
High-order integral equation methods for problems of

scattering by bumps and cavities on half-planes
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Abstract

This paper presents high-order integral equation methods for evaluation of electromagnetic
wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric
half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering
problems, namely: scattering by a dielectric bump on a perfectly conducting or a dielectric half-
plane, and scattering by a filled, overfilled or void dielectric cavity on a perfectly conducting
or a dielectric half-plane. In all cases field representations based on single-layer potentials for
appropriately chosen Green functions are used. The numerical far fields and near fields exhibit
excellent convergence as discretizations are refined—even at and around points where singular
fields and infinite currents exist.

1 Introduction

This paper presents high-order integral equation methods for the numerical solution of problems of
scattering of a plane electromagnetic wave by cylindrical dielectric defects at the interface between
two half-planes. Eight such classical problems are tackled in this contribution: scattering by
a dielectric bump on 1) a perfectly electrically conducting (PEC) or 2) a dielectric half-plane
(Fig. 1a); scattering by a dielectric-filled cavity on 3) a perfectly-conducting or 4) a dielectric
half-plane (Fig. 1b); scattering by a dielectric-overfilled cavity on 5) a perfectly-conducting or 6)
a dielectric half-plane (Fig. 1c); and scattering by a void cavity on 7) a perfectly-conducting or 8)
a dielectric half-plane (Fig. 1d). From a mathematical perspective these eight different physical
problems reduce to just three problem types for which this paper provides numerical solutions on
the basis of highly accurate and efficient boundary integral equation methods.

In all cases the proposed methods utilize field representations based on single-layer potentials
for appropriately chosen Green functions. As is known, such single-layer formulations lead to
non-invertible integral equations at certain spurious resonances—that is, for wavenumbers that
coincide with interior Dirichlet eigenvalues for a certain differential operator—either the Laplace
operator or an elliptic differential operator with piecewise constant coefficients (see Sec. 4.2 for
details). We nevertheless show that solutions for all wavenumbers can be obtained from such non-
invertible formulations—including wavenumbers at which non-invertible integral equations result.
Our method in these regards relies on the analyticity of the PDE solution as a function of the
wavenumber together with a certain approach based on use of Chebyshev approximation.
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(The use of field representations which give rise to non-invertible operators is advantageous in
two main ways: on one hand this strategy allows one to bypass the need to utilize hypersingular
operators, whose evaluation is computationally expensive and, otherwise, highly challenging near
corner points; and, on the other hand, it leads to systems of integral equations containing fewer
integral operators—with associated reduced computational cost.)

The problems considered in this paper draw considerable interest in a wide range of settings. For
example, the problem of scattering by bumps and cavities on a (perfect or imperfect) conducting
half-plane is important in the study of the radio-frequency absorption and electric and magnetic field
enhancement that arises from surface roughness [28, 40]. The problem of scattering by open groove
cavities on a conducting plane, in turn, impacts on a variety of technologies, with applicability
to design of cavity-backed antennas, non-destructive evaluation of material surfaces, and more
recently, modeling of extraordinary transmission of light and plasmonics resonance, amongst many
others (e.g. [3] and references therein).

There is vast literature concerning the types of problems considered in this paper. For a
circular bump a separation-of-variables analytical Fourier-Bessel expansion exists [27]. Related
semi-analytical separation-of-variables solutions are available for other simple configurations, such
as semi-circular cavities and rectangular bumps and cavities (e.g. [8, 9, 13, 19, 24, 23, 25, 31, 32,
39] and references therein), while solutions based on Fourier-type integral representations, mode
matching techniques and staircase approximation of the geometry are available for more general
domains (e.g. [5] and references therein). Even for simple configurations, such as a circular cavity or
bump on a perfectly conduction plane, the semi-analytical separation-of-variables method requires
solution of an infinite dimensional linear system of equations that must be truncated to an n × n
system and solved numerically [14, 24, 25, 29, 31, 32]. As it happens, the resulting (full) matrix is
extremely ill-conditioned for large values of n. In practice only limited accuracy results from use
of such algorithms: use of small values of n naturally produces limited accuracy, while for large
values of n matrix ill-conditioning arises as an accuracy limiting element.

Finite element and finite difference methods of low order of accuracy have been used extensively
over the last decade [2, 3, 4, 12, 20, 33, 36, 37]. As is well known, finite element and finite difference
methods lead to sparse linear systems. However, in order to satisfy the Sommerfeld radiation
condition at infinity, a relatively large computational domain containing the scatterer must be
utilized (unless a non-local boundary condition is used, with a consequent loss of sparsity). In view
of the large required computational domains (or large coupled systems of equations for methods
that use non-local domain truncation) and their low-order convergence (especially around corners
where fields are singular and currents are infinite), these methods yield very slow convergence, and,
therefore, for adequately accurate solutions, they require use of large numbers of unknowns and a
high computational cost.

Boundary integral equation methods, on the other hand, lead to linear systems of reduced
dimensionality, the associated solutions automatically satisfy the condition of radiation at infinity,
and, unlike finite element methods, they do not suffer from dispersion errors. Integral equation
methods have been used previously for the solution of the problem of scattering by an empty and
dielectric-filled cavity on a perfectly conducting half-plane; see e.g. [15, 38, 35]. However, previous
integral approaches for these problems are based on use of low-order numerical algorithms and,
most importantly, they do not accurately account for singular field behavior at corners—and, thus,
they may not be sufficiently accurate for evaluation of important physical mechanisms that arise
from singular electrical currents and local fields at and around corners.

The present paper is organized as follows. Sec. 2 presents a brief description of the various
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σu = 0, εu, µu

σ, ε, µ

σℓ, εℓ, µℓ or PEC

(a) Dielectric bump on a half-
plane.

σ, ε, µ

σℓ, εℓ, µℓ or PEC

σu = 0, εu, µu

(b) Dielectric-filled cavity on a
half-plane.

σu = 0, εu, µu

σ, ε, µ

σℓ, εℓ, µℓ or PEC

(c) Dielectric-overfilled cavity on
a half-plane.

σu = 0, εu, µu

σℓ, εℓ, µℓ or PEC

(d) Void cavity on a half-plane.

Figure 1: Schematics of the eight physical problems considered in this paper.

problems at hand and Sec. 3 introduces a new set of integral equations for their treatment. Sec. 4
then describes the high-order solvers we have developed for the numerical solution of these integral
equations, which include full resolution of singular fields at corners. The excellent convergence
properties of the equations and algorithms introduced in this text are demonstrated in Sec. 5.
In particular, the high accuracy of the new methods in presence of corner singularities can be
used to evaluate the effects of corner singularities on currents and local fields on and around
bumps and cavities, and, thus, on important physical observables such as absorption, extraordinary
transmission, cavity resonance, etc.

2 Scattering problem

All the problems considered in this contribution can be described mathematically following the
compact depiction presented in Fig. 2. Thus, a plane wave Hinc(x) = H0 eik·x, Einc(x) = E0 eik·x

with wave vector k = k3(cosα, sinα) impinges on a cavity formed by the subdomains Ω1 and
Ω2 which lies on the boundary of an otherwise planar horizontal interface between the infinite
subdomains Ω3 and Ω4. As is well-known, the z components u = Ez and u = Hz of the total
electric and magnetic field satisfy the Helmholtz equation

∆u+ k2ju = 0 in Ωj , (1)

where, letting ω > 0, εj > 0, µj > 0 and σj ≥ 0 denote the angular frequency, the electric
permittivity, the magnetic permeability and the electrical conductivity, the wavenumber kj (ℑ(kj) >
0) is defined by k2j = ω2(εj + iσj/ω)µj , 1 ≤ j ≤ 4 . Throughout this paper it is assumed that Ω3

is a lossless medium (σ3 = 0).
In order to formulate transmission problems for the transverse components of the electromag-
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netic field, u is expressed as

u =





u1 in Ω1,
u2 in Ω2,
u3 + f in Ω3,
u4 + f in Ω4,

(2)

where f is the solution (presented below in this section) of the problem of scattering by the lower
half-plane in absence of the dielectric defect.

Additionally, u satisfies the transmission conditions

ui − uj = g,

1

βi

∂ui
∂n

− 1

βj

∂uj
∂n

=
1

βj

∂g

∂n
,

(3)

at the interface Γij between Ωi and Ωj , where βj = µj in TM-polarization and βj = εj + iσj/ω in
TE-polarization. For each one of the problems considered in this paper Equations (3) with g = f
are satisfied on Γ13. In the case in which Ω4 is filled by a dielectric material the transmission
conditions (3) are also satisfied with boundary data g = f on Γ24, and they are satisfied with
boundary data g = 0 on Γ34. On the other hand, when Ω4 is a perfectly conducting half-plane,
u4 = 0 and boundary conditions

uj = 0 and
∂uj
∂n

= 0, j = 2, 3 (4)

are satisfied on Γj4 in TM- and TE-polarization, respectively. Additionally, the scattering fields
uj , j = 3, 4 fulfill the Sommerfeld radiation condition at infinity.

The solution f of the problem of scattering by the lower half-plane in absence of the dielectric
defect (which provides the necessary source term in (2)) can be computed explicitly for each one
of the problems considered in this paper. For the problems in which Ω4 is a perfectly flat PEC
half-plane the total field is given by f(x) = E0

z (e
ik·x− eik·x) in TM-polarization, and f(x) =

H0
z (e

ik·x+eik·x) in TE-polarization, where k = k3(cosα, sinα) and k = k3(cosα,− sinα). For the
problems in which Ω4 is a flat dielectric half-plane, in turn, the total field is given by

f(x) =

{
E0

z (e
ik·x+RTM eik̄·x) in Ω3,

E0
zT

TM eik̃·x in Ω4,

and

f(x) =

{
H0

z (e
ik·x+RTE eik̄·x) in Ω3,

H0
zT

TE eik̃·x in Ω4,

in TM- and TE-polarization respectively, where

TTM,TE =
2β4k3

β4k3 + λβ3k4
, RTM,TE =

β4k3 − λβ3k4
β4k3 + λβ3k4

, λ =

√
1− k23/k

2
4 cos

2(α)

| sin(α)|

and k̃ = k4

(
k3/k4 cos(α),−

√
1− k23/k

2
4 cos

2(α)
)
(using the square root function

√
z determined

by the relation −π < arg(z) ≤ π—so that, in particular,
√
−1 = i).
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3 Integral equation formulations

Three main problem types can be identified in connection with Fig. 2, namely Problem Type I,
where transmission conditions (3) are imposed on Γ13 and Γ24 (which, in our context, characterize
the problem of scattering by a dielectric bump on a dielectric half-plane as well as the problems of
scattering by a filled, overfilled or empty cavity on a dielectric half-plane); Problem Type II, where
transmission conditions (3) are imposed on Γ13 and PEC boundary condition (4) is imposed on
Γ24, which applies to the problem of scattering by a (filled, overfilled or empty) cavity on a PEC
half-plane; and Problem Type III, where transmission conditions (3) are only imposed on Γ13, with
application to the problem of scattering by a dielectric bump on a perfectly conducting half-plane.
In the following three sections we derive systems of boundary integral equations for each one of
these problem types.

Γ34
Ω3

Γ13

Ω4

Ω1

Γ24

Ω2

Γ12

y

x

α

Figure 2: Compact mathematical description of the problems considered in this paper.

3.1 Problem Type I

In Problem Type I the domains Ωj (1 ≤ j ≤ 4) contain dielectric media of finite or zero conductivity;
we denote by kj the (real or complex) wavenumber in the domain Ωj . Note that

– For the problem of scattering by a dielectric-filled cavity on dielectric half-plane we have
k3 = k1, k1 6= k2, k2 6= k4;

– For the problem of scattering by an overfilled cavity on dielectric half-plane we have k3 6=
k1, k1 = k2, k2 6= k4; and

– For the problem of scattering by a void cavity on a dielectric half-plane we have k3 = k1, k1 =
k2, k2 6= k4.

To tackle the Type I problem we express the total field u by means the single-layer-potential
representation

u =

{
Sint[ψint] in Ω1 ∪ Ω2,

Sext[ψext] + f in Ω3 ∪ Ω4,
(5)

in terms of the unknown density functions ψint and ψext where, letting Gki
kj

denote the Green
function of the Helmholtz equation for the two-layer medium with wavenumbers ki and kj in the
upper and lower half-planes respectively (see Appendix C), we have set

Sint[ψ](x) =

∫

Γ13∪Γ24

Gk1
k2
(x,y)ψ(y) dsy, (6a)

Sext[ψ](x) =

∫

Γ13∪Γ24

Gk3
k4
(x,y)ψ(y) dsy. (6b)
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The Green functions Gki
kj

satisfy the transmission conditions (3) on Γij (with (ij) equal to either

(12) or (34)) and, therefore, they depend on the polarization (through the parameters βi and βj).

Note, further, that for ki = kj = k the Green function Gki
kj

equals the free space Green function
with wavenumber k.

It is easy to check that the representation (5) for the solution u satisfies the Helmholtz equation
with wavenumber kj in the domain Ωj (1 ≤ j ≤ 4) as well as the radiation conditions at infinity.
Since the two-layer Green functions satisfy the relevant transmission conditions on Γ12 and Γ34,
there remain only two boundary conditions to be satisfied, namely, the transmission conditions (3)
on the boundary of the defect Ω1∪Ω2. Using classical jump relations [10] for various layer potentials,
these conditions lead to the system

SΓ13

int [ψint]− SΓ13

ext [ψext] = f,

β3
β1

{
ψint

2
−KΓ13

int [ψint]

}
+
ψext

2
−KΓ13

ext [ψext] =
∂f

∂n
,

SΓ24

int [ψint]− SΓ24

ext [ψext] = f,

β4
β2

{
ψint

2
−KΓ24

int [ψint]

}
+
ψext

2
−KΓ24

ext [ψext] =
∂f

∂n

(7)

of boundary integral equations on the open curves Γ13 and Γ24 for the unknowns ψint and ψext.
The boundary integral operators in (7) for (ij) = (13) and (ij) = (24) are given by

S
Γij

int [ψ](x) =

∫

Γ13∪Γ24

Gk1
k2
(x,y)ψ(y) dsy, x ∈ Γij ,

S
Γij

ext [ψ](x) =

∫

Γ13∪Γ24

Gk3
k4
(x,y)ψ(y) dsy, x ∈ Γij ,

K
Γij

int [ψ](x) =

∫

Γ13∪Γ24

∂Gk1
k2

∂nx

(x,y)ψ(y) dsy, x ∈ Γij ,

K
Γij

ext [ψ](x) =

∫

Γ13∪Γ24

∂Gk3
k4

∂nx

(x,y)ψ(y) dsy, x ∈ Γij .

(8)

3.2 Problem Type II

In Problem Type II the domain Ω4 contains a PEC medium, and the domains Ωj (1 ≤ j ≤ 3) contain
dielectric media of finite or zero conductivity; we denote by kj the (real or complex) wavenumber
in the domain Ωj (1 ≤ j ≤ 3). Clearly,

– For the problem of scattering by a dielectric-filled cavity on PEC half-plane we have k3 =
k1, k1 6= k2;

– For the problem of scattering by an overfilled cavity on PEC half-plane we have k3 6= k1, k1 =
k2; and

– For the problem of scattering by a void cavity on PEC half-plane we have k3 = k1, k1 = k2.
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For Type II problems we express the total field u by means of the single-layer-potential represen-
tation

u =





Sint[ψint] in Ω1 ∪ Ω2,

Sext[ψext] + f in Ω3,

0 in Ω4,

(9)

where, defining Gk1
k2

as in Sec. 3.1 and letting Gk3
∞ denote the Green function that satisfies the PEC

boundary condition (4) on Γ34, the potentials above are defined by

Sint[ψ](x) =

∫

Γ13∪Γ24

Gk1
k2
(x,y)ψ(y) dsy, (10a)

Sext[ψ](x) =

∫

Γ13

Gk3
∞(x,y)ψ(y) dsy. (10b)

As mentioned in Sec. 3.1 the Green function Gki
kj

depends on the polarization; the same is of

course true for Gk3
∞, which is given by Gk

∞(x,y) = Gk(x,y) − Gk(x̄,y) in TM-polarization, and
Gk

∞(x,y) = Gk(x,y) + Gk(x̄,y) in TE-polarization, where x̄ = (x1,−x2) and where Gk(x,y) =

iH
(1)
0 (k|x − y|)/4 is the free-space Green function. By virtue of the integral representation (9)

the field satisfies the Helmholtz equation in the domain Ωj with wavenumber kj (1 ≤ j ≤ 3), the
radiation condition at infinity, transmission conditions on Γ12 and the PEC boundary conditions on
Γ24. Imposing the remaining transmission conditions (3) on Γ13 and PEC boundary condition (4)
of Γ24, we obtain the equations

SΓ13

int [ψint]− SΓ13

ext [ψext] = f,

β3
β1

{
ψint

2
−KΓ13

int [ψint]

}
+
ψext

2
−KΓ13

ext [ψext] =
∂f

∂n
,

(11a)

on Γ13 (valid for both TE and TM polarizations provided the corresponding constants βj and Green
functions are used) and

ψint

2
+KΓ24

int [ψint] = 0 (TE polarization) (11b)

SΓ24

int [ψint] = 0 (TM polarization) (11c)

on Γ24. In accordance with the definition of the single-layer potentials (10), the boundary integral
operators in (11) for (ij) = (13) and (ij) = (24) are given by

S
Γij

int [ψ](x) =

∫

Γ13∪Γ24

Gk1
k2
(x,y)ψ(y) dsy, x ∈ Γij ,

S
Γij

ext [ψ](x) =

∫

Γ13

Gk3
∞(x,y)ψ(y) dsy, x ∈ Γij ,

K
Γij

int [ψ](x) =

∫

Γ13∪Γ24

∂Gk1
k2

∂nx

(x,y)ψ(y) dsy, x ∈ Γij ,

K
Γij

ext [ψ](x) =

∫

Γ13

∂Gk3
∞

∂nx

(x,y)ψ(y) dsy, x ∈ Γij .

(12)
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3.3 Problem Type III

For Problem Type III the domains Ωj (j = 1, 3) contain dielectric media of finite or zero conductivity
(the corresponding, possibly complex, wavenumbers are denoted by k1 and k3), and the domains
Ωj , j = 2, 4, contain a PEC medium. Note that

– For the problem of scattering by a dielectric bump on PEC half-plane we have k3 6= k1.

As in the previous cases, for Type III problems the total field u is expressed by means of the
single-layer-potential representation

u =





Sint[ψint] in Ω1,

Sext[ψext] + f in Ω3,

0 in Ω2 ∪ Ω4,

(13)

where the potentials above are defined by

Sint[ψ](x) =

∫

Γ13

Gk1
∞(x,y)ψ(y) dsy, (14a)

Sext[ψ](x) =

∫

Γ13

Gk3
∞(x,y)ψ(y) dsy. (14b)

As mentioned in Sec. 3.2, the Green functions Gk1
∞ and Gk3

∞ depend on the polarization and sat-
isfy the PEC boundary condition on Γ12 and Γ34 respectively. The total field, as given by the
potentials (14), satisfies Helmholtz equations with wavenumber kj in the domain Ωj , j = 1, 3, PEC
boundary condition on Γ24 and Γ12, as well as the radiation condition at infinity. Imposing the
transmission conditions (3) on Γ13 the following system of boundary integral equations is obtained
for the unknown density functions ψint and ψext:

SΓ13

int [ψint]− SΓ13

ext [ψext] = f,

β3
β1

{
ψint

2
−KΓ13

int [ψint]

}
+
ψext

2
−KΓ13

ext [ψext] =
∂f

∂n
,

(15)

on Γ13, where the boundary integral operators are defined by

SΓ13

int [ψ](x) =

∫

Γ13

Gk1
∞(x,y)ψ(y) dsy, x ∈ Γ13,

SΓ13

ext [ψ](x) =

∫

Γ13

Gk3
∞(x,y)ψ(y) dsy, x ∈ Γ13,

KΓ13

int [ψ](x) =

∫

Γ13

∂Gk1
∞

∂nx

(x,y)ψ(y) dsy, x ∈ Γ13,

KΓ13

ext [ψ](x) =

∫

Γ13

∂Gk3
∞

∂nx

(x,y)ψ(y) dsy, x ∈ Γ13.

(16)

4 Numerical method

4.1 Discretization of integral equations

The integral equations (7), (11) and (15) involve either a) Integrals over Γ13 ∪ Γ24 with equality
enforced on Γ13 ∪ Γ24, or given by b) Integrals over Γ13 with equality enforced on Γ13. All of these
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integral equations can be expressed in terms of parametrizations of the curves Γ13 and Γ24, or,
more precisely, in terms of integrals of the form

∫ 2π

0
L(t, τ)φ(τ) dτ and

∫ 2π

0
M(t, τ)φ(τ) dτ, (17)

with kernels
L(t, τ) = G(x(t),y(τ))|y′(τ)|,
M(t, τ) = ∇x[G](x(t),y(τ)) · n(t)|y′(τ)|

(18)

where i) Each of the functions x(t) and y(τ) denote either a parametrization for the curve Γ13 or
of the curve Γ24 with parameters t and τ in the interval (0, 2π); ii) n(t) = (x′2(t),−x′1(t))/|x′(t)|
denotes the unit normal on Γ13 or Γ24, as appropriate, which points outward from the defect;
iii) φ(τ) = ψ(y(τ)), where ψ stands for the unknown density function under consideration; and
iv) G denotes the relevant Green function. Indeed, in case a) above, the integral over Γ13 ∪Γ24 can
be expressed as a sum of integrals on Γ13 and Γ24. In case b), in particular, we take x = y.

Our discretization of the integral equations (7), (11) and (15) is based on corresponding dis-
cretizations of the integrals (17). Following [10] we thus proceed by expressing the kernels (18) in
the form

L(t, τ) = L1(t, τ) log r
2(t, τ) + L2(t, τ), (19a)

M(t, τ) = M1(t, τ) log r
2(t, τ) +M2(t, τ), (19b)

where Lj andMj (j = 1, 2) are smooth functions on (0, 2π)×(0, 2π) and where r(t, τ) = x(t)−y(τ)
and r(t, τ) = |r(t, τ)|. In cases for which x(t) and y(τ) parametrize the same open curve we have

L1(t, τ) = − 1

4π
J0(kr(t, τ))|y′(τ)|,

L2(t, τ) = L(t, τ)− L1(t, τ) log r
2(t, τ),

M1(t, τ) =
k

4π
J1(kr(t, τ))n(t) ·

r(t, τ)

r
|y′(τ)|,

M2(t, τ) = M(t, τ)−M1(t, τ) log r
2(t, τ).

The diagonal terms L2(t, t) andM2(t, t) can be computed exactly by taking the limit of L2(t, τ) and
M2(t, τ) as τ → t (see [10, p. 77] for details). On the other hand, when x(t) and y(τ) parametrize
different curves, L and M are smooth on (0, 2π)× (0, 2π) and, thus, L1 = 0, L = L2, M1 = 0 and
M = M2. (Note that although in the latter case L and M are smooth functions, these functions
are in fact nearly singular, for t near the endpoints of the parameter interval (0, 2π) for the curve
x, and for τ around the corresponding endpoint of the parameter interval for the curve y.)

Letting K denote one of the integral kernels L or M in equation (19), in view of the discussion
aboveK may be expressed in the formK(t, τ) = K1(t, τ) log r

2(t, τ)+K2(t, τ) for smooth kernelsK1

and K2. For a fixed t then, there are two types of integrands for which high-order quadratures must
be provided, namely integrands that are smooth in (0, 2π) but have singularities at the endpoints
of the interval (that arise from corresponding singularities of the densities φ at the endpoints of
the open curves; cf. [21, 34, 7]), and integrands that additionally have a logarithmic singularity at
τ = t. To handle both singular integration problems we follow [18, 10] and utilize a combination
of a graded-meshes, the trapezoidal quadrature rule, and a quadrature rule that incorporates the
logarithmic singularity into its quadrature weights—as described in what follows. Interestingly, the
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graded meshes and associated changes of variables gives rise to accurate integration even in the
near-singular regions mentioned above in this section.

To introduce graded meshes we consider the polynomial change of variables t = w(s) where

w(s) = 2π
[v(s)]p

[v(s)]p + [v(2π − s)]p
, 0 ≤ s ≤ 2π, (20)

v(s) =

(
1

p
− 1

2

)(
π − s

π

)3

+
1

p

s− π

π
+

1

2
,

and where p ≥ 2. The function w is smooth and increasing on [0, 2π], with w(k)(0) = w(k)(2π) = 0
for 1 ≤ k ≤ p− 1. Using this transformation we express K as

K(t, τ) = K(w(s), w(σ))

= K1(w(s), w(σ)) log

(
4 sin2

s− σ

2

)
+ K̃2(s, σ)

where

K̃2(s, σ) = K1(w(s), w(σ)) log

(
r2(w(s), w(σ))

4 sin2 s−σ
2

)
+K2(w(s), w(σ)),

and where the diagonal term is given by K̃2(s, σ) = 2K1(t, t) log(w
′(s)|x′(t)|) + K2(t, t). High-

order accurate quadrature formulae for the integral operators (17) based on the (2n − 1)–point
discretization σj = jπ/n (1 ≤ j ≤ 2n−1, corresponding to integration over the curve parametrized
by y(τ)) at evaluation points t = ti = w(si) with si = iπ/q (1 ≤ i ≤ 2q − 1, corresponding to
evaluation of the operator at points on the curve parametrized by x(t)) can easily be obtained [10]
from the expressions

∫ 2π

0
f(σ) dσ ≈ π

n

2n−1∑

j=0

f(σj) (21)

and ∫ 2π

0
f(σ) log

(
4 sin2

s− σ

2

)
dσ ≈

2n−1∑

j=0

R
(n)
j (s)f(σj),

0 ≤ s ≤ 2π, (which, for smooth functions f , yield high-order accuracy), where the weights Rj(s)
are given by

Rj(s) = −2π

n

n−1∑

m=1

1

m
cosm(s− σj)−

π

n2
cosn(s− σj).

Clearly setting s = σi in this equation gives Rj(σi) = R|i−j| where

Rk = −2π

n

n−1∑

m=1

1

m
cos

mkπ

n
− (−1)kπ

n2
.

Using these quadrature points and weights and corresponding parameter values t = ti = w(si)
for the observation point (si = iπ/q) we obtain the desired discrete approximation for the inte-
grals (17): for an approximation φj ≈ φ(τj) = φ(w(σj)) we have

∫ 2π

0
K(ti, τ)φ(τ) dτ ≈

2n−1∑

j=1

{
K1(ti, τj)Wij +K2(ti, τj)

π

n

}
φj w

′(σj) (22)
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for 1 ≤ i ≤ 2q − 1, where τj = w(σj) and where the quadrature weights are given by

Wij = R|i−j| +
π

n
log

(
r2(ti, tj)

4 sin2(si − sj)/2

)
.

Note that for sufficiently large values of p the product φ(w(σ))w′(σ), (an approximation of which
appears in (22)) vanishes continuously at the endpoints of the parameter interval [0, 2π]—even in
cases for which, as it happens for corners or points of junction between multiple dielectric materials,
φ(w(σ)) tends to infinity at the endpoints.

The systems of boundary integral equations (7), (11) and (15) are discretized by means of
applications of the quadrature rule (22) to the relevant integral operators (8), (12) and (16), re-
spectively. This procedure leads to linear systems of algebraic equations for the unknown values
of the density functions ψint and ψext at the quadrature points. The presence of the weight w′(σj)
in (22), which multiplies the unknowns φj ≈ φ(τj) and which is very small for σj close to 0 and 2π,
however, gives rise to highly ill conditioned linear systems. To avoid this difficulty we resort to the
change of unknown ηj = φjw

′(σj) in (22); for the equations which contain terms of the form ψint/2
and ψext/2 it is additionally necessary to multiply both sides of the equation by w′(σj) to avoid
small denominators. In what follows, the resulting discrete linear systems for the problems under
consideration are generically denoted by Aη = f where, in each case η is a vector that combines
the unknowns that result from the discretization procedure described above in this section for the
various boundary portions Γij (cf. Fig. 2). Once η has been found, the numerical approximation of
the scattered fields at a given point x in space, which in what follows will be denoted by ũ = ũ(x),
can be obtained by consideration of the relevant representation (6), (10) or (14). For evaluation
points x sufficiently far from the integration curves these integrals can be accurately approximated
using the change of variable t = w(s) together with the trapezoidal rule (21); for observation points
near the integration curves, in turn, a procedure based on interpolation along a direction transverse
to the curve is used (see [1] for details).

4.2 Solution at resonant and near-resonant frequencies

As mentioned in the introduction, despite the fact that each one of the physical problems considered
in this contribution admit unique solutions for all frequencies ω and all physically admissible values
of the dielectric constant and magnetic permeability, for certain values of ω spurious resonances
occur: for such values of ω the systems of integral equations derived in Sec. 3 are not invertible.
In fact, spurious resonances for these systems arise whenever the wavenumber k3, which will also
be denoted by κ in what follows, is such that −k23 = −κ2 equals a certain Dirichlet eigenvalue.
(More precisely, letting ε(x) and µ(x) denote the prescribed (piece-wise constant) permittivity and
permeability, spurious resonances occur whenever κ satisfies ∆u = −κ2ε(x)µ(x)u in Ω1 ∪ Ω2 for
some nonzero function u satisfying u = 0 on ∂(Ω1 ∪ Ω2). This can be established e.g. taking
into account ideas underlying uniqueness arguments of the type found in [11, Chapter 3]. Note, in
particular, that the values of κ for which spurious resonances occur are necessarily real numbers
(and, thus, physically realizable), since the eigenvalues −κ2 are necessarily negative).

It is important to note that, in addition to the spurious resonances mentioned above, the
transmission problems considered in Sec. 2 themselves (and, therefore the corresponding systems of
integral equations mentioned above) also suffer from non-uniqueness for certain non-physical values
of κ (ℑ(κ) < 0) which are known as “scattering poles” [30]; cf. Fig. 4 and a related discussion
below in this section.
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The non-invertibility of the aforementioned continuous systems of integral equations at a spurious-
resonance or scattering-pole wavenumber κ = κ∗ manifests itself at the discrete level in non-
invertibility or ill-conditioning of the system matrix A := A(κ) for values of κ close to κ∗. There-
fore, for κ near κ∗ the numerical solution of the transmission problems under consideration (which,
in what follows will be denoted by ũ := ũκ(x) to make explicit the solution dependence on the
parameter κ) cannot be obtained via direct solution the linear system Aη = f . As is known,
however [30], the solutions u = uκ of the continuous transmission problems are analytic func-
tions of κ for all real values of κ—including, in particular, for κ equal to any one of the spurious
resonances mentioned above and for real values of κ near a scattering pole—and therefore, the
approximate values ũκ(x) for κ sufficiently far from κ∗ can be used, via analytic continuation, to
obtain corresponding approximations around κ = κ∗ and even at a spurious resonance κ = κ∗.

In order to implement this strategy for a given value of κ it is necessary for our algorithm
to possess a capability to perform two main tasks, namely, Task I: Determination of whether κ
is “sufficiently far” from any one of the spurious resonances and scattering poles κ∗; and Task
II: Evaluation of analytic continuations to a given real wavenumber κ0 which is either close or
equal to a spurious resonance κ∗, or which lies close to a scattering pole κ∗. Once these capabilities
are available the algorithm can be completed readily: if completion of Task I leads to the conclusion
that κ is far from all spurious resonances then the solution process proceeds directly via solution
of the associated system of integral equations. Otherwise, the solution process is completed by
carrying out Task II. Descriptions of the proposed methodologies to perform Tasks I and II are
presented in the following two sections.

4.2.1 Task I: matrix-singularity detection

Consider a given wavenumber κ′ for which a solution to one of the problems under consideration
needs to be obtained. As discussed in what follows, in order to determine the level of proximity of
κ′ to a spurious resonance or scattering pole κ∗, the matrix-singularity detection algorithm utilizes
the minimum singular value σmin(κ

′) of A(κ′). (Note that in view of the discussion concerning
Task I above in the present Sec. 4.2 it is not necessary to differentiate wavenumbers κ′ that lie near
to either a spurious resonance or to a scattering pole: both cases can be treated equally well by
means of one and the same Task II (analytic continuation) algorithm (Sec. 4.2.2).

To introduce the matrix-singularity detection algorithm consider Fig. 3: clearly, with exception
of a sequence of wavenumbers (spurious resonances and/or real wavenumbers close to non-real
scattering pole) around which the minimum singular value is small, the function σmin(κ) maintains
an essentially constant level. This property forms the basis of the matrix-singularity detection
algorithm. Indeed, noting that there are no singularities for κ smaller than certain threshold (as it
follows from the spectral theory for the Laplace operator), we choose a wavenumber κ0 > 0 close to
zero and we compare σmin(κ0) with σmin(κ

′). If σmin(κ
′) ≪ σmin(κ0), say σmin(κ

′) < ξ ·σmin(κ0) for
an adequately chosen value of ξ, κ′ is determined to be close to a some singularity κ∗, and therefore
the Task-II analytic-continuation algorithm is utilized to evaluate ũκ′(x). The parameter values
κ0 = 0.1 and ξ = 10−4 were used in all the numerical examples presented in this paper.

(A remark is in order concerning the manifestations of resonances and scattering poles on the
plots of the function σmin(κ) as a function of the real variable κ. By definition the function σmin(κ)
vanishes exactly at all spurious resonances. The four sharp peaks shown in Fig. 3, for example,
occur at the spurious resonances listed in the inset of Fig. 4. The first peak from the left in Fig. 3,
in contrast, is not sharp—as can be seen in the inset close-up included in the figure. The small
value σmin(κ) ∼ 10−7 around κ = 0.5708 is explained by the presence of a scattering pole κ∗:
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σmin(κ
∗) = 0 at the complex wavenumber κ∗ = 0.57807113743881 − 0.000074213015953i. Thus

scattering poles can in practice be quite close to the real κ axis, and thus give rise to rather sharp
peaks which are not associated with actual spurious resonances. As mentioned above, however, the
analytic continuation algorithm presented in what follows need not differentiate between these two
types of singularities: analytic continuation is utilized whenever a sufficiently small value of σmin

is detected.)

4.2.2 Task II: analytic continuation

Analytic continuation of the numerical solution ũκ(x) to a given wavenumber κ′ detected as a
matrix singularity (Sec. 4.2.1) is carried out via interpolation. Note, however, that, since A(κ) is
generally extremely ill-conditioned for values of κ in a narrow interval around such wavenumbers κ′,
fine interpolation meshes cannot be utilized to achieve arbitrary accuracy in the approximation. To
overcome this difficulty we utilize an interpolation method based on use of Chebyshev expansions,
for which the meshsize is not allowed to be smaller than a certain tolerance, and within which con-
vergence is achieved, in view of the analyticity of the scattered field with respect to the wavenumber
κ, by increasing the order of the Chebyshev expansion. To do this for a given wavenumber κ′ identi-
fied by the matrix-singularity detection algorithm (Sec. 4.2.1), the analytic continuation algorithm
proceeds by introducing a Chebyshev grid of points {κj}2mj=1 (cf. [16]) sorted in ascending order
such that the two middle points in the grid, κm and κm+1, lie at an appropriately selected distance
δ > 0 from the wavenumber κ′: κm = κ′ − δ and κm+1 = κ′ + δ.

The accuracy of the numerical evaluation of the field ũκj
at each one of the interpolation points

κj is ensured by running the matrix-singularity detection algorithm at each κj and adequately
changing the value of δ if a matrix-singularity is detected at one or more of the mesh points

κj . Letting ũ
(m)
κ denote the Chebyshev expansion of order 2m − 1 resulting for a Chebyshev

mesh selected as indicated above, the sequence ũ
(m)
κ′ convergences exponentially fast to ũκ′ as m

grows—as it befits Chebyshev expansions of analytic functions. If the matrix-singularity condition
σmin(κjℓ) < ξ · σmin(κ0) occurs at one of more of the interpolation points κj , say κjℓ , 1 ≤ ℓ ≤ L′,
the algorithm proceeds by selecting the smallest value of the parameter δ′ > δ and a new set
of Chebyshev points {κ′j}2m

′

j=1 (m′ ≥ m) satisfying κ′m′ = κ′ − δ′, κ′m′+1 = κ′ + δ′, such that

none of the new interpolation points lie on the region
⋃L′

ℓ=1(κjℓ − δ, κjℓ + δ). If the condition
σmin(κ

′
j) < ξ · σmin(κ0) occurs for some of the new interpolation points, say κ′jℓ , 1 ≤ ℓ ≤ L′′,

the algorithm proceeds as described above, but for a new value δ′′ > δ′, and so on. Note that
in practice the interpolation procedure described above is rarely needed, and when it is needed, a
suitable interpolation grid is usually found after a single iteration: in practice the choice δ = 0.01
has given excellent results in all the examples presented in this paper.

In order to demonstrate the fast convergence of ũ
(m)
κ′ to ũκ′ as m increases we consider the

problem of scattering by a dielectric unit-radius semi-circular bump on a PEC half-plane. For this
problem the wavenumbers κ∗ for which the system of integral equations (15) is non-invertible can be
computed explicitly: spurious resonances are given by real solutions of the equation Jn(κ) = 0, n ≥ 0,
where Jn denotes the Bessel function of first kind and order n, and scattering poles are complex

valued solutions of κH(1)
n (κ)J ′

n
(k1) = k1Jn(k1)H

(1)
n

′

(κ), where H(1)
n denotes the Hankel function of first

kind and order n (see Appendix. AB). The function σmin(κ) is displayed in Fig. 3. The κ∗ values
identified in that figure coincide (up to machine precision) with the first four positive solutions of
the equation Jn(κ) = 0. On the other hand, this problem admits an analytical solution uκ in terms
of a Fourier-Bessel expansion (see Appendix A). The availability of the exact solution allows us
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Figure 3: Minimum singular value of A as a function of κ = k3 for the problem of scattering by a
semi-circular bump on a PEC half-plane in TE-polarization.
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Figure 4: Error in the approximation of ũκ∗ by Chebyshev interpolation/analytic-continuation for
various spurious resonant frequencies κ∗ as a function of the order 2m of the Chebyshev expansion.

to quantify the magnitude of interpolation error by evaluating the maximum of the error function

E(x) = |ũ(m)
κ∗ (x)−uκ∗(x)| at a polar grid Π (consisting of points inside, outside and at the boundary

of the semi-circular bump). Fig. 4 shows the error maxx∈ΠE(x) versus the number of points used
in the Chebyshev interpolation of ũκ∗ , which is computed for the four spurious resonances k∗ shown
in Fig. 3, and where a sufficiently fine spatial discretization is used. In all the calculations k1 = 6,
the curve Γ13 is discretized using 128 points, and δ = 0.01 is utilized to construct the Chebyshev
grids.

5 Numerical results

This section demonstrates the high accuracies and high-order convergence that result as the pro-
posed boundary integral methods are applied to each one of the mathematical problems formulated
in Sec. 3. For definiteness all dielectric media are assumed non-magnetic so that βi/βj = 1 for
TM-polarization and βi/βj = k2i /k

2
j for TE-polarization. In all the numerical examples shown in

this section the incident plane-wave is parallel to the vector d = (cos(π/3),− sin(π/3)) and the
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graded-mesh parameter (20) is p = 8.

(a) TM-polarization. (b) TE-polarization.

(c) TM-polarization. (d) TE-polarization.

(e) TM-polarization. (f) TE-polarization.

Figure 5: Diffraction pattern resulting from the scattering of a plane-wave by; a dielectric-filled
cavity on a dielectric half-plane ((a) and (b)); a dielectric-filled cavity on a PEC half-plane ((c)
and (d)); a dielectric bump on a PEC half-plane ((e) and (f)).

We thus consider the problem of scattering by a dielectric filled cavity on a dielectric half-
plane (problem type I); the problem of scattering by a dielectric filled cavity on a PEC half-plane
(problem type II); and the problem of scattering by a dielectric bump on a PEC half-plane (problem
type III). With reference to Fig. 2, in the first two examples the cavity is determined by the curve

Γ24 = {(x, y) ∈ R
2 : x = − cos( t2), y = cos(4t)

40 t(t − 2π) − sin( t2), t ∈ (0, 2π)}, and the curve
Γ13 (which, in view of the formulation in Sec. 3, may be selected rather arbitrarily as long as
it lies in the upper half plane and has the same endpoints as Γ24) is given by the semicircle of
radius one in the upper half plane that joins the points (1, 0) and (−1, 0). For the problem of
scattering by a dielectric bump (type III problem), in turn, the boundary of the bump is given by

Γ13 = {(x, y) ∈ R
2 : x = cos( t2), y = cos(4t)

40 t(2π − t) + sin( t2), t ∈ (0, 2π)}.
To estimate the error in the aforementioned numerical test problems, the systems of boundary

integral equations (7), (11) and (15) were discretized utilizing five different meshes Πj , 1 ≤ j ≤ 5
consisting of P = 2j+5 − 1 points distributed along each one of the relevant boundaries: P points
on Γ24 and P points on Γ13 in the case of type I and II problems, and P points on Γ13 in the case
of type III problem. The sequence of meshes is chosen to be nested (Πj ⊂ Πi for j < i) in order
to facilitate the convergence analysis; in what follows the numerical solution that results from the
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(a) TM-polarization. (b) TE-polarization.

(c) TM-polarization. (d) TE-polarization.

(e) TM-polarization. (f) TE-polarization.

Figure 6: Diffraction pattern resulting from the scattering of a plane-wave by; a dielectric-filled
cavity on a dielectric half-plane ((a) and (b)); a dielectric-filled cavity on a PEC half-plane ((c)
and (d)); a dielectric bump on a PEC half-plane ((e) and (f)).

discretization Πj is denoted by ũj . The error in the numerical solution ũj is estimated by means
of the expression

Ej =
maxx∈Π1

|ũj(x)− ũ5(x)|
maxx∈Π1

|ũ5(x)|
, 1 ≤ j ≤ 4.

Table 1 presents the numerical error estimates Ej , 1 ≤ j ≤ 5 for the three different problem
types (including real and complex wavenumbers); clearly high accuracies and fast convergence is
achieved in all cases. To further illustrate the results provided by the proposed method, the real
part of the total field is presented in Figs. 5 and 6 for the cases considered in Table 1, including
examples for TM- and TE-polarization. Thus, Figs. 5a-5b (k2 = 15) and Figs. 6a-6b (k2 = 15+5i)
present the diffraction pattern for the problem of scattering by the dielectric-filled cavity on the
dielectric half-plane (problem Type I); Figs. 5c-5d (k2 = 15) and Figs. 6c-6d (k2 = 15+5i) present
the diffraction pattern for the problem of scattering by the dielectric-filled cavity on the PEC half-
plane (problem Type II); and Figs. 5e-5f (k1 = 15) and Figs. 6e-6f (k1 = 15 + 5i) present the
diffraction pattern for the problem of scattering by the dielectric bump on the PEC half-plane.

Fig. 7, finally, presents diffraction patterns (real part) for the problem of scattering by a dielec-
tric filled cavity on a dielectric half-plane (Problem Type I) for the wavenumbers k1 = k3 = 15,
k2 = 10, k4 = 5 and the angle of incidence α = −π/3 in TM- and TE-polarization, as well as
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Type I Type II Type III

k2 k2 k1
P 15 15 + 5i 15 15 + 5i 15 15 + 5i

63 3·10−01 6·10−03 7·10−01 1·10−04 2·10−01 7·10−02

TM 127 7·10−04 4·10−06 2·10−03 1·10−07 2·10−03 1·10−03

255 1·10−10 7·10−12 3·10−11 6·10−12 5·10−08 8·10−08

511 6·10−12 5·10−12 1·10−12 3·10−13 1·10−13 8·10−13

63 9·10−02 3·10−03 2·10−01 6·10−04 4·10−01 4·10−02

TE 127 3·10−04 7·10−06 1·10−04 2·10−07 1·10−03 3·10−04

255 3·10−12 2·10−12 3·10−12 7·10−12 2·10−08 2·10−08

511 1·10−12 2·10−12 4·10−14 1·10−14 1·10−13 2·10−13

Table 1: Convergence test for the numerical solution of Problem Type I (k1 = 5, k2 = 15 or 15+5i,
k3 = 5, and k4 = 7), II (k1 = 5, k2 = 15 or 15 + 5i, and k3 = 5) and III (k1 = 15 or 15 + 5i, and
k3 = 5).

the corresponding transmission patterns for the dielectric half-plane in absence of the cavity. For
these specially selected numerical values of the physical constants the phenomenon of total internal
reflection [17] takes place: in absence of the cavity the field transmitted below the interface decays
exponentially fast with the distance to the interface. Interestingly (although not surprisingly),
placement of a defect in this configuration gives rise to transmission of electromagnetic radiation
to the lower half plane.

Acknowledgments. The authors gratefully acknowledge support from the Air Force Office of
Scientific Research and the National Science Foundation.

A Semi-circular dielectric bump on PEC half-plane

For reference and testing we consider the problem of scattering of a plane-wave by a unit-radius
semi-circular dielectric bump Ω1 = {(r cos θ, r sin θ) ∈ R

2, 0 ≤ r < 1, 0 ≤ θ ≤ π} on a PEC half-
plane Ω4 (Problem Type III), for which an exact solution in terms of a Fourier-Bessel expansion
exists. In detail, the solution of (1) can expressed as

u1(r, θ) =

∞∑

n=0

anJn(k1r)Φn(θ) in Ω1, (23a)

u3(r, θ) =
∞∑

n=0

bnH
(1)
n (k3r)Φn(θ) in Ω3, (23b)

where Jn and H
(1)
n are the Bessel and Hankel functions of the first kind and order n, where Φn(θ) =

cos(nθ) in TE-polarization and Φn(θ) = sin(nθ) in TM-polarization. The Fourier coefficients in (23)
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(a) TM-polarization. (b) TM-polarization.

(c) TE-polarization. (d) TE-polarization.

Figure 7: Scattering and transmission of a plane-wave by a dielectric half plane in absence (resp.
presence) of a dielectric-filled cavity (Problem Type I with wavenumbers k1 = k3 = 15, k2 = 10
and k4 = 5. The parameters are selected in such a way to give rise to total internal reflection in
absence of the cavity.
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are given by

an =
cnk3 + (dn − ncn)An[

β3

β1
k1J ′

n(k1)− nJn(k1)
]
An + k3Jn(k1)

,

bn = −
cnk1 + (β1

β3
dn − ncn)Bn[

β1

β3
k3H

(1)
n

′
(k3)− nH

(1)
n (k3)

]
Bn + k1H

(1)
n (k3)

,

where

An =
H

(1)
n (k3)

H
(1)
n+1(k3)

, Bn =
Jn(k1)

Jn+1(k1)
,

cn =
2

(1 + δn0)π

∫ π

0
f(1, θ)Φn(θ) dθ,

dn =
2

(1 + δn0)π

∫ π

0

∂f

∂r
(1, θ)Φn(θ) dθ.

B Scattering poles

As discussed in Sec. 4.2, scattering poles are complex wavenumbers k for which there exists a
non-trivial solution of a transmission problem without sources. In the context of the problem of
a dielectric bump on a PEC half plane, for example, scattering poles correspond to existence of
non-zero solutions of Problem Type III with f = 0. In the particular case considered in Appendix A
(semi-circular bump), the problem of evaluation of scattering poles can be further reduced to the
problem of finding zeroes of certain nonlinear equations. Indeed, in order for k3 to be a scattering
pole the conditions

u1 = u3 and
1

β1

∂u1
∂r

=
1

β3

∂u3
∂r

must be satisfied on the boundary r = 1 of the bump. From eq. (23) it follows that k3 is a scattering
pole if and only if there exist non-trivial constants an and bn such that

anJn(k1)− bnH
(1)
n (k3) = 0,

an
k1J

′
n(k1)

β1
− bn

k3H
(1)
n

′
(k3)

β3
= 0

for some non-negative integer n. Clearly such constants exist if and only if the determinant of the
matrix associated to the linear system above vanishes at k3. Therefore, scattering poles are given
by complex valued solutions k3 of the equation

k1
β1
H(1)

n (k3)J
′
n(k1) =

k3
β3
Jn(k1)H

(1)
n

′
(k3)

for some non-negative integer n.
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C Green function for a two-layer medium: Sommerfeld integrals

Consider the Helmholtz equation in the regions R2
+ = {(x1, x2) ∈ R

2, x2 > 0} and R
2
− = {(x1, x2) ∈

R
2, x2 < 0} with respective wavenumbers k+ and k−. The Green function of the problem satisfies:

∆xG+ k2±G = −δy in R
2
±,

[G] = 0 on {x2 = 0},[
1

β

∂G

∂x2

]
= 0 on {x2 = 0},

(24)

and the Sommerfeld radiation condition at infinity, where δy denotes the Dirac delta function
centered at the point y ∈ R

2. As is known G can be computed explicitly in terms of Sommerfeld
integrals. To obtain such explicit expressions, given a fixed point y we define the functions ϕ±(x) =
G(x,y), x ∈ R

2
±. Expressing ϕ± as inverse Fourier transforms

ϕ±(x1, x2) =
1√
2π

∫ ∞

−∞
ϕ̂±(ξ, x2) e

iξx1 dx1 (25)

and replacing (25) in (24) a system of ordinary differential equations for the unknown functions
ϕ̂± is obtained which can be solved analytically. Two cases arise. For y ∈ R

2
+, the solution of the

ODE system is given by

ϕ̂+(ξ, x2) =
e−iξy1
√
2π

{
e−γ+|x2−y2|

2γ+
+

(
β− − β+
β− + β+

)
e−γ+|x2+y2|

2γ+

+
β+β−(k

2
− − k2+)

(β−γ+ + β+γ−)(β− + β+)

e−γ+(x2+y2)

γ+(γ+ + γ−)

}
,

ϕ̂−(ξ, x2) =
e−iξy1
√
2π

{
β−

β− + β+

e−γ+(y2−x2)

γ+
+

(
β− eγ−x2−γ+y2

β−γ+ + β+γ−
− β−
β− + β+

e−γ+(y2−x2)

γ+

)}
,

where γ± =
√
ξ2 − k2±. The determination of physically admissible branches of the functions

γ±(ξ) =
√
ξ − k±

√
ξ + k± require selection of branch cuts for each one of the two associated square

root functions. The relevant branches, which are determined by consideration of Sommerfeld’s
radiation condition, are −3π/2 ≤ arg(ξ − k±) < π/2 for

√
ξ − k± and −π/2 ≤ arg(ξ + k±) < 3π/2

for
√
ξ + k±. Taking the inverse Fourier transform (25) of ϕ̂± and using the identity

∫

R

e−γ±|x2−y2|

4πγ±
eiξ(x1−y1) dξ =

i

4
H

(1)
0 (k±|y − x|),

we obtain

ϕ+(x) =
i

4
H

(1)
0 (k+|x− y|) + i

4

β− − β+
β− + β+

H
(1)
0 (k+|x̄− y|) + Φ+(x,y),

ϕ−(x) =
i

2

β−
β− + β+

H
(1)
0 (k+|x− y|) + Φ−(x,y),
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where the functions Φ± are given by

Φ+(x,y) =
β+β−(k

2
− − k2+)

π(β− + β+)

∫ ∞

0

e−γ+(x2+y2) cos(ξ(x1 − y1))

γ+(γ− + γ+)(β−γ+ + β+γ−)
dξ,

Φ−(x,y) =
β−
π

∫ ∞

0

(
eγ−x2−γ+y2

γ+β− + γ−β+
− eγ+(x2−y2)

(β+ + β−)γ+

)
cos(ξ(x1 − y1)) dξ,

Similarly, the solution of the ODE system for y ∈ R
2
− is given by

ϕ̂+(ξ, x2) =
e−iξy1
√
2π

{
β+

β− + β+

e−γ−(x2−y2)

γ−
+

(
β+ e−γ+x2+γ−y2

β−γ+ + β+γ−
− β+
β− + β+

e−γ−(x2−y2)

γ−

)}
,

ϕ̂−(ξ, x2) =
e−iξy1
√
2π

{
e−γ−|x2−y2|

2γ−
+

(
β+ − β−
β− + β+

)
e−γ−|x2+y2|

2γ−

+
β+β−(k

2
+ − k2−) e

γ−(x2+y2)

(β−γ+ + β+γ−)(β− + β+)γ−(γ− + γ+)

}
.

Taking inverse Fourier transform (25) we now obtain

ϕ+(x) =
i

2

β+
β− + β+

H
(1)
0 (k−|x− y|) + Ψ−(x,y),

ϕ−(x) =
i

4
H

(1)
0 (k−|x− y|) + i

4

β+ − β−
β− + β+

H
(1)
0 (k−|x̄− y|) + Ψ+(x,y),

where the functions Ψ± are given by

Ψ+(x,y) =
β+
π

∫ ∞

0

(
e−γ+x2−γ−y2

γ−β+ + γ+β−
− e−γ−(x2−y2)

(β+ + β−)γ−

)
cos(ξ(x1 − y1)) dξ,

Ψ−(x,y) =
β+β−(k

2
+ − k2−)

π(β− + β+)

∫ ∞

0

eγ−(x2+y2) cos(ξ(x1 − y1))

γ−(γ− + γ+)(β−γ+ + β+γ−)
dξ.

The gradient of the Green function is evaluated from the expressions above by differentiation under
the integral sign.

D Green function for a two-layer medium: numerical computation

In order to evaluate numerically the functions Φ±, Ψ± (Appendix C) and their derivatives we use
a contour integration method described in [26] together with the smooth-windowing approach put
forth in [22, 6] for evaluation of oscillatory integrals. As an example we consider here the problem
of evaluation of Φ+, the corresponding problem of evaluation of Φ−, Ψ± and derivatives of Φ± and
Ψ± can be treated similarly. The evaluation of Φ+ requires integration of the function

φ(ξ) =
e−γ+(ξ)(x2+y2) cos(ξ(x1 − y1))

γ+(ξ)[γ−(ξ) + γ+(ξ)][β−γ+(ξ) + β+γ−(ξ)]
,
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which is highly oscillatory for wide ranges of values of the spatial variables x and y, and which is
additionally singular at certain points in the integration domain.

Here we consider the most challenging case in which one or both of the wavenumbers k± is
real, in such a way that φ has branch-point singularities at ξ = k− ∈ R and/or ξ = k+ ∈ R. Note
that significant simplifications occur in the case in which both media are lossy since, in view of the
definition of γ±, for lossy media the function φ is smooth (in fact analytic) on the whole positive
real axis. Also note that φ, φx2

and φy2 decay exponentially fast as ξ → ∞ when x2 + y2 > 0.
However, φ decays as |ξ|−3 and φx2

and φy2 decay as |ξ|−2 as |ξ| → ∞ when x2 = y2 = 0.
To proceed with the numerical evaluation of the needed integral of φ we write

∫∞
0 φ(ξ) dξ =

I1 + I2, where I1 =
∫ L1

0 φ(ξ) dξ and I2 =
∫∞
L1
φ(ξ) dξ, and where L1 is an adequately selected real

number such that L1 > max{Re k−,Re k+}. Note that the branch cuts set forth in Appendix C
are vertical rays directly above of the interval 0 ≤ ξ ≤ L1; the ray end-points k±, further, are close
to (resp. on) the real ξ axis for small (resp. vanishing) values of the imaginary parts of k±. Using
the Cauchy integral theorem we obtain

I1 =

∫

C
φ(z) dz =

∫ 1

−1
φ(ζ(t))|ζ ′(t)| dt, (26)

where C is a simple curve in the fourth quadrant which is parametrized by ζ : [−1, 1] 7→ C satisfying
ζ(−1) = 0 and ζ(1) = L1.

In order to evaluate I2, on the other hand, we utilize the partition of the unity method introduced
in [22, 6]. Hence

I2 =

∫ ∞

L1

φ(ξ) dξ ≈
∫ ∞

L1

φ(ξ)η(ξ, cL2, L2) dξ =

∫ L2

L1

φ(ξ)η(ξ, cL2, L2) dξ (27)

where L2 > L1, L1/L2 < c < 1 and η is the window function defined by

η(ξ, ξ0, ξ1)=





1, |ξ| ≤ ξ0

exp

(
2 e−1/u

u− 1

)
, ξ0 < |ξ| < ξ1, u = |ξ|−ξ0

ξ1−ξ0
,

0, |ξ| > ξ1.

It can be shown that the last integral in (27) converges super-algebraically fast to I2 as L2 goes to
infinity [22, 6].

Throughout the examples presented in this paper the curve C is the ellipse ζ(t) = {(L1 +
L1 cos(π(t+3)/2))/2+iL1 sin(π(t+3)/2)/4, t ∈ (−1, 1)} where L1 = Re{k−+k+}. The last integral
in (26) and the last integral in (27) are approximated by using Clenshaw-Curtis quadrature, which
yields rapid convergence for the smooth integrands under consideration.
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