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ABSTRACT 

We propose learning rules for recurrent neural networks with high-order 

interactions between some or all neurons. The designed networks exhibit the 

desired associative memory function: perfect storage and retrieval of pieces 

of information and/or sequences of information of any complexity. 

INTRODUCTION 

In the field of information processing, an important class of potential 

applications of neural networks arises from their ability to perform as 

associative memories. Since the publication of J. Hopfield's seminal paper 1, 

investigations of the storage and retrieval properties of recurrent networks 

have led to a deep understanding of their properties. The basic limitations of 

these networks are the following: 

- their storage capacity is of the order of the number of neurons; 

- they are unable to handle structured problems; 

- they are unable to classify non-linearly separable data. 
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In order to circumvent these limitations, one has to introduce additional 

non-linearities. This can be done either by using "hidden", non-linear units, or 

by considering multi-neuron interactions2. This paper presents learning rules 

for networks with multiple interactions, allowing the storage and retrieval, 

either of static pieces of information (autoassociative memory), or of temporal 

sequences (associative memory), while preventing an explosive growth of the 

number of synaptic coefficients. 

AUTOASSOCIATIVE MEMORY 

The problem that will be addressed in this paragraph is how to design an 

autoassociative memory with a recurrent (or feedback) neural network when 

the number p of prototypes is large as compared to the number n of neurons. 

We consider a network of n binary neurons, operating in a synchronous 

mode, with period t. The state of neuron i at time t is denoted by (Ji(t), and the 

state of the network at time t is represented by a vector ~(t) whose 

components are the (Ji(t). The dynamics of each neuron is governed by the 

following relation: 

(Ji(t+t) = sgn vi(t). (1 ) 

In networks with two-neuron interactions only, the potential vi(t) is a linear 

function of the state of the network: 

For autoassociative memory design, it has been shown3 that any set of 

correlated patterns, up to a number of patterns p equal to 2n, can be made the 

stable states of the system, provided the synaptic matrix is computed as the 

orthogonal projection matrix onto the subspace spanned by the stored 

vectors. However, as p increases, the rank of the family of prototype vectors 

will increase, and finally reach the value of n. In such a case, the synaptic 

matrix reduces to the identity matrix, so that all 2n states are stable and the 

energy landscape becomes flat. Even if such an extreme case is avoided, the 

attractivity of the stored states decreases with increasing p, or, in other terms, 
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the number of fixed points which are not the stored patterns increases; this 

problem can be alleviated to a large extent by making a useful use of these 

"spurious" fixed points4. Another possible solution consists in "gardening" the 

state space in order to enlarge the basins of attraction of the fixed points5. 

Anyway, no dramatic improvements are provided by all these solutions since 

the storage capacity is always O(n). 

We now show that the introduction of high-order interactions between 

neurons, increases the storage capacity proportionally to the number of 

connections per neuron. The dynamical behaviour of neuron i is still governed 

by (1). We consider two and three-neuron interactions, extension to higher 

order are straightforward. 

The potential vi (t) is now defi ned as 

It is more convenient, for the derivation of learning rules, to write the potential 

in the matrix form: 

~(t) = C ;t(t), 

where :¥(t) is an m dimensional vector whose components are taken among 

the set of the (n2+n)/2 values: a1 , ... , an' a1 a2 , ... , aj al ' ... , an-1 an. 

As in the case of the two-neuron interactions model, we want to compute the 

interaction coefficients so that the prototypes are stable and attractor states. 

A condition to store a set of states Q:k (k=1 to p) is that y'k= Q:k for all k. Among 

the solutions, the most convenient solution is given by the (n,m) matrix 

c=I,rl (2) 

where I, is the (n,p) matrix whose columns are the Q:k and rl is the (p,m) 

pseudoinverse of the (m,p) matrix r whose columns are the {. This solution 

satisfies the above requirements, up to a storage capacity which is related to 

the dimension m of vectors :¥. Thus, in a network with three-neuron 
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interactions, the number of patterns that can be stored is O(n2). Details on 

these derivations are published in Ref.6. 

By using only a subset of the products {aj all. the increase in the number of 

synaptic coefficients can remain within acceptable limits, while the attractivity 

of the stored patterns is enhanced, even though their number exceeds the 

number of neurons ; this will be examplified in the simulations presented 

below. 

Finally, it can be noticed that, if vector ~contains all the {ai aj}' i=1, ... n, j=1, ... n, 

only, the computation of the vector potential ~=C~can be performed after the 

following expression: 

where ~ stands for the operation which consists in squaring all the matrix 

coefficients. Hence, the computation of the synaptic coefficients is avoided, 

memory and computing time are saved if the simulations are performed on a 

conventional computer. This formulation is also meaningful for optical 

implementations, the function ell being easily performed in optics 7. 

In order to illustrate the capabilities of the learning rule, we have performed 

numerical simulations which show the increase of the size of the basins of 

attraction when second-order interactions, in addition to the first-order ones, 

are used. The simulations were carried out as follows. The number of neurons 

n being fixed, the amount of second-order interactions was chosen ; p 

prototype patterns were picked randomly, their components being ±1 with 

probability 0.5 ; the second-order interactions were chosen randomly. The 

synaptic matrix was computed from relation (2). The neural network was 

forced into an initial state lying at an initial Hamming distance Hi from one of 

the prototypes {!k ; it was subsequently left to evolve until it reached a stable 

state at a distance Hf from {!k. This procedure was repeated many times for 

each prototype and the Hf were averaged over all the tests and all the 

prototypes. 

Figures 1 a. and 1 b. are charts of the mean values of Hf as a function of the 

number of prototypes, for n = 30 and for various values of m (the dimension of 
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vector ':/.). These curves allowed us to determine the maximum number of 

prototype states which can be stored for a given quality of recall. Perfect recall 

implies Hf =0 ; when the number of prototypes increases, the error in recall 

may reach Hf =H i : the associative memory is degenerate. The results 

obtained for Hi In =10% are plotted on Figure 1 a. When no high-order 

interactions were used, Hf reached Hi for pIn = 1, as expected; conversely, 

virtually no error in recall occured up to pIn = 2 when all second-order 

interactions were taken into account (m=465). Figure 1 b shows the same 

quantities for Hi=200/0 ; since the initial states were more distant from the 

prototypes, the errors in recall were more severe. 
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Fig. 1. Improvement of the attractivity by addition of three-neuron interactions 

to the two-neuron interactions. All prototypes are always stored exactly (all 

curves go through the origin). Each point corresponds to an average over 

min(p,10) prototypes and 30 tests for each prototype. 

[] Projection: m = n = 30; • m = 120 ; • m = 180; 0 m = 465 (all interactions) 

1 a: Hi I n =10% ; 1 b : Hi In =20%. 

TEMPORAL SEQUENCES (ASSOCIATIVE MEMORY) 

The previous section was devoted to the storage and retrieval of items of 

information considered as fixed points of the dynamics of the network 

(autoassociative memory design). However, since fully connected neural 

networks are basically dynamical systems, they are natural candidates for 
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storing and retrieving information which is dynamical in nature, i.e., temporal 

sequences of patterns8: In this section, we propose a general solution to the 

problem of storing and retrieving sequences of arbitrary complexity, in 

recurrent networks with parallel dynamics. 

Sequences consist in sets of transitions between states {lk_> Q:k+ 1, k=1, ... , p. 

A sufficient condition to store these sets of transitions is that y..~ Q:k+ 1 for all k. 

In the case of a linear potential y"=C Q:, the storage prescription proposed in 

ref.3 can be used: C=r,+r,I, 

where r, is a matrix whose columns are the Q:k and r,+ is the matrix whose 

columns are the successors Q:k+ 1 of Q:k. If P is larger than n, one can use 

high-order interactions, which leads to introduce a non-linear potential Y..=C ';f. , 

with ';f. as previously defined. We proposed in ref. 1 0 the following storage 

prescription : 

(3) 

The two above prescriptions are only valid for storing simple sequences, 

where no patterns occur twice (or more). Suppose that one pattern occurs 

twice; when the network reaches this bifurcation point, it is unable to make a 

decision according the deterministic dynamics described in (1), since the 

knowledge of the present state is not sufficient. Thus, complex sequences 

require to keep, at each time step of the dynamics, a non-zero memory span. 

The vector potential Y..=C':J. must involve the states at time t and t-t, which 

leads to define the vector ';f. as a concatenation of vectors Q:(t), ~(t-t), Q:(t)®Q:(t), 

Q:(t)®Q:(t-t), or a suitable subset thereof. The subsequent vector Q:(t+t) is still 

determined by relation (1). In this form, the problem is a generalization of the 

storage of patterns with high order interactions, as described above. The 

storage of sequences can be still processed by relation (3). 

The solution presented above has the following features: 

i) Sequences with bifurcation points can be stored and retrieved. 

ii) The dimension of the synaptic matrix is at most (n,2(n2+n)), and at least 

(n,2n) in the linear case, so that at most 2n(n2+n) and at least 2n2 synapses 

are required. 
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iii) The storage capacity is O(m), where m is the dimension of the vector ';t . 

iv) Retrieval of a sequence requires initializing the network with two states in 

succession. 

The example of Figure 2 illustrates the retrieval performances of the latter 

learning rule. We have limited vector ';t to Q:(t}®Q:(t-t). In a network of n=48 

neurons, a large number of poems have been stored, with a total of p=424 

elementary transitions. Each state is consists in the 6 bit codes of 8 letters. 

ALOUETTE 

JETE JE NE 

PLUMERAI OLVMERAI 

ALOUETTE AQFUETTE 

GENTILLE JEHKILLE 

ALOUETTE SLOUETTE 

ALOUETTE ALOUETTE 

JETE JETE 

PLUMERAI PLUMERAI 

Fig. 2. One of the stored poems is shown in the first column. The network is 

initialized with two states (the first two lines of the second column). After a few 

steps, the network reaches the nearest stored sequence. 

LOCAL LEARNING 

Finally, it should be mentioned that all the synaptic matrices introduced in this 

paper can be computed by iterative, local learning rules. 

For autoassociative memory, it has been shown analytically9 that the 

procedure: 

with Cij(O) = 0, 

which is a Widrow-Hoff type learning rule, yields the projection matrix, when 
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the number of presentations of the prototypes {~k} goes to infinity, if the latter 

are linearly independent. 

A derivation along the same lines shows that, by repeated presentations of 

the prototype transitions, the learning rules: 

lead to the exact solutions (relations (2) and (3) respectively), if the vectors }< 
are Ii nearly independent. 

GENERALIZATION TASKS 

Apart from storing and retrieving static pieces of information or sequences, 

neural networks can be used to solve problems in which there exists a 

structure or regularity in the sample patterns (for example presence of clumps, 

parity, symmetry ... ) that the network must discover. Feed-forward networks 

with multiple layers of first-order neurons can be trained with 

back-propagation algorithms for these purposes; however, one-layer 

feed-forward networks with mUlti-neuron interactions provide an interesting 

alternative. For instance, a proper choice of vector ':I. (second-order terms only) 

with the above learning rule yields a perfectly straightforward solution to the 

exclusive-OR problem. Maxwell et al. have shown that a suitable high-order 

neuron is able to exhibit the "ad hoc network solution" for the contiguity 

problem 11. 

CONCLUSION 

The use of neural networks with high-order interactions has long been 

advocated as a natural way to overcome the various limitations of the Hopfield 

model. However, no procedure guaranteed to store any set of information as 

fixed points or as temporal sequences had been proposed. The purpose of 

the present paper is to present briefly such storage prescriptions and show 
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some illustrations of the use of these methods. Full derivations and extensions 

will be published in more detailed papers. 
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