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Abstract. High-Order Mode Dispersion Compensating Modules (HOM-DCM) using

spatial optical transformations for mode conversion are reviewed. It is shown that mode

transformers using this technology can be designed to transform the LP01 mode of SMF

fibers to the LP02 mode of specially designed dispersion compensating High-Order

Mode Fiber (HOMF), with typical insertion loss of ∼1 dB, and typical extinction ratio

to other modes less than−20 dB. The HOMF itself can provide high negative dispersion

[typically in the range of 400–600 ps/(nm km)], and high negative dispersion slope,

allowing efficient compensation of all types of transmission fiber. Combining two mode

transformers with HOMF and possibly trim fiber for fine-tuning, results, for example,

in a HOM-DCM that compensates 100 km LEAF R© fiber, with Insertion loss < 3.5

dB, and Multi-Path Interference (MPI)< −36 dB. MPI phenomena in HOM-DCMs is

characterized, and shown to comprise both coherent and incoherent parts, and to result

from both the mode transformers and fiber coupling within the HOMF. MPI values

of < −36 dB have been shown to allow error free transmission of 10 Gb/s signals

over up to 6000 km. Finally, a number of applications well suited to the properties of

HOM-DCMs are reviewed.

1. Introduction

In 1994, Craig Poole and coworkers [1–2], as well as others [3], pointed out that

High-Order Modes (HOM) in optical fibers, such as LP11, LP02, etc. [4], could be

advantageously used for chromatic dispersion compensation. Motivated by the high

negative dispersion of such modes near their respective cutoffs, as well as by the
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Fig. 1. A High-Order Mode based dispersion compensator. Light propagating in the LP01 mode

of the transmission fiber is converted to a highly (negative) dispersive high-order mode of a few

mode fiber. Finally, the output mode converter sends the light back to the transmission fiber in

the form of an LP01 mode.

negative slope of the obtained dispersion (with respect to wavelength), Poole et al.

have proposed and demonstrated a HOM-based dispersion compensator for SMF28

fiber.

The device, Fig. 1, comprised of a slightly elliptical fiber, carrying the LP11 mode,

and two broadband mode converters to efficiently transfer the LP01 light from the

input SMF28 single-mode fiber into the LP11negative dispersion mode, and back into

the LP01 mode of the output SMF28 fiber. With negative dispersion values as high as

−770 ps/(nm km) @ 1555 nm (as compared with ∼ −90 ps/(nm km) for regular

single-mode Dispersion Compensating Fibers (DCF) [5]), a close to ten-fold saving

in fiber length could be achieved with only a relatively small excess loss due to the

mode transformers. Poole’s reported experimental work has revealed the potential of

the technology, although the demonstrated implementation fell short of meeting some

key industry requirements (e.g., the use of a slightly elliptical fiber, carrying the LP11

mode, could not guarantee polarization insensitivity).

Theoretically, high-order modes introduce a new degree of freedom for disper-

sion management. They can be designed to have dispersion curves that can match

many transmission fibers, including the many Non-Zero-Dispersion-Shifted-Fibers

(NZDSF), which were introduced in the last 10 years. The high negative dispersion of

HOM fibers (HOMFs) requires much less fiber to achieve a given total dispersion (in

ps/nm), resulting in significantly lower loss for the final product. High-order modes

are also characterized by large effective areas (50–80 µm2), much larger than those of

dispersion compensating fibers (DCF), which use the LP01 mode (∼20 µm2). While

recent advances in basic mode DCF have led to higher values of dispersion and dis-

persion slope, even comparable to HOMF, these have been achieved at the expense of

an even further reduction in effective area, typically to about 15 µm2[20]. Thus, HOM

based dispersion compensators have the potential to be much more immune to optical

nonlinear effects, which are to be minimized to ensure successful high channel count

WDM, and high capacity 40 Gbs transmission.

In practice, however, a series of obstacles must be overcome before all these

advantages can be utilized. The most challenging one is the transformation process
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between the dispersion compensating HOM and the LP01 mode of the transmission

fiber. First, this modal transformation has to be very efficient in order to minimize the

device insertion loss. But the HOM dispersion compensating fiber is not single-mode,

and even if the transformation efficiency is very high, some input optical power may

be coupled by the input mode converter to other modes of the HOM fiber (HOMF),

including to the always-existing lowest order LP01 mode. Mode coupling in the HOMF

and/or a non-ideal output mode converter will generate in the output transmission fiber

multiple electromagnetic fields, which traversed the device via different modes (i.e.,

different optical paths), resulting in Multiple Path Interference (MPI) (see section 4).

Eventually, HOM dispersion compensators are to serve as important building blocks

in high performance fiber-optic communication systems, and the above mentioned

MPI is the most dominant contribution to system penalty associated with the HOM

technology.

A spatial mode of an optical fiber is a solution of Maxwell equations, subject to

boundary conditions, having the form [4]

E(x, y, z, t) = E0(x, y) exp(iβz) exp(−iωt);

H = H0(x, y) exp(iβz) exp(−iωt). (1)

Here, E and H are the vector electromagnetic fields, t is the time and ω is the op-

tical (angular) frequency, z is a coordinate along the fiber length, while x and y are

the transverse spatial coordinates, see Fig. 1, E0(x, y) and H0(x, y)describe the z-

independent mode transverse shape, and finally, β is the propagation constant. Modes

differ from each other in their transverse field distributions E0(x, y), H0(x, y)and

propagation constant β.

In the so-called weakly guiding approximation, modes in cylindrically symmetric

fibers are classified using the LPmn designation [6] , where LP stands for “linearly

polarized”, m represents the azimuthal symmetry of the mode, and n the radial dis-

tribution. Figure 2 shows typical spatial distributions of the electromagnetic field (not

intensity) of the modes, most relevant to the design of HOMF for dispersion com-

pensation. The basic mode LP01, exclusively used for high bit-rate transmission, is

cylindrically symmetric, and its radial distribution is approximately Gaussian. The

LP02, and LP03 modes are also cylindrically symmetric, however their radial distribu-

tion has one and two zero-amplitude rings, respectively, i.e. points where the electric

field changes sign. The LP11 and LP21 modes are not cylindrically symmetric, having

two and four lobes respectively. Besides their different spatial distributions, modes are

further characterized by the their effective index neff , or alternatively by the propa-

gation constant β = kneff , where k (= ω/c) is the vacuum wave-number (c is light

velocity in vacuum). Since ncore > neff > nclad, where ncore and nclad are respec-

tively, the refractive indices of the fiber core and cladding, the larger neff the more

guided and stable the mode. Figure 3 shows the neff values for a typical HOM fiber to

be discussed in section 3.

LP01has the highest neff , with neff decreasing according to the following typical

order LP11, LP21, LP02, LP12, LP03, LP22. The number of guided modes in the fiber

is equal to the number of modes for which neff > nclad, where nclad is the index of

the fiber cladding material (typically undoped Silica, with nclad = 1.444 @ 1550 nm).

The vast majority of fibers in commercial use today may be divided into two

distinct categories: single and multi-mode fibers [4]. In single mode fibers, only the



High-order mode based dispersion compensating modules 113

 
 

  
 

 0

 

LP
01

 
 

  
 

 

0

 

LP
02

 
 

  
 

 

0

 

LP
03

 
 

  
 

 

0

 
LP

11

−15
0

15 −15
0

15

0

 
LP

21

−15
0

15 −15
0

15

0

 
LP

12

Fig. 2. Typical spatial field distribution of selected modes of a HOM fiber.
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Fig. 3. Typical neff values for the modes of Fig. 2 (∆1=0.027, see section 3).

LP01 is guided for wavelengths exceeding a cutoff value. On the other hand, a multi-

mode fiber (MMF) supports a multitude of guided modes, with the signal propagating

simultaneously in all (or in some cases a subset) of the modes. The term HOMF used

here refers to a subclass of the multimode family, also being referred to as few-mode

fibers [7]. These fibers are designed to support a limited number of guided modes

(typically less than ten), with the signal designated to propagate in a pre-selected

single high-order mode.
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To selectively couple the input LP01 to the HOMF LP11 mode and back, Poole et

al. have used grating coupling to introduce longitudinal periodic perturbations in the

core region of the fiber with a spatial period matched to the intermodal beat length

LB = 2π/ (|β01 − β11) (β01 and β11 are the propagation constants of the LP01 and

LP11 modes, respectively). This grating method has been further perfected in recent

years by Ramachandran et al. [8–9]. Recently, another method for mode conversion

using hollow fibers has also been proposed [10].

In 1998 one of the authors of this paper (Y. D.) proposed to replace the one-

dimensional selectivity of β matching by a two-dimensional mechanism, where the

spatial shape, E0(x, y), H0(x, y) of the transmission fiber LP01 mode is transformed

by a two-dimensional spatial filter into the precise E0(x, y), H0(x, y) field distribu-

tion of the desired high-order mode and vice versa. Reshaping laser beams by diffractive

optical elements has been a known practice for years, but only lately it was utilized

for modal transformation [11]. In this paper we demonstrate how mode transform-

ers (MOXes) based on spatial wavefront transformation, combined with appropriately

designed HOMF, can achieve:

– Broadband, continuous and full (including slope) compensation over the trans-

mission band of wavelengths (e.g., the C (1525–1565 nm) or L (1570–1610 nm)

bands

– Low insertion loss

– Low polarization mode dispersion (PMD) and polarization dependent loss (PDL)

[6]

– High tolerance to optical power

– Low return loss

– Low MPI

– Compact size and full compatibility with Telcordia requirements from a passive

device

Higher-Order-Mode Dispersion Compensation Modules (HOM-DCMs) based on

this technology have been developed and built by LaserComm, Inc. to meet all the

stringent requirements of modern and future high performance fiber optic telecommu-

nication systems.

Paper structure: section 2 describes the design and construction of a spatial mode

transformer. The trade-off considerations in the design of the HOM fiber itself are

discussed in section 3, while MPI is the subject of section 4. The overall performance

of the integrated HOM-DCM is presented in section 5 along with numerous potential

applications, and its success in various field experiments.

2. Spatial Mode Transformer (MOX)

2.1. General

Mode transformation is needed in order to transfer the signal in the incoming single-

mode transmission fiber into a higher order transverse mode of the dispersion com-

pensating fiber. An inverse mode transformation is then invoked to transfer the signal
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Fig. 4. Transformation from the Gaussian LP01 mode of an SMF to the LP02 mode of a HOM

fiber.

back into the single-mode output transmission fiber. The transmission fiber is usually

a single-mode fiber (SMF), with a Gaussian shape transverse mode, LP01, while the

HOMF is a few mode fiber, supporting a high-order spatial transverse mode, designed

to have a prescribed high negative dispersion curve. For a variety of reasons to be dis-

cussed in section 3, we chose to work with the cylindrically symmetric non-degenerate

LP02 high-order mode, whose schematic field distribution, E02(x, y), is shown in Fig.

2 (in the weakly guiding approximation [4], the polarization is uniform across the

(x, y) plane and its value will be that of the incident LP01 wave). Note that unlike

LP01, E02(x, y) for LP02 has a cylindrically symmetric π radians phase shift around

its central lobe. As discussed above, the challenge in designing a good spatial mode

transformer is twofold: (a) to transfer a maximum fraction of the energy of the input

mode into the desired output mode, i.e., to have a minimum insertion loss; (b) to mini-

mize excitation of other guided modes in the HOM fiber in order to prevent undesired

interference effects at the HOM-DCM output fiber (MPI, see section 4). This challenge

should be successfully met over a broad spectrum of wavelengths and environmental

conditions.

2.1.1. Principles of Spatial Mode Transformation

Spatial mode transformation is based on wavefront manipulation using specially de-

signed optical elements and free-space propagation. Since the input fiber modes are

weakly guided and the optical beams will be seen to have only small to moderate

divergence/convergence angles, we may assume that for incoming linearly polarized

light, all optical beams in free space will share the same polarization, with the electric

field component along the polarization axis described by a scalar complex function

of the form

E(x, y, z, t) = f(x, y, z) exp(−iωt). (2)

Using scalar diffraction theory [12,13], free space propagation of the electric field

from plane z1 to plane z2 is governed by

f(x, y, z2) =

∫∫

dx′dy′G(x − x′, y − y′, z2 − z1)f(x′, y′, z1), (3)
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where the Green’s function G(·) in the Fresnel approximation is given by [12]

G(x−x′, y−y′, z−z′) =
i

λ |z − z′| exp

(

−i
π

λ |z − z′| [(x − x′)2 + (y − y′)2]

)

,

(4)

The field at any given distance z, f(x, y, z) =
√

I(x, y, z) exp (iϕ(x, y, z)) has

intensity profile I(x, y, z) and phase ϕ(x, y, z). Through theory and/or measurements

we know the fields of the input and output modes at z = zin and z = zout, respectively,

Fig. 4. Using Eq. (3) we can forward propagate f(x, y, zin) of the input mode to get its

valuef(x, y, z−

1 ), just before the assumingly relatively thin transforming element, and

reverse propagate f(x, y, zout) of the output mode to just after the transforming ele-

ment to produce the wavefrontf(x, y, z+
1 ), that will converge to f(x, y, zout) through

free space propagation. Successful mode conversion can be achieved by placing an

optical element at z = z1, having a complex transfer function

H(x, y) = T (x, y) exp (iΦ(x, y)) = |H(x, y)| exp (iΦ(x, y)) , (5)

such that

f(x, y, z+
1 ) ∝ H(x, y)f(x, y, z−

1 ). (6)

Thus, up to a constant of proportionality, i.e., allowing for some spatially uniform

insertion loss, the mode of the left-hand fiber is spatially matched to that of the right-

hand one, as required. In practice, however, this approach is problematic: while the

exp (iΦ(x, y)) part of H(x, y) of Eq. (6) could be implemented using a phase-only

optical element, which can be made today to high precision [14] , absorptive masks,

performing the wavefront transformation prescribed by |H(x, y)|, are more difficult

to manufacture. Moreover, the use of an absorptive element may entail considerable

insertion loss.

An alternative approach is to use an optical system, comprising two phase-only

thin elements at z1 and z2, Fig.5, combined with free space propagation between the

z1 and z2 planes to convert the phase variations imposed at z1 to intensity variations

at z2. In fact, it may be shown [15] that for a suitable choice of distances, z1 − zin,

z2 − z1 and zout − z2, any wavefront transformation between the planes zin and zout

can be implemented by phase-only wavefront manipulation at z1 and z2. The required

phase elements can be designed using a phase retrieval algorithm, described in section

2.2.3.

2.1.2. The Need for Collimation

The proposed mode transformer must also possess significant optical (focusing) power,

since it must collect the diverging beam, emanating from the left-hand fiber and trans-

form it into an appropriately modified converging beam into the right-hand fiber. For

easy implementation, and to keep the phase elements as thin and shallow as possible,

it is preferable to assign the required optical power to collimating and focusing lenses,

L1 and L2 in Fig. 6. Although quite a few other mode transformer architectures can

be also envisaged, in the following we concentrate on the architecture of Fig. 6, and

in particular on the LP01 → LP02 transformation.
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Fig. 5. Same as Fig. 4 but with two thin phase elements to execute the required mode transfor-

mation.
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Fig. 6. Typical architecture of a HOM-DCM with both input and output MOXes to be discussed

below. Ray tracing shows how intensity is spread into a central lobe and outer ring near the P2

phase elements. The SMF-28 fiber ends are cut at an angle of 8◦, and consequently, the fiber

mechanical axis forms an angle of ∼3.6◦ with the MOX optical axis, see section 2.2.1.

2.1.3. Efficiency of the Spatial Transformation

Starting with the normalized field f01(x, y, zin) of the LP01 mode at z = zin, the output

of the optical system of the input MOX of Fig. 6 is a transformed field ftrans(x, y, zout)
at the input facet of the HOM fiber (inside the fiber so that reflection losses are taken

into account). The fraction of power coupled into a specific fiber mode LPmn, having

a normalized mode field fmn(x, y) is given by |Amn|2, where the amplitude Amn can

be evaluated from the overlap integral
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Amn =

∫

dxdyf∗

mn(x, y)ftrans(x, y, zout). (7)

The MOX is designed to perform ideal transformation at the design wavelengthλ0,

which is typically at the center of the transmission band. For this wavelength, |Amn|2
should be unity for the desired mode (excluding losses in the optical system), and zero

for all other modes. However, the transformation is not ideal at wavelengths away from

the central wavelength λ0, and in addition, imperfections in the MOX manufacturing

cause the transfer of power into some undesired modes.

2.1.4. Definitions

The insertion loss of an LP01 → LP02 MOX is defined as

Insertion Loss(IL) = −10 log10 |A02|2 , (8)

The extinction ratio (ER) of the undesired mode LPmn ((m,n) �= (0, 2)) is defined

as

ERmn = 10 log10

[

∣

∣

∣

∣

Amn

A02

∣

∣

∣

∣

2
]

. (9)

Obviously, a high efficiency MOX is characterized by an insertion loss of close to

zero dB and extinction ratio approaching −∞ dB, over the full wavelength band of

operation.

The broadband efficiency of the transformation is limited by two main factors:

– The chromatic aberrations of the optical system, caused by either material disper-

sion of the elements or wavelength-dependent diffractive effects.

– The wavelength dependence of the wavefronts f01(x, y, zin) and f02(x, y, zout)
of the LP01 mode of the transmission fiber and LP02 mode of the HOM fiber,

respectively.

One would expect the diffractive effects in the optical elements to present an

obstacle to broadband operation. However, this problem can be minimized by using

smooth phase elements with mostly refractive nature, in the sense that they do not have

the 2π phase jumps typical of regular diffractive elements [13]. Material dispersion

in the optical elements is important but in principle can be compensated for using

conventional achromatization techniques [13].

The main limitation is then modal shape dispersion of the HOM fiber. While

the wavelength dependence of the incoming LP01 modal shape f01(x, y, zin) can

be shown to be insignificantly small, the whole idea of choosing a high-order mode

was because of its high group velocity dispersion, see section 3. It is to be expected,

therefore, that f02(x, y, zout) might also have considerable wavelength dependence,

posing significant limitations to the transformation efficiency. However, it turns out

that for dispersion values in the range of practical interest, about 200–600 ps/nm/km,

the rate of change of the HOMF mode shape is still small enough to allow efficient and

broadband spatial mode transformation. To illustrate this point consider an achromatic

optical system designed for ideal transformation at λ = 1550 nm, with wavelength-

independent f01(x, y, zin). The insertion loss of the desired mode and the extinction

ratio for the undesired modes are then obtained from an overlap integral of the desired
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Fig. 7. LP02 loss over the C-band for a typical HOM fiber due to the spectral dependence of the

transverse shape of the LP02 mode.

mode function f02(x, y, zout)|λ0
atλw = 1550 nm (since this is the incident wavefront

at the entrance of the HOM fiber) with the corresponding modes of the HOM fiber at the

other wavelengths. These quantities are shown in Figs. 7 and 8 for the transformation

to the mode LP02, as well as to the undesired modes LP01 and LP03 for a typical

dispersion compensating HOMF of section 3 (Dispersion for this fiber at 1555 nm is

−230 ps/(nm km) and dispersion slope is –3.5ps/(nm2 km)). It is clearly seen that

IL does not deteriorate by more than 0.07 dB over the whole C band, while the ER

of LP01 is at most −40 dB per MOX. The ER for LP03 is worse but not so important

for properly designed HOMF, since this mode can be removed by fiber bending (see

section 3.4.2.2). Finally, in principle it is possible though difficult, to intentionally

design some chromatic aberration into the optical elements to somewhat compensate

for the wavelength dependence of the HOMF modal shapes.

2.2. Details of the MOX Architecture

Here we give a more detailed description of the MOX architecture of Fig. 6.

2.2.1. The Fiber Ends

The fiber ends are mounted into a ferrule, and to reduce back-reflections, cleaved and

polished at an angle of 8◦ (for the SMF-28). Due to Snell’s law of refraction, the beam

coming out of the fiber creates an angle of 11.60with the polished face, so that the

mechanical axes of both ferrules have to be adjusted to deviate from the MOX optical

axis by 3.6◦. The tilt angles for the HOMF, as well as the resulting back-reflections

will be discussed in section 2.3.4.

2.2.2. The Collimators

The SMF collimator lens L1, Fig. 6, is designed to transform the diverging LP01

output of the transmission fiber into a collimated beam, while on the HOM fiber side,
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due to spectral dependence of the transverse shape of the LP02 mode.

the purpose of lens L2 is to refocus the beam into the HOMF. Conversely, for the

LP02 →LP01 MOX, L2 collimates the beam emanating from the HOMF, while L1

refocuses it into the transmission fiber. When a propagating mode exits the fiber into

free space, the beam starts to diverge. The distribution of angles from a given mode

(the angular power spectrum) is given by the following Fourier transform over the

transverse mode function f(x, y):

g(θ, ϕ) ∝
∣

∣

∣

∣

∫∫

dxdy exp

(

i
2π

λ
sin θ(x cosϕ + y sinϕ

)

f(x, y)

∣

∣

∣

∣

2

, (10)

where θ and ϕ are spherical angles in free space in the xyz coordinate system of Fig. 1.

The numerical aperture of a beam is defined [13] as the width of the angular spectrum

distribution, or more precisely: the sine of an angle θNA such that a specified fraction

(e.g. 1/e2 or 99%) of beam power is contained in a cone, having an opening angle of

2θNA. Owing to their dissimilar modal fields, the NA’s of LP01 and LP02 are quite

different, with that of the LP02 significantly larger (ranging between 0.36 and 0.42)

than that of LP01 (NA = 0.155).

The focal length of a lens dedicated for the collimation of a beam with a given NA

into a collimated beam with diameter D is given by

f =
D

2NA
. (11)

To ease environmental stability, all MOX dimensions should be chosen as small as

possible but large enough so that the manufacturing resolution of the phase elements

enables the capturing of all the spatial details needed for a precise spatial transforma-

tion. This includes the diameter D of the collimated beam. Typically, D can be of the

order of a few millimeters. Since fairly little beam divergence occurs between L1 and

L2 (Typically, the length of an assembled MOX is a few centimeters), L2 can also be

of diameter D, but due to the different NA’s, its focal length is shorter than that of
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L1 by the NA’s ratio. Clearly, L1 and especially L2 are high NA lenses and should be

manufactured to high standards of accuracy.

2.2.3. The Phase Elements

The phase elements play the most important role in the spatial mode transformation.

As described above, a pair of phase elements is needed to perform the transformation.

The first phase element P1 adds a phase to the input beam such that the free-space

propagation through the air gap to the face of the second phase element P2 creates

an intensity profile, matching the intensity profile of the desired output beam at the

side of the HOM fiber. The second phase element P2 adds another phase such that the

intensity and phase of the resulting field matches the intensity and phase of the desired

HOM fiber mode, when focused onto the end-face of the HOM fiber.

Phase elements can be manufactured using transparent dielectric disks with

position- dependent thickness, or ‘height’. A dielectric element with refractive index

n and a curved surface of height h(x, y) adds an optical phase

Φ(x, y) =
2π

λ
(n − 1)h(x, y) (12)

to an incident beam of light (n is the refractive index of the material from which the

phase elements are made).

An iterative algorithm for the design of the phase elements is based on the phase

retrieval algorithm, known also by the “pendulum” or “ping-pong” algorithm [15].

The design of phase elements P1 and P2 starts after their locations, z1 and z2, have

been selected (based on various mechanical and optical criteria), and comprises the

following steps:

1. Based on the wavefront of the LP01 mode at the input SMF end face,f01(x, y, zin),

and the detailed design and focal distance of the collimating lens, L1 (see Fig.

5 and the upper part of Fig. 6) calculate the collimated field f01(x, y, z
−

1 ) =
∣

∣f01(x, y, z
−

1 )
∣

∣ exp[iφ01(x, y)] incident on P1 at z = z−

1 (The subscript 01 is

used to emphasize that both the amplitude and phase of this field are determined by

the mode shape of the input fiber and they will not change during the iterations).

Similarly, by reverse-propagating the LP02 wavefront, f02(x, y, zout) from the

HOM end face, through the focusing lens, L2, and to z = z+
2 , we obtain the

collimated target field f02(x, y, z
+
2 ), which should leave P2 at z = z+

2 in order to

perfectly excite LP02 at the input of the HOM fiber. Again, both the amplitude and

phase of this wavefront,f02(x, y, z
+
2 ) =

∣

∣f02(x, y, z
+
2 )

∣

∣ exp[iφ02(x, y)], will not

change during the iterations.

2. Start an iterative process by first setting the optical phase added by P1 to be

ΦP1(x, y) ≡ 0.

3. Add the phaseΦP1(x, y) to the field f01(x, y, z
−

1 ) to obtain a forward propagating

wavefront f→(x, y, z+
1 ) = f01(x, y, z

−

1 ) exp[iΦP1(x, y)] at the output of P1.

4. Use the Fresnel formula, Eq. (3), to propagate the field f→(x, y, z+
1 ) from z+

1 to

z−

2 and obtain the field distribution at the input of P2, f→(x, y, z−

2 ), whose phase

is φ(x, y, z−

2 ), i.e., f→(x, y, z−

2 ) =
∣

∣f→(x, y, z−

2 )
∣

∣ exp[iφ(x, y, z−

2 )].
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5. Define the phase to be added by P2 to be ΦP2(x, y) = φ02(x, y) − φ(x, y, z−

2 )s
which is the difference between the spatial phases of wavefronts before and after

P2. By the very definition of ΦP2(x, y), the field emerging from P2 matches

the correct field f02(x, y, z
+
2 ) in phase, but its amplitude:

∣

∣f→(x, y, z+
2 )

∣

∣ =
∣

∣f→(x, y, z−

2 )
∣

∣ does not necessarily equal that of the target field f02(x, y, z
+
2 )!

To correct for that we proceed with a backward iteration:

6. Impose the amplitude of f02(x, y, z
+
2 ) on the field at z = z−

2 by subtracting

ΦP2(x, y) from the collimated HOM field f02(x, y, z
+
2 ) to obtain a new estimate

for the field at z = z−

2 : f←(x, y, z−

2 ) = f02(x, y, z
+
2 ) exp[−iΦP2(x, y)] (note

the backward arrow subscript).

7. Reversepropagate this field from z−

2 to z+
1 and obtain the field distribution

f←(x, y, z+
1 ) =

∣

∣f←(x, y, z+
1 )

∣

∣ exp[iφ(x, y, z+
1 )].

8. Assign a new value to ΦP1(x, y), using ΦP1(x, y) = φ(x, y, z+
1 ) − φ01(x, y).

Again, we have matched the phase of the calculated field with that of the known

input field f01(x, y, z
−

1 ), but the amplitude of f01(x, y, z
−

1 ) may not match that

of the calculated field
∣

∣f←(x, y, z−

1 )
∣

∣ =
∣

∣f←(x, y, z+
1 )

∣

∣. Therefore,

9. Using the updated ΦP1(x, y), go back to step 3 and iterate until ΦP1(x, y) and

ΦP2(x, y) converge to stable values.

10. Determine the surface heights of phase elements P1 and P2 from the phases

ΦP1(x, y) and ΦP2(x, y) using Eq. (12).

The procedure may result in surface heights with sub-micron spatial detail (in the

{x, y} plane). However, a spatial smoothing procedure is recommended in each step

of this algorithm, see section 2.2.4.

The phase Φ(x, y) is defined up to an integer multiple of 2π, so that one may use

either a continuous function or a piecewise continuous function with 2π phase jumps.

The first option is much more favorable for broad spectral response, since discontinuous

optical elements have significant chromatic aberrations [13]. For a transformation

between the cylindrically symmetric modes LP01 and LP02, cylindrically symmetric

phase elements are used. Such phase elements may be manufactured by relatively

cheap diamond turning techniques. The curved surfaces of P1 and P2 face each other,

such that the transformation is done in the air gap between them.

Figure 9 shows the surface height of the phase elements P1 and P2 of a typical MOX

at a section through their centers. The role of phase element P1 may be understood in

terms of geometrical optics. It consists of a central convex part, which resembles a lens.

This convex part is responsible for focusing the central part of the incident Gaussian-

shaped beam to the central lobe of the soon-to-become LP02 mode. The outer ring of

P1 transforms the outer part of the incident beam into the outer ring of the LP02 mode.

Free space propagation between P1 and P2 generates the required intensity pattern at

P2, as well as some phase distribution. P2 contributes the final phase correction, and

in particular, it introduces a sharp phase step ofπ radians between the inner and outer

parts of the element to faithfully reproduce the negative outskirts of the LP02 mode

of the HOM fiber. For a LP02 → LP01 MOX, the π phase shift flips the sign of the

negative part of the LP02 mode, such that the lobe and ring parts have the same sign, as

dictated by the Gaussian shape of the LP01 mode. Again, the central part of P2 maps

the central LP02 lobe into the central part of the Gaussian LP01, and P2 outer part

focuses the ring part of LP02 into the outer part of the Gaussian. An example of the

evolution of the field along the axis of the MOX is given in Fig. 10.
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Fig. 9. Sections through the center of the surface heights of the phase elements P1 and P2.

2.2.4. Design Considerations

2.2.4.1. Surface Smoothness

The accuracy of the transformation at the design wavelength is limited by how accu-

rately the designed surface, h(x, y), can be manufactured. Conventional and relatively

low cost manufacturing techniques, such as diamond turning, have transverse resolu-

tions of the order of 30-40 µm. Thus, the designed h(x, y) should always be smoothed

to comply with the available manufacturable resolution. A smoothed design also offers

low sensitivity to alignment and collimation imperfections, wavelength dependence

and environmental conditions. On the other hand, a too-smoothed surface may hurt the

accuracy of the required wavefront transformation, resulting in lower MOX efficiency

in terms of both IL and ER. In practice, a balance can be achieved between sufficient

broadband accuracy and stable and robust performance.

2.2.4.2. Transformation Distance

The transformation distance |z2 − z1| should be large enough so that the phase varia-

tion introduced by P1 will have enough distance to translate into the desired intensity

of the target beam. However, it should be kept short enough to minimize chromatic and

thermal effects. An optimum distance may be achieved by consecutive applications of

the design algorithm with different trial distances.

2.3. MOX Imperfections

The performance of the MOX may be characterized by its insertion loss and its extinc-

tion ratio, as well as by its PMD (polarization mode dispersion), PDL (polarization

dependent loss), return loss and stability of performance over the required spectral
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Fig. 10. Radial shape of the field at some planes along the MOX. The intensity (left, arbitrary

units) and the phase (right, radians) of the field are shown (from top to bottom) at the SMF fiber

end [(a) and (e)], after phase element P1 [(b) and (f)], just before phase element P2 [(c) and (g)]

and after P2 [(d) and (h)]. The field diameter after collimation grows by a factor of about 100.

After P2 the phase of the field assumes a π phase jump at about r = 200 µm. The absolute value

of the phase here is not important.

band under industry standard environmental conditions. As discussed in section 2.1.3,

wavelength dependence of the mode shape puts a theoretical upper limit on the broad-

band MOX performance. However, in practice, most of the insertion loss and leakage

of power into undesired modes is caused by alignment errors and imperfections in

manufacturing, as well as by temperature effects.

2.3.1. Chromatic Aberrations of the Optical System

The use of optical elements without discontinuous jumps minimizes their chromatic

dependence. The main contribution of the optical components to the wavelength de-

pendence of MOX performance is then due to chromatic aberrations caused by material

dispersion of the optical elements, having relatively high optical power, namely, the

lenses. The change in the focal length, f , of a thin lens with refractive index n, may

be approximated by
∂f

∂λ
≈ f

n − 1

∂n

∂λ
. (13)
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Fig. 11. Insertion loss as a function of defocusing at the HOMF side.
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Fig. 12. Extinction ratio as a function of defocusing at the HOMF side.

For typical numbers of ∂n/∂λ = −0.01 µm−1, n=1.5 and f ∼3 mm, we obtain

δf ≈ ±1.5 µm over the C transmission band. Figures 11 and 12 show the loss and

extinction ratio for modes LP01 and LP03 as a function of the defocusing length δf at

the HOM fiber end.

The sensitivity of the transformation to defocus at the SMF end is much smaller.

However, a combination of defocus at the SMF and the HOM ends may be used to

compensate for aberrations during MOX assembly, as described in section 2.4.2.

The overall wavelength dependence of the loss and extinction ratio of the MOX

is shown in Figs. 13 and 14. The plotted curves represent the results of a theoretical

simulation that takes into account the combined effects of the fiber modal shape dis-

persion and the chromatic aberrations of all optical elements. We see that the effect of
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Fig. 13. Theoretical loss of the MOX as a function of wavelength in the C band.
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Fig. 14. Theoretical wavelength dependence of the extinction ratio for the modes LP01 and LP03.

the chromatic aberrations is of the same order of magnitude as the effect of the modal

shape dispersion, cf., Figs. 7 and 8.

2.3.2. Achromatic Aberrations of the Optical System

Achromatic aberrations of the optical system may be caused either by manufacturing-

induced imperfections of the optical elements and fiber ends, or by imperfections in

the manual or automated assembly of the MOX. The aberrations may be divided into

a few groups:

Cylindrically symmetric aberrations, such as defocus or spherical aberrations: This

kind of aberrations is responsible for the excitation of cylindrically symmetric fiber

modes, such as LP01, LP03 etc. These aberrations can be partially compensated for by
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Fig. 15. Theoretically calculated insertion loss of the MOX due to a transverse shift of the HOM

fiber end from its center position.

the movement of the fiber end along the lens axis. An example of the effect of defocus

on the loss and ER of the MOX is shown in Figs. 11 and 12, respectively.

Antisymmetric aberrations, such as tilt or coma, which are antisymmetric about

the x or y axes: These aberrations cause the excitation of antisymmetric modes, such

as LP11. They may be partially compensated for by moving the fiber end perpendicular

to the optical axis. Examples of the effect of a transverse shift on the insertion loss and

on the excitation of higher order modes, other than the LP02 mode, are shown in Figs.

15 and 16.

Elliptical aberrations such as astigmatism, where the phase is symmetric about the

x and y-axis but not cylindrically symmetric: Such aberrations cause the excitation of

modes such as LP21. Usually, this kind of aberration is difficult to compensate during

assembly and should be avoided.

The main practical cause of aberrations is due to imperfect manufacturing of

the phase elements. Very careful collimation and alignment of the optical elements is

needed in order to partially compensate for these aberrations. If the process of assembly

is not done very carefully, then the main cause of additional aberrations may be tilts

and shifts of optical elements. Automated assembly processes can alleviate most of

these problems, producing MOXes of the required quality.

2.3.3. Combination of Chromatic and Achromatic Aberrations: The Appearance of

Wavelength Dependent Loss

As discussed above, the main chromatic aberration is a wavelength dependent defocus.

If a defocus exists in the system at the central wavelength then this defocus adds to

the chromatic defocus to create wavelength dependent loss (WDL). An example of the

appearance of WDL for a system with defocus is shown in Fig.17.

WDL can be minimized to below 0.1 dB over the C-band. However, by playing

with the MOX collimation (changing the defocus) one can choose a specific wavelength
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Fig. 16. Theoretically calculated extinction ratios of some guided modes (excluding) LP02,

caused by a transverse shift of the HOM fiber end from its center position.
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Fig. 17. Wavelength dependent loss (WDL) of the MOX caused by a longitudinal shift df = ±3

µm of the HOM fiber tip with respect to the optimal focus point.

slope of the loss of a MOX to compensate for other sources of WDL in the DMD (fiber

WDL, temperature dependent WDL).

2.3.4. Insertion and Return Losses Due to Surface Reflections and Scattering

The main source for return loss in the typical MOX architecture of Fig. 6 could be back-

reflections at the fiber ends due to refractive index mismatch. Unless cleaved at an angle,

each fiber end reflects about ∼3.3% (=[(1.444-1)/(1.444+1)]2) of the incident light, or

–15 dB. Light hitting the fiber end from within the fiber (e.g., at the MOX input), returns

with a tilted wavefront, whose overlap with the fiber backward propagating mode is
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very small (< −60 dB of return loss for an SMF with 8 degrees tilt). Conversely,

light rays incident on the fiber tilted end face at the focus of a converging beam (e.g.,

following L2 in the upper part of Fig. 6), return into the focusing lens with angles

outside the numerical aperture cone of a properly designed lens, again ensuring small

back reflection. For both processes to succeed, the tilt angle must increase with the

fiber numerical aperture (NA). For SMF fibers, the preferred angle is 8 degrees. Due to

the larger NA (0.36–0.42) of the LP02 mode, to achieve back-reflection performance

similar to that of SMF, tilt angles in excess of 16 degrees should be used, at the expense

of unacceptable levels of polarization dependent loss (PDL).Angles around 10 degrees

were adopted as a compromise, resulting in return loss values approaching –30 dB.

Tilting the fiber end faces will not prevent back-reflections from the free space

optical elements in the MOX to contribute to its return loss performance. In the typical

architecture shown in Fig. 6 there are an additional eight surfaces of optical elements.

They must have high-quality antireflective coating and be properly aligned to ensure

low insertion and reflection losses.

2.3.5. Temperature Effects

When the MOX is properly designed mechanically, temperature affects the system

mainly through a defocus created at the fiber collimators. The following effects occur

when the system is heated:

– Expansion of the lenses, leading to increase of the focal length.

– Change of the refractive index of the lenses, leading to either increase or decrease

of the focal length, depending on the properties of the glass.

– Expansion of the metal holders of the collimators, which may compensate for the

increase of the focal length.

These processes in combination cause an effective change of the focus position of

the collimators, and may result in temperature dependent loss (TDL) and wavelength

dependent loss (WDL). Athermal design of the MOX can be achieved by proper choice

of materials for the lenses and metal holders, so that the different temperature effects

will compensate one another. Deterioration of the quality of phase transformation due

to a change in the refractive index and expansion of the phase elements is negligible

when compared with the defocusing effect.

2.4. Actual Performance of the MOX

Experimentally, one usually characterizes a pair of MOXes, having a very short piece

of HOM fiber between them. Such experimental data will be presented in Sections 4

and 5. However, to satisfy the inquisitive reader we conclude this section with the most

important characteristics of manufactured MOXes:

– MOX insertion loss lies in the range of 0.8–1.25 dB.

– Wavelength dependent loss (WDL) can be minimized to below 0.1 dB over the

C-band.

– Back reflection from the MOX below –28 dB.



130 Tur et al.

– No PMD (a few fsec at most).

– Insignificant PDL if fiber angles do not exceed ∼10◦.

– High power tolerance (no damage at 30 dBm).

– Size: a cylinder of diameter ∼1 cm and length of 6 cm.

Table 1. Maximum MOX extinction ratios over the C-Band for the three relevant modes. Best

values refer to results obtained in a controlled laboratory environment, whereas typical values

refer to volume production.

Extinction ratio (dB)

Mode Best Typical

LP01 −26 −22

LP11 < −30 −24

LP21 < −35 < −30

As for individual extinction ratios, these were measured using a novel technique

to be described in section 3.4.2.3, and the results are summarized in Table 1. Note

that modes LP03 and LP12 can be easily removed using attenuation loops, see section

3.4.2.2, and therefore are of much less practical importance.

3. High-Order Mode Fibers for Dispersion Compensation

Having developed high-quality spatial mode transformers, it is our task now to show

that HOM fibers (HOMF) can be designed to achieve the required dispersion prop-

erties (i.e., dispersion coefficient and dispersion slope coefficient), to compensate all

modern transmission fibers, without sacrificing other importing properties, such as ef-

fective area. Combining the specially designed HOMF with the mode transformation

technology of section 2, it has been possible to develop improved DCMs for use in

modern high capacity optical transmission systems.

In this section we focus on the design and implementation of such HOMF. In

section 3.1 we describe the selection criteria for the mode to be used for the purpose

of dispersion compensation. In section 3.2 we discuss whether and how the mode

transformation technology affects the design of the HOMF. In section 3.3 we discuss

the required dispersion characteristics of the HOMF, while in section 3.4 we consider

the design of the HOMF refractive index profile to achieve these characteristics. Fi-

nally, in section 3.5 we discuss the addition of a trim fiber to fine-tune the dispersion

characteristics of the HOM-DCM.

3.1. Which High-Order Mode?

A key issue in the design of HOMF is which higher order mode the signal is to propagate

in. Since our goal is dispersion compensation, one would naturally tend to choose the

mode that gives the most desirable dispersion characteristics. However, it turns out

that other design issues limit the choice of modes.
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The most important amongst these issues is multi-path interference (MPI), which

was mentioned in the introduction to this paper and will further be considered in section

4 below. Generally speaking, in order to limit MPI, one should limit the number of

guided modes, and thus the possible interference paths in the HOMF. This means that

the signal should propagate in the lowest order mode that still provides the required

dispersion characteristics. For example, see Fig. 3, if we were to select the LP11 mode

as the propagation mode, then it would be possible to design a fiber with only two

guided modes (LP01, LP11). On the other hand, if we were to select the LP03 mode

there would have to be at least six guided modes (LP01, LP11, LP02, LP21, LP12,

LP03), and almost certainly some others as well. This means that even if the LP03

mode were to exhibit particularly attractive dispersion properties, the increased MPI

due to MOX coupling to other modes would be very prohibitive.

A second important consideration is polarization dependent behavior, and particu-

larly polarization mode dispersion (PMD). Modes that are not cylindrically symmetric

are by their nature more susceptible to polarization effects, and thus may have much

larger PMD than cylindrically symmetric modes. Since PMD is a key design issue

for DCMs, this effectively restricts the selection of modes to those with cylindrical

symmetry, i.e., LPon.

The preceding discussion basically means that the LP02 mode is the logical choice

for the propagation mode in HOMFs for HOM-DCMs. In fact, we will see that with

proper fiber design this mode also provides the required dispersion properties for most

applications, and is thus well suited for the task. Therefore, for the remainder of this

paper we will consider only HOMFs where LP02 is the designated propagation mode.

3.2. Interdependence of MOX and Fiber

As discussed in section 2, for HOMF to be useful it needs to be accompanied by

mode transformers (MOXes) at the input and output of the HOM-DCM. An important

practical issue is whether and how the two basic components of the HOM-DCM,

HOMF and MOXes, are interrelated, and how the design of each depends on the other.

From the discussion of spatial mode transformation technology in section 2 it is clear

that the mode transformers need to be designed specifically for a given HOMF. More

importantly however, it was also shown that in principle the design methodology is

powerful enough to handle almost any HOMF. This indicates that the two problems

can be separated, i.e., the HOMF can be designed and implemented independently,

and then the mode transformers may be designed in the second stage.

Nevertheless, there are still two issues related to spatial mode transformation that

do influence the design of HOMF. The first is the necessity to keep the spatial distri-

bution of the high-order mode relatively constant over the transmission band, so as

to maintain low insertion loss and high extinction ratio of the MOXes for all wave-

lengths. Since wavelength-dependent steep changes in spatial distribution go hand in

hand with steep changes in the effective index, which in turn means large dispersion,

it would appear that high dispersion HOMF and spatial mode transformation may not

well suite each other. However, it turns out that for dispersion values in the range of

practical interest, about 200–600 ps/nm/km, the rate of change of the mode shape is

still small enough to allow efficient and broadband spatial mode transformation (see

section 2.1.4). A second, equally important issue is the necessity to design the HOMF

such that the LP03 mode is as close to cutoff as possible, or preferably not guided
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at all. The reason for this is that typical spatial mode transformers only provide high

extinction ratio between LP02 and LP03 at the center of the band, whereas towards

the band edges the extinction ratio deteriorates sharply, see Fig. 8. This means that in

order to maintain sufficiently low MPI across the band, it is necessary for the LP03

mode to be below or very close to cutoff (in the latter case special attenuation loops

may be used to effectively kill the LP03 mode, see section 3.4.2.2)

3.3. Required Dispersion Characteristics of the HOMF

Clearly, the main requirement of a HOM-DCM is to provide accurate broadband dis-

persion compensation. Therefore, the most important characteristics of the HOMF are

its dispersion characteristics, or more specifically the dispersion characteristics of the

propagation mode of the HOMF, in our case, the LP02 mode. For the sake of brevity,

we shall often use the term “dispersion of the HOMF” while actually meaning the

dispersion of the LP02 mode of the HOMF

3.3.1. Simultaneous Slope and Dispersion Matching

To achieve linear distortionless transmission, the dispersion curve of the HOM-DCM

should be a negative mirror of the dispersion curve of the transmission span to be

compensated. Since the dispersion curve of all types of transmission fiber is very well

approximated by a linear curve within a given transmission band, the dispersion curve

of a transmission span of length L (in units of ps/nm) may be written as

Dspan(λ) = D(λ0) · L + S(λ0)L(λ − λ0) = D(λ0)L

(

1 +
S(λ0)

D(λ0)
(λ − λ0)

)

,

(14)

where λ0 is some wavelength within the band (e.g., 1550 nm for the C-band), and

D(λ0) and S(λ0) are the dispersion coefficient and dispersion slope coefficient of

the transmission fiber at λ0. Equation (14) shows that the dispersion curve may be

characterized by: (1) The total dispersion given by Dspan = D(λ0)L; (2) The ratio

S(λ0)/D(λ0), which does not depend on the lengthL, and therefore is a characteristic

of the type of transmission fiber. This second quantity is often denoted as the RDS of the

fiber [16], while the inverse quantity D(λ0)/S(λ0) is denoted as κ [17]. Alternatively,

an equivalent quantity can be defined, referred to as the Projected Zero Dispersion

wavelength (PZD) [18],

PZD (λ0) = λ0 − D(λ0)

S(λ0)
= λ0 − 1

RDS
= λ0 − κ. (15)

The physical meaning of the PZD(λ0), Fig. 18, is the wavelength for which the

linear approximation of the fiber dispersion curve at wavelength λ0 crosses the zero

dispersion axis. An advantage of using the PZD is that for linear and quasi-linear

dispersion curves the value of PZD does not depend on center wavelength λ0, in

contrast to κ and RDS. Table 2 enumerates the dispersion properties of common

transmission fibers in the C and L bands.

Thus, to compensate the (assumingly linear) dispersion of a transmission fiber,

having dispersion of Dspan @λ0 and an RDS value RDSTF, the HOMF needs to

fulfill the following two conditions:
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Table 2. Nominal Dispersion, Dispersion slope, RDS, κ and PZD for a number of common

transmission fibers in the C and L bands. The dispersion is calculated at 1550 nm for the C-Band,

and 1590 nm for the L-Band. eLEAF, Truewave and Teralight are trademarks of Corning, Inc.,

OFS Fitel L.L.C. Inc., and Alcatel Corporation, respectively.

Dispersion Slope RDS κ PZD

Fiber type Band (ps/nm/km) (ps/nm2/km) (nm−1) (nm) (nm)

SMF-28 C 17 0.057 0.0035 291 1261

L 19 0.057 0.0030 331 1261

TrueWave-RS R© C 4.4 0.045 0.010 98 1452

L 6.2 0.045 0.0072 138 1452

eLEAF R© C 4.2 0.087 0.020 49 1501

L 7.6 0.087 0.011 89 1501

TeraLight R© C 8 0.057 0.071 140 1410

L 10.3 0.057 0.0056 180 1410

RDSHOMF (λ0) = RDSTF (λ0) , (16)

DHOMF(λ0)LHOMF = −Dspan(λ0), (17)

where RDSHOMF (λ0) is the RDS of the HOMF at λ0, DHOMF (λ0) is the dispersion

coefficient, and LHOMF is the length of the HOMF.

Clearly, the larger the absolute value of DHOMF (λ0), the less HOMF we need,

which leads to a reduction in insertion loss of the HOM-DCM. In this context one can

use the so-called Figure of Merit (FOM) introduced to characterize single mode DCF,

and defined as the ratio of the fiber dispersion coefficient to the attenuation coefficient.

The higher the FOM, the lower the resulting module loss of the DCM. For early DCFs,

with dispersion in the range 90–120 ps/(nm km) and attenuation of 0.4–0.5 dB/km,

The FOM was in the range of 200–300 ps/(nm km dB). Recent improvements in DCF

design and manufacturing have led to FOM values nearing 500 [19].

For practical implementations of HOMF it is quite feasible to achieve dispersion

values up to 600 ps/(nm km), with attenuation in the range 0.45–0.6 dB, resulting

in FOM up to ∼1000 ps/(nm km dB). While such high FOM potentially enables

HOM-DCMs with very low module loss, one still has to account for the extra loss

of the two MOXes, typically about 2 dB. This means that for DCMs compensating

80–100 km of transmission fiber, the high HOMF FOM does not translate into a

significant improvement in module loss compared to state of the art DCF. However, for

applications such as multi-span compensation (see section 5.3.1), where more negative

dispersion fiber is required, the high HOMF FOM can be used to good advantage. The

high HOMF FOM also results in savings in cost and packaging space.

3.3.2. Third-Order Dispersion (TOD)

While the dispersion curve of the transmission fiber can be considered linear, the HOMF

dispersion curve quite often displays significant deviations from linearity within the

transmission band. This nonlinearity of the dispersion curve is often referred to as

third-order dispersion (TOD), or dispersion curvature, and is especially relevant when
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the dispersion coefficient and/or the dispersion slope coefficient have large negative

values.

For a dispersion curve that deviates significantly from linearity over the transmis-

sion band, specifying the dispersion and RDS at λ0 is only partially useful, and does

not tell us anything about the overall behavior of the curve. Specifically, we would like

to introduce an average RDS that represents the curve as a whole over the transmis-

sion band, and also introduce a measure for the deviation of the curve from linearity.

To achieve both goals we introduce a linear fit to the dispersion curve such that the

maximum deviation of the actual curve from the linear fit within the transmission band

is minimized. This is different from the usual least mean squared (LMS) fit, since we

aim to minimize the maximum deviation, and not the average deviation. An example

of such a fit and the deviation from linearity is shown in Fig. 18.

Using the linear fit (LF), conditions (3.3) and (3.4) may be rewritten as

RDSHOMF−LF = RDSTF (λ0) , (18)

LHOMFDHOMF−LF (λ0) = −Dspan (λ0) , (19)

where RDSHOMF−LF and DHOMF−LF (λ0) refer to the linear fit. Then the residual

dispersion (RD) of the transmission span + HOM-DCM is given by

RD (λ) = Dspan (λ) − LHOMFDHOMF (λ)

= LHOMF [DHOMF−LF (λ) − DHOMF (λ)] , (20)

where [DHOMF−LF (λ) − DHOMF (λ)] is the deviation of the HOMF dispersion curve

from linearity, as in Fig. 18. Since the objective is to minimize RD(λ) over the trans-

mission band, i.e., to minimize max
λ∈Band

RD (λ), the advantage of using this type of

linear fit becomes clear: Any other linear fit would by definition lead to higher resid-

ual dispersion at some wavelength, whereas here the maximum residual dispersion is

minimized over the whole transmission band. It also provides us with an important

measure of the deviation from linearity. To make this measure independent of HOMF

length, we may use Eqs (19) and (20) to write

max
λ∈Band

RD (λ) = Dspan (λ0)
max

λ∈Band
[DHOMF−LF (λ) − DHOMF (λ)]

DHOMF−LF (λ0)
. (21)

We now define the third order dispersion (TOD) of the HOMF as

TOD = 100
max

λ∈Band
[DHOMF−LF (λ) − DHOMF (λ)]

DHOMF−LF (λ0)
, (22)

i.e., the maximum deviation from the linear fit as a percentage of DHOMF−LF (λ0).

Thus

max
λ∈Band

RD (λ) = Dspan (λ0) TODHOMF/100, (23)

which means that TOD of the HOMF is a direct measure of the maximum residual

dispersion over the transmission band.

To summarize, we may say the HOMF should ideally satisfy three conditions:

– Largest negative dispersion coefficient possible (to minimize HOMF length)

– Correct RDS as defined by Eq. (18) (broadband compensation).

– Smallest TOD possible (to minimize residual dispersion).
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Fig. 18. Measured dispersion curve, linear fit, and the difference between the two (i.e. deviation

from linearity) for a sample HOMF.

3.4. HOMF Refractive Index Profile Design

In this section we discuss the design of the refractive index profile of the HOMF.

As a concrete example we concentrate on the compensation of Corning eLEAF R©
transmission fiber, which according to Table 2 has a high RDS value of 0.02 nm−1.

Such a high RDS is difficult to achieve using conventional DCF without resorting

to very low effective area (typically about 15 µm2 [20], highlighting the advantage

of HOM-DCMs. It should be stressed, however, that the design principles discussed

below equally apply to HOMF for any type of transmission fiber.

3.4.1. Basic Three Zone Profile and Dispersion Curve

The physics behind the three-zone profile used for DCF is well known within the

context of single mode DCF, which is designed to have high negative dispersion in

the basic LP01 mode. However, the same arguments apply just as well to higher order

modes.

Figure 19 shows a typical three-zone profile of a HOMF used for dispersion com-

pensation. The profile includes an inner core region with high relative refractive index

(in this case ∆1 = 1.47 – 1.444 = 0.026), a depressed index region, and an outer

core region. To understand the mechanism for the high negative dispersion of the

LP02 mode, Fig. 20(a) shows the mode intensity distribution at 1550 and 1650 nm.

As can be seen, the LP02 mode undergoes a sharp transformation from being mainly

concentrated within the inner core region, to being mainly concentrated in the outer

core region. This, and the accompanying change in effective index, leads to the sharp

negative dispersion of the mode in this wavelength region, as clearly illustrated in Fig.

20(b).

Figure 21 shows a zoom-in of the dispersion curve to the region of interest for

dispersion compensation. The general shape is shown in Fig. 21(a), and is common
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Fig. 19. Typical three zone profile of a HOMF for dispersion compensation. ∆1, ∆3 and ∆3

are the relative (to the clad) indices of the zones, while a1, a2 and a3 are the zone widths.

to all three-zone profiles of the type shown in Fig. 19 (and indeed to other profiles

used for dispersion compensation). At shorter wavelengths the curve is concave, then

passes through a zero-curvature point (in this case at about 1570 nm), after which it

becomes convex and reaches a minima. By changing the various profile parameters,

one can control the curve parameters, such as position along the wavelength axis, and

the value of the minimum dispersion. Through such manipulations, to be discussed

in more detail in section 3.4.3, one can achieve the desired dispersion characteristics

within the transmission band of interest.

Figure 21(b) shows the dispersion curve in the C-band, together with a linear fit

as described in section 3.3.2. On the basis of the linear fit, we see that the dispersion at

1550 nm is –376 ps/nm/km, and the RDS is 0.02 nm−1. Thus, if we consider an 80-km

eLEAF R© span, we would need only 0.9 km of HOMF to achieve full dispersion and

dispersion slope compensation of the span. These impressive dispersion characteristics

have been achieved while maintaining a large mode effective area, which is 51 µm2 at

1550 nm, and above 44 µm2 over the entire C-band, as shown in Fig. 22. While recent

single mode DCF designs have achieved comparable dispersion slope characteristics

[20], the corresponding effective area is typically ∼15 µm2, over three times smaller

than the HOMF. Furthermore, the HOMF fiber profile itself is quite standard and

easily manufactured. While the inner core index is high compared to standard SMF

transmission fiber, it is comparable to regular DCF fiber, and can easily be achieved

using standard manufacturing processes. The inner core radius is over 4 µm, much

larger than DCF, and comparable to SMF, which further simplifies manufacturing.

The measured dispersion curve of a fiber manufactured according to a profile similar

to Fig. 19 is shown in Fig. 18, showing similar characteristics to the simulated curve.
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Fig. 20. (a) LP02 mode intensity distribution at two different wavelengths, for the profile shown

in Fig. 19. The effective area (Aeff) of the mode at the two wavelengths is given in the figure

legends. (b) The associated waveguide dispersion curve (i.e., without material dispersion) showing

the sharp transition in the region of the C-Band.

However, while the linear fit to the dispersion curve has ideal characteristics for dis-

persion compensation, the actual dispersion curve itself suffers from a non-negligible

deviation from linearity, as is clearly visible from the curvature of the curve in Fig.

21(b). The corresponding TOD value, as defined in section 3.3.2, is 4.3%, meaning

that for an 80-km span the resulting maximum residual dispersion after compensation

will be about 15 ps/nm. For long haul links up to 1000 km this is probably not an issue,

however, for ultra-long-haul links of 2000 km and above, the total accumulated residual

dispersion will exceed 400 ps/nm, which is already sufficient to incur a non-negligible

transmission penalty at 10 Gb/s.
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Fig. 21. Zoom-in of the LP02 mode dispersion for the profile shown in Fig. 19. (a) within the

wavelength range 1450–1650. (b) within the C-band, together with the linear fit.

3.4.1.1. Relation Between TOD and RDS

Ideally, we would like to reduce the TOD while still maintaining the RDS value dictated

by the transmission fiber to be compensated. While this is possible to some extent, it

usually involves trade-offs with other important fiber properties, such as the neff of

LP02 to be discussed in section 3.4.2 below. In practice, the TOD is strongly related

to the RDS of the fiber, so that a meaningful reduction in TOD can only be achieved

at the expense of reducing the RDS of the HOMF. This relation is to be expected,

since higher RDS means higher dispersion slope (relative to dispersion), i.e., stronger

dependence of the dispersion on wavelength. Since the dispersion curve is in any case

strongly non-linear [Fig 21(a)], this results in higher TOD. In section 3.5 we will show

that even if the RDS of the HOMF is not strictly the same as that of the transmission

fiber, one can still obtain accurate broadband compensation using an additional trim
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Fig. 22. Effective area as a function of wavelength for the profile of Fig. 19

fiber. This allows us some freedom in choosing the RDS of the HOMF in order to

optimize other parameters, such as the TOD.

To illustrate this we have slightly altered the profile of Fig. 19 by decreasing the

parameter a2, the width of the 2nd profile zone, which as discussed in section 3.4.3.2

below, leads to a reduction in RDS. The resulting dispersion curves and deviation from

linear fit for a reduction of 10% and 25% in a2 are shown in Fig. 23, along with the

original dispersion curve of Fig. 19. At an RDS value of 0.017 nm−1, the TOD is

reduced by more than half to 2.1%, whereas at an RDS value of 0.011 nm−1 it is

reduced by an order of magnitude to 0.4%. The extremely low TOD in the latter case

results directly from the fact that the zero curvature point of the dispersion curve occurs

within the C-band near 1545 nm.

It is important to stress that the issue of TOD is not unique to HOM-DCF, but is

also relevant to high RDS single mode DCF fiber. For example, Wandel and co-workers

[20] present data for two high RDS DCFs. The first has RDS of 0.018 nm−1 and TOD

above 5%, while the second has RDS of 0.01 nm−1, and TOD of 0.4%. These reported

TOD values are similar to those given in Fig. 23 for HOM-DCMs with comparible

values of RDS.

Figure 23 also illustrates the relation between RDS and dispersion, or alternately

between RDS and FOM. The lower the RDS, the easier it is to achieve high dispersion

values, and thus high FOM values, while still maintaining other important profile

characteristics discussed in the next section.

3.4.2. Other Important Characteristics of the Profile

The refractive index profile determines not only the dispersion characteristics, but also

other properties of the HOMF, that can affect the performance of transmission systems.

In this section we consider the more important of these properties, and how they are

affected by the profile design.
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Fig. 23. Dispersion curves and deviation from linear fit for three different profiles: (a) Solid

curves—The profile of Fig. 19, with linear fit parameters: RDS = 0.020 nm−1, D = −376

ps/nm/km, TOD = 4.3%; (b) Dashed curves—The profile of Fig 19 with a2 reduced by 10%,

with linear fit parameters: RDS = 0.017 nm1, D = −405 ps/nm/km, TOD = 2.1%; (c) Dotted

curves—The profile of Fig 19 with a2 reduced by 25%, with linear fit parameters: RDS = 0.011

nm−1, D = −429 ps/nm/km, TOD = 0.4%.

3.4.2.1. Attenuation Coefficient and Effective Mode Cutoff

A mode is guided as long as its effective index is above the cladding index (typically

1.444 in the C-Band). Using this formal definition, the cutoff of the LP02 mode of

the profile of Fig. 19 is beyond 2000 nm. However, long before the formal cutoff is

reached, the attenuation of the mode due to micro- and macro-bending [21] becomes

so large as to render it unguided for all practical purposes.

One typically finds that the mode attenuation coefficient increases sharply when

the effective index reaches a certain critical threshold, which depends on the fiber

profile, the manufacturing process, and the fiber spooling conditions (which strongly

affect micro-bending). The reason for this is that beyond this threshold, the mode

extends away from the fiber core, and is more sensitive to various perturbations of the

fiber profile, such as bending (both micro- and macro-).

The critical effective index in turn defines a critical wavelength, λc, which we call

the effective cutoff wavelength of the mode (as opposed to the formal cutoff wavelength

discussed above). In Fig. 24 we show the spectral dependence of the LP02 attenuation

coefficient of a fiber manufactured according to a profile similar to that of Fig. 19. One

can clearly observe the onset of effective cutoff at about 1575 nm.

When designing the fiber profile, it is crucial to ensure that λc lies beyond the

end of the transmission band. Since λc also depends on manufacturing conditions and

on spooling, it is necessary to empirically determine the critical effective index for a

given set of conditions. Once known, the profile may be designed so that the maximum

effective index within the transmission band is above the critical effective index. We

have determined that for a wide range of manufacturing and spooling conditions, the

critical effective index for the LP02 mode is in the range 1.4455–1.4460 (assuming
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Fig. 24. LP02 attenuation coefficient of a fiber manufactured according to a profile similar to

that of Fig. 19.

nclad = 1.444). For the profile of Fig. 19 the effective index at 1565 nm is 1.4460, in

accordance with the fact that λc lies beyond the C-Band (e.g., Fig. 24).

λc not only affects the mode attenuation coefficient, but also other fiber properties,

notably polarization mode dispersion (PMD). Below λc, PMD has a weak spectral

dependence, and is mainly determined by manufacturing and spooling conditions.

Near λc, PMD takes on a stronger spectral dependence, and increases sharply beyond

λc. The reason for this, as with the increase in attenuation, is that above λc the mode

extends away from the fiber core, and becomes increasingly sensitive to perturations

such as bending which break the fiber cylindrical symmetry. Practically speaking, the

increased PMD means that even if the rise in attenuation due to effective cutoff can be

tolerated, one should still design the profile to ensure thatλc is beyond the transmission

band.

Finally, Fig. 24 also illustrates the typical achievable attenuation coefficient for

well-designed and manufactured HOMF, which is in the range 0.45–0.6 dB/km. This

is similar to that of DCF with comparable dispersion characteristics [19].

3.4.2.2. Number of Guided Modes

As discussed in section 3.1, a major concern in the design of HOMF is the number

of guided modes supported by the fiber, with more guided modes resulting in higher

MPI of the HOM-DCM (All modes are excited, even if to a small extent, by the wave

incident on the HOMF tip [see overlap integral of Eq. (7)]. If they are guided, they

contribute to MPI, otherwise, they just represent tolerable loss). The profile of Fig. 19

supports six guided modes, whose effective indices in the C-Band are listed in Table

3. While the exact values can change, the number and order of modes as listed in the

table is typical to most profiles.

In particular, the three modes more guided than the LP02 mode, i.e., LP01, LP11,

and LP21, are expected to be present in most HOMF profiles designed to use the LP02
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mode. Therefore, one should always account for the presence of these three modes,

for example, in the context of mode coupling to be discussed in section 3.4.2.3.

On the other hand, there is some freedom regarding the two modes that are less

guided than the LP02 mode, i.e., LP03 and LP12. Using appropriate design, the effective

indices of these modes may be decreased, and they may even be made to be non-guided,

i.e., with effective indices below 1.4440. As discussed in section 3.2, this is particularly

important with regards to LP03 due to MOX design issues. Even if the LP03 and LP12

modes are formally guided, i.e their effective index is above 1.4440, they may be

strongly attenuated using special attenuation loops in the HOMF just after the input

MOX, and just before the output MOX. These loops work on the principle that the

macro-bending loss of a mode is strongly dependant on the effective index. For a step

index fiber it has been shown that the macro-bending loss, α, associated with a loop

of curvature radius R satisfies [22]

α ∝ 1√
R

exp

[

−2

3

(neff − nclad)3/2

n2
eff

k · R
]

≡ 1√
R

exp

(

− R

Rc

)

, (24)

where nclad is the cladding index, and k the free space wavevector. Thus it is natural

to define a critical radius Rc, such that loops with radius R < Rc strongly attenuate

the mode. In Table 3 we also list the critical radius for each mode at the beginning

and end of the C-Band. This shows us that if we introduce attenuation loops of radius

R ∼ 2cm, these loops should strongly attenuate the LP03 and LP21 mode, while only

having a minor effect on the LP02 mode. Clearly, the smaller neff of LP03, the easier it

is to attenuate the mode. In practice we have found it desirable to keep the LP03 mode

effective index below 1.4445 across the entire transmission band. Table 3 shows that

the profile of Fig. 19 does not strictly satisfy this requirement. On the other handthe

altered profile with RDS = 0.017 nm−1 (Fig. 23) does, with virtually no change to neff

of the LP02 mode.

Table 3. Guided modes of the profile of Fig. 19, their effective indices, and critical bending radii

[according to Eq. (24)].

Effective index Critical Bending radius Rc (mm)

Mode at 1525 nm at 1565 nm at 1525 nm at 1565 nm

LP01 1.4653 1.4651 0.3 0.3

LP11 1.4582 1.4577 0.5 0.5

LP21 1.4492 1.4484 2.0 2.6

LP02 1.4467 1.4460 5.4 8.5

LP03 1.4447 1.4445 41.0 67.9

LP12 1.4446 1.4445 51.7 67.9

3.4.2.3. Mode Coupling

Mode coupling refers to transfer of optical power between modes propagating along

the fiber. Power transferred from a guided mode to a non-guided mode results in loss,

since the power in the non-guided mode dissipates along the fiber. However, power

transferred to another guided mode continues to propagate, and at a later stage (either
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further along the HOMF, or at the output MOX) can recombine with the main signal and

lead to MPI. The precise relation between mode coupling and MPI will be discussed in

section 4.4.2, whereas here we discuss mode coupling in general, and how it is affected

by the fiber profile design.

Mode coupling occurs due to random perturbations of the refractive index profile

along the fiber. These may results from manufacturing imperfections, or external causes

such as stress and micro-bending [21]. Since the perturbations are random, the mode

coupling is incoherent, as opposed to coherent mode coupling that occurs due to a

systematic perturbation along the fiber (e.g., Bragg gratings). Thus, the power transfer

rate between modes is constant, and independent of position along the fiber, allowing

one to define a mode-coupling coefficient between any two modes denoting the power

transfer rate. For example, a mode coupling coefficient of 0.01 km−1 between the LP02

mode and the LP01 mode means that every km, 1% of the LP02 power is transferred

to the LP21 mode, and vice versa.

A detailed discussion of the mode-coupling coefficient is beyond the scope of

this paper, and can be found, for example, in [23–25]. Furthermore, the details of

any theory depend strongly on the types of perturbations and their statistics, data that

is very difficult to extract experimentally from a fiber. Having said that, there are a

few general observations that can be made about the factors that determine the mode-

coupling coefficients:

– A given type of perturbation will have a specific symmetry, and thus only couple

between certain modes [23]. For example, micro-bending will only couple between

modes whose azimuthal numbers (m in the LPmn notation) differ by unity, such

as LP02 and LP11, but not modes with the same azimuthal symmetry, such as

LP02 and LP01. Similarly, elliptic perturbations (i.e., perturbations that distort

the cylindrical symmetry of the fiber), will couple between LP02 and LP21, but

again not between modes with the same azimuthal symmetry. For a given set of

manufacturing and spooling conditions one typically finds that there are one or two

dominant perturbations, and these determine the modes that couple most strongly

to each other.

– As a general rule, the larger the difference in propagation constants of two modes

[∆β = β1 − β2 = k(neff,1 − neff,2)], the smaller the mode coupling between

them. However, the decrease in mode coupling occurs only for ∆β larger than the

inverse of the typical length scale of the perturbation causing the coupling. For

smaller ∆β, the dependence on ∆β is weak, since the perturbation length scale is

in any case much smaller than the phase walk-off (i.e., ∆β−1) between the two

modes.

– Fibers whose profiles exhibit sharp features are more sensitive to perturbations

along the fiber, and have higher mode coupling coefficients. Quantitatively, this is

related to the profile derivative dn/dr, r being the radial coordinate. Referring to

Fig. 19, it is clear that the larger the value of ∆1, the sharper the transition between

the first and second zones of the profile, and the larger is dn/dr at the boundary

between two zones. The same applies to the magnitude of ∆2 and ∆3. However,

since ∆1 is typically much larger, it usually has the dominant effect. Thus, an

important conclusion is that the higher ∆1, the stronger the mode coupling.

In order to measure the mode-coupling coefficient we use a high resolution reflec-

tometer [26] in a setup shown schematically in the left-hand side of Fig. 25. The output
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pulse of the reflectometer enters the MOX via the circulator and is then transformed

primarily to the LP02 mode of the HOMF. As the pulse propagates along the HOMF,

part of it is coupled to other modes, having different group velocities. The entire signal

is then coupled from the HOMF back to an SMF fiber using a splice with a known

lateral offset, and then, via the circulator back into the reflectometer. The lateral offset

of the splice is necessary so that optical power carried by the LP11 and LP21 modes of

the HOMF couples to the SMF and is thus able to reach the reflectometer. A sample

reflectometer trace is shown in the right-hand side of Fig. 25, and consists of discrete

peaks in between which there is a continuous signal. The discrete peaks correspond

to power coupled to the different modes by the input MOX, and can be identified by

comparing their position to the simulated group velocity of the fiber modes. As should

be expected, the strongest peak corresponds to the LP02 mode. The continuum between

the peaks represents power that was coupled from the LP02 mode to other modes at

various points along the fiber.

Referring to Fig. 25 as an example, one can observe the following:

– The continuum between the LP01 peak and the LP02 peak is due to coupling from

LP02 to LP01.

– The continuum between the LP02 peak and the LP11 is due to coupling from LP02

to both LP11 and LP21

– The continuum between the LP11 peak and the LP21 peak is due to coupling from

LP02 to LP21

By integrating these three continuums, comparing to the integrated LP02 power,

and correcting for the HOMF-SMF coupling for each mode due to the lateral splice

offset (these correction factors were calculated and verified experimentally), it is pos-

sible to derive the mode coupling coefficients between the LP02 mode and the three

other modes. A variation of this technique can also be also used to derive the MOX

extinction ratios, as for example listed in Table 1.

As discussed in the previous section, at least three other modes besides the LP02

mode are present in a typical HOMF: LP01, LP11, and LP21. Thus, the three most

important coupling coefficients for the design of HOMFs are between the LP02 mode

and these three modes. We have measured these coupling coefficients for a wide range

of fibers manufactured under different conditions, and have found the general behavior

shown in Table 4. Thus, the LP02 – LP21 coupling is one to two orders of magnitude

stronger than the LP02 – LP01 coupling, with LP02 – LP11 coupling somewhere in the

middle. This order also corresponds to the decreasing order of ∆neff (i.e., of ∆β),

as discussed above. However, caution should be exercised in concluding that ∆β
has a critical impact on mode coupling, since the three types of coupling correspond

to different perturbation symmetries. Thus, it is quite possible that a certain type of

perturbation is dominant in the fibers, e.g., elliptical perturbations, and this is the

main factor determining the order of the coupling strengths. In fact, for a given type of

coupling, e.g., LP02–LP21, we have found no correlation between∆β and the coupling

strength, thus lending support to this possibility.

A key question remains as to which profile parameters affect the mode coupling

strength. This is particularly relevant to LP02–LP21 coupling, which is by far the

dominant mechanism.As discussed above, one would expect the core relative index∆1

to influence the coupling strength, since higher∆1 leads to higher profile derivatives at
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Fig. 25. Schematic representation of the mode coupling measurement setup (left), and sample

output trace of the Reflectometer (right).

the boundary between the first and second profile zones. This is indeed apparent from

Fig. 26, which shows the measured LP02–LP21 coupling coefficient for a number of

fibers having different values of ∆1. Besides the issue of profile derivatives, it is well

known that high levels of Germanium doping lead to increased Rayleigh scattering

in fibers, and a similar mechanism may also be responsible for increasing the mode

coupling (over and above the increase due to higher profile derivatives).

Table 4. Typical range of measured coupling coefficients between the LP02 mode and three other

modes.

Between Typical value Coupling coefficient (km−1)

modes of ∆neff Range Typical

LP02 – LP01 0.019 0.0001 – 0.001 0.0002

LP02 – LP11 0.012 0.001 – 0.005 0.002

LP02 – LP21 0.003 0.005 – 0.02 0.007

3.4.3. Profile Design Degrees of Freedom

The preceding sections presented the basic three-zone profile of the HOMF, together

with the dispersion curve and other fiber properties. Here we consider the main degrees

of freedom that allow one to control these properties.

3.4.3.1. Controlling the Dispersion Through Profile Scaling

As with the simple step index fiber [27] a scaling relation exists between the dimensions

of the fiber profile and the wavelength. Specifically, scaling the fiber radius by a factor

α (i.e., the parameters a1, a2 and a3 in Fig. 19 are multiplied by α), results in a change

in waveguide dispersion according to
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Fig. 26. Correlation between measured LP02-LP21 coupling coefficient and the core relative

index ∆1.

D̃WG(λ) =
1

α
DWG

(

λ

α

)

. (25)

Here D̃WG(λ) is the waveguide dispersion of the scaled fiber, whereas DWG (λ)
is that of the original fiber. Equation (25) is easily derived from the wave equation of

the fiber and the definition of waveguide dispersion. The total dispersion, including

also material dispersion, does not strictly satisfy Eq. (25), however, for the high disper-

sion fibers discussed here, waveguide dispersion is by far the dominant contribution.

The physical meaning of Eq. (25) is that scaling the fiber radius shifts the disper-

sion curve on the wavelength axis, as illustrated in Fig. 27 for the profile of Fig. 19.

Thus, contracting/expanding the profile shifts the dispersion curve to shorter/longer

wavelengths, having the effect of changing the dispersion at a given wavelength. For

example, Fig. 27 shows that the dispersion at 1550 nm changes from –200 ps/nm/km

to –750 ps/nm/km for a scaling range of only 4%.

Besides being an important design tool for achieving the required dispersion at a

given wavelength, scaling also has an important practical aspect: When drawing a fiber

during manufacturing, the outer diameter of the fiber, as well as all other transverse

dimensions, may be altered by altering the drawing conditions. This results in scaling

of the fiber profile, and allows fine-tuning of the dispersion during manufacturing.

3.4.3.2. Controlling the RDS

A given dispersion curve is characterized by the value of the dispersion and dispersion

slope at each point along the curve. Scaling the profile shifts the dispersion curve along

the wavelength axis, thus changing the dispersion for a given wavelength. However, for

each value of dispersion, the slope, and hence the RDS, is predetermined by the shape

of the curve. Thus, to achieve a different RDS for the same dispersion, the dispersion

curve should be altered, as opposed to just shifting it along the wavelength axis. This

basically means altering the depth of the dispersion minima, which can be achieved by

changing the parameters of the second profile zone, i.e., the depressed index region.
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Fig. 27. The effect of the fiber scaling on the dispersion curve. The dispersion curve of the profile

of Fig. 19 is displayed together with dispersion curves of the same profile where the radius is

multiplied by a factor α.
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Fig. 28. The effect of a2, the width of the second profile zone, on the dispersion curve. The

dispersion curve of the profile of Fig. 19 is displayed together with dispersion curves for the same

profile where a2 is decreased by 5% and increased by 2%.

The deeper or wider this region, the deeper the dispersion minimum, and vice versa.

Figure 28 shows the effect of a2, the width of the second profile zone, on the dispersion

curve, while a similar effect can be achieved by changing ∆2, the depth of the zone.

The deeper the dispersion curve, the higher the achievable slope for a given dis-

persion, and the higher the RDS. For example, scaling the three curves shown in Fig.

28 to the same dispersion, results in RDS values from 0.017 nm−1 for the shallowest
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curve, to 0.022 nm−1 for the deepest curve. Another example can be seen in Fig. 23,

where a reduction in a2 leads to a significant decrease in RDS, with only minor change

in the dispersion.

3.4.3.3. Controlling the Mode Effective Indices

As discussed in section 3.4.2.1, it is crucial to maintain high neff of LP02 in order

to avoid effective cutoff occurring within the transmission band. In the previous two

sections we saw how to modify the profile to achieve the desired dispersion and RDS.

However, these modifications also alter neff of LP02, with higher dispersion and RDS

usually meaning lower neff . Thus, we would like to independently control neff so as

to satisfy all three requirements simultaneously. This can be achieved through the core

relative refractive index ∆1: The higher ∆1, the higher neff of all modes, including

LP02. This is easily understood since neff is nothing but a form of weighted average

of the refractive index profile [27]. Increasing ∆1 not only increases neff , but also

changes the dispersion and RDS, which can then be altered using the methods of the

previous sections. The important point is that we may achieve the same dispersion and

RDS, but with a higher neff for the LP02 mode, thus providing independent control of

the three parameters.

However, there are two problems with this approach: Fig. 26 shows that increasing

∆1 above 0.28 leads to prohibitively high mode coupling (see also section 4.4.2), and

should therefore be avoided. This limit on ∆1 effectively limits the range of dispersion

and RDS that may be achieved while still maintaining acceptably high neff .

The second problem is thatneff of LP03 mode also increases with∆1. To overcome

this we take advantage of the different intensity distributions of the two modes, as

shown in Fig. 29. We see that most of the LP02 mode power is concentrated in the

first and second profile zones, whereas most of the LP03 mode power is concentrated

in the third profile zone. This allows us to achieve a degree of independent control of

the neff of the two modes. For example, the relative index of the third zone, ∆3, has

a much larger impact on the neff of the LP03 mode than on that of the LP02 mode.

Thus, by decreasing ∆3 and then slightly increasing∆1, one can achieve the net effect

of decreasing neff of LP03 while maintaining the neff of LP02.

3.5. Trim Fiber and HOM-DCM Design Options

Up till now we have implicitly assumed that the only fiber within the HOM-DCM is

the HOMF. Thus, the target dispersion and RDS of the HOMF are dictated by those of

the HOM-DCM itself, as discussed in section 3.3. However, it has been noted before in

the context of single mode DCF [28], that for applications where broadband dispersion

compensation is critical, i.e., when it is necessary to simultaneously and accurately

compensate for both slope and dispersion, it can be advantageous to use an additional

fiber within the HOM-DCM, which we refer to as trim fiber. One of the advantages

of trim fibers has to do with manufacturing tolerances. Naturally, it is impossible

to manufacture HOMF exactly according to design specifications, and therefore it

is necessary to specify manufacturing tolerances, namely, a range of dispersion and

RDS values around the nominal design values. Any deviation of the actual dispersion

coefficient from the design value may easily be compensated for by altering the length

of the HOMF used in the HOM-DCM. However, deviations of the actual RDS from
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Fig. 29. I(r) · r corresponding to the LP02 and LP03 modes of the profile of Fig. 19 at 1550

nm, I(r) being the modal intensity distribution.

the design value cannot be compensated for, and this results in a HOM-DCM with

inaccurate dispersion properties. A trim fiber allows one to fine-tune the dispersion

properties of the DCM to achieve accurate dispersion and RDS simultaneously.

Given the dispersion and dispersion slope coefficients of the HOMF, DHOMF(λ0)
and SHOMF, and the dispersion and dispersion slope coefficients of the trim fiber,

DTrim(λ0) and STrim, it is easy to show that the lengths of HOMF and trim fiber

required to achieve accurate dispersion compensation must satisfy the following equa-

tions:

DHOMF (λ0)LHOMF + DTrim (λ0)LTrim = Dspan (λ0) , (26)

SHOMFLHOMF + STrimLTrim = Sspan. (27)

Note that the dispersion slope coefficients referred to in Eq. (27) are defined in the

same manner as described in section 3.3.2, i.e., they do not represent the actual slope

at λ0, but rather the slope of the linear fit to the dispersion curves. Clearly, in order

for Eqs. (26) and (27) to have physically meaningful solutions, i.e., for LHOMF and

LTrim to both be positive, the dispersion characteristics of the trim fiber and HOMF

must satisfy certain conditions. This just means that only certain types of trim fiber

may be used in conjunction with given HOMF.

A good example for the use of trim fiber concerns HOM-DCMs designed to com-

pensate eLEAF R© transmission fiber, which has an RDS value of 0.020 nm−1. If we

design the RDS of the HOMF to be less than 0.020 nm−1, say 0.018 nm−1with a

manufacturing tolerance of ±0.002 nm−1, then it is easy to show that regular SMF

fiber may be used as a trim fiber. The closer the RDS of the HOMF is to 0.020 nm−1,

the less trim fiber is required to achieve accurate dispersion compensation. However,

even if the RDS of the HOMF is at the other end of the manufacturing tolerance range,

i.e., 0.061 nm−1, it is still possible to achieve accurate compensation by using the

correct amount of trim fiber according to Eqs. (25) and (26).

Besides allowing relaxed manufacturing tolerances for the HOMF, trim fiber also

allows additional freedom in the actual design of the HOMF. The main motivation for



150 Tur et al.

this is that even if we are able to manufacture HOMF with RDS close to that required,

there is still the issue of TOD. Considering the example of a HOM-DCM for eLEAF R©
transmission fiber: we saw in section 3.4.1.1 that by reducing the RDS of the HOMF, we

may significantly reduce the TOD as well. Thus, it may be desirable to purposely design

the HOMF with lower RDS, relying on the SMF trim fiber to accurately provide the

required dispersion compensation. This entails now a new trade-off, this time between

TOD and the insertion loss of the HOM-DCM. The higher the RDS of the HOMF, the

higher the TOD, but the less trim fiber needed, meaning less insertion loss. Conversely,

the lower the RDS of the HOMF, the lower the TOD, but the more trim fiber is needed,

increasing the insertion loss. To illustrate this trade-off, Table 5 shows three different

design options for a C-band HOM-DCM for 80 km of eLEAF R© transmission fiber,

based on the three HOMF designs corresponding to Fig. 23. To calculate the insertion

loss, we have assumed that each MOX contributes 1.25 dB, the attenuation coefficient

of the HOMF is 0.5 dB/km, and the attenuation coefficient of the SMF fiber is 0.22

dB/km, all at 1550 nm. The module maximum residual dispersion is given by Eq.

(23), and is the maximum residual dispersion over the C-Band of the HOM-DCM +

transmission fiber.

Of the three options, option C is not particularly realistic from a packaging point

of view, due to the large amount of trim fiber required. This just illustrates that while

trim fiber allows us some freedom in choosing the RDS of the HOMF, it is still highly

desirable to be as close to the target transmission fiber RDS as possible. The choice

between options A and B (or similar ones), depends on the type of application being

considered. For example, in links below 1000 km the accumulated residual dispersion

for optionA is less than 200 ps/nm, which is easily tolerated. Thus, the reduced insertion

loss of the HOM-DCM for option A may be used to simplify the link design and reduce

costs. Conversely, for links above 2000 km the accumulated residual of option A may

be prohibitive, thus making option B more favorable.

Table 5. Different design options for a HOM-DCM for 80 km of eLEAF R© transmission fiber,

based on the three HOMF designs corresponding to Fig. 23.

Parameter Option A Option B Option C

HOMF Dispersion (ps/nm/km) −375 −405 −430

HOMF RDS (nm−1) 0.020 0.017 0.011

HOMF TOD (%) 4.3 2.1 0.4

HOMF Length (km) 0.9 1.1 1.7

SMF trim fiber length (km) 0 5.6 24.1

Maximum Residual Dispersion (ps/nm) 15 9 3

Module Insertion loss (dB) 2.9 4.3 8.7

3.6. Summary

In this section we have discussed the requirements for HOMF to be used in HOM-

DCMs, and how to design refractive index profiles to meet these requirements. Using

these design methods it is possible to achieve the high negative dispersion and dis-

persion slope necessary to compensate for most transmission fibers, without paying
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the price of a small effective area. Furthermore, it is possible to ensure that the LP02

mode is well guided, with attenuation of the same order as regular DCF, about 0.5

dB/km, while at the same time keeping mode coupling and the number of unwanted

modes, and hence MPI (see section 4 below), at acceptable levels. Finally, we have

shown how the addition of a trim fiber to the HOM-DCM allows us to fine-tune the

dispersion characteristics, as well as providing additional freedom in the design of the

HOMF (which can be used to reduce the TOD).

4. Multi-Path Interference (MPI)

While HOM-DCMs have much to offer in terms of dispersion characteristics, low

insertion loss, and low non-linear effects, multi-path interference (MPI) remains a

major concern that must be addressed. In this section we characterize MPI in HOM-

DCMs, and discuss the system level impact of the effect.

4.1. Introduction

MPI refers to the interference of an optical signal with a replica of itself (which we

will call a “satellite signal”) that has traversed a different path in the system. The

classical example of MPI is multiple back reflections that create delayed replicas of

the signal [29]. Such back reflections may be due to discontinuities in the systems (e.g.

connectors and splices), or continuous Rayleigh backscattering, which is particularly

relevant in system employing Raman amplification [30]. In HOM-DCMs, MPI results

directly from the existence of additional modes within the HOMF besides the signal

LP02 mode. A satellite is created when a portion of the signal couples to one of the

additional modes, and then couples back to the main signal at a later stage. Such

coupling can either occur within the MOXes, or along the HOMF itself due to mode

coupling, as shown schematically in Fig. 30.

In general one can differentiate between two types of satellites, to be discussed

in more detail in section 4.4: A discrete satellite is created when the coupling to the

additional mode occurs at the input MOX, and the coupling back to the signal occurs

at the output MOX. We use the term discrete since only one such satellite can exist

for each mode within the HOMF, and both coupling events occur at distinct discrete

points within the HOM-DCM. Conversely, mode coupling in the HOMF give rise to

a continuum of small satellites, since coupling can occur at any point along the fiber

(similar to Rayleigh scattering). In section 4.4 we show that due to the high efficiency

of current MOX technology, discrete satellites make a relatively minor contribution to

the total MPI. This means that the significant part of MPI in HOM-DCMs consists of

a continuum of small satellites, which as we shall see below has important practical

implications.

4.2. Definition of MPI

Consider a CW field input to a HOM-DCM exhibiting MPI. At the output of the system

the optical field may be written as
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Fig. 30. Illustration of coupling between the main signal and an additional mode (e.g., LP01).

This coupling can occur within the MOXes, or along the HOMF.

E(t) ∝
√
P0

[

ps exp [j(ωt + ϕ(t))]

+
∑

i

pi
√
εi exp [j(ωt + ϕ(t − ∆τi) + ∆ψi(t))]

]

, (28)

where P0 is the average optical power, ω is optical frequency, ps is the polarization

of the main signal, ϕ(t) represents laser phase noise, and pi, εi, ∆τi, ∆ψi(t) are

respectively, the polarization, relative power, accumulated group delay difference and

accumulated phase difference of satellite i. The summation is over all satellites created

in the module, and in the case of a continuous source of MPI, should be replaced with

an appropriate integral.

The optical power (averaged over a few optical cycles) detected at the output is

then given by

P (t) = P0

[

1 + 2
∑

i

√
εi cos [∆θi (t)] cos [ϕ(t) − ϕ(t − ∆τi) − ∆ψi (t)]

]

,

(29)

where ∆θi(t) is the relative angle between ps and pi, and we have kept only the

interference terms between the signal and the satellites, ignoring second order interac-

tions. While ∆θi(t) and ∆ψi(t) have relatively slow environmentally-governed time

scales, the dynamics of ϕ(t)−ϕ(t−∆τi) are determined by the laser linewidth (a few

MHz). The interference terms cause the power to fluctuate over time, with a standard

deviation (over an infinitely long time) given by [31]

σ2 = P 2
0

∑

i

εi, (30)

where we have assumed no temporal correlation between the various satellites. Since

the system impact of MPI is directly related to the standard deviation of power fluc-

tuations, a convenient and useful definition of MPI is just sum of the satellite relative

powers,

MPI ≡
∑

i

εi. (31)

The probability distribution function (PDF) of the power fluctuations approaches

a Gaussian form as the number of satellites increases [31]. This has important impli-

cations for the system impact of MPI, and as we shall see further on, is the relevant

case for MPI in HOM-DCMs.
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Fig. 31. MPI measurement setup. PC = Polarization controller, DUT = Device Under Test.

4.3. Measurement of MPI

In order to fully characterize the MPI of a device or system, it is necessary to have

a standardized and reproducible measurement method. Referring to Eqs. (29)–(31),

it is clear that by generating a full sample of phases {∆ψi(t)} and polarization

fluctuations{∆θi(t)}, and measuring the resulting standard deviation of the output

power fluctuations, one can directly measure the MPI.

To implement this we use the wavelength scanning method, also described in [32].

The measurement setup simply consists of a high coherence tunable laser [typically

an external cavity laser (ECL), with a linewidth of a few kHz and ∼1pm spectral

resolution], a polarization controller, and a power meter, as shown in Fig. 31. The

method involves measuring the power for a range of wavelengths and polarization

states, and calculating the average Pavg and standard deviation σ of the resulting

measurement sample. From Eqs. (30 and (31), the MPI is then given by

MPI =
σ2

P 2
avg

. (32)

To gain further insight into this method we note that due to the use of a highly

coherent laser, the laser phase noise difference ∆ϕ (∆τ) ≡ ϕ(t) − ϕ(t − ∆τ) is

identically zero. Thus, for a given wavelength and polarization state, the power remains

constant over a long time (typically longer than 1 s), and can be accurately measured

by a power meter with a long integration time. When the wavelength is changed, the

path phase differences ∆ψi appearing in Eq. (28) changes in the following manner:

∆ψi (λ + δλ) = ∆ψi(λ) +
d

dλ

[

2π

λ
∆Lopt,i

]

δλ = ∆ψi(λ) +
2πc∆τi

λ2
δλ, (33)

where c is the vacuum speed of light, and∆Lopt,i and∆τi are, respectively, the optical

path difference and group delay difference between satellite i and the signal. As long

as ∆τi > 1 ns, which is the relevant case for HOM-DCMs (see Table 6 below), the

quantity c∆τi/λ
2 is larger than 0.1 pm−1. Thus, by changing the wavelength by more

than 10 pm we induce a phase difference larger than 2π, and effectively randomize the

phase. By scanning a few hundred wavelengths within a narrow 1nm widow we can

therefore generate a large random sample of phases for the various satellites. Similarly,

by scanning a number of polarization states, the polarization angles ∆θi may also be

sampled, thus creating a representative sample of power fluctuations.

The wavelength scanning method can efficiently be implemented using a swept

wavelength system that allows one to rapidly scan the entire C-band with a 1-pm

resolution, and a number of different input polarization states. Then, by separating
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Fig. 32. MPI Measurement of a HOM-DCM for 100 km eLEAF compensation. Inset: 1300-point

sample (and probability distribution) used for MPI measurement at 1550 nm.

the C-band into 1 nm windows, and calculating the MPI for each window, one can

obtain the spectral dependence of the MPI with a 1-nm resolution. When using a swept

wavelength system, care should be taken that the sweep rate is low enough so that the

wavelength does not change significantly during the integration time of the detector.

This can lead to an artificial reduction of the measured MPI, as discussed in [32].

Figure 32 shows results for a wavelength scanning MPI measurement of a HOM-

DCM designed to compensate for 100 km of eLEAF transmission fiber. The inset of the

figure shows the raw data (power as a function of wavelength, with four polarization

states for each wavelength) used to calculate the MPI at 1550 nm. Also shown is the

probability distribution function of the power fluctuations, which is well approximated

by a Gaussian distribution, as noted above.

For a more detailed review of different aspects of MPI measurement in HOMF,

see the work of Ramachandran and co-workers [32].

4.4. Sources of MPI in HOM-DCMs

In this section we discuss in more detail the various sources of MPI, and their relative

contribution to the total MPI

4.4.1. Discrete Satellites

A discrete satellite is created when part of the signal energy is coupled to a HOMF

mode other than the LP02 mode at the input MOX, propagates along the HOMF, and

then is coupled back to the signal at the output MOX. By definition, only a single

discrete satellite can exist for each guided mode within the HOMF (assuming all

polarization states of the same mode are degenerate). As discussed in section 3.4.2.2,

there are typically six guided modes within the HOMF: LP01, LP11, LP21, LP02, LP12

and LP03. The latter two modes are less guided than the LP02 mode, which means
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Fig. 33. MPI measurement of a “short” HOM-DCM, containing only 100 m of HOMF.

the HOMF can be designed to maximize the attenuation of these modes (if necessary

with the aid of special attenuation loops, section 3.4.2.2) Therefore, in the context of

discrete satellites we need only consider the three modes LP01, LP11 and LP21,

If we designate the MOX extinction ratio with respect to mode i as ηi, then the

power of the discrete satellite associated with this mode, relative to the power of the

LP02 mode, is just η2
i , where we have assumed that the input and output MOXes have

the same extinction ratios (on average, this is a reasonable assumption). In Table 1 of

section 2 we summarized results for the extinction ratios of the above three mode. This

table shows that for a typical MOX the highest satellite power (usually that of LP01)
is about –45 dB, however, in the best case it can be as low as –52 dB.

The combined MPI from all three discrete satellites is then given by

MPIdiscrete = η2
01 + η2

11 + η2
21. (34)

This value can be measured by constructing a HOM-DCM with a short (∼100 m)

length of HOM fiber. The short length of fiber means that mode coupling in the fiber

is negligible, so the entire MPI of the HOM–DCM comes from discrete satellites. Fig.

33 shows an example of such a measurement over the C-Band, where it can be seen

that the total MPI is below –51 dB over the entire band. This result is consistent with

the best case values of the extinction ratios given in Table 1.

4.4.2. Continuous Satellites

Continuous satellites are created when coupling of the signal to an additional mode,

and/or coupling back to the signal occurs due to mode coupling along the HOMF

(See section 3.4.2.3 for a detailed discussion of mode coupling). Therefore, for each

guided mode i(excluding the LP02 mode) in the HOMF, we identify three alternative

processes for the creation of continuous satellites:

1. At the input MOX, power is coupled to the ith mode, and then part of this power

is coupled back to the LP02 mode due to mode coupling along the HOMF.



156 Tur et al.

2. As the signal propagates along the LP02 mode, power is coupled to the ith mode

due to mode coupling, and then part of this is coupled back to the signal at the

output MOX.

3. As the signal propagates along the LP02 mode, power is coupled to the ith mode

due to mode coupling, and then is coupled back to the LP02 mode also due to

mode coupling.

We refer to the first two processes as first order mode coupling, since each satellite

created involves only a single mode-coupling event. Practically, these two processes

are identical, and it is simple to show that the total satellite energy created by each is

given by

ηi

L
∫

0

κidx = ηiκiL, (35)

where ηi is the MOX extinction ratio defined above,κi is the mode coupling coefficient

between the LP02 mode and mode i as defined in section 3.4.2.3, and L is the HOMF

length. We see that first order mode coupling can be reduced by improving the MOX

extinction ratio ηi, and in theory can be eliminated entirely using ideal MOXes.

This is not the case for the third process, which we refer to as second order mode

coupling. This process does not involve the MOXes at all, and occurs solely due to

mode coupling. The total satellite power due to this process is given by

L
∫

0

κidx

L
∫

x

κidy =
1

2
(κiL)2 , (36)

i.e., it is quadratic in both the coupling coefficient and the fiber length. Since the process

does not involve the MOXes, it cannot be reduced by improving MOX quality, and

will exist even for ideal MOXes. Clearly one can consider higher order processes that

involve more than two mode-coupling events. However, as long as κiL ≪ 1, their

contributions will be negligible compared to second order mode coupling.

As in section 4.4.1, we assume that the LP03and LP12 modes have high attenuation

coefficients, so that we need only consider the LP01, LP11, and LP21 modes. From

Table 4 in section 3.4.2.3 we see that the mode-coupling coefficient between LP02 and

LP01 is typically much lower than the other two mode coupling coefficients, which

leaves only 1st and 2nd order mode coupling involving LP11 and LP21. Fig. 34 shows

the (calculated) MPI due to 1st and 2nd order mode coupling involving these two

modes, as a function of HOMF length. As can be seen from the figure, LP21 2nd order

coupling dominates for most relevant fiber lengths, although for lengths below 1.5 km

the combined effect of LP11 and LP21 1st order coupling can be greater.

4.4.3. Combined Contribution

Combining the various contributions discussed in sections 4.4.1 and 4.4.2, the total

MPI may be written as

MPI =
∑

i=01,11,21

(

η2
i + 2ηiκiL +

1

2
(κiL)2

)

, (37)
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Fig. 34. MPI due to 1st and 2nd order mode coupling as a function of HOMF length. Typical

MOX extinction ratios (Table 1) and mode coupling coefficients (Table 4) have been used in the

calculation.
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where theη2
i terms represent discrete satellites, and all other terms represent continuous

satellites. Figure 35 shows the relative contribution of discrete and continuous satellites

to the total MPI for typical values of the various parameters. We see that for HOMF

lengths of 1 km and above, the contribution from continuous satellites dominates the

total MPI, while that of the discrete satellites becomes more and more negligible.
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4.5. Coherent and Incoherent MPI, and System Impact

An important issue when considering the system impact of MPI is the time-scale of

the power fluctuations. This is governed by the laser coherence time, τcoh, which

determines whether the MPI is coherent or incoherent [32–33]. If for a given satellite

i, its relative delay with respect to that of the LP02 mode, ∆τi (see Eq. (28) satisfies

∆τi ≪ τcoh, then the interference term due to that satellite is coherent, and will

fluctuate with a time scale typical of the environmental changes in the system (usually

a few seconds). On the other hand, if τcoh ≪ ∆τi, the interference term is incoherent,

and will fluctuate with a timescale of the laser phase noise, i.e., τcoh.

Since the laser sources used in long haul communication system typically have a

linewidth, ∆ν, of a few MHz, τcoh is usually in the range of 30–100 ns. Table 6 lists

typical group delay values (per km HOMF) for the profile family discussed in section

3.4.1 (these values can be measured using a reflectometer setup as described in section

3.4.2.3). As the table shows us, ∆τi <∼ τcoh, which means that MPI in HOM-DCMs

can include both coherent and incoherent contributions, with the relative importance

of each depending on the laser linewidth as well as the wavelength.

Table 6. Relative group delay per km between the LP02 mode and three other modes for the fiber

profile family discussed in section 3.4.1. The range of group delay values corresponds to different

wavelengths within the C-Band.

Mode ∆τ (ns/km)

LP01 0–10

LP11 5–20

LP21 15–30

The system impact of coherent and incoherent MPI has been extensively studied

both theoretically and experimentally [29–31,34–36]. In particular Ramachandran and

co-workers [34], have studied the system impact of coherent distributed MPI, which

is characteristic of HOM-DCMs.

When applying these results, the following should be remembered:

– The MPI as measured by the method described in section 4.3 is the total of coherent

and incoherent MPI, and can thus be viewed as an upper limit for either contribu-

tion. For a discussion of separate measurement of coherent MPI in HOM-DCMs,

see [32].

– The number of satellites contributing to MPI is large (see section 4.4), meaning that

the distribution of power fluctuations due to MPI can be considered as Gaussian

(see also Fig 32). This is particularly true when a number of HOM-DCMs are

cascaded along a link. The Gaussian power distribution simplifies the theoretical

analysis of MPI system impact, as well as the statistical treatment of coherent MPI

power fluctuations [37].

4.6. Summary

MPI in HOM-DCMs is a relatively complex phenomenon, with multiple discrete and

continuous sources and different timescales. In the preceding section we have discussed
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various aspects of the phenomenon, and characterized the nature of MPI in HOM-

DCMs.

The MPI values of manufacturing grade HOM-DCMs are typically in the region of

–36 to –40 dB. Various system tests to be described in section 5 have shown that these

values are sufficiently low to allow virtually unimpaired ultra-long-haul transmission,

in one case up to 6000k @ 10 Gb/s.

5. Applications of HOM-DCMs

In this section we consider the application of HOM-DCMs in modern optical networks.

Specifically, we will show that despite the issue of MPI, HOM-DCMs can provide an

excellent solution for dispersion management in many important cases.

5.1. Accurate Broadband Compensation

The widespread deployment in recent years of NZDSF has emphasized the need for a

suitable broadband dispersion management solution that accounts for the large nega-

tive dispersion slope of these transmission fibers. In section 3.4 we showed how HOMF

may be designed with the appropriate RDS for eLEAF R© compensation, while main-

taining a high effective area to minimize non-linear effects. Furthermore, in section

3.5, we discussed the option of adding a trim fiber to the HOM-DCM to fine-tune

the dispersion and dispersion slope for accurate broadband compensation. While the

discussion in section 3 focused on the design of HOMF for C-Band eLEAF R© com-

pensation, the same principles apply to the design of HOMF for other types of fiber

and other transmission bands.

5.1.1. C-Band eLEAF R© Compensation

Figure 36 shows the dispersion, MPI and insertion loss characteristics of a typical

manufacturing grade HOM-DCM for compensation of 100 km eLEAF R© transmission

fiber. The maximum residual dispersion in the designed transmission band is 12 ps/nm,

while the maximum MPI and insertion loss are –37.5 and 2.1 dB, respectively. Note that

the insertion loss for this particular module is very low, due the fact that the insertion

loss of the MOX’es is close to their ideal limit of about 0.8 dB/Mox (see section 2).

Typically, the insertion loss for such a module would be in the range of 2.5–3.5 dB.

Note also the very stable performance over a wide temperature range. The PMD of

this particular module is 0.47 ps, which is more than sufficient for most applications.

The use of HOM-DCMs for C-Band eLEAF R© compensation has been demon-

strated in a number of 40G [38,39] and 10G [40] system experiments. In the latter,

successful transmission was achieved over 2800 km, demonstrating that despite the

issue of MPI, HOM-DCMs are an attractive solution even in ultra-long-haul (ULH)

systems.
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Fig. 36. Dispersion characteristics (left), and temperature dependent MPI and Insertion Loss

(right) of a typical manufacturing grade HOM-DCM designed and built to compensate 100 km

eLEAF R© transmission fiber in the wavelength band 1529–1562 nm. The PMD of the HOM-DCM

is 0.47 ps.
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Fig. 37. Dispersion characteristics of a typical manufacturing grade HOM-DCM designed to

compensate 100 km eLEAF R© transmission fiber in the wavelength band 1570–1605 nm.

5.1.2. L-Band eLEAF R© Compensation

The specified dispersion of eLEAF R© transmission fiber at the center of the L-Band

(1590 nm) is 7.6 ps/nm/km, while the dispersion slope is 0.085 ps/nm2/km. On the one

hand, this means that more HOMF is needed than in the C-Band in order to account

for the larger dispersion. On the other hand, the RDS is lower than for the C-Band

case, meaning that it’s easier to achieve low TOD, and thus, low residual dispersion

(see section 3.4.1.1).

This is illustrated in Fig. 37, which shows the dispersion curve of a manufacturing

grade HOM-DCM designed to compensate for 100 km of eLEAF R© transmission fiber

in the wavelength band 1570–1605 nm. While the residual dispersion of the module is
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8 ps/nm, it could easily be reduced to 5 ps/nm by fine-tuning the trim fiber within the

module. Not only is the TOD much less than for a C-Band module (∼1% compared

to ∼3%), but the absolute residual dispersion is also less. The insertion loss of the

module is 3.9 dB, which is more than a typical C-Band module due to the need for

more HOMF. The maximum MPI of the module is –36 dB, which is about 2 dB worse

than typically achieved values of more recent manufacturing series.

The above module together with others similar modules have been tested in a

rigorous transmission test over 6000 km [41]. Despite the relatively high MPI of these

modules, the results clearly show that MPI was not a limiting factor in the system.

This illustrates once again that HOM-DCMs can be used in ultra-long-haul systems,

and see also [42].

5.1.3. Other Transmission Fibers

In recent years, a new class of NZDSF fibers has been introduced, with the purpose

to improve dispersion characteristics with respect to minimization of intra- and inter-

channel non-linear effects, especially in high channel count WDM systems. The first

such fiber to be introduced was Teralight R© by Alcatel, and more recently True-wave

reach R© by OFS-Fitel [43], as well as others [44]. These fibers share common char-

acteristics in that the dispersion at 1550 nm is typically 6–10 ps/nm/km, higher than

previous generation NZDSF, but still significantly lower than SMF, while the RDS is

typically in the range of 0.005-0.008 nm−1, lower than previous generation NZDSF,

but higher than SMF.

HOM-DCMs can also be manufactured to provide broadband compensation for

these new NZDSFs, as well as for regular SMF fiber. A recent 2700-km, 40-Gb/s

transmission test by Bissessur and co-workers [45] demonstrates the use of HOM-

DCM for Teralight R© compensation.

5.2. Reduced Nonlinear Penalty

As discussed previously, a key advantage of HOM-DCMs over conventional DCF is that

the attractive dispersion properties of the HOMF can be achieved while maintaining a

large modal effective area, typically above 50 µm2 (compared to 20 µm2 or less for

DCF [46]). This, together with the small amount of HOMF in each device (below 3 km

for most applications), significantly reduce the non-linear system penalty associated

with HOM-DCMs.

A number of different tests [48–50] have directly demonstrated the increased power

handling capabilities of HOM-DCMs over conventional DCF. With respect to cross

phase modulation [47], it has been shown [48] that HOM-DCMs can tolerate almost

8 dB more power than commercially available DCF (with the same amount of dis-

persion). Furthermore, it was shown [49] that the HOM-DCM threshold to Brillouin

scattering [47] is higher than 20 dBm, while that of commercially available DCF is

as low 5 dBm. A system level test [50], also described in section 5.2.1 below, shows

that HOM-DCMs can tolerate up to 13 dB more power for the same level of system

penalty.

The increased power handling capability of HOM-DCMs is particularly important

in high capacity systems, where non-linear effects tend to play a crucial role. This was
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first demonstrated for 40 Gb/s systems in a 1700-km transmission experiment using

standard 100 km spans, and HOM-DCMs based on Bragg grating mode transformers

[51]. Additionally, Killey and co-workers [39] have demonstrated how the improved

power handling capabilities of HOM-DCMs can be utilized to minimize the overall

non-linear penalty of 40 Gb/s systems. More recently, Bissessur and co-workers [45]

have also utilized the power handling capability of HOM-DCMs in a novel 2700-km,

40-Gb/s test employing only single stage EDFA amplification. High density (25 and 50

GHz channel spacing) DWDM systems can also benefit from the reduced non-linear

penalty of HOM-DCMs, as demonstrated by Meyer and co-workers [40] in a 2800-km,

25-GHz channel spacing, 10-Gb/s DWDM transmission experiment.

While the power handling capability of HOM-DCMs is most useful in next-

generation high capacity systems, it can also be advantageous in current generation

10 Gb/s systems. Specifically, by optimizing the amplifier design to account for the

properties of the HOM-DCMs placed at mid-stage, it is possible to improve the overall

noise figure of the amplifier. This is briefly discussed in section 5.2.2 below.

5.2.1. System Level Comparison Between DCF and HOM-DCM

In this section we describe a system level test [50] designed to directly compare the

power handling capabilities of HOM-DCMs and conventional DCF. Since the test in-

volves only single channel transmission, inter-channel effects such as four-wave mixing

and cross phase modulation [47] are not included. Furthermore Brillouin scattering is

purposefully suppressed using phase dithering of the transmitter, leaving self-phase

modulation as the main effect that is tested in the experiment.

The main components of the experimental setup are shown in Fig. 38.A 223–1 NRZ

10 Gb/s PRBS is transmitted through 80 km of SMF transmission fiber at a constant

launch power of –4 dBm to minimize non-linear effects within the fiber. On the other

hand, using Amp1 and Att1, the launch power into the DCM may be varied between

–5 to +25 dBm. By varying the attenuation of Att2 and Att3, it is possible to change

the OSNR (measured by the OSA) at the input to the receiver, while maintaining a

constant receiver input power. The experimental procedure is as follows: For each value

of launch power into the DCM, the OSNR at the receiver is changed until a specified

BER is achieved. Since higher launch power means a larger non-linear penalty, it is

necessary to increase the OSNR in order to maintain a fixed BER. The amount by

which the OSNR must be increased quantifies the penalty.

Both the HOM-DCM and the commercially available DCF used in the experiment

were designed to compensate the dispersion of 80 km SMF transmission fiber. Figure

39 shows the OSNR required to maintain a BER of 10−9 for different levels of DCM

input power. The OSNR is given relative to the required OSNR at –5 dBm input power

(i.e., negligible non-linear effects within the DCM). The results clearly illustrate that

the HOM-DCM can tolerate up to 13 dB more input power for the same level of OSNR

penalty, compared to the conventional DCF. This conclusion is further supported by

the recorded eye diagrams, shown in the insets of Fig. 39. For the conventional DCF,

the bit pattern exhibits clearly noticeable distortions for an input power of 13 dBm,

whereas no such distortions can be seen for an input power of 21 dBm launched into

the HOM-DCF.

It should be noted that the exact power tolerance advantage of HOM-DCMs over

conventional DCF depends on the application. The more fiber (both HOMF and con-
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Fig. 38. Experimental setup used to compare the power handling capabilities of HOM-DCMs
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Fig. 39. The experimental results. Insets: transmitted eye diagrams corresponding to the marked

input power.

ventional DCF) within the DCM, the larger the advantage of HOM-DCMs. Thus,

systems using SMF transmission fiber will typically benefit more from HOM-DCMs

(with respect to power tolerance) than systems employing NZDSF transmission fiber.

5.2.2. Using HOM-DCM to Optimize Amplifier Design

As illustrated in Fig. 40, in most conventional system designs DCMs are placed at the

mid-stage of in-line amplifiers in each span. Current amplifier designs need to take

into account the properties of conventional DCF, namely the low power tolerance and
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relatively high loss. The low power tolerance of the DCF means that the output power

of the first amplification stage, the pre-amplifier, is restricted, which means that less of

the total gain of the amplifier is assigned to the pre-amplifier, and more to the second

amplification stage, the booster. The relatively high loss of the DCF also needs to be

accounted for, since most amplifiers are optimized to work with a given fixed mid-stage

loss. Thus, even if one uses a HOM-DCM with lower loss, it is often necessary to insert

an attenuator to increase the total loss to that for which the amplifier is optimized.

The noise figure of a two-stage amplifier is given by (using linear quantities, not

dB) [52]

NF = NFpre +
NFboost

GpreTmid

, (38)

where NFpre/boost is the noise figure of the pre/booster amplification stage, Gpre is

the gain of the pre-amplifier, and Tmid is the transmittance at the mid-stage. Assuming

NFpre and NFboost remain constant, then one immediately sees that by increasing

Gpre and Tmid (i.e., decreasing the mid-stage loss), it is possible to achieve an im-

provement in the noise figure of the amplifier as a whole.

By using a HOM-DCM for dispersion compensation, one may achieve both these

goals, as illustrated in Fig. 40. Since the HOM-DCM can tolerate significantly more

input power, Gpre may be increased, and in practice ceases to be limited by the HOM-

DCM (it may be limited by available pump power and other factors). Furthermore, the

reduced loss of the HOM-DCM allows the amplifier to be optimized for a much lower

mid-stage loss, resulting in an increase of Tmid and a consequential decrease in the

amplifier noise figure.

Clearly, the above arguments present a highly simplified picture, while amplifier

design is a complex issue, far beyond the scope of this section. However, a detailed

analysis supports the basic picture, and it can be shown that a 0.5–1 dB improvement in

noise figure is obtainable using designs optimized for HOM-DCMs. This was demon-

strated by the 40 Gb/s transmission test performed by Ramachandran and co-workers

[51], where the improved amplifier noise figure was key to the ability to transmit over

1700 km using 100 km spans.

5.3. Additional Applications

In this section we describe additional applications of HOM-DCMs, which serve as

examples as to how the advantages of the technology can open up new and advanced

possibilities for system design. An example of this is a novel method for achieving

tunable dispersion compensation using fiber based mode conversion and HOM fiber

[53]. Other applications are described in more detail below.

5.3.1. HOM-DCMs for Multiple Span Compensation

One of the unique advantages of HOM-DCMs is the high figure of merit (FOM) of

the HOMF, typically in the range of 800–1000 ps/nm/dB. However, this advantage is

somewhat offset by the overhead loss of the MOXes, typically 0.7-1.3 dB/MOX. If

for example we consider a HOM-DCM designed to compensate for 100 km eLEAF R©
transmission fiber, then the module loss will be 2.5–3.5 dB, with only ∼0.7 dB due to

the HOMF, and the rest due to the MOXes. On the other hand, a HOM-DCM designed
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Fig. 40. Typical structure of a two-stage amplifier with mid-stage dispersion compensation.

The solid line represents a typical EDFA design based on the relatively high loss and low power

tolerance of conventional DCF, while the dashed line represent a possible improved design taking

advantage of the HOM-DCM low loss and high power tolerance. The displayed power levels are

for illustration purposes only.

to compensate for 200 km of eLEAF R© will have 3.5–4.5 dB loss, since the MOX

overhead remains changed. Thus, the longer the transmission span being compensated

for, the more beneficial is the use of the high FOM HOMF, as illustrated in Fig. 41. This

opens up an interesting possibility of using a single HOM-DCM to compensate for

multiple spans [54], instead of using a single DCM in each span. This could potentially

reduce system costs, since it would enable simpler, possibly single-stage amplifiers in

the spans that do not include DCMs.

A potential limitation to this scheme is the MPI of the HOM-DCMs, as shown in

Fig. 41. From this figure we see that a HOM-DCM for 400 km spans is expected to

have 8 dB worse MPI than a corresponding HOM-DCM designed for 100 km spans.

If on the other hand we were to concatenate four 100-km HOM-DCMs, then the MPI

would be 6 dB worse than for a single 100-km HOM-DCM (see section 4.6.1). The

extra 2 dB for the 400-km HOM-DCM results from the quadratic dependence of mode

coupling on HOMF length, as discussed in section 4.4.2. For a 200-km HOM-DCM

this is not an issue, since the MPI is expected to be similar to that of two 100-km

HOM-DCMs (i.e., 3 dB worse).

Figure 42 shows insertion loss and MPI of a manufacturing grade HOM-DCM for

compensation of 200 km eLEAF R© spans. The maximum MPI of this module is –37.5

dB within the designed transmission band, which is better than the nominal –35 dB

predicted in Fig. 41.
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Fig. 41. Simulated MPI and Insertion loss of a HOM-DCM for compensation of eLEAF R© fiber,

as a function of compensated span length.
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Fig. 42. Insertion loss and MPI of a manufacturing grade HOM-DCM for 200 km span eLEAF R©

compensation.

5.3.2. 160 GHz In-Channel Slope Compensation

Dispersion slope compensation is usually considered in the context of broadbandWDM

dispersion compensation. By achieving dispersion slope matching, one guarantees that

if a single WDM channel is compensated for, the all other channels in the transmis-

sion band will also be compensated for. However, as bit rates grow, dispersion slope
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compensation also becomes important in the context of a single channel. If one has

a residual uncompensated slope of δS at the receiver, then a non-negligible system

penalty will be encountered if

δS∆λ2 ∼ τbit, (39)

where ∆λ is the modulation-dictated spectral width of the channel, and τbit ∼
λ2/ (c∆λ) is the time-slot of a single bit. Thus, in order to avoid significant penalty,

the residual slope should satisfy

δS <
λ2

c∆λ3
. (40)

The cubic dependence on∆λmeans that a 160-Gb/s channel is ∼4000 times more

sensitive to residual slope than a 10-Gb/s channel, and ∼60 times more sensitive than

a 40-Gb/s channel. Specifically, a 160-Gb/s C-Band channel can tolerate up to ∼2

ps/nm2 residual slope. If one considers a 1000-km SMF link with total slope of 57

ps/nm2, then this means that the slope compensation must be accurate to within better

than 4%.

The ability to design HOMF with high dispersion slope opens up the possibility of

producing specialized HOM-DCMs dedicated to dispersion slope compensation. The

dispersion curve of such a module is shown Fig. 43, which shows that the dispersion at

1550 nm is close to zero, while the dispersion slope is 1.33 ps/nm2. The HOM-DCM

was constructed using ∼150m of HOMF with D = −470 ps/nm/km and S = −10.2

ps/nm2/km, and ∼4.3 km of SMF fiber.

Fatome and co-workers [55] have demonstrated the usefulness of such a module

in a 160-Gb/s transmission experiment over 900 km. In the absence of the HOM-DCM

Slope compensator, it is estimated that the transmission distance would be reduced to

∼100 km.

5.3.3. Microwave Photonics True Time Delay Using HOM-DCM

Modern RF imaging systems are required to exhibit improved resolution, wider angular

scans and bandwidths exceeding 10% of the RF carrier frequency. These requirements

have led to the development of photonic True Time Delay (TTD) technology for beam

steering/forming in phased array radars, as well as in other applications [56]. Soref [57]

has suggested the use of chromatic dispersion in optical fibers to produce wavelength-

dependent delay through ∆τ = DL∆λ, where ∆τ is the relative delay between two

wavelengths, separated by ∆λ, D is the fiber dispersion coefficient, and L is the fiber

length. A major problem with this method is the temperature drift of the RF phase,

which is a direct consequence of the temperature dependence of the optical length of

the fiber d(neffL)/dT (neff is the effective refractive index of the propagating mode).

Since this thermal sensitivity is proportional to L, maximizing the fiber dispersion, D,
will minimize the fiber length L and its associated d(neffL)/dT

Having a much higher dispersion coefficient, HOM-DCM have indeed been proven

[58] to successfully implement photonic true time delay using much shorter fiber

than equivalent DCF implementations, resulting in a three fold lower temperature

dependence of the total delay. A possible issue of concern with HOM-DCMs is the

effect of MPI on the transmitted RF signal. However, since to prevent walk-off [59],
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Fig. 43. Dispersion curve of a HOM-DCM dedicated to dispersion slope compensation. The

module has close to zero dispersion @ 1550 nm, with a slope of 1.33 ps/nm2.

the total dispersion in such applications is ∼100 ps/nm/km (for GHz applications), the

length of HOMF is typically 200-300m, which means that mode coupling (see section

4. 4.2) is negligible. Thus, MPI values better than –40 dB can be achieved, resulting

in negligible impact on the RF signal [58].

6. Summary

In this paper we have described in detail higher-order mode dispersion compensat-

ing modules (HOM-DCMs) based on spatial mode transformation technology. The

combination of highly efficient spatial mode transformers (MOXes), together with

carefully designed high-order mode fibers (HOMF), provides accurate broadband dis-

persion compensation, high power tolerance, and low insertion loss. While multi-path

interference (MPI) remains a concern in HOM-DCMs, numerous system tests have

demonstrated that currently achievable levels of MPI are sufficiently low to allow

ultra-long-haul transmission.

The above properties make HOM-DCMs an attractive alternative in many appli-

cations in modern optical communications. Systems employing NZDSF transmission

fiber especially benefit from HOM-DCMs, since it is relatively difficult to achieve

broadband dispersion compensation using conventional DCF. The high power toler-

ance of HOM-DCMs provides important advantages in next generation high capacity

systems, and can also be utilized in current generation systems to improve in-line am-

plifier performance. Other advanced applications, such as multi-span compensation,

in-channel slope compensation for 160 Gb/s systems, and microwave Photonics, also

benefit from the unique combination of HOM-DCM advantages.
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