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Abstract. In this work we present new wall-laws boundary conditions including

microscopic oscillations. We consider a Newtonian flow in domains with periodic rough

boundaries that we simplify considering a Laplace operator with periodic inflow and

outflow boundary conditions. Following the previous approaches, see [A. Mikelić, W.

Jäger, J. Diff. Eqs, 170, 96–122, (2001)] and [Y. Achdou et al, J. Comput. Phys.,

147, 1, 187–218, (1998)], we construct high order boundary layer approximations and

rigorously justify their rates of convergence with respect to ε (the roughness’ thickness).

We establish mathematically a poor convergence rate for averaged second order wall-laws

as it was illustrated numerically for instance in [Y. Achdou, et al]. In comparison, we

establish exponential error estimates in the case of an explicit multi-scale ansatz. This

motivates our study to derive implicit first order multi-scale wall-laws and to show that

their rate of convergence is at least of order ε
3
2 . We provide a numerical assessment of the

claims as well as a counterexample that makes evident the impossibility of an averaged

second order wall-law. Our paper may be seen as the first one to derive efficient high

order wall-laws boundary conditions.
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Fig. 1. The standard approach: from the exact solution to an aver-
aged wall-law

1. Introduction. The main goal of wall-laws is to remove the stiff part from bound-

ary layers, replacing the classical no-slip boundary condition by a more sophisticated

relation between the variables and their derivatives. They are extensively used in numer-

ical simulations to eliminate regions of strong gradients or regions of complex geometry

(rough boundaries) from the domain of computation. Depending on the field of applica-

tions (porous media, fluid mechanics, heat transfer, electromagnetism), wall-laws may be

called Beavers-Joseph, Saffman-Joseph, Navier, Fourier, or Leontovitch type

laws.

High order effective macroscopic boundary conditions may also be proposed if we

choose a higher degree ansatz; see [10] for applications in microfluidics. In a similar

perspective but in the context of fluid mechanics, numerical simulations have shown

that second order macroscopic wall-laws provide the same order of approximation as

the first order approximation. Recently a generalized wall-law formulation has been

obtained for curved rough boundaries [26, 28] and for random roughness [5]. Note that

such generalizations are important from a practical point of view when dealing with e.g.

coastal effects in geophysical flows. From a mathematical point of view, wall-laws are

also interesting. In the proof of convergence to the Euler equations, the 2D Navier-Stokes

system is complemented with wall-laws of the Navier type [9]. Recently several papers

have analyzed in various settings the properties of such boundary conditions; see [17],

[25], [16], [8], [18], [2].

In this paper, we focus on fluid flows. Starting from the Stokes system, we simplify

the problem by studying the axial velocity through the resolution of a specific Poisson

problem with periodic inlet and outlet boundary conditions. Our scope is to justify

mathematically higher order macroscopic wall-laws and to explain why in their averaged

form they do not provide better results than the first order laws. We shall explain how to

get better estimates including some coefficients depending on the microscopic variables:

this leads to new oscillating wall-laws.

The basic scheme to establish standard averaged wall-laws is the following (see Fig. 1).

First we use an ansatz for the velocity and the pressure, which will give, after an adequate

extension, a main order term completed with some boundary layer correctors defined on

the whole rough domain (Fig. 1, step I). This is possible due to the boundary layer

theory, which can be seen as a particular case of a general homogenization process. In a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



HIGH ORDER MULTI-SCALE WALL-LAWS, PART I: THE PERIODIC CASE 231

Ω0,Υε

O(ε
3
2 )

on Γ0

Ωε, uε BL
Ωε, u1,∞

ε , u2,∞
ε

Multi-scale wall laws

Ω0,Uε,Vε

Explicit

O(ε
3
2 )Uε = εg1

(
x
ε

)
Vε = εg2

(
x
ε

)
O(e

− 1
ε )

on Γ0Boundary layer approx.

Υε = εβ
(
x
ε

)
∂Υε
∂x2

Implicit

II’

II”

I’

O(ε
3
2 ) O(e

− 1
ε )

Fig. 2. The new approach: from the exact solution to multi-scale
wall-laws

second step, a specific average is performed on this approximation and a new boundary

condition of mixed type is recovered on a smooth fictitious interface strictly contained

in the domain (Fig. 1, step II). As one sees on the figure the only difference between

Achdou’s and Jäger’s approaches is situated in the boundary layer’s construction. It is

an easy task to show that they are in fact a specific lift, one of the other [7].

The main result in our paper is the derivation of a high order boundary layer ap-

proximation that satisfies the homogeneous Dirichlet boundary condition on the rough

wall and that leads to new wall-laws with microscopic effects; see Fig. 2. The ansatz

is expanded up to the second order in ε, and an exponential convergence in the interior

domain is obtained using it (Fig. 2, step I′). Despite this high order convergence, the

corresponding second order averaged wall-law does not conserve this property and is only

first order accurate. The estimates show the importance of microscopic oscillations. We

then derive new wall-laws that do converge exponentially on the smooth domain. They

have the form of explicit non-homogeneous Dirichlet boundary conditions and they de-

pend on the zeroth order Poiseuille flow as well as on the microscopic oscillations on the

fictitious interface (Fig. 2, step II′).

At this stage, we go one step further and derive an implicit multi-scale first order

wall-law. We obtain a Saffman-Joseph’s like law that now contains a coefficient that

includes the microscopic oscillations. We rigorously derive a rate of convergence in ε
3
2 ,

thanks to the steps introduced in the previous sections (Fig. 2, step II′′).

We underline that this work is a necessary building block when studying wall-laws

for the stationary Navier-Stokes equations: asymptotic expansion of the quadratic non-

linearity transfers a cascade of contributions to the microscopic cell problems, as already

noticed in [1]. The first order cell problem is homogeneous and the second-order cell

problem involves the non-linearity of the first order approximation. Until now, averaged

wall-laws were only first order accurate, so that they do not take into account second

order non-linear effects.
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Fig. 3. One of the main points of this article: switching perturba-
tions from geometry to boundary data. (BC stands for boundary
conditions.)

Although the authors are conscious that wall-laws aim to reduce complexity by “ho-

mogenizing” microscopic scales into averaged macroscopic quantities, we believe that

implicit multi-scale wall-laws are indeed of interest for the following reasons. At first,

one should compute the microscopic cell problem anyway to compute the averaged co-

efficient β (see below) used in the wall-law, so using the trace of β on the fictitious

interface rather than its mean value makes sense. Then, as shown in the numerical tests

below, the microscopic oscillations induced by the multi-scale Robin condition improve

the wall-law approximation. In a wider context that does not concern only fluid flows,

the main concept that this work emphasizes is the following: we have shown that it is

possible to replace a geometrical roughness and “smooth” boundary conditions (in the

unperturbed sense, as for instance homogeneous Dirichlet ones) by a smooth domain but

with multi-scale perturbed boundary conditions (see Fig. 3). Depending on the kind

of boundary perturbation, we get different orders of precision in this process. For com-

plex multi-scale 3D problems, we still expect some numerical gain when performing this

switch, especially if one uses some increased multi-scale finite element bases (see [13] and

the references therein).

To show the practical importance of the above results, in Section 6, we perform nu-

merical tests on a 2D case. For various values of ε, we first compute the rough solution

uε
Δ on the whole domain Ωε. Then we compute the wall-law solutions defined only on

the interior smooth domain Ω0. We perform these tests in the periodic case. We recover

exactly theoretical claims: numerical error estimates confirm that averaged wall-laws

do not differ at first and second orders. We prove that our new implicit multi-scale

wall-law provides better results than classical averaged laws. However, the fully explicit

approximations still show higher order convergence rates with respect to ε.

2. The simplified problem: from Navier-Stokes to the Laplace equation. In

this work, Ωε denotes the rough domain in R
2 depicted in Fig. 4, Ω0 denotes the smooth

one, and Λε := Ωε \ Ω0 the complementary rough subdomain. Γε is the rough boundary

and Γ0 (resp. Γ1) the lower (resp. upper) smooth one (see Fig. 4).

Hypotheses 2.1. The rough boundary Γε is described as a periodic repetition at the

microscopic scale of a single boundary cell P 0. The latter can be parameterized as the
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graph of a Lipshitz function f : [0, 2π[→ [−1 : 0[ such that

P 0 = {y ∈ [0, 2π]× [−1 : 0[ s.t. y2 = f(y1)}. (1)

Moreover, we suppose that f is negative definite, i.e. that there exists a positive con-

stant δ such that f(y1) < δ for all y1 ∈ [0, 2π]. Then the macroscopic boundary Γε is

parametrized as

Γε =
{
x ∈ R

2 s.t. x2 = εf
(x
ε

)}
.

We assume that the ratio between L (the width of Ω0) and 2πε (the width of the peri-

odic cell) is always an integer called N . We consider a simplified setting that avoids the

x2

Ω0

Γ1

Γ0

x1

x2

Ωε

x2 = 0

x2 = 1

P

y2

y1

Γ

Γ1

P 0
Γε

x1

x1 = 0 x1 = L

Γin Γout Z+ ΓrΓl

Fig. 4. Rough, smooth and cell domains

theoretical difficulties and the non-linear complications of the full Navier-Stokes equa-

tions. Starting from the Stokes system, we consider a Poisson problem for the axial

component of the velocity. The pressure gradient is assumed to reduce to a constant

right-hand side C. We consider only periodic inflow and outflow boundary conditions.

The simplified problem reads : find uε such that⎧⎪⎨
⎪⎩

−Δuε = C, for x ∈ Ωε,

uε = 0, x ∈ Γε ∪ Γ1,

uε is x1 periodic.

(2)

We underline that the results below can be directly extended to rough domains with

smooth holes and to the Stokes system in the case of a simple sheared flow.

In what follows, functions that do depend on y = x/ε should be indexed by an ε (e.g.

Uε = Uε(x, x/ε)).

3. The full boundary layers correctors.

3.1. A zeroth order approximation. When ε = 0, the rough domain Ωε reduces to Ω0,

which is smooth. The solution of system (2) in this limit is known and explicit: it is the

Poiseuille profile :

ũ0(x) =
C

2
(1− x2)x2, ∀x ∈ Ω0;

the latter term should be our zeroth order approximation when performing an asymptotic

expansion w.r.t. ε for ε > 0. Although the natural extension of ũ0 is itself on the rough

part Λε, what follows is more general and concerns the case for instance where Δuε is no
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234 DIDIER BRESCH AND VUK MILISIC

longer a constant. In the literature the main difference between [1] and [19] is the way of

extending this zeroth order approximation in order to define it on the whole domain Ωε.

A possible choice (see [1]) is to use the Taylor expansion of ũ0 near x2 = 0; this leads to

defining the zeroth order expansion as a C1(Ωε) function that reads

u0
1(x) =

⎧⎪⎨
⎪⎩

ũ0(x), if x ∈ Ω0,

∂ũ0

∂x2
(x1, 0)x2, if x ∈ Λε.

Notice that this particular choice does not satisfy the homogeneous Dirichlet boundary

condition on Γε. Next we estimate the zeroth order error w.r.t. the exact solution.

Proposition 1. If Ωε is an open connected piecewise smooth domain, the solution uε

exists in H1(Ωε) and is unique. Moreover we have∥∥uε − u0
1

∥∥
H1(Ωε)

≤ c1
√
ε,
∥∥uε − u0

1

∥∥
L2(Ω0)

≤ c2ε,

where the constants c1 and c2 are independent of ε.

Proof. The proof is based on standard a priori estimates and a duality argument. The

existence and uniqueness of uε are standard and left to the reader. We focus on the error

estimates. Namely, r0 := uε − u0 satisfies⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δr0 = Cχ[Λε] in Ωε,

r0 = 0 on Γ1,

r0 = −∂ũ0

∂x2
(x1, 0)x2 on Γε,

r0 is x1-periodic on Γin ∪ Γout.

Here and for the rest of the work, χ[·] represents the characteristic function of the set

between brackets. Above, one remarks that a part of the error comes from the source

term localized in Λε, and another part comes from the non-homogeneous boundary term

on Γε. Setting the lift

s = −∂ũ0

∂x2
x2χ[Λε] and z := r0 − s,

the weak formulation reads:

(∇z,∇v)Ωε = (C, v)Λε − (C, v)Γ0 , v ∈ H1
0 (Ω

ε),

where the last term in the right-hand side comes when applying the Laplace operator Δ

on s. Thanks to Poincaré-like estimates we have the following properties of the L2 norm

and the H1 semi-norm on Λε:

|(C, v)Λε − (C, v)Γ0 | ≤ c3
√
ε

(∫
Λε

v2
) 1

2

+ c4

(∫
Γ0

v2
) 1

2

≤ c5(ε+
√
ε)

(∫
Λε

|∇v|2
) 1

2

≤ 2c5
√
ε‖v‖H1(Ωε).
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This leads to the H1(Ωε) estimate. For the L2 norm, we use the concept of a very

weak solution [27]. Namely, one solves the dual problem: for a given ϕ ∈ L2(Ω0), ϕ

being x1-periodic on Γin ∪ Γout find v ∈ H2(Ω0) such that⎧⎪⎨
⎪⎩

−Δv = ϕ, ∀x ∈ Ω0,

v = 0, ∀x ∈ Γ0 ∪ Γ1,

v is x1-periodic on Γin ∪ Γout.

Considering the L2(Ω0) scalar product, and using the Green formula

(ϕ, r0)Ω0 = −(Δv, r0)Ω0 =

〈
∂r0

∂n
, v

〉
∂Ω0

−
(
∂v

∂n
, r0
)

L2(∂Ω0)

− (v,Δr0)Ω0

=

〈
v,

∂r0

∂n

〉
Γin∪Γout

−
(
∂v

∂n
, r0
)

Γ0∪Γ1

,

(3)

where the brackets refer to the dual product in (H−1, H1)(∂Ω0), and the remaining

products are in L2, either on Γ0 or on Ω0. Then, one computes∣∣(ϕ, r0)∣∣ ≤ ∣∣∣∣
(
∂v

∂n
, r0
)

Γ0

∣∣∣∣ ≤
∥∥∥∥ ∂v∂n
∥∥∥∥
L2(Γ0)

∥∥r0∥∥
L2(Γ0)

≤ c6‖ϕ‖L2(Ω0)

∥∥r0∥∥
L2(Γ0)

.

The last estimate is classical and can be obtained via a regularisation of the Lipshitz

domain and the Rellich estimates ([27], pp. 261-263). Thanks to Poincaré estimates, one

writes ∥∥r0∥∥
L2(Γ0)

≤ c7
√
ε
∥∥r0∥∥

H1(Λε)
≤ c8

√
ε
∥∥r0∥∥

H1(Ωε)
,

which ends the proof by taking the sup over all ϕ in L2(Ω0). �
3.2. A first order correction. The zeroth order correction contains two distinct sources

of errors: one part is due to the order of the extension in Λε and another part comes from

a non-homogeneous remainder on Γε. In what follows we show that a first order extension

u0
1 can be corrected by series of terms that make the full boundary layer approximation

vanish on Γε.

The microscopic cell problem. In order to correct u0
1 on Γε, one starts by solving a

microscopic cell problem that reads: find β s.t.⎧⎪⎨
⎪⎩

−Δβ = 0, in Z+ ∪ P,

β = −y2, on P 0,

β is y1-periodic .

(4)

We define the microscopic average along the fictitious interface Γ:

β =
1

2π

∫ 2π

0

β(y1, 0)dy1.

The existence and uniqueness of β and various properties as the convergence when y2
tends to inflinity towards β are described in Appendix A.

The corresponding macroscopic full boundary layer corrector should contain at this

stage

u0
1 + ε

∂u0
1

∂x2
(x1, 0)

(
β
(x
ε

)
− β
)
,
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236 DIDIER BRESCH AND VUK MILISIC

where we subtract β in order to cancel β’s errors on Γ1. In turn, we expect to cancel

the contribution of β near the rough boundary but keep it close to Γ1. For this sake, we

solve the “counterflow” problem: find d s.t.⎧⎪⎨
⎪⎩

−Δd = 0, in Ω0,

d = 1 on Γ0, d = 0 on Γ1,

d is x1-periodic on Γin ∪ Γout,

(5)

where the solution is explicit and reads d = (1 − x2). Moreover, it can be extended to

the whole domain Ωε. The complete first order approximation now reads:

u1,2
ε := u0

1 + ε
∂u0

1

∂x2
(x1, 0)(β − β) + ε

∂u0
1

∂x2
(x1, 0)β(1− x2), ∀x ∈ Ωε

= u0
1 + ε

∂u0
1

∂x2
(x1, 0)(β − βx2).

The first index of u1,2
ε corresponds to the extension order of ũ0 in Λε, while the second

index is the order of the error on Γε. Indeed, if we consider the trace of u1,2
ε on Γε, we

have a second order error

u1,2
ε

∣∣
Γε = ε2

(
∂u0

1

∂x2
β

)
x2

ε
= ε2
(
∂u0

1

∂x2
β

)
y2.

Again, this error is linear and should be corrected by the micro boundary layer β. A

similar macroscopic boundary layer correction process should be performed at any order,

leading to

u1,∞
ε = u0

1 + ε
∂u0

1

∂x2
(x1, 0)

[(
β
(x
ε

)
− βx2

)
+ εβ

(
β
(x
ε

)
− βx2

)
−ε2β

2
(
β
(x
ε

)
− βx2

)
+ . . .

]
= u0

1 +
ε

1 + εβ

∂u0
1

∂x2
(x1, 0)

(
β
(x
ε

)
− βx2

)
.

(6)

This approximation satisfies a homogeneous Dirichlet boundary condition on Γε and

solves ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δu1,∞
ε = Cχ[Λε] in Ωε,

u1,∞
ε = 0 on Γε,

u1,∞
ε =

ε

1 + εβ

∂u0
1

∂x2

(
β
(x1

ε
, 0
)
− β
)

on Γ1,

u1,∞
ε is x1-periodic on Γin ∪ Γout.

(7)

If we consider the corresponding approximation error, we obtain

Proposition 2. Under Hypotheses 2.1, the error of the first order approximation satis-

fies ∥∥uε − u1,∞
ε

∥∥
H1(Ωε)

≤ c8ε,
∥∥uε − u1,∞

ε

∥∥
L2(Ω0)

≤ c9ε
3
2 ,

where the constants c8, c9 are independent of ε.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf
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The proof follows the same lines as in Proposition 1 except that the significant source

of errors is the right-hand side of the first equation in (7), while an exponentially small

microscopic perturbation lies on Γ1; on the contrary there are no errors on Γε, because

u1,∞
ε = 0 there.

3.3. Second order approximation. Instead of extending only linearly the Poiseuille

profile it is obvious that a quadratic term is missing to complete the approximation. In

the following u0
2 denotes the second order extension of ũ0 in Λε:

u0
2 :=

⎧⎪⎨
⎪⎩

ũ0, x ∈ Ω0

∂ũ0

∂x2
(x1, 0)x2 +

∂2ũ0

∂x2
2

(x1, 0)
x2
2

2
, x ∈ χ[Λε]

⎫⎪⎬
⎪⎭ =

C

2
(1− x2)x2, ∀x ∈ Ωε.

The second order error on Γε is corrected thanks to a new cell problem: find γ ∈ D1,2

solving ⎧⎪⎨
⎪⎩

−Δγ = 0, in Z+ ∪ P,

γ = −y22 , on P 0,

γ is periodic in y1.

(8)

The proof of the following proposition is left to Appendix A.2.

Proposition 3. Under Hypotheses 2.1, there exists a unique solution γ of (8) in

D1,2(Z+∪P ). Moreover it admits a power series of Fourier modes in Z+ and γ ∈ [−1, 0]

if P ⊂ [0, 2π]× [−1, 0].

The horizontal average is denoted by γ. The same multi-scale process leads us to write

the full boundary layer approximation as

u2,3
ε = u0

2 +
ε

1 + εβ

∂u0
2

∂x2
(x1, 0)

(
β
(x
ε

)
− βx2

)
+

ε2

2

∂2u0
2

∂x2
2

(x1, 0)
(
γ
(x
ε

)
− γx2

)
.

Again a third error remains on Γε and it is linear w.r.t. to y2; thus it should be corrected

thanks to the series of first order cell problems as in (6). We set u2,∞
ε to be the second

order approximation that satisfies a homogeneous Dirichlet boundary condition on Γε.

It reads:

u2,∞
ε = u0

2 +
ε

1 + εβ

∂u0
2

∂x2
(x1, 0)

(
β
(x
ε

)
− βx2

)

+
ε2

2

∂2u0
2

∂x2
2

(x1, 0)

[(
γ
(x
ε

)
− γx2

)
+

εγ

1 + εβ

(
β
(x
ε

)
− βx2

)]
.

Our approximation satisfies the following boundary value problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu2,∞
ε = C in Ωε,

u2,∞
ε = 0 on Γε,

u2,∞
ε = gε on Γ1,

u2,∞
ε is x1-periodic on Γin ∪ Γout,

(9)
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238 DIDIER BRESCH AND VUK MILISIC

where g is the contribution of the microscopic correctors on Γ1 and reads:

gε =
∂u0

2

∂x2
(x1, 0)

(
β

(
x1

ε
,
1

ε

)
− β

)

+
ε2

2

∂2u0
2

∂x2
2

(x1, 0)

[(
γ

(
x1

ε
,
1

ε

)
− γ

)
+

εγ

1 + εβ

(
β

(
x1

ε
,
1

ε

)
− β

)]
.

Observe that the only error remains on Γ1 and as the proposition below claims, it is

exponentially small w.r.t. ε.

Proposition 4. Under Hypotheses 2.1, the error of the first second order approximation

satisfies ∥∥uε − u2,∞
ε

∥∥
H1(Ωε)

≤ c10e
− 1

ε ,
∥∥uε − u2,∞

ε

∥∥
L2(Ω0)

≤ c11
√
εe−

1
ε ,

where the constants c6, c7 are independent of ε.

The proof is identical as in Proposition 1 except that the errors come from gε. There

are neither errors on Γε, nor pollution of any source terms inside Ωε.

4. Averaged wall-laws.

4.1. The averaged wall-laws: a new derivation process. At this stage, we rewrite our

first and second order approximations, separating slow and fast variables:

u1,∞
ε = u0

1 +
εβ

1 + εβ

∂u0
1

∂x2
(x1, 0) (1− x2) +

ε

1 + εβ

∂u0
1

∂x2
(x1, 0)

(
β
(x
ε

)
− β
)
,

u2,∞
ε = u0

2 +
εβ

1 + εβ

∂u0
2

∂x2
(x1, 0) (1− x2)

+
ε2

2

∂2u0
2

∂x2
2

(x1, 0)

[
γ(1− x2) +

εγβ

1 + εβ
(1− x2)

]

+
ε

1 + εβ

∂u0
2

∂x2
(x1, 0)

(
β
(x
ε

)
− β
)

+
ε2

2

∂2u0
2

∂x2
2

(x1, 0)

[(
γ
(x
ε

)
− γx2

)
+

εγ

1 + εβ

(
β
(x
ε

)
− βx2

)]
.

We define the average w.r.t. the fast variable in the horizontal direction:

v(x) =
1

2πε

∫ 2πε

0

v(x1 + y, x2)dy, ∀v ∈ H1(Ωε).

Then, one can see easily that for any x in Ω0,

u1,∞
ε = u0

1 +
εβ

1 + εβ

∂u0
1

∂x2
(x1, 0) (1− x2) =: u1,

u2,∞
ε = u0

2 +
εβ

1 + εβ

∂u0
2

∂x2
(x1, 0) (1− x2)

+
ε2

2

∂2u0
2

∂x2
2

(x1, 0)

[
γ(1− x2) +

εγβ

1 + εβ
(1− x2)

]
=: u2.
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This means that the averaging process cancels the oscillations providing only macroscopic

terms still depending on ε. Moreover one has the following compact form of the full

boundary layer correctors:

u1,∞
ε = u1 + ε

∂u1

∂x2
(x1, 0)

(
β
(x
ε

)
− β
)
,

u2,∞
ε = u2 + ε

∂u2

∂x2
(x1, 0)

(
β
(x
ε

)
− β
)
+

ε2

2

∂2u2

∂x2
2

(x1, 0)
(
γ
(x
ε

)
− γ
)
.

(10)

At this point, if one computes the boundary value problem that u1 and u2 solve in

the smooth domain, one obtains Robin and Wentzel type problems. Namely, u1 solves:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu1 = C, ∀x ∈ Ω0,

u1 = εβ
∂u1

∂x2
, ∀x ∈ Γ0, u1 = 0, ∀x ∈ Γ1,

u1 is x1-periodic on Γin ∪ Γout,

(11)

whose explicit solution reads:

u1(x) = −C

2

(
x2
2 −

x2

1 + εβ
− εβ

1 + εβ

)
, (12)

while the second order wall-law u2 satisfies the following boundary value problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δu2 = C, ∀x ∈ Ω0,

u2 = εβ
∂u2

∂x2
+

ε2

2
γ
∂2u2

∂x2
2

, ∀x ∈ Γ0,

u2 = 0, ∀x ∈ Γ1, u2 is x1-periodic on Γin ∪ Γout.

(13)

4.2. Existence and uniqueness of the second order wall-law. The boundary conditions

of problem (13) contain second order normal derivatives (in the literature, these are called

conditions of Wentzel type [23, 6, 14]). In this framework existence and uniqueness are

not so standard: we provide them here for the sake of being self-contained. First we

transform the second order normal boundary term in a tangential term of the same

order. Then using the appropriate test function space, we can apply Green’s formula on

tangential directions and symmetrise the bilinear form associated to the problem.

Lemma 4.1. Under Hypotheses 2.1, the system (13) admits a unique solution inH1,1
# (Ω0)

= {v ∈ H1
Γ1(Ω0); v ∈ H1(Γ0)}, where H1

Γ1 is the set of functions belonging to H1(Ω0),

x1-periodic on Γin ∪ Γout and vanishing on Γ1.

Proof. The boundary condition shall be transformed thanks to the first equation of

(13) into

u = εβ
∂u

∂x2
+

ε2

2
γ
∂2u

∂x2
2

= εβ
∂u

∂x2
+

ε2

2
γ

(
−C − ∂2u

∂x2
1

)
, ∀x ∈ Γ0.
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Because P 0 does not intersect Γ, and thanks to the maximum principle, β > 0 a.e. in

Z+ ∪ P . This implies that β > 0, which allows the weak formulation [14]:

1

εβ
(u, v)Γ0 + (∇u,∇v)Ω0 − ε

γ

2β

[(
∂u

∂x1
v

)
(x1, 0)

]x1=L

x1=0

− ε
γ

2β

(
∂u

∂x1

∂v

∂x1

)
Γ0

= (C, v)Ω0 − ε
γ

2β
(C, v)Γ0 ,

where the third term of the left-hand side vanishes thanks to the periodicity of the solu-

tion and of the corresponding test functions of H1
#(Ω

0). We have obtained a symmetric

problem. Because γ ∈ [−1, 0[ and β ∈]0, 1], setting

a(u, v) =
1

εβ
(u, v)Γ0 + (∇u,∇v)Ω0 − ε

γ

2β

(
∂u

∂x1

∂v

∂x1

)
Γ0

, v ∈ H1,1
# (Ω0),

l(v) = (C, v)Ω − ε
γ

2β
(C, v)Γ0 ,

one obtains a variational formulation where a is coercive, H1,1
# (Ω0) being endowed with

the norm

‖u‖H1,1
# (Ω0) = ‖u‖H1(Ω0) + ‖u‖H1(Γ0).

Moreover, a and l are continuous on H1,1
# (Ω0); thus the problem is solvable by the Lax-

Milgram theorem. By the way, we derive the following energy estimates, which describe

the dependence of various norms upon ε:

‖u‖L2(Γ0) ≤
√
εC,

∥∥∥∥ ∂u

∂x1

∥∥∥∥
L2(Γ0)

≤ C√
ε
.

Note that when ε goes to zero, our approximation leavesH1,1
# (Ω0) moving toH1

Γ1∪Γ0(Ω0):

we lose control over the tangential derivative on the boundary. �
In the particular case of a straight domain Ω0 this unique solution is explicit and reads

u2(x) = −C

2

(
x2
2 −

x2(1 + ε2γ)

1 + εβ
− ε(β − εγ)

1 + εβ

)
. (14)

4.3. Macroscopic error estimate. When replacing the Poiseuille profile in Ω0 by u1 or

u2, one can compute the corresponding error estimates.

Proposition 5. Let uε be the solution of (2) and u1 (resp. u2) be the solution of (11)

(resp. (13)). Under Hypotheses 2.1, one has∥∥uε − u1
∥∥
L2(Ω0)

≤ Cε
3
2 and

∥∥uε − u2
∥∥
L2(Ω0)

≤ Cε
3
2 .

Proof. We only compute the error of the second order approximation, the case of

u1 being identical. We take advantage of the estimates obtained in Proposition 2 by

inserting the full boundary layer corrector u2,∞
ε between uε and u2:

uε − u2 = uε − u2,∞
ε + u2,∞

ε − u2

= uε − u2,∞
ε + ε

∂u2

∂x2
(x1, 0)

(
β
(x
ε

)
− β
)
+

ε2

2

∂2u2

∂x2
2

(x1, 0)
(
γ
(x
ε

)
− γ
)
,
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where we used the compact form exhibited in (10). Then, one gets∥∥uε − u2
∥∥
L2(Ω0)

≤
∥∥uε − u2,∞

ε

∥∥
L2(Ω0)

+Kε

(
(1 + ε2)

∥∥∥β ( ·
ε

)
− β
∥∥∥
L2(Ω0)

+ ε
∥∥∥γ ( ·

ε

)
− γ
∥∥∥
L2(Ω0)

)
.

Thanks to Proposition 2, and the last estimate in the claim of Theorem A.1, one gets

the desired result. �
Remark 4.1. This result is crucial: it shows that the oscillations of the first order

boundary layer ε∂u0/∂x2(β − β) are larger than the second order macroscopic contribu-

tion. It is also optimal (see section 6 for numerical evidence). This observation motivates

the sections below.

5. Multi-scale wall-laws. In this section we continue the investigation in the sense

introduced above. We aim to compute a solution that exists in Ω0 as u1 or u2 but that

performs a better approximation of the exact solution uε restricted to Ω0. Below we shall

show that this concept provides some new multi-scale wall-laws.

5.1. The first order explicit wall-law. How can a first order correction be improved

if the non-oscillating second order extension of Saffman-Joseph’s condition does not

help? The answer below will be to take into account some multi-scale features. If we

consider the full boundary layer corrector u1,∞
ε , it solves (7). Moreover, on the fictitious

boundary Γ0, its value is easily computed, namely

u1,∞
ε

∣∣
x2=0

=

{
u1 + ε

∂u1

∂x2
(x1, 0)

(
β
(x
ε

)
− β
)}∣∣∣∣

x2=0

= ε
∂u1

∂x2
(x1, 0)β

(x1

ε
, 0
)
.

We use this value as a non-homogeneous Dirichlet boundary condition on Γ0 for a Poisson

problem that is nevertheless homogeneous on Γ1. Indeed, we consider the following

problem: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ΔUε = C, ∀x ∈ Ω0,

Uε = ε
∂u1

∂x2
(x1, 0)β

(x1

ε
, 0
)
, ∀x ∈ Γ0,

Uε = 0, ∀x ∈ Γ1, Uε is x1-periodic on Γin ∪ Γout,

(15)

and we claim the following.

Proposition 6. Under Hypotheses 2.1, one gets the following error estimates:

‖uε − Uε‖L2(Ω0) ≤ c12ε
3
2 .

Proof. Following the same lines as in the proof of Proposition 5, one inserts the full

boundary layer approximation error r1,∞ := uε − u1,∞
ε :

r1bl = uε − u1,∞
ε + u1,∞

ε − Uε = r1,∞ −
[
Uε − u1,∞

ε

]
=: r1,∞ − J.
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The first part of the right-hand side has already been estimated (Prop. 2). It remains

to estimate the last term J that solves the following system:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ΔJ = 0, ∀x ∈ Ω0,

J = 0, ∀x ∈ Γ0,

J = ε
∂u1

∂x2
(x1, 0)

(
β

(
x1

ε
,
1

ε

)
− β

)
, ∀x ∈ Γ1,

J is x1-periodic on Γin ∪ Γout.

Using a y2-linear lift s that takes away the Γ1 boundary term (which is exponentially

small w.r.t. ε), and thanks to the Poincaré inequality, we obtain

‖J‖L2(Ω0) ≤ c13‖J‖H1(Ω0) ≤ c14e
− 1

ε ,

where c13 and c14 are constants independent of ε. �
Remark 5.1. The error in O(ε

3
2 ) is only due to the first order boundary layer ap-

proximation. Indeed the extension of the Poiseuille flow is only linear inside Ωε \ Ω0.

Nevertheless, we avoid errors when neglecting microscopic oscillations in our macroscopic

problem as was the case for u1 and u2.

Remark 5.2. Proposition 6 compares u1,∞
ε and Uε. Because they have the same trace

on Γ0, the L2 norm of the difference is exponentially small. In the same way, it is not

difficult to show that in fact there is a constant k independent of ε s.t.

‖uε − Uε‖H1(Ω0) − ke−
1
ε ≤
∥∥uε − u1,∞

ε

∥∥
H1(Ω0)

≤ ‖uε − Uε‖H1(Ω0) + ke−
1
ε .

This will be used in the numerical tests to give an estimate of the error of the first order

full boundary layer approximation.

5.2. A second order explicit wall-law. Extending the same ideas as in the subsection

above, one sets the following multi-scale problem: find Vε ∈ H1(Ω0) such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ΔVε = C, ∀x ∈ Ω0,

Vε = ε
∂u2

∂x2
(x1, 0)β

(x1

ε
, 0
)
+

ε2

2

∂2u2

∂x2
2

γ
(x1

ε
, 0
)
, ∀x ∈ Γ0,

Vε = 0, ∀x ∈ Γ1, Vε is x1-periodic on Γin ∪ Γout,

(16)

for which we can prove, as in Proposition 6,

Proposition 7. Under Hypotheses 2.1, one gets

‖uε − Vε‖L2(Ω0) ≤ c15e
− 1

ε ,

where the constant c15 is independent of ε.

5.3. First order implicit wall-laws. Note that the standard averaged wall-laws u1, u2

are building blocks of explicit multi-scale approximations Uε,Vε solving problems (15),

(16). In this part, we look for an implicit approximation that avoids the computation of
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these lower order approximations. Indeed, at first order we propose to solve⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ΔΥε = C, ∀x ∈ Ω0,

Υε = εβ(
x1

ε
, 0)

∂Υε

∂x2
, ∀x ∈ Γ0,

Υε = 0, ∀x ∈ Γ1, Υε is x1-periodic on Γin ∪ Γout.

(17)

We give here a first result of this kind.

Theorem 5.1. Under Hypotheses 2.1, there exists a unique solution Υε ∈ H1
Γ1(Ω0) of

problem (17). Moreover, one gets

‖uε −Υε‖L2(Ω0) ≤ c16ε
3
2 ,

where c16 is a constant independent of ε.

Proof. There exists a unique solution Υε solving (17). Indeed, the weak formulation

of (17) reads:

a(u, v) := (∇u,∇v)Ω0 +

(
∂u

∂x2
, v

)
Γ0

= (∇u,∇v)Ω0 +

(
u

εβ
, v

)
Γ0

= (C, v)Ω0 =: l(v), ∀v ∈ H1
Γ1(Ω0).

At the microscopic level, we suppose that P 0 does not cross Γ; thus there exists a minimal

distance δ > 0 separating them. By the maximum principle, β is bounded: β ∈ [δ; 1].

Thus 1/β is bounded a.e. The bilinear form a is continuous coercive in H1
Γ1(Ω0), the

linear form l is continuous as well, and thus existence and uniqueness follow by the Lax-

Milgram theorem. To estimate this new approximation’s convergence rate we add and

substract Uε, the explicit wall-law between uε and Υε:

r1bl,i := uε −Υε = uε − Uε + Uε −Υε = r1bl + Uε −Υε =: r1bl +Θ. (18)

Θ is the solution of the boundary value problem reading:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ΔΘ = 0, ∀x ∈ Ω,

Θ = εβ

[
∂u1

∂x2
− ∂Υε

∂x2

]
, ∀x ∈ Γ0,

Θ = 0, ∀x ∈ Γ1, Θ is x1-periodic on Γin ∪ Γout.

We re-express the boundary condition on Γ0, introducing a Robin like condition, namely:

Θ− εβ
∂Θ

∂x2
= εβ

[
∂u1

∂x2
− ∂Uε

∂x2

]
, ∀x ∈ Γ0, (19)

where the right-hand side is explicitly known. We have the following weak formulation:

−(ΔΘ, v)Ω0 = −
(
∂Θ

∂n
, v

)
Γ0

+ (∇Θ,∇v)Ω0 = 0, ∀v ∈ H1
Γ1(Ω0),

where the space H1
Γ1(Ω0) contains H1(Ω0) functions vanishing on Γ1. Then using (19)

one writes

a(Θ, v) = (∇Θ,∇v)Ω0 +

(
Θ

εβ
, v

)
Γ0

=

(
∂u1

∂x2
− ∂Uε

∂x2
, v

)
Γ0

.
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We remark that the right-hand side is in fact a boundary term of another comparison

problem and we set z = u1 − Uε, where z is harmonic and solves(
∂z

∂x2
, v

)
Γ0

= −(Δz, v)Ω0 − (∇z,∇v)Ω0 , ∀v ∈ H1
Γ1(Ω0).

Estimates of the gradient. We have recovered a simpler problem that reads

a(Θ, v) = −(∇z,∇v)Ω0 , ∀v ∈ H1
Γ1
(Ω0).

Thanks to Proposition 2 and Proposition 6, one gets

‖∇Θ‖L2(Ω0) ≤ ‖∇z‖L2(Ω0) ≤
∥∥∇(uε − u1)

∥∥
L2(Ωε)

+ ‖∇(uε − Uε)‖L2(Ω0) ≤ 2c17ε,

where K is a constant independent of ε.

Estimate of the trace. The control on the interior term enables us to recover trace esti-

mates

‖Θ‖2L2(Γ0) ≤ ‖β‖L∞(Γ)

∫ L

0

Θ2(x1, 0)

β
(
x1

ε , 0
) dx1 ≤ ε‖∇Θ‖L2(Ω0)‖∇z‖L2(Ω0) ≤ c217ε

3.

Final estimate. By the dual problem, and the trace estimates above, we finally obtain

‖Θ‖L2(Ω0) ≤ c18‖Θ‖L2(Γ0) ≤ c19ε
3
2 ,

Recalling relation (18), one gets∥∥r1bl,i∥∥L2(Ω0)
≤
∥∥r1bl∥∥L2(Ω0)

+ ‖Θ‖L2(Ω0),

which ends the proof. �
Remark 5.3. A similar implicit approach could be considered at second order. This

should lead one to consider a multi-scale Wentzel condition. It is an open problem to

show existence, uniqueness and error estimates as in Theorem 5.1 in this case.

6. Numerical assessment. In order to validate our theoretical results and to show

some more interesting features, we propose in this section a set of numerical tests.

We use the finite element method implemented in the well-known freefem++ lan-

guage [15]. The source code of tests presented below is available online.1 In what follows

we will compute numerically the approximation error between the exact solution uε and

various wall-laws (u1, u2,Uε,Vε,Υε) w.r.t. ε. For this sake we introduce in a first step

the discretization of the domain Ωε. Next, we present the detailed procedure to compute

either uε, β, γ or the wall-laws above.

6.1. Domain discretization. The rough domain that one should discretize is Ωε; see

Fig. 4. The rough boundary is defined as in (1), but here we explicitly set

f(y1) := − (1 + cos(y1))

2
− δ,

with δ being a positive constant equal to 5e − 2. The periodicity of the bottom shape

and of the boundary conditions on Γin ∪ Γout allows us to discretize only a single rough

period; i.e., we set

ωε
r := {x1 ∈]0, 2πε[ and x2 ∈]εf(x1/ε), 0[}, ωε

0 :=]0, 2πε[×]0, 1[, ωε := ωε
0 ∪ ωε

r.

1http://ljk.imag.fr/membres/Vuk.Milisic/Software/WallLawTests.edp
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Fig. 5. Meshes ωε, ωε
r, and (Z+ ∪ P )h when ε = 0.1 (coarse grids,

see below for actual mesh sizes)

The mesh is periodic, i.e., the vertices on Γin are associated to elements containing

edges on Γout (see p. 142 of the freefem++ documentation for further information on

this facility). For a given ε, the meshes of ωε and ωε
0 are conforming on the upper part

{x2 ≥ 0}. We take several values of ε, namely we set i ∈ {1, . . . , 10} and ε = qi, where

q := 0.85. In order to avoid discretization errors we set nε := 90/εα, α = 0.2 nodes on

the horizontal fictitious boundary, and linearly proportional numbers of nodes on the

other boundaries. This gives a mesh size h (maximal diameter of a triangulation, see

p.88 [15]) depicted in Fig. 6 as a function of ε. This gives that there exists a constant k

independent of ε such that

h ≤ kε, (20)

which should be used below.
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Fig. 6. Mesh size h, number of vertices, number of elements
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6.2. The rough solution. For each value of ε, we discretize problem (2) using P2 La-

grange finite elements. The matrix obtained after assembling elementary matrices is

solved by a direct LU factorization. For the rest of this section, P2 elements and LU

factorization are used as well.

6.3. Microscopic cell problems. We compute solutions of cell problems (4) and (8).

The domain of definition Z+ of β and γ is not bounded. We truncate it by setting

Z+
H := {y ∈ Z s.t. y2 < H} and we solve (4) and (8) adding the essential conditions:

∂βH

∂n
= 0,

∂γH
∂n

= 0, on Z+
H .

In [22], the authors show that solutions of these problems are exponentially close to the

ones of the problem set on Z+ ∪ P , i.e.,

‖∇(β − βH)‖L2(Z+
H) ≤ ke−H .

Here we increase H in our discretization of Z+
H until the variation of the Dirichlet norm

of βH , γH is lower than 10−5. Then we compute numerically β and γ using a fifth

order quadrature formula (see p.116 in [15]). This part is performed once (this step

being independent of ε). For this specific shape f , the computations give the following

numerical values:

β = 0.432096, γ = −0.297993.

Cell problems are computed over a mesh containing 56945 elements and 28911 vertices

corresponding to a maximal mesh diameter of 0.126794.

6.4. Wall-laws. We compute numerically u1
h, u

2
h,Υε,h,Uε,h,Vε,h, solutions of the dis-

crete versions of problems (11), (13), (17), (15), (16). On the fictitious boundary we

use the values computed in the cell problems above, either as explicit non-homogenous

boundary conditions (as in the variational formulation of problems (15), (16)), or as

weights in trace operators (as for problems (11), (13), (17)).
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Fig. 7. Computed errors versus ε

6.5. Results. We plot in Fig. 7 convergence results w.r.t. the H1(Ω0) and L2(Ω0)

norms: we rescale the errors obtained on ωε
0,h w.r.t. Ω0. We display in Table 1 the

corresponding numerical values for the powers of ε depicted in Fig. 7. Nodes of the

upper part of ωε and those of ωε
0 coincide; i.e., there is no interpolation error due to non-

conforming meshes. As the problems solved are linear, the orders of convergence seem
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‖eh‖{·} uε
h − u0

h uε
h − u1

h uε
h − u2

h uε
h −Υε,h uε

h − Uε,h uε
h − Vε,h

H1(Ω0) 0.9 0.7923 0.696 1.25 1.54 3.7

L2(Ω0) 1.11 1.48 1.40 1.6245 1.776 3.77
Table 1. Numerical orders of convergence for various approxima-
tions: implicit (left) and explicit (right) wall-laws

to behave closely to the theoretical predictions. Indeed simulations guarantee theoretical

orders of convergence: if one sets v to be one of the wall-law approximations, and vh the

corresponding numerical discretisation, one gets

|uε
h − vh|m,Ω0 ≤ |uε

h − uε|m,Ω0 + |uε − v|m,Ω0 + |uε − v|m,Ω0

≤ k1{hp+1−m + εα} ≤ k2{εp+1−m + εα} ≤ k3ε
min(p+1−m,α),

where |·|m,Ω0 represents either the L2(Ω0) norm (m = 0) or the H1(Ω0) semi-norm

(m = 1), and where we used relation (20) and the classical Aubin-Nietsche theorem

(see [12], p.52 for instance). This implies that for p great enough (in our case p = 2)

only exponential convergence may not be recovered numerically. Results of simulations

above show that the implicit wall-laws u1
h, u

2
h,Υε,h provide cheaper but less accurate

results than explicit wall-laws. This is expected since the latter contain data coming

from explicit computations of u1 and u2 given by formulas (12), (14), whereas the former

use only the microscopic data β, γ, β(x/ε). Nevertheless, among the implicit wall-laws,

our implicit multi-scale candidate Υε performs the best results thanks to its multi-scale

features.

These simulations assess also that the second order wall-law u2 does not provide better

than first order error estimates. This provides evidence numerically for the optimality of

the estimates of Proposition 5. It explains also why one could not distinguish first from

second order approximations in [1], p. 209.

Nor in the present work neither in [20, 21] are there theoretical H1(Ω0) estimates of

uε − u1. We compute this quantity (see Fig. 7 left) numerically. It seems that standard

averaged wall-laws do hardly perform better approximations than
√
ε in H1(Ω0). This

is rather unexpected, especially when considering that in this norm and for this specific

shape, the zeroth order approximation u0
h seems better. This is obviously not true in the

L2(Ω0) norm.

At last, thanks to Remark 5.2, H1 estimates of uε
h − u1,∞

ε may be compared with

those of uε
h − Uε,h showing that the results of Propositions 1 and 2 are optimal. We

underline that this is due to the presence of the specific right-hand side C in every

problem considered above. For instance, setting tests similar to the simple sheared flow

(linear ũ0) would certainly lead to better convergence rates for first order approximations

[3].

Appendix A. The cell problems.

A.1. Various properties of the first order cell problem’s solution. As Z+ ∪ P is un-

bounded in the y2 direction, we define

D1,2
0 = {v ∈ L1

loc(Z
+ ∪ P ) s.t. ∇v ∈ L2(Z+ ∪ P )2, v is y1-periodic , v = 0 on P 0}.
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We lift the solution of problem (4) in order to satisfy the homogeneous Dirichlet boundary

condition on P 0 setting β̃ := β + y2χ[P ]: it satisfies⎧⎪⎪⎨
⎪⎪⎩

−Δβ̃ = δΓ, in Z+ ∪ P,

β̃ = 0, on P 0,

β̃ is y1-periodic ,

(21)

where δΓ is the Dirac function localized on the microscopic fictitious interface Γ. Then

one has the following result.

Theorem A.1. Under Hypotheses 2.1, there exists β̃, a unique solution of (4) belonging

to D1,2
0 . Moreover, there exists a unique periodic solution η ∈ H

1
2 (Γ) of the following

problem:

〈Sη, μ〉 = 〈1, μ〉, ∀μ ∈ H
1
2 (Γ),

where 〈, 〉 is the H− 1
2 (Γ) − H

1
2 (Γ) duality bracket, and S the inverse of the Steklov-

Poincaré operator (see Appendix A.1). One has the following correspondance between β

and the interface solution η:

β = HZ+η +HP η,

where HZ+η (resp. HP η) is the y1-periodic harmonic extension of η on Z+ (resp. P ).

The solution in Z+ can be written explicitly as a series of Fourier coefficients of η and

reads:

HZ+η = β(y) =
∞∑

k=−∞
ηke

iky1−|k|y2 , ∀y ∈ Z+, ηk =

∫ 2π

0

η(y1)e
−iky1dy1.

In the macroscopic domain Ω0 this leads to∥∥∥β ( ·
ε

)
− β
∥∥∥
L2(Ω0)

≤ K
√
ε‖η‖

H
1
2 (Γ)

.

The existence and uniqueness of solutions of system (4) have been partially proven in

[1]. The authors consider a truncated domain supplied with a non-local “transparency”

condition; the latter is obtained via the Fourier transform. We give here a rigorous proof

in the unbounded domain framework.

Proof of Theorem A.1. In what follows we express the cell problem as an inverse

Steklov-Poincaré problem solved on the fictitious interface Γ. This allows us to char-

acterize β in the solution of (4) on domains Z+ and P separately, as depending only on

η, the trace on Γ. We apply domain decomposition techniques [29]. In a first step we give

a simple proof of existence that guarantees the existence of the gradient in L2(Z+ ∪ P ).

The solutions of the cell problems are not in the classical Sobolev spaces because the

domain Z+ is unbounded in the y2 direction: the solutions are only locally integrable.

For this purpose, we define, for an arbitrary open set ω,

Dn,p(ω) = {v ∈ L1
loc(ω)/D

αv ∈ Lp(ω), ∀α ∈ Z
dn |α| = n, v is y1-periodic}.

In the particular case when n = 1 and p = 2, we define D1,2
0 (ω) := {v ∈ D1,2(ω)/ v|∂ω =

0} := V0(ω), which is a Hilbert space for the norm of the gradient. �

Lemma A.1. Problem (4) admits a unique solution β belonging to D1,2(Z+ ∪ P ).
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Proof of Lemma A.1. We define the lift s = y2 χ[P ] that belongs to D1,2(Z+ ∪ P ).

Setting β̃ = β − s, the lifted problem becomes{
−Δβ̃ = δΓ, in Z+ ∪ P,

β̃ = 0, on P 0,

where δΓ is the Dirac measure that concentrates on the fictitious interface Γ. The equiv-

alent variational form of this problem reads

a(β̃, v) = l(v), v ∈ D1,2
0 (Z+ ∪ P ), (22)

where a(u, v) = (∇u,∇v)Z+∪P and l(v) = −(∇s,∇v)P . These forms are obviously

continuous bilinear (resp. linear) on D1,2
0 (Z+∪P )×D1,2

0 (Z+∪P ) (resp. D1,2
0 (Z+∪P )).

Because of the homogeneous boundary condition the semi-norm of the gradient is a norm.

By the Lax-Milgram theorem, the desired result follows. �
We define the following spaces:

V1 = D1,2(Z+), V2 = {v ∈ H1(P ) s.t. v|P 0 = 0, v is y1-periodic},
V1,0 = {v ∈ V1, v|Γ = 0}, V2,0 = {v ∈ V2, v|Γ = 0},

Λ = {η ∈ H
1
2 s.t. η = v|Γ for a suitable v ∈ D1,2

0 (Z+ ∪ P )}.

Lemma A.2. The following domain decomposition problem is equivalent to (22). We

look for (β1, β2) ∈ V1 × V2 such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1(β1, v) := (∇β1,∇v)Z+ = 0, ∀v ∈ V1,0,

β1 = β2, on Γ,

a2(β2, v) := (∇β1,∇v)P = −(∇s,∇v)P ≡ 0, ∀v ∈ V2,0,

a2(β2,R2μ) = −(∇s,∇R2μ)− a1(β1,R1μ), ∀μ ∈ Λ,

(23)

where Ri denotes any possible extension operator from Γ to Vi.

Proof of Lemma A.2. Let us start by considering the solution β of (22). Setting β1 =

β|Z+ , β2 = β|P , we have that βi ∈ Vi and that (23).1, (23).2 and (23).3 are trivially

satisfied. Moreover, for each μ ∈ Λ, the function Rμ defined as Rμ = R1μχZ+ +R2μχP

belongs to V0. Therefore we have a(β,Rμ) = (f,Rμ), ∀μ ∈ Λ, which is equivalent to

(23).4.

On the other hand, let βi be the solution of (23). Setting β = β1χ[Z+] + β2χ[P ] from

(23).2, it follows that ∇β ∈ L2(Z+ ∪ P ), and β|P 0 = 0. Then taking v ∈ V0 we set

μ = v|Γ ∈ Λ. Define Rμ as before; clearly (vi − Riμ) ∈ Vi,0 and from (23).1, (23).3,

(23).4 it follows that

a(β, v) =
∑
i

[ai(βi, vi −Riμ) + ai(βi,Riμ)] = −(∇s,∇R2μ)P

= −(1, μ)Γ = −(1, v)Γ = −(∇s,∇v)P .

�
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The Steklov-Poincaré operator. The Steklov-Poincaré operator S acts between the

space of trace functions Λ and its dual. More precisely, applying Green’s formula and

setting Hiη to be the harmonic lift in Z+ (resp. P ) for all η ∈ Λ, we have

〈Sη, μ〉 =
∑
i

〈
∂

∂νi
Hiη, μ

〉
=

∫
Z+

∇H1η · ∇R1μ+

∫
P

∇H2η · ∇R2μ

=
∑
i

ai(Hiη,Riμ), ∀η, μ ∈ Λ,

where 〈·, ·〉 denotes the duality pairing between Λ′ and Λ. In particular, taking Riμ =

Hiμ, we obtain the following variational representation:

〈Sη, μ〉 =
∑
i

ai(Hiη,Hiμ), ∀η, μ ∈ Λ.

The linear form on Λ. We set l(μ) as follows:

l(μ) = −(∇s,∇H2μ)P =

(
1,

∂

∂x2
H2μ

)
P

= (1, μ)Γ.

Lemma A.3. The problem:

find η ∈ Λ such that 〈Sη, μ〉 = l(μ), ∀μ ∈ Λ, (24)

admits a unique solution. Moreover this is equivalent to solving (23).

Proof of Lemma A.3. We use the Lax-Milgram framework:

- Continuity:

〈Sη, μ〉 ≤ ‖∇Hη‖L2(Z+∪P )‖∇Hμ‖L2(Z+∪P ) ≤ c20‖η‖Λ‖μ‖Λ,

by well-known estimates for solutions of elliptic boundary value problems [24].

ForH1 this can be computed explicitly (see below). The continuity of l is obvious.

- Coercivity:

〈Sη, η〉 = ‖∇Hη‖2L2(Z+∪P ) ≥ c21‖H2η‖2H1(P ) ≥ c22‖η‖2Λ.

Then applying the Lax-Milgram theorem one gets the desired result.

To prove the equivalence between (24) and (23), it suffices to separate the harmonic

lift Hi and the solutions of the Poisson problem with homogeneous boundary conditions

and the result follows as in [29], p.10. �
H1, the harmonic extension in Z+. We set η ∈ Λ. By decomposing in y1-Fourier modes,

one gets that the solution of {
Δβ = 0, ∀y ∈ Z+,

β = η, ∀y ∈ Γ,
(25)

rewritten as β =
∑

k βk(y2)e
iky1 , ∀y ∈ Z+, should satisfy the following system of

ODE’s: ⎧⎪⎨
⎪⎩

β′′
k − k2βk = 0, y2 ∈ R

+,

βk(0) = ηk, y2 = 0,

βk(y2) ∈ L∞(R+;C),
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where ηk =
∫ 2π
0

e−iky1η(y1)dy1 are η’s Fourier coefficients on Γ. The solution βZ+ is

explicit and reads

H1η = β|Z+ =

∞∑
k=−∞

ηke
−|k|y2+iky1 , ∀y ∈ Z+. (26)

To show exponential convergence towards zero of β − β and ∇β when y2 → 0, we use

the same arguments as in the second part of [4], Theorem 2.2.1, p. 637, whose proof is

omitted.

Proposition 8. There exists α1 ≥ (4π)2/9 such that the solution of problem (4) satisfies∥∥β − β
∥∥
L2(Z+∪P,eα1y2 )

≤ c23‖∇β‖L2(Z+∪P,eα1y2 ) ≤ c24,

which implies also β’s and ∇β’s exponential decay in the y2 direction.

A.2. The second order boundary layer.

Proof of Proposition 3. Problem (8) is equivalent to solving{
Δγ̃ = 2χ[P ], ∀y ∈ Z+ ∪ P,

γ̃ = 0, ∀y ∈ P 0.

This, under the previous domain decomposition form, reads: find (γ̃Z+ , γ̃P ) such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∇γ̃Z+ ,∇v)Z+ = 0, ∀v ∈ H1
Γ(Z

+),

γ̃Z+ = γ̃P , on Γ,

(∇γ̃P ,∇v)P = −(2, v)P , ∀v ∈ H1
Γ∪P 0(P ),

(∇γ̃P ,∇RPμ)P = −(2,RPμ)P − (∇γ̃Z+ ,RZ+μ)Z+ , ∀μ ∈ H
1
2 (Γ).

(27)

Following the same lines as in the proof above, we write the interface problem:

〈Sλ, μ〉 =(∇HPλ,∇HPμ) + (∇HZ+λ,∇HZ+μ), ∀μ ∈ H
1
2 (Γ),

= −(2, HPμ)− (∇G2,∇HPμ) =: l(μ), ∀μ ∈ H
1
2 (Γ),

where G2 is the solution of the homogeneous Poisson problem:⎧⎪⎨
⎪⎩

ΔG2 = 2, ∀y ∈ P,

G2 = 0, ∀y ∈ P 0 ∪ Γ,

G2 is y1-periodic.

One gets the continuity of the linear form again, thanks to the properties of the harmonic

lifts [24, 11]:

|l(μ)| = |−(2, HPμ)− (∇G2,∇HPμ)| ≤ c25‖HPμ‖H1(P ) ≤ c26‖μ‖
H

1
2 (Γ)

.

Again, by the Lax-Milgram theorem, one gets the desired result. �
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[22] W. Jäger, A. Mikelić, and N. Neuss, Asymptotic analysis of the laminar viscous flow over a porous

bed., SIAM J. Sci. Comput. 22 (2000), no. 6, 2006–2028 (English). MR1856299 (2002f:76065)
[23] K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier, C. R. Acad. Sci.

Paris Sér. I Math. 300 (1985), no. 15, 531–534. MR792383 (86e:35037)
[24] J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Die

Grundlehren der mathematischen Wissenschaften, vol. I, Springer-Verlag, 1972 (English).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=1657773
http://www.ams.org/mathscinet-getitem?mr=1657773
http://www.ams.org/mathscinet-getitem?mr=2239730
http://www.ams.org/mathscinet-getitem?mr=2239730
http://www.ams.org/mathscinet-getitem?mr=1404780
http://www.ams.org/mathscinet-getitem?mr=1404780
http://www.ams.org/mathscinet-getitem?mr=0509273
http://www.ams.org/mathscinet-getitem?mr=0509273
http://www.ams.org/mathscinet-getitem?mr=1878796
http://www.ams.org/mathscinet-getitem?mr=1878796
http://www.ams.org/mathscinet-getitem?mr=2441916
http://www.ams.org/mathscinet-getitem?mr=2229981
http://www.ams.org/mathscinet-getitem?mr=2229981
http://www.ams.org/mathscinet-getitem?mr=1660366
http://www.ams.org/mathscinet-getitem?mr=1660366
http://www.ams.org/mathscinet-getitem?mr=2050138
http://www.ams.org/mathscinet-getitem?mr=2050138
http://www.ams.org/mathscinet-getitem?mr=2272308
http://www.ams.org/mathscinet-getitem?mr=2216309
http://www.ams.org/mathscinet-getitem?mr=2214949
http://www.ams.org/mathscinet-getitem?mr=2214949
http://www.ams.org/mathscinet-getitem?mr=2333468
http://www.ams.org/mathscinet-getitem?mr=1760028
http://www.ams.org/mathscinet-getitem?mr=1760028
http://www.ams.org/mathscinet-getitem?mr=1813101
http://www.ams.org/mathscinet-getitem?mr=1813101
http://www.ams.org/mathscinet-getitem?mr=1952473
http://www.ams.org/mathscinet-getitem?mr=1952473
http://www.ams.org/mathscinet-getitem?mr=1856299
http://www.ams.org/mathscinet-getitem?mr=1856299
http://www.ams.org/mathscinet-getitem?mr=792383
http://www.ams.org/mathscinet-getitem?mr=792383


HIGH ORDER MULTI-SCALE WALL-LAWS, PART I: THE PERIODIC CASE 253

[25] M.C. Lopes Filho, H.J. Nussenzveig Lopez, and G. Planas, On the inviscid limits for two-
dimensional incompressible flow with Navier friction condition, Siam J. Math. Anal. 36 (2006),
no. 4, 1130–1141 (English). MR2139203 (2005k:76026)

[26] A.L. Madureira and F. Valentin, Asymptotics of the Poisson problem in domains with curved rough
boundaries, SIAM J. Math. Anal. 38 (2006/07), 1450–1473. MR2286014 (2007j:35031)
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