) for the stress-energy tensor]. In order to relate them, one
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just has to take a generic unrestricted metric perturbation {n}hµν decomposed as (34) and apply
a gauge transformation to take it to the RW form {n}Kµν . For example, at first order, from
relation (37) we have that

{1}Kµν = {1}hµν + L {1}pgµν , (43)

where {1}p is the first-order gauge vector that we have to determine and that is decomposed as

{1}p ≡
∑

l,m

(

{1}Pm
l A Zm

l , r2 {1}Pm
l Zm

l a + r2 {1}qm
l Xm

l a
)

. (44)

Therefore, from (42) and (43) we have that these harmonic coefficients are given by

{1}Pm
l A =

r2

2
{1}Gm

l |A − {1}Hm
l A, {1}Pm

l = −1
2
{1}Gm

l , {1}qm
l = − 1

2r2
{1}hm

l , (45)

and hence the first-order gauge invariants defined by GS are

{1}Km
l AB = {1}Hm

l AB + {1}Pm
l A|B + {1}Pm

l B|A, (46)
{1}Km

l = {1}Km
l + 2vA {1}Pm

l A − l(l + 1) {1}Pm
l , (47)

{1}κm
l A = {1}hm

l A + r2 {1}qm
l |A. (48)

In order to obtain the nth order gauge invariants, it is easy to see from (36) that the equation
we have to solve is the same as at first order (43) but with a source term {n}Hµν ,

{n}Kµν = {n}hµν + L {n}pgµν + {n}Hµν . (49)

This hierarchy of equations can be solved iteratively because, as can be seen in relation (36),
{n}Hµν depends on perturbations of lower order {m}hµν (m ≤ n) and on the gauge vectors {m}p
which are supposed to have been determined in terms of {m}hµν . As usual, we can decompose
{n}Hµν in spherical harmonics:

{n}Hµν =
∑

l,m

(

{n}Hm
l AB Zm

l
{n}Hm

l A Zm
l b + {n}̌hm

l A Xm
l b

Sym. {n}H̃m
l r2γabZm

l + {n}Hm
l Zm

l ab + {n}̌hm
l Xm

l ab

)

. (50)

In this way, the nth order metric invariants are

{n}Km
l AB = {n}Hm

l AB + {n}Pm
l A|B + {n}Pm

l B|A + {n}Hm
l AB, (51)

{n}Km
l = {n}Km

l + 2vA {n}Pm
l A − l(l + 1) {n}Pm

l + {n}H̃m
l , (52)

{n}κm
l A = {n}hm

l A + r2 {n}qm
l |A + {n}̌hm

l A, (53)

where the harmonic coefficients of the vector {n}p are given by

{n}Pm
l A =

r2

2

(

{n}Gm
l +

1
r2

{n}Hm
l

)

|A
− {n}Hm

l A − {n}Hm
l A, (54)

{n}Pm
l = −1

2

(

{n}Gm
l +

1
r2

{n}Hm
l

)

, (55)

{n}qm
l = − 1

2r2

(

{n}hm
l + {n}̌hm

l
)

. (56)

In order to find the gauge invariants of another tensor field, in particular of the stress-energy
tensor, it suffices to apply a gauge transformation parameterized by the vectors { {1}p, ..., {n}p}.
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6. Second-order
6.1. Second-order gauge invariants
The second-order metric gauge invariants are explicitly given by equations (51)–(53) with the
source term

{2}Hµν ≡ L2
{1}pgµν + 2L {1}p

{1}hµν . (57)

The matter invariants are encoded in the tensor {2}Ψµν , that is decomposed in harmonics as

{2}Ψµν =
∑

l,m

(

{2}Ψm
l AB Zm

l
{2}Ψm

l A Zm
l b + {2}ψm

l A Xm
l b

Sym. {2}Ψ̃m
l r2γabZm

l + {2}Ψm
l Zm

l ab + {2}ψm
l Xm

l ab

)

, (58)

and is defined applying a gauge transformation to the second-order stress-energy tensor {2}Tµν
parameterized by the vectors { {1}p, {2}p}:

{2}Ψµν = {2}Tµν + L {2}pTµν + L2
{1}pTµν + 2L {1}p

{1}Tµν . (59)

6.2. Second-order Einstein equations
Making use of the gauge-invariant variables defined in the previous section, the second-order
Einstein equations can be schematically written as

EAB[ {2}Km
l ] +

∑

l̄,l̂

∑

m̄,m̂

(ε)Sm̄
l̄

m̂
l̂

m
l AB =8π {2}Ψm

l AB, (60)

EA[ {2}Km
l ] +

∑

l̄,l̂

∑

m̄,m̂

(ε)Sm̄
l̄

m̂
l̂

m
l A = 8π {2}Ψm

l A, (61)

Ẽ[ {2}Km
l ] +

∑

l̄,l̂

∑

m̄,m̂

(ε)S̃m̄
l̄

m̂
l̂

m
l = 8π {2}Ψ̃m

l , (62)

E[ {2}Km
l ] +

∑

l̄,l̂

∑

m̄,m̂

(ε)Sm̄
l̄

m̂
l̂

m
l = 8π {2}Ψm

l , (63)

OA[ {2}κm
l ] − i

∑

l̄,l̂

∑

m̄,m̂

(−ε)Sm̄
l̄

m̂
l̂

m
l A = 8π {2}ψm

l A, (64)

O[ {2}κm
l ] − i

∑

l̄,l̂

∑

m̄,m̂

(−ε)Sm̄
l̄

m̂
l̂

m
l = 8π {2}ψm

l , (65)

where (l̄, m̄) and (l̂, m̂) are the harmonic labels corresponding to the first-order modes that
couple giving rise to a second-order mode with labels (l, m). That is why the sums run over
all non-negative integers with the usual restrictions |l̄ − l̂| ≤ l ≤ l̄ + l̂ and m̄ + m̂ = m. E
and O are linear differential operators, in fact they are the same operators that appear at first
order, but they now act on second-order quantities. As can be seen recalling our notation of
capital or lowercase letters for polar or axial objects, respectively, E acts on the polar invariants
{ {2}Km

l AB, {2}K}, whereas O only acts on the axial invariant κm
l A. We have explicitly calculated

and simplified the sources S that are quadratic in first-order perturbations and depend on the
sign ε ≡ (−1)l̄+l̂−l. There exist two kind of sources: (+)S and (−)S. On the one hand, (+)S sources
are composed by polar×polar and axial×axial terms with real coefficients. On the other hand,
(−)S sources contain polar × axial mixed terms with purely imaginary coefficients. The sign ε
flips when any of the l labels changes, so all equations have generically both type of sources. As
a consequence, some of the equations share the sources. In particular, equations (61) and (64)
alternate their sources. The same thing happens with the pair (63) and (65).
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7. Conclusions
In order to face the problem of high-order perturbation theory in a spherical background, we
have generalized to higher orders the well-known GS formalism for non-spherical first-order
perturbations of a spherical spacetime. This formalism is considered to be optimal for the
perturbative study of a number of astrophysical scenarios of interest. The generalization put
forward here will make it even more powerful, leading to more precise results and allowing to
describe interactions between different modes. In doing this generalization a number of results
have been obtained.

Without restricting ourselves to any background, we have achieved closed formulas to
calculate the perturbation of all the curvature tensors of interest at any order. Because of
their differential character, these formulas turn out to be combinatorial, what makes them very
effective from the point of view of an algebraic implementation.

We have generalized the so-called RWZ and pure-spin harmonics to any rank. We also have
provided a formula that expands the product between any pair of them as a linear combination
of harmonics. This formula is essential to complete the formalism.

In addition, we have studied the gauge-freedom problem, showing that the RW gauge can be
imposed up to any order in perturbation theory and obtaining an iterative procedure that, in
general, allows one to construct the gauge-invariant quantities that are tied to this gauge.

For the particular case of second order, we have explicitly computed and simplified the gauge
invariants for spherical backgrounds, as well as the Einstein equations, that govern the evolution
of these invariant objects. The second-order equations are essentially the same as the first-order
equations, but they also include complicated quadratic sources in first-order perturbations. We
have disentangled the structure of these sources and simplified them to a manageable form.
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