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Abstract In this work, we discuss and compare three methods for the numerical approxi-
mation of constant- and variable-coefficient diffusion equations in both single and composite
domains with possible discontinuity in the solution/flux at interfaces, considering (i) the
Cut Finite Element Method; (ii) the Difference Potentials Method; and (iii) the summation-
by-parts Finite Difference Method. First we give a brief introduction for each of the three
methods. Next, we propose benchmark problems, and consider numerical tests—with respect
to accuracy and convergence—for linear parabolic problems on a single domain, and continue
with similar tests for linear parabolic problems on a composite domain (with the interface
defined either explicitly or implicitly). Lastly, a comparative discussion of the methods and
numerical results will be given.
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1 Introduction

Designing methods for the high-order accurate numerical approximation of partial differ-
ential equations (PDE) posed on composite domains with interfaces, or on irregular and
geometrically complex domains, is crucial in the modeling and analysis of problems from
science and engineering. Such problems may arise, for example, in materials science (models
for the evolution of grain boundaries in polycrystalline materials), fluid dynamics (the simu-
lation of homogeneous or multi-phase fluids), engineering (wave propagation in an irregular
medium or a composite medium with different material properties), biology (models of blood
flow or the cardiac action potential), etc. The analytic solutions of the underlying PDE may
have non-smooth or even discontinuous features, particularly at material interfaces or at inter-
faces within a composite medium. Standard numerical techniques involving finite-difference
approximations, finite-element approximation, etc., may fail to produce an accurate approx-
imation near the interface, leading one to consider and develop new techniques.

There is extensive existing work addressing numerical approximation of PDE posed on
composite domains with interfaces or irregular domains, for example, the boundary inte-
gral method [11,56], difference potentials method [3,6,26,27,58,65], immersed boundary
method [30,42,61,74], immersed interface method [2,46,47,49,69], ghost fluid method
[31,32,50,51], the matched interface and boundary method [82,84–86], Cartesian grid
embedded boundary method [19,41,57,83], multigrid method for elliptic problems with dis-
continuous coefficients on an arbitrary interface [18], virtual node method [9,39], Voronoi
interface method [35,36], the finite difference method [8,10,24,75,78,79] and finite volume
method [22,34] based on mapped grids, or cut finite element method [13–15,37,38,71,76].
Indeed, there have been great advances in numerical methods for the approximation of PDE
posed on composite domains with interfaces, or on irregular domains. However, it is still
a challenge to design high-order accurate and computationally-efficient methods for PDE
posed in these complicated geometries, especially for time-dependent problems, problems
with variable coefficients, or problems with general boundary/interface conditions.

The aim of this work is to establish benchmark (test) problems for the numerical approxi-
mation of parabolic PDE defined in irregular or composite domains. The considered models
(Sect. 2) arise in the study of mass or heat diffusion in single or composite materials, or
as simplified models in other areas (e.g., biology, materials science, etc.). The formulated
test problems (Sect. 4) are intended (a) to be suitable for comparison of high-order accurate
numerical methods—and will be used as such in this study—and (b) to be useful in further
research. Moreover, the proposed problems include a wide variety of possibilities relevant in
applications, which any robust numerical method should resolve accurately, including con-
stant diffusion; time-varying diffusion; high frequency oscillations in the analytical solution;
large jumps in diffusion coefficients, solution, and/or flux; etc. For now, we will consider
a simplified geometrical setting, with the intent of setting a “baseline” from which further

123



814 J Sci Comput (2018) 76:812–847

research, or more involved comparisons, might be conducted. Therefore, in Sect. 2 we will
introduce two circular geometries, which are defined either explicitly, or implicitly via a level
set function.

In Sect. 3, we briefly introduce the numerical methods we will consider in this work, i.e.,
second- and fourth-order versions of (i) the Cut Finite Element Method (cut-FEM); (ii) the
Difference Potentials Method (DPM), with Finite Difference approximation as the underlying
discretization in the current work; and (iii) the summation-by-parts Finite Difference Method
combined with the simultaneous approximation term technique (SBP–SAT–FD). These three
methods are all modern numerical methods which may be designed for problems in irregular
or composite domains, allowing for high-order accurate numerical approximation, even at
points close to irregular interfaces or boundaries. We will apply each method to the formulated
benchmark problems, and compare results. From the comparisons, we expect to learn what
further developments of the methods at hand would be most important.

To resolve geometrical features of irregular domains, both cut-FEM and DPM use a
Cartesian grid on top of the domain, which need not conform with boundaries or interfaces.
These types of methods are often characterized as “immersed” or “embedded”. In the finite
difference framework, embedded methods for parabolic problems are developed in [1,23].
For comparison with cut-FEM and DPM, however, in this paper we use a finite difference
method based on a conforming approach. The finite difference operators we use satisfy a
summation-by-parts principle. Then, in combination with the SAT method to weakly impose
boundary and interface conditions, an energy estimate of the semi-discretization can be
derived to ensure stability. In addition, we use curvilinear grids and transfinite interpolation
to resolve complex geometries.

For recent work on SBP–SAT–FD for wave equations in composite domains, see [10,17,
75,78], and the two review papers [21,73]; for recent work in DPM for elliptic/parabolic
problems in composite domains with interface defined explicitly, see [3–6,26–28,58,59,65];
and for recent work in cut-FEM, see [13–15,37,53,71].

The paper is outlined as follows. In Sect. 2, we give brief overview of the continuous
formulation of the parabolic problems in a single domain or a composite domain. In Sect. 3,
we give introductions to the basics of the three proposed methods: cut-FEM, DPM, and
SBP–SAT–FD. In Sect. 4, we formulate the numerical test problems. In Sect. 5, we present
extensive numerical comparisons of errors and convergence rates, between the second- and
fourth-order versions of each method. The comparisons include single domain problems
with constant or time-dependent diffusivity; and interface problems with interface defined
explicitly, or implicitly by a level set function. In Sect. 6, we give a comparative discussion
of the three methods and the numerical results, together with a discussion on future research
directions. Lastly, in Sect. 7, we give our concluding remarks.

2 Statement of Problem

In this section, we describe two diffusion problems, which will be the setting for our proposed
benchmark (test) problems in Sect. 4. (Recall from Sect. 1 that these models arise, for example,
in the study of mass or heat diffusion.) For brevity, in the following discussion, we denote
u := u(x, y, t) and us := us(x, y, t), with s = 1, 2.
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Fig. 1 The (a) single domain Ω

and (b) composite domain
Ω = Ω1 ∪ Ω2. In (b), ∂Ω1 has
two connected components: the
boundary ∂Ω and interface
Γ = ∂Ω2 Ω

(a)

Ω1

Ω2∂Ω

Γ

(b)

2.1 The Single Domain Problem

First, we consider the linear parabolic PDE on a single domain Ω (e.g., Fig. 1a), with variable
diffusion λ(t):

∂u

∂t
= ∇ · (λ(t)∇u) + f (x, y, t), (x, y, t) ∈ Ω × (0, T ], (1)

subject to initial and Dirichlet boundary conditions:

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω and u = ψ(x, y, t), (x, y, t) ∈ ∂Ω × (0, T ]. (2)

Here, the initial and boundary data u0(x, y) and ψ(x, y, t), the diffusion coefficient λ(t), the
forcing function f (x, y, t), and the final time T are known (given) data.

2.2 The Composite Domain Problem

Next, we consider the linear parabolic PDE on a composite domain Ω := Ω1 ∪ Ω2 (e.g.,
Fig. 1b), with constant diffusion coefficients (λ1, λ2):

∂u1

∂t
= ∇ · (λ1∇u1) + f1(x, y, t), (x, y, t) ∈ Ω1 × (0, T ], (3)

∂u2

∂t
= ∇ · (λ2∇u2) + f2(x, y, t), (x, y, t) ∈ Ω2 × (0, T ], (4)

subject to initial conditions:

u1(x, y, 0) = u0
1(x, y), (x, y) ∈ Ω1, (5)

u2(x, y, 0) = u0
2(x, y), (x, y) ∈ Ω2, (6)

Dirichlet boundary conditions:

u1 = ψ(x, y, t), (x, y, t) ∈ ∂Ω × (0, T ], (7)

and interface/matching conditions:

u1 − u2 = μ1(x, y, t), (x, y, t) ∈ Γ × (0, T ], (8)

λ1
∂u1

∂n
− λ2

∂u2

∂n
= μ2(x, y, t), (x, y, t) ∈ Γ × (0, T ]. (9)

In formula (9), ∂us

∂n
, s = 1, 2 denotes the normal derivative at the interface Γ , i.e., ∂us

∂n
=

∇us · n, where n is the outward unit normal vector at the interface Γ . The initial, boundary,
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and interface data u0
1(x, y), u0

2(x, y), ψ(x, y, t), μ1(x, y, t), and μ2(x, y, t); the diffusion
coefficients (λ1, λ2); the forcing functions f1(x, y, t) and f2(x, y, t); and the final time T

are some known (given) data.

Remark 1 We consider the circular geometries depicted in Fig. 1 as the geometrical setting
for our proposed benchmark problems in this work. In applications (Sect. 1), other geometries
will likely be considered, some much more complicated than Fig. 1. While our methods can
handle more complicated geometry, this is (to the best of our knowledge) the first work
looking to establish benchmarks—and compare numerical methods—for parabolic interface
problems (3–9). As such, we think that the geometries in Fig. 1 are a good “baseline”—
without all the added complexities that more complicated geometries might produce—from
which further research, or more involved comparisons, might be done.

To be more specific, we aim to define a simple set of test problems that can be easily imple-
mented and tested for any numerical scheme of interest. With circular domains, it suffices
for us to compare/contrast performance of the numerical methods on a simple geometry with
smooth boundary versus on a composite domain with fixed interface (explicit or implicit).
The approximation of the solution to such composite-domain problems are already chal-
lenging for any numerical methods, since (i) the solution may fail to be smooth (or may
be discontinuous) at the interface, and (ii) there may be discontinuous material coefficients
(λ1 �= λ2).

Remark 2 For both the single and composite domain problems, we could also consider other
boundary conditions, e.g., a Neumann boundary condition as in [6,13], etc.

3 Overview of Numerical Methods

3.1 Cut-FEM

In this section, we give a brief presentation of the cut-FEM method. For a more detailed
presentation of cut-FEM, see, for example, [13,14,53].

Let Ωs be covered by a structured triangulation, Ts , so that each element T ∈ Ts has some
part inside of Ωs ; see Fig. 2a and b. Here, s = 1, 2 is an index for the composite domain
problem (3–9), which will be omitted when referring to the single domain problem (1, 2).

(a) (b) (c)

Fig. 2 The (a) subdomain Ω1 immersed in a mesh T1, (b) subdomain Ω2 immersed in a mesh T2 and domain
Ω immersed in T , and (c) intersected elements TΓ
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(For the latter, note that T covers Ω .) Typically T1 and T2 would be created from a larger
mesh by removing some of the cells. Further, let TΓ = {T ∈ T : T ∩ Γ �= ∅} be the set
of intersected elements; see Fig. 2c. In the following, we shall use Γ both for the immersed
boundary of the single domain problem and for the immersed interface of the composite
domain problem, in order to make the connection to the set TΓ clearer.

To construct the finite element spaces we use Lagrange elements with Gauss–Lobatto
nodes of order p (Q p-elements). Let V s

h denote a continuous finite element space on Ωs ,
consisting of Q p-elements on the mesh Ts :

V s
h =

{

v ∈ C0(Ωs) : v|T ∈ Q p(T ), T ∈ Ts

}

. (10)

For the single domain problem (1, 2) we solve for the solution u ∈ Vh ; while for the composite
domain problem (3–9), we solve for the pair {u1, u2} ∈ V 1

h × V 2
h . For the latter problem, this

means that the degrees of freedom are doubled over elements belonging to TΓ .
We begin by stating the weak formulation for the single domain problem (1, 2). Let (·, ·)X

and 〈·, ·〉Y be the L2 scalar products taken over the two- and one-dimensional domains X ⊂
R

2 and Y ⊂ R
1, respectively. The present method is based on modifying the weak formulation

by using Nitsche’s method [60] to enforce the boundary condition (2). By multiplying (1)
with a test function v ∈ Vh , and integrating by parts, we obtain:

(u̇, v)Ω + (λ∇u,∇v)Ω −
〈

λ
∂u

∂n
, v

〉

Γ

= ( f, v)Ω , ∀v ∈ Vh . (11)

Note that (2) is consistent with the following terms:

γD

hT

〈λu, v〉Γ =
γD

hT

〈λψ, v〉Γ , (12)

−
〈

u, λ
∂v

∂n

〉

Γ

= −
〈

ψ, λ
∂v

∂n

〉

Γ

, (13)

where γD is a constant, and hT is the side length of the quadrilaterals in the triangulation.
Now, adding (12, 13) to (11) gives the following weak form: Find u ∈ Vh such that

(u̇, v)Ω + a(u, v) = L(v), ∀v ∈ Vh, (14)

where

a(u, v) = (λ∇u,∇v)Ω −
〈

λ
∂u

∂n
, v

〉

Γ

−
〈

u, λ
∂v

∂n

〉

Γ

+
γD

hT

〈λu, v〉Γ , (15)

L(v) = ( f, v)Ω +
〈

λψ,
γD

hT

v −
∂v

∂n

〉

Γ

. (16)

For TΓ (the elements intersected byΓ ), note that one must integrate only over the part of the
element that lies inside Ω . A problem with this is that one cannot control how the intersections
(cuts) between Ω and T are made. Depending on how Ω is located with respect to the
triangulation, some elements can have an arbitrarily small intersection with the domain—
see, for example, Fig. 3a. If Ω is moved with respect to T to make the cut arbitrarily small,
then the condition numbers of the mass and stiffness matrices can become arbitrarily large.

To mitigate this issue, in this work we add a stabilizing term j—defined shortly in (19)—to
the mass and stiffness matrices, so that their condition numbers are bounded, independently of
how the domain Ω is located with respect to the triangulation T [14,53]. Adding stabilization
to (14) results in the following weak form: Find u ∈ Vh such that

(u̇, v)Ω + γM j (u̇, v) + a(u, v) + γAh−2
T λj (u, v) = L(v), ∀v ∈ Vh, (17)
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(a) (b) (c)

Fig. 3 (a) An element having a small intersection, shown in gray, with the domain; (b) faces belonging to
F2; and (c) faces belonging to F1

where γM and γA are scalar constants.
In order to state the definition of stabilization (19), denote by Fs the set of faces, as seen in

Fig. 3b and c. That is, Fs is the set of all faces of the elements in TΓ , excluding the boundary
faces of Ts :

Fs = {F = TA ∩ TB : TA ∈ TΓ or TB ∈ TΓ , TA, TB ∈ Ts}. (18)

Then, the stabilization term is defined as:

js(u, v) =
∑

F∈Fs

p
∑

k=1

h2k+1
T

(2k + 1)(k!)2

〈

[∂k
n u], [∂k

n v]
〉

F
, (19)

where [u] = u|F+ − u|F− is the jump over a face, F ; n refers to a normal of F ; and ∂k
n u

denotes the k-th order normal derivative. The scaling with respect to k of the terms in (19)
is based on how the stabilization was derived. In particular, the k!-factors come from the
Taylor-expansion and the factor 2k + 1 comes from integrating each term once.

We now consider the composite domain problem (3–9). To derive the weak formulation,
one follows essentially the same steps as for the single domain problem, namely:

1. For both (3) and (4), multiply the equation for us with a test function vs ∈ V s
h , and then

integrate by parts;
2. Add terms consistent with the interface and boundary conditions; and
3. Add stabilization terms j1 and j2 over F1 and F2, respectively.

This results in the following weak formulation for (3–9). Find u = {u1, u2} ∈ V 1
h × V 2

h such
that:

M(u̇, v) + A(u, v) + aΓ (u, v) + a∂Ω (u, v)

= LΩ (v) + LΓ (v) + L∂Ω , ∀v = {v1, v2} ∈ V 1
h × V 2

h , (20)

where the bilinear forms M and A correspond to the stabilized mass and stiffness matrices:

M(u̇, v) =
2

∑

s=1

(u̇s, vs)Ωs + γM js(u̇s, vs), (21)

A(u, v) =
2

∑

s=1

(λ∇us,∇vs)Ωs + γAh−2
T λjs(us, vs); (22)
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LΩ corresponds to the forcing function:

LΩ (v) =
2

∑

s=1

( fs, vs)Ωs ; (23)

aΓ and LΓ consistently enforce the interface conditions (8, 9):

aΓ (u, v) = −
〈

[u], {λ
∂v

∂n
}
〉

Γ

−
〈

{λ
∂u

∂n
}, [v]

〉

Γ

+
〈
γΓ

hT

[u], [v]
〉

Γ

, (24)

LΓ (v) =
〈
γΓ

hT

μ1, [v]
〉

Γ

+ 〈κ1μ2, v2〉Γ + 〈κ2μ2, v1〉Γ −
〈

μ1, {λ
∂v

∂n
}
〉

Γ

; (25)

and the terms a∂Ω and L∂Ω enforce the boundary condition (7) along the outer boundary,
∂Ω:

a∂Ω (u, v) = −
〈

λ
∂u1

∂n
, v1

〉

∂Ω

−
〈

u1, λ
∂v1

∂n

〉

∂Ω

+
γD

hT

〈λu1, v1〉∂Ω , (26)

L∂Ω (v) =
〈

λψ,
γD

hT

v1 −
∂v1

∂n

〉

∂Ω

. (27)

In (24–27), n denotes the outward pointing normal at either Γ or ∂Ω (depending on the
domain of integration); κ1 + κ2 = 1, so that {v} = κ1v1 + κ2v2 is a convex combination;
and γΓ , κ1, κ2 are chosen as in [13]:

κ1 =
λ2

λ1 + λ2
, κ2 =

λ1

λ1 + λ2
, γΓ = γD

λ1λ2

λ1 + λ2
. (28)

The remaining parameters (appearing in Eqs. 21, 22, 26–28) are given by:

γM = 0.75, γA = 1.5, γD = 5p2. (29)

The scaling of γD with respect to p follows from an inverse inequality. When p = 1 these
reduce to the same parameters as the ones used in [71], where γM was chosen based on
numerical experiments on the condition number of the mass matrix. This also agrees with
the choice of γA and γD in [14], where γA was investigated numerically.

In order to use cut-FEM, one needs a way to perform integration over the intersected
elements TΓ . For example, with the interface problem, on each element K ∈ TΓ , we need
a quadrature rule for the K ∩ Ω1, K ∩ Ω2 and K ∩ Γ . For the numerical tests in this work
(Sect. 4), we represent the geometry by a level set function, and compute high-order accurate
quadrature rules with the algorithm from [68].

Remark 3 Optimal (second-order) convergence was rigorously proven for cut-FEM applied
to the Poisson problem in [14]. As far as we know, there is no rigorous proof of higher-order
convergence for cut-FEM, though such a proof would likely be similar to the second-order
case.

3.2 DPM

We continue in this section with a brief introduction to the Difference Potentials Method
(DPM), which was originally proposed by Ryaben’kii (see [64–66], and see [29,33] for
papers in his honor). Our aim is to consider the numerical approximation of PDEs on arbitrary,
smooth geometries (defined either explicitly or implicitly) using the DPM together with
standard, finite-difference discretizations of (1) or (3, 4) on uniform, Cartesian grids, which
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need not conform with boundaries or interfaces. To this end, we work with high-order methods
for interface problems based on Difference Potentials, which were originally developed in
[67] and [3–6,26,28]. We also introduce new developments here for handling implicitly-
defined geometries. (The reader can consult [65] for the general theory of the Difference
Potentials Method.)

Broadly, the main idea of the DPM is to reduce uniquely solvable and well-posed boundary
value problems in a domain Ω to pseudo-differential Boundary Equations with Projections

(BEP) on the boundary of Ω . First, we introduce a computationally simple auxiliary domain
as part of the method. The original domain is embedded into the auxiliary domain, which
is then discretized using a uniform Cartesian grid. Next, we define a Difference Potentials
operator via the solution of a simple Auxiliary Problem (defined on the auxilairy domain),
and construct the discrete, pseudo-differential Boundary Equations with Projections (BEP)
at grid points near the continuous boundary or interface Γ . (This set of grid points is called
the discrete grid boundary.) Once constructed, the BEP are then solved together with the
boundary/interface conditions to obtain the value of the solution at the discrete grid boundary.
Lastly, using these reconstructed values of the solution at the discrete grid boundary, the
approximation to the solution in the domain Ω is obtained through the discrete, generalized

Green’s formula.
Mathematically, the DPM is a discrete analog of the method of Calderón’s potentials in

the theory of partial differential equations. The DPM, however, does not require explicit
knowledge of Green’s functions. Although we use an Auxiliary Problem (AP) discretized
by finite differences, the DPM is not limited to this choice of spatial discretization. Indeed,
numerical methods based on the idea of Difference Potentials can be designed with whichever
choice of spatial discretization is most natural for the problem at hand (e.g., see [25]).

Practically, the main computational complexity of the DPM reduces to the required solu-
tions of the AP, which can be done very efficiently using fast, standard O(N log N ) solvers.
Moreover, in general the DPM can be applied to problems with general boundary or interface
conditions, with no change to the discretization of the PDE.

Let us now briefly introduce the DPM for the numerical approximation of parabolic
interface models (3–9). First, we must introduce the point-sets that will be used throughout
the DPM. (Note that the main construction of the method below applies to the single domain
problem (1, 2), after omitting the index s and replacing interface conditions with boundary
conditions; see [6].)

Let Ωs (s = 1, 2) be embedded in a rectangular auxiliary domain Ω0
s . Introduce a uniform,

Cartesian grid denoted M0
s on Ω0

s , with grid-spacing hs . Let M+
s = M0

s ∩ Ωs denote the
grid points inside each subdomain Ωs , and M−

s = M0
s \M+

s the grid points outside each
subdomain Ωs . Note that the auxiliary domains Ω0

1 , Ω0
2 and auxiliary grids M0

1 , M0
2 need not

agree, and indeed may be selected completely independently, given considerations regarding
accuracy, adaptivity, or efficiency.

Define a finite-difference stencil N
s,α
j,k , with α = 5, 9, to be the stencil of the standard

five-point or a wide nine-point Laplacian, i.e.,

N
s,5
j,k = {(x j , yk), (x j±1, yk), (x j , yk±1)} or

N
s,9
j,k = {(x j , yk), (x j±1, yk), (x j , yk±1), (x j±2, yk), (x j , yk±2)}. (30)

Next, with α fixed, define the point-sets

N 0
s =

⋃

(x j ,yk )∈M0
s

N
s,α
j,k , N+

s =
⋃

(x j ,yk )∈M+
s

N
s,α
j,k , and N−

s =
⋃

(x j ,yk )∈M−
s

N
s,α
j,k . (31)
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(a) (b)

Fig. 4 An example of the point-sets for the second-order Difference Potentials Method, applied to a single
domain (s omitted for brevity), with a rotated ellipse Ω and a rectangular auxiliary domain Ω0, showing (a)
the physical grids M+ (solid dots) and N+ (open circles), with M+ ⊂ N+, and (b) the discrete grid boundary
γ (open circles)

The point-set N+
s (N−

s , N 0
s ) enlarges the point-set M+

s (M−
s , M0

s ), by taking the union
of finite-difference stencils at every point in M+

s (M−
s , M0

s ). Therefore, N+
s contains a “thin

row” of points belonging to the complement of Ωs , so that N+
s �⊂ Ωs , even though M+

s ⊂ Ωs .
(Likewise, N−

s �⊂ Ω\Ωs , even though M−
s ⊂ Ω\Ωs).

Lastly, we now define the important point-set

γs = N+
s

⋂

N−
s , (32)

which we call the discrete grid boundary. In words, γs is the set of grid points that straddle
the continuous interface Γ . (See Fig. 4 for an example of these point-sets, given a single
elliptical domain Ω .) Note that the point-sets M+

s , N+
s , and γs will be used throughout the

Difference Potentials Method.
Here, we define the fully-discrete finite-difference discretization of (3, 4), and then define

the Auxiliary Problem. Indeed, the discretization we consider is

Ls

t,hui+1

s = F i+1
s , (x j , yk) ∈ M+

s , (33)

where (i) Ls

t,hui+1

s := λs(t
i+1)
hui+1

s − σui+1
s , (ii) 
h is either a five- or nine-point

Laplacian in each subdomain, and (iii) σ and F i+1
s follow from the choice of time- and

spatial-discretizations. (Here, we have simplified notation slightly by assuming that h :=
h1 = h2, which need not be the same in general.) For full details of the discretization,
including the choice of BDF2 or BDF4 in the time discretization, we refer the reader to
“Appendix 8.1”.

The choices of discretization (33) in each subdomain need not be the same. As in [3,6],
one could choose a second- and fourth-order discretization on M+

1 and M+
2 , respectively,

given considerations about accuracy, adaptivity, expected regularity of the analytical solution
in each domain, etc.

Next, we define the discrete Auxiliary Problem, which plays a central role in the construc-
tion of the Difference Potentials operator, the resulting Boundary Equations with Projection
at the discrete grid boundary, and in the numerical approximation of the solution via the
discrete, generalized Green’s formula.
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Definition 1 (Discrete Auxiliary Problem (AP)) At time t i+1, given the right-hand side grid
function q i+1

s : M0
s → R, the following difference Eqs. (34, 35) are defined as the discrete AP.

Ls

t,hui+1

s = q i+1
s , (x j , yk) ∈ M0

s (34)

ui+1
s = 0, (x j , yk) ∈ N 0

s \M0
s (35)

Remark 4 For a given right-hand side q i+1
s , the solution of the discrete AP (34, 35) defines

a discrete Green’s operator Gs

t,hq i+1

s . The choice of boundary conditions (35) will affect

the resulting grid function Gs

t,hq i+1

s , and thus the Boundary Equations with Projection
defined below. However, the choice of boundary conditions (35) in the AP will not affect
the numerical approximation of (3–9), so long as the discrete AP is uniquely solvable and
well-posed.

Let us denote by Gs

t,h F i+1

s the particular solution on N+
s of the fully-discrete problem

(33), defined by solving the AP (34, 35) with

q i+1
s =

{

F i+1
s , (x j , yk) ∈ M+

s ,

0, (x j , yk) ∈ M−
s ,

(36)

and restricting the solution from N 0
s to N+

s .
Let us also introduce a linear space Vγs of all grid functions denoted vi+1

γs
, which are

defined on γs and extended by zero to the other points of N 0
s . These grid functions are

referred to as discrete densities on γs .

Definition 2 (The Difference Potential of a density.) The Difference Potential of a given
density vi+1

γs
is the grid function P i+1

N+
s

vi+1
γs

on N+
s , defined by solving the AP (34, 35) with

q i+1
s =

{

0, (x j , yk) ∈ M−
s ,

Ls

t,h[vi+1

γs
], (x j , yk) ∈ M+

s ,
(37)

and restricting the solution from N 0
s to the point-set N+

s .

Note that P i+1
N+

s
: Vγs → N+

s is a linear operator on the space Vγs of densities. Moreover,

the coefficients of P i+1
N+

s
can be computed by solving the AP (Definition 1) with the appropriate

density vi+1
γs

defined at the points (x j , yk) ∈ γs .

Definition 3 (The Trace operator.) Given a grid function vi+1
s , we denote by Trγs [vi+1

s ] the
Trace (or Restriction) from N+

s to γs .
Moreover, for a given density vi+1

γs
, denote the trace of the Difference Potential of vi+1

γs

by Pγs v
i+1
γs

. In other words, Pγs v
i+1
γs

= Trγs [P i+1
N+

s
vi+1
γs

].

Now we can state the central theorem of the Difference Potentials Method that will allow
us to reformulate the finite-difference Eq. (33) on M+

s (without imposing any boundary or
interface conditions yet) into the equivalent Boundary Equations with Projections on γs .

Theorem 1 (Boundary Equations with Projection (BEP)) At time-level t i+1, the discrete

density ui+1
γs

(s = 1, 2) is the trace of some solution ui+1
s on domain Ωs to the Difference

Eq. (33), i.e., ui+1
γs

:= Trγs [ui+1
s ], if and only if the following BEP holds

ui+1
γs

− P i+1
γs

ui+1
γs

= Trγs [Gi+1

t,h F i+1

s ], (x j , yk) ∈ γs, (38)

with Trγs [·] and Pγs defined in Definition 3.
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Proof See [65] for the general theory of DPM (including the proof for general elliptic PDE),
or one of [3,5,6] for the proof in the case of parabolic interface problems. ⊓⊔

Remark 5 A given density vi+1
γs

is the trace of some solution of the fully-discrete finite-
difference Eq. (33) if and only if it is a solution of the BEP.

However, since boundary or interface conditions have not yet been imposed, the BEP will
have infinitely many solutions ui+1

γs
. As originally disucssed in [3–6,26,28], in this work we

consider the following approach in order to find a unique solution of the BEP.
At each time level t i+1, one can approximate the solution of (3–9) at the discrete grid

boundary γs , using the Cauchy data of (3–9) on the continuous interface Γ , up to the desired
second- or fourth-order accuracy. (By Cauchy data, we mean the trace of the solution of (3–9),
together with the trace of its normal derivative, on Γ .) Below, we will define an Extension
Operator which will extend the Cauchy data of (3–9) from Γ to γs .

As we will see, the Extension Operator in this work depends only on the given parabolic
interface model. Moreover, we will use a finite-dimensional, spectral representation for the
Cauchy data of (3–9) on Γ . Then, we will use the Extension Operator, together with the
BEP (38) and the interface conditions (8, 9), to obtain a linear system of equations for the
coefficients of the finite-dimensional, spectral representation. Hence, the derived BEP will
be solved for the unknown coefficients of the Cauchy data. Using this obtained Cauchy data,
we will construct the approximation of (3–9) using the Extension Operator, together with the
discrete, generalized Green’s formula.

Let us now briefly discuss the Extension Operator for the second-order numerical method,
and refer the reader to “Appendix 8.2” for details (including details for the fourth-order
numerical method). For points in the vicinity of Γ , we define a coordinate system (d, ϑ),
where ϑ is arclength from some reference point, and d is the signed distance in the normal
direction from the point to Γ . Now, as a first step towards defining the Extension Operator,
we define a new function

vi+1
s (d, ϑ) = vi+1

s (0, ϑ) +
p

∑

l=1

1

l!
∂ lvi+1

s (0, ϑ)

∂nl
dl , (39)

where n is the unit outward normal vector at Γ . We choose p = 2 for the second-order method
(which we will discuss now) and p = 4 for the fourth-order method (see “Appendix 8.2”).

As a next step for the second-order method (BDF2–DPM2), we define

vi+1
s (0, ϑ) = ui+1

s |Γ ,
∂vi+1

s (0, ϑ)

∂n
=

∂ui+1
s

∂n

∣
∣
∣
∣
Γ

, and
∂2vi+1

s (0, ϑ)

∂n2
=

∂2ui+1
s

∂n2

∣
∣
∣
∣
Γ

,

(40)

where ui+1
s := us(x, y, t i+1),

∂ui+1
s

∂n
:= ∂us (x,y,t i+1)

∂n
, etc. As a last step, a straightforward

sequence of calculations (see “Appendix 8.2”) shows that

∂2ui+1
s

∂n2
≈

1

λs

(
3ui+1

s − 4ui
s + ui−1

s

2
t
− f i+1

)

−
∂2ui+1

s

∂ϑ2
+ κ

∂ui+1
s

∂n
, (41)

where κ denotes the curvature of Γ . Therefore, with vi+1
s (d, ϑ) defined by (39–41), the only

unknown data at each time step t i+1 are the unknown Dirichlet data ui+1
s and the unknown

Neumann data
∂ui+1

s

∂n
. The Extension Operator will incorporate the interface conditions (8, 9)

when it is combined with the BEP (38), so that the only independent unknowns at each time
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step t i+1 will be

(

ui+1
1 ,

∂ui+1
1

∂n

)∣
∣
∣
∣
Γ

or

(

ui+1
2 ,

∂ui+1
2

∂n

)∣
∣
∣
∣
Γ

. (This is also true for the fourth-order

numerical method—see Appendices 8.2 and 8.3.)
Now we are ready to define the Extension Operator that extends the Cauchy data of (3–9)

from Γ to γs .

Definition 4 (The Extension Operator.) Let vi+1
s (d, ϑ) be defined by (39–41). Let u

i+1
s,Γ

denote the Cauchy data of (3–9) at t i+1 on Γ , i.e., u
i+1
s,Γ =

(

ui+1
s ,

∂ui+1
s

∂n

)∣
∣
∣
Γ

. The extension

operator Exs that extends u
i+1
s,Γ from Γ to γs is

Exs u
i+1
s,Γ := vi+1

s (d, ϑ)|γs . (42)

For a given point (x j , yk) ∈ γs , note that d is the signed distance between (x j , yk) and its
orthogonal projection on Γ , while ϑ is the arclength along Γ between a reference point and
the orthogonal projection of (x j , yk).

Next, we briefly discuss the finite-dimensional, spectral representation of Cauchy data
u

i+1
s,Γ . Indeed, we wish to choose a basis φν(ϑ) on Γ (ν = 1, 2, 3, . . .) in order to accurately

approximate the two components of the Cauchy data u
i+1
s,Γ . To be specific, whichever basis

we choose, we require that

εN 0,N 1(u
i+1
s,Γ )

= min
c

s,i+1
1,ν ,c

s,i+1
2,ν

∫

Γ

(∣
∣
∣u

i+1
s −

N 0
∑

ν=1

c
s,i+1
1,ν φν(ϑ)

∣
∣
∣

2
+

∣
∣
∣

∂ui+1
s

∂n
−

N 1
∑

ν=1

c
s,i+1
2,ν φν(ϑ)

∣
∣
∣

2
)

dϑ

(43)

tends to zero as N 0, N 1 → ∞, for some sequence of real numbers (c
s,i+1
1,ν )N

0

ν=1 and

(c
s,i+1
2,ν )N

1

ν=1. In other words, we require

lim
N 0,N 1→∞

εN 0,N 1(u
i+1
s,Γ ) = 0. (44)

Now let us discuss a choice of basis. In this work, recall that we consider interfaces Γ

that are at least C2(Γ ) (due to the choice of smooth, circular geometries). Also, as we will
see in Sect. 4.1, each function u considered in the test problems on a composite domain
(TP–2A, TP–2B, TP–2C) is locally smooth, in the sense that u|Ω1 = u1 and u|Ω2 = u2 are
smooth in Ω1 and Ω2, respectively. Moreover, each component of the Cauchy data u

i+1
1,Γ and

u
i+1
2,Γ are smooth, periodic functions of arclength ϑ . (Note that u

i+1
1,Γ and u

i+1
2,Γ need not agree,

and indeed do not—neither μ1(x, y, t) nor μ2(x, y, t) in (8, 9) are identically equal to zero,
for any of our test problems on a composite domain.)

Therefore, in this work, we choose a standard trigonometric basis φν(ϑ), with

φ1(ϑ) = 1, φ2K (ϑ) = cos

(
2π Kϑ

|Γ |

)

, φ2K+1(ϑ) = sin

(
2π Kϑ

|Γ |

)

, (45)

and K > 1. Moreover, at every time step t i+1, we will discretize the Cauchy data u
i+1
s,Γ =

(

ui+1
s ,

∂ui+1
s

∂n

)∣
∣
∣
Γ

using this basis. Therefore, we let

ũ
i+1
s,Γ =

N 0
∑

ν=1

c
s,i+1
1,ν �0

ν(ϑ) +
N 1
∑

ν=1

c
s,i+1
2,ν �1

ν(ϑ) and ũi+1
s,Γ ≈ u

i+1
s,Γ , (46)
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where �0
ν = (φν, 0) and �1

ν = (0, φν) are the set of basis functions used to represent the
Cauchy data on the interface Γ .

Remark 6 It should be also possible to relax regularity assumption on the domain under
consideration. For example, one can consider piecewise-smooth, locally-supported basis
functions (defined on Γ ) as the part of the Extension Operator. For example, [52] use this
approach to design a high-order accurate numerical method for the Helmholtz equation, in a
geometry with a reentrant corner. Furthermore, [80,81] combine the DPM together with the
XFEM, and design a DPM for linear elasticity in a non-Lipschitz domain (with a cut).

Next, in “Appendix 8.3”, we derive a linear system for the coefficients (c
s,i+1
1,ν )N

0

ν=1 and

(c
s,i+1
2,ν )N

1

ν=1, by combining the interface conditions (8, 9), the BEP (38), the Extension
Operator (39–41), and the spectral discretization (46). Then, the numerical approximation
ui+1

s ≈ us(x j , yk, t i+1) of (3–9) at all grid-points (x j , yk) ∈ N+
s follows directly from the

discrete, generalized Green’s formula, which we state now.

Definition 5 (Discrete, generalized Green’s formula.) At each time step t i+1, the numerical
approximation ui+1

s ≈ us(x j , yk, t i+1)|(x j ,yk )∈N+
s

of (3–9) is given by

ui+1
s := P i+1

N+
s

ui+1
γs

+ Gs

t,h F i+1

s . (47)

Here, ui+1
γs

= Exs ũ
i+1
s,Γ , and ũ

i+1
s,Γ is constructed from (i) the solution of the BEP (see

“Appendix 8.3”) and (ii) the spectral discretization (46). (Recall that P i+1
N+

s
ui+1

γs
is the Differ-

ence Potential of the density ui+1
γs

, while Gs

t,h F i+1

s is the Particular Solution.)

In this work, we also propose a novel feature of DPM, extending the method orig-
inally developed in [67] and [3–6,26,28] to the composite domain problem (3–9) with
implicitly-defined geometry. The primary difference between Difference Potentials Methods
on explicitly-defined versus implicitly-defined composite domains is in the approximation
of the interface Γ , which must be done accurately and efficiently, in order to maintain the
desired second- or fourth-order accuracy.

The main idea of DPM-based methods for implicitly-defined geometry is to seek an
accurate and efficient explicit parameterization of the implicit boundary/interface. First, we
represent the geometry implicitly via a level set function F(x, y) on M0. Then we construct a
local interpolant F̃(x, y) of F(x, y) on a subset of M0 near the continuous interface Γ . Next,
we parameterize Γ by arc-length using numerical quadrature. With this parameterization, we
(i) compute the Fourier series expansion from initial conditions for the Cauchy data u

i+1
s,Γ on

the implicit interface Γ , and (ii) construct the extension operators (Definition 4) with p = 2
or p = 4.

Conjecture 1 (High-order accuracy of the DPM with implicit geometry) Due to the second-

or fourth-order accuracy (in both space and time) of the underlying discretization (33), the

extension operator (42) with p = 2 or p = 4, and the established error estimates and

convergence results for the DPM for general linear elliptic boundary value problems on

smooth domains (presented in [33,62,63,65]), we expect second- and fourth-order accuracy

in the maximum norm for the error in the computed solution (59 or 60) for both the single

and composite domain parabolic problems.

Remark 7 Indeed, in the numerical results (Sect. 5) we see that the computed solution (47) at
every time level t i+1 has accuracy O(h2+
t2) for the second-order method, and O(h4+
t4)
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for the fourth-order method, for both the single and composite domain problems, with explicit
or implicit geometry. See [3,6,27,67] for more details and numerical tests involving explicit
(circular and elliptical) geometries.

Main Steps of the algorithm Let us summarize the main steps for the Difference Potentials
Method.

– Step 1 Introduce a computationally simple Auxiliary Domain Ω0
s (s = 1, 2) and formulate

the Auxiliary Problem (AP; Definition 1).
– Step 2 At each time step t i+1, compute the Particular Solution ui+1

s = Gi+1

t,h F i+1

s ,

(x j , yk) ∈ N+
s , using the AP with the right-hand side (36).

– Step 3 Construct the matrix in the boundary Eq. (79) (discussed in “Appendix 8.3”),
derived from the Boundary Equation with Projection (BEP) (38), via several solutions
of the AP. (When the diffusion coefficients λs are constant, this is done once, as a pre-
processing step before the first time step.)

– Step 4 Solve boundary Eq. (79) and compute the approximation of the density ui+1
γs

, by
applying the Extension Operator (42) to the solution of (79).

– Step 5 Construct the Difference Potentials PN+
s γs

ui+1
γs

of the density ui+1
γs

, using the AP
with the right-hand side (37).

– Step 6 Compute the numerical approximation ui+1
s ≈ us(x j , yk, t i+1) of the PDE (3–9)

using the discrete, generalized Green’s formula (47).

3.3 SBP–SAT–FD

We continue in this section with a brief presentation of SBP–SAT–FD, for solving the
parabolic problems presented in Sect. 2. For more detailed discussions of the SBP–SAT–
FD method, we refer the reader to two review papers [21,73].

The SBP–SAT–FD method was originally used on Cartesian grids. To resolve complex
geometries, we consider a grid mapping approach by transfinite interpolation [43]. A smooth
mapping requires that the physical domain is a quadrilateral, possibly with smooth, curved
sides. If the physical domain does not have the desired shape, we then partition the physical
domain into subdomains, so that each subdomain can be mapped smoothly to the reference
domain. As an example, the single domain of equation (1, 2), shown in Figure 5a, is divided
into five subdomains. The five subdomains consist of one square subdomain, and four iden-
tical quadrilateral subdomains (modulo rotation by π/2) with curved sides. Similarly, the
composite domain of equation (3–9) is divided into nine subdomains, as shown in Fig. 5b.
Suitable interface conditions are imposed to patch the subdomains together.

Although the side-length of the centered square is arbitrary (as long as the square is
strictly inside the circle), its size and position have a significant impact on the quality of the
curvilinear grid. In a high-quality mesh, the elements should not be skewed too much, and
the sizes of the elements should be nearly uniform. In practice, it is usually difficult to know
a priori the optimal way of domain division.

A Cartesian grid in the reference domain is mapped to a curvilinear grid in each subdomain.
The grids are aligned with boundaries and interfaces, thus avoiding small-cut difficulties
sometimes associated with embedded methods. In this paper, we only consider conforming
grid interfaces, i.e., the grid points from two adjacent blocks match on the interface. For
numerical treatment of non-conforming grid interfaces in the SBP–SAT–FD framework, see
[44,55].

When a physical domain is mapped to a reference domain, the governing equation is
transformed to the Cartesian coordinate in the reference domain. The transformed equation
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(a) (b)

Fig. 5 A (a) circular domain (cf. Fig. 1), divided into five subdomains; and (b) composite domain, divided
into nine subdomains

is usually in a more complicated form than the original equation. In general, a parabolic
problem

ut = uxx + u yy, (x, y) ∈ Ω (48)

in a physical domain will be transformed to

Jut = (αuξ )ξ + (βuη)ξ + (βuξ )η + (γ uη)η, (ξ, η) ∈ [0, 1]2, (49)

where (ξ, η) is the Cartesian coordinate in the unit square, and J (ξ, η), α(ξ, η), β(ξ, η),
γ (ξ, η) depend on the geometry of the physical domain and on the chosen mapping. In
particular, we use transfinite interpolation for the grid mapping. In this case, the precise
form of (49) and the derivation of the grid transformation are presented in Section 3.2
of [7]. Even though the original equation is in the simplest form with unit coefficients,
the transformed equation has variable coefficients and mixed derivatives. Therefore, it is
important to construct multi-block finite difference methods solving the transformed equation
(49). Hence, we need two SBP operators, D1 ≈ ∂/∂x to approximate a first derivative, and

D
(b)
2 ≈ ∂/∂x(b(x)∂/∂x) to approximate a second derivative with variable coefficient, where

b(x) > 0 is a known function. Below we discuss SBP properties, and start with the first
derivative.

Consider two smooth functions u(x), v(x) on x ∈ [0, 1]. We discretize [0, 1] uniformly
by N grid points, and denote the restriction of u(x), v(x) onto the grid by u, v, respectively.
Integration by parts states:

∫ 1

0
uxv dx = uv

∣
∣
∣

1

0
−

∫ 1

0
uvx dx . (50)

The SBP operator D1 mimics integration by parts:

(D1u)T Hv = uT Bv − uT H D1v, (51)

where H is symmetric positive definite—thus defining an inner product—and

B = diag(−1, 0, · · · , 0, 1).

In fact, H is also a quadrature [20]. It is easy to verify that (51) is equivalent to

DT
1 H + H D1 = B, (52)
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which is the SBP property for the first derivative operator. At the grid points in the interior
of the domain, standard, central, finite-difference stencils can be used in D1, and the weights
of the standard, discrete L2-norm are used in H . At a few points close to boundaries, special
stencils and weights must be constructed in D1 and H , respectively, to satisfy (52).

The SBP operators D1 were first constructed in [45] and later revisited in [72]. The SBP
norm H can be diagonal or non-diagonal. While non-diagonal norm SBP operators have
a better accuracy property than diagonal norm SBP operators, when terms with variable
coefficients are present in the equation, a stability proof is only possible with diagonal norm
SBP operators. Therefore, we use diagonal norm SBP operators in this paper.

For a second derivative with variable coefficients, the SBP operators D
(b)
2 were constructed

in [54]. We remark that applying D1 twice also approximates a second derivative, but is less

accurate and more computationally expensive than D
(b)
2 .

Due to the choice of centered difference stencils at interior grid points, the order of
accuracy of the SBP operators is even at these points, and is often denoted by 2p. To fulfill
the SBP property, at a few grid points near boundaries, the order of accuracy is reduced to p

for diagonal norm operators. This detail notwithstanding, such a scheme is often referred to
as 2pth-order accurate. In fact, for the second- and fourth-order SBP–SAT–FD schemes used
in this paper to solve parabolic problems, we can expect a second- and fourth-order overall
convergence rate, respectively [77].

An SBP operator only approximates a derivative. When imposing boundary and interface
conditions, it is important that the SBP property is preserved and an energy estimate is
obtained. For this reason, we consider the SAT method [16], where penalty terms are added
to the semi-discretization, imposing the boundary and interface conditions weakly. This
bears similarities with the Nitsche finite element method [60] and the discontinuous Galerkin
method [40].

We note that in [75], SBP–SAT–FD methods were developed for the wave equation

Jvt t = (avξ )ξ + (bvη)ξ + (bvξ )η + (cvη)η, (ξ, η) ∈ [0, 1]2, (53)

with Dirichlet boundary conditions, Neumann boundary conditions, and interface conditions.
Comparing Eq. (53) with (49), the only difference is that the wave equation has a second
derivative in time, while the heat equation has a first derivative in time. The spatial derivatives
of (53) and (49) are the same.

Assuming homogeneous boundary data for simplified notation, we write the SBP–SAT–
FD discretization of (53) as

vt t = Qv, (54)

where Q is the spatial discretization operator including the boundary implementation. For
the scheme developed in [75], stability is proved by the energy method by multiplying (54)
by vT

t H2 from the left,
vT

t H2vt t = vT
t H2 Qv, (55)

where H2 is a diagonal, positive-definite operator, obtained through a tensor product from
the corresponding SBP norm, H , in one spatial dimension. It is shown in [75] that H2 Q is
symmetric and negative semi-definite. Therefore, we can write (55) as

d

dt
(vT

t H2vt − vT H2 Qv) = 0,

where the discrete energy, vT
t H2vt − vT H2 Qv, for (53) is conserved.
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If we use the same operator Q to discretize the heat equation (49) with the same boundary
condition as the wave equation (53), then the scheme

vt = Qv, (56)

is also stable. To see this, we multiply (56) by vT H2 from the left, and obtain

d

dt
(vT H2v) = vT H2 Qv ≤ 0, (57)

where vT H2v is the discrete energy for (49). In this paper, we use the spatial discretization
operators developed in [75] to solve both the single (1, 2) and composite domain problems
(3–9).

In [10], SBP–SAT–FD methods are discussed for the one-dimensional heat equation with
constant coefficients, both in a single domain and a composite domain. In theory, these
schemes can also be generalized to solve Eq. (49), but are different from the ones used in
this paper.

4 Test Problems

In this section, we first list the test problems that we will consider (in Sect. 4.1), and then briefly
motivate and discuss these choices (in Sect. 4.2). The tests we propose are “manufactured
solutions”, in the sense that we state an exact solution u(x, y, t) or (u1(x, y, t), u2(x, y, t))

and a diffusion coefficient λ(t) or (λ1, λ2). From (1, 2) (for the single domain problem)
or (3–9) (for the composite domain problem) we compute the (i) right-hand side, (ii) ini-
tial conditions, (iii) boundary condition, and (iv) functions (μ1(x, y, t), μ2(x, y, t)) for the
interface/matching conditions. Then, (i–iv), together with the diffusion coefficient, serve as
the inputs for our numerical methods.

4.1 List of Test Problems

1. Single-domain, with an explicitly-defined boundary for DPM and SBP–SAT–FD, or an
implicitly-defined boundary for cut-FEM.

(a) Constant diffusion (Test Problem 1A; TP–1A): Consider the PDE (1, 2), with λ(t) ≡
1, Ω = {(x, y) ∈ R

2 : x2 + y2 ≤ 1}, and the final time T = 1.0. Then, TP–1A
(adapted from [6]), is given by

u(x, y, t) = x9 y8e−t . (TP–1A)

(b) Time-varying diffusion (Test Problem 3A; TP–3A): Same as TP–1A, but with diffu-
sion coefficient

λ(t) = 11/10 + sin(10π t). (TP–3A)

2. Composite-domain, with an explicitly-defined interface (for DPM and SBP–SAT–FD)
or implicitly-defined interface (for cut-FEM and DPM). Consider the PDE (3–9), with
Ω = [−2, 2] × [−2, 2], Ω2 = {(x, y) ∈ R

2 : x2 + y2 ≤ 1}, Ω1 = Ω\Ω2, Γ =
{(x, y) ∈ R

2 : x2 + y2 = 1}, and the final time T = 1.0.
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(a) (Test Problem 2A; TP–2A): A modified version of the test adapted from [6,48]. Let
(λ1, λ2) = (10, 1), and

u(x, y, t) =
{

e−t sin x cos y, (x, y) ∈ Ω1,

e−t (x2 − y2), (x, y) ∈ Ω2.
(TP–2A)

(b) High-frequency oscillations (Test Problem 2B; TP–2B): A modified version of the
test adapted from [6]. Let (λ1, λ2) = (10, 1), and

u(x, y, t) =
{

e−t sin(3πx) cos(7πy), (x, y) ∈ Ω1,

e−t (x2 − y2), (x, y) ∈ Ω2.
(TP–2B)

(c) Large contrast in diffusion coefficients, and large jumps in both solution and flux at
interface (Test Problem 2C; TP–2C): Let (λ1, λ2) = (1000, 1), and

u(x, y, t) =
{

0, (x, y) ∈ Ω1,

1000 sin(10t)x4 y5, (x, y) ∈ Ω2.
(TP–2C)

4.2 Motivation of the Chosen Test Problems

Test Problem 1A (TP–1A) involves a high-degree polynomial, with total degree of 17. This
is a rather straightforward test problem, which allows us to establish a good “baseline” with
which to compare each method. The choice of high degree ensures that there will be no
cancellation of local truncation error, so that we should see—at most—second- or fourth-
order convergence for the given methods, barring some type of superconvergence. Next,
(TP–3A) adds on (incrementally) the complication of time-varying diffusion.

Likewise, (TP–2A) offers a straightforward “baseline” with which to consider the inter-
face problem: The test problem is piecewise-smooth, and the geometry is simplified (see
Remark 1). However, there is a jump in both the analytical solution and its flux, which
requires a well-designed numerical method to accurately approximate. Moreover, (TP–2A)
was first proposed in [48] (see also [6]), and is a good comparison with the immersed interface
method therein.

Then, (TP–2B) adds additional challenges onto (TP–2A) in the form of much higher-
frequency oscillations; while (TP–2C) adds onto (TP–2A) in the form of both (i) large contrast
in diffusion, and (ii) large jumps in the analytical solution and its flux.

5 Numerical Results

5.1 Time Discretization

The spatial discretization for each method is discussed in Sect. 3. For the time discretization,
the backward differentiation formulas of second- and fourth-order (BDF2 and BDF4) are
used for the second- and fourth-order methods, respectively. In each case, the time-step is
given by


t = 0.5h. (58)

However, note that h in (58) bears different physical meanings for each method. Indeed, for
cut-FEM, h is the average distance between the Gauss–Lobatto points; for DPM, h is the grid
spacing in the uniform, Cartesian grid M0 (see the text prior to (33)); and for SBP–SAT–FD,
h is the minimum grid spacing in the reference domain.
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Table 1 Convergence in the
maximum norm (59), for the
second- and fourth-order versions
of each method, applied to Test
Problem 1A (TP–1A), with
diffusion coefficient λ = 1, and
time-step 
t = 0.5h

DOF E : CUT2 Rate DOF E : CUT4 Rate

9944 4.9327E−5 – 10,276 3.1799E−6 –

40,072 1.3798E−5 1.80 39,613 1.9848E−7 4.00

159,912 3.7114E−6 1.88 159,700 1.3330E−8 3.82

DOF E : DPM2 Rate DOF E : DPM4 Rate

10,000 1.7105E−5 – 10,000 2.4782E−6 –

40,000 4.1980E−06 2.03 40,000 5.9672E−8 5.38

160,000 1.0135E−06 2.05 160,000 1.7396E−9 5.10

DOF E : SBP2 Rate DOF E : SBP4 Rate

9861 1.5328E−5 – 9861 2.0636E−6 –

40,365 3.6210E−6 2.08 40,365 1.3083E−7 3.98

163,317 8.8008E−7 2.04 163,317 8.1180E−9 4.01

5.2 Measure for Comparison

Let ui
j,k denote the computed numerical approximation of u(x, y, t) at the grid-point

(x j , yk) ∈ Ω and time t i = i
t ∈ (0, T ]. For the three methods, we will compare the
size of the maximum error in u at the grid points, with respect to the number of degrees of
freedom (DOF). For the single domain problem (1, 2), the maximum error is computed as:

E := max
t i ∈(0,T ]

max
(x j ,yk )∈Ω

|u(x j , yk, t i ) − ui
j,k |, (59)

and for the composite domain problem (3–9) as:

E := max
t i ∈(0,T ]

max
(x j ,yk )∈Ω1∪Ω2

|u(x j , yk, t i ) − ui
j,k |. (60)

5.3 Convergence Results

In the following tables and figures, we state the number of degrees of freedom in the grid,
maximum error (59, 60 for the single- and composite-domain problems, respectively), and
an estimate of the rate of convergence.

In Tables 1, 2, 3, 4 and 5, the estimate of rate of convergence is computed as follows. Let
(DOFn, En) be given, with n = 1, 2, 3 referring to the first, second, and third grids (from
coarsest to finest). Then, for n = 2, 3, compute the standard estimate

ρn =
log(En−1/En)

log(DOFn−1/DOFn)
, (61)

which is the estimated rate of convergence, denoted in Tables 1, 2, 3, 4 and 5 by “Rate”.
In Figs. 6, 7, 10, 11 and 12, the estimate of rate of convergence is computed differently.

Computing a least-square linear regression for the data (log10(
√

DOFn), log10(En)) gives a
line with slope m, where m is the estimate of rate of convergence, reported in the legend on
the right side of each figure.

Overall, we see in Tables 1, 2, 3, 4 and 5 that the error for second-order methods (denoted,
for brevity, as CUT2, DPM2, SBP2) on the finest mesh is similar, or sometimes larger, than
the error for fourth-order methods (denoted CUT4, DPM4, SBP4) on the coarsest mesh—this
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Table 2 Convergence in the
maximum norm (59), for the
second- and fourth-order versions
of each method, applied to Test
Problem 3A (TP–3A), with
diffusion coefficient
λ(t) = 1.1 + sin(π t), and
time-step 
t = 0.5h

DOF E : CUT2 Rate DOF E : CUT4 Rate

9944 4.9605E−5 – 10,276 3.0791E−6 –

40,072 1.3851E−5 1.80 39,613 1.9435E−7 3.99

159,912 3.7176E−6 1.89 159,700 1.3161E−8 3.81

DOF E : DPM2 Rate DOF E : DPM4 Rate

10,000 1.7721E−5 – 10,000 2.3422E−6 –

40,000 4.3619E−6 2.02 40,000 5.7588E−8 5.35

160,000 1.0526E−6 2.05 160,000 1.8398E−9 4.97

DOF E : SBP2 Rate DOF E : SBP4 Rate

9861 1.5665E−5 – 9861 1.8858E−6 –

40,365 3.6965E−6 2.08 40,365 1.1949E−7 3.98

163,317 8.9731E−7 2.04 163,317 7.4149E−9 4.01

Table 3 Convergence in the
maximum norm (60), for the
second- and fourth-order versions
of each method, applied to Test
Problem 2A (TP–2A), with
diffusion coefficients
(λ1, λ2) = (10, 1), and time-step

t = 0.5h. (DPM2-I/DPM4-I
refers to the extension of the
DPM method, to consider
implicit geometry.)

DOF E : CUT2 Rate DOF E : CUT4 Rate

9988 1.0933E−3 – 10,129 2.2215E−6 –

39,988 2.7169E−4 1.97 39,952 1.3254E−07 3.98

159,988 7.2092E−05 1.89 160,729 8.1985E−09 3.93

DOF E : DPM2 Rate DOF E : DPM4 Rate

10,000 3.6380E−5 – 10,000 7.7484E−9 –

40,000 8.8360E−6 2.04 40,000 4.5617E−10 4.09

160000 2.1331E−6 2.05 160,000 2.6398E−11 4.11

DOF E : DPM2-I Rate DOF E : DPM4-I Rate

10,000 3.6381E−5 — 10,000 7.7484E−9 –

40,000 8.8360E−6 2.04 40,000 4.5617E−10 4.09

160,000 2.1331E−6 2.05 160,000 2.6396E−11 4.11

DOF E : SBP2 Rate DOF E : SBP4 Rate

10,537 4.7387E−4 – 10,537 3.4655E−5 –

40,905 1.2049E−4 1.98 40,905 4.3052E−6 3.01

161,161 3.0267E−5 1.99 161,161 5.3535E−7 3.01

illustrates the effectiveness of higher-order methods, when high accuracy is important. Addi-
tionally, comparing the three methods together, the size of the errors for the single-domain
problems (TP–1A, TP–3A) are similar, up to a constant factor; while for the composite-
domain problems (TP–2A, TP–2B, TP–2C) we do see differences of one or two orders of
magnitude, with the DPM having the smallest errors.

In Table 1 and Fig. 6, we observe that the measured rates of convergence for the numerical
approximation of Test Problem 1A (TP–1A) are all ≈ 2 (for the second-order versions) or
≈ 4 (for the fourth-order versions), except for DPM4, which for this test problem is supercon-
vergent, with fifth-order convergence. Such higher-than-expected convergence might occur
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Table 4 Convergence in the
maximum norm (60), for the
second- and fourth-order versions
of each method, applied to Test
Problem 2B (TP–2B), with
diffusion coefficients
(λ1, λ2) = (10, 1), and time-step

t = 0.5h. (DPM2-I/DPM4-I
refers to the extension of the
DPM method, to consider
implicit geometry.)

DOF E : CUT2 Rate DOF E : CUT4 Rate

9988 2.4855E−1 – 10,129 4.7064E−1 –

39,988 5.6850E−2 2.08 39,952 3.6816E−2 3.60

159,988 1.2346E−2 2.18 160,729 2.2361E−3 3.95

DOF E : DPM2 Rate DOF E : DPM4 Rate

10,000 7.1899E−2 – 10,000 7.3065E−3 –

40,000 1.7868E−2 2.01 40,000 6.0014E−4 3.61

160,000 4.4952E−3 1.99 160,000 3.3086E−5 4.18

DOF E : DPM2-I Rate DOF E : DPM4-I Rate

10,000 7.1899E−2 – 10,000 7.3065E−3 –

40,000 1.7868E−2 2.01 40,000 6.0014E−4 3.61

160,000 4.4952E−3 1.99 160,000 3.3086E−5 4.18

DOF E : SBP2 Rate DOF E : SBP4 Rate

10,537 3.2863E−1 – 10,537 2.8321E−1 –

40,905 1.1075E−1 1.57 40,905 3.9277E−2 2.85

161,161 3.5769E−2 1.63 161,161 3.7081E−3 3.40

Table 5 Convergence in the
maximum norm (60), for the
second- and fourth-order versions
of each method, applied to Test
Problem 2C (TP–2C), with
diffusion coefficients
(λ1, λ2) = (1000, 1), and
time-step 
t = 0.5h.
(DPM2-I/DPM4-I refers to the
extension of the DPM method, to
consider implicit geometry.)

DOF E : CUT2 Rate DOF E : CUT4 Rate

9988 6.4110E−1 – 10129 7.1811E−2 –

39988 1.6506E−1 1.92 39952 3.9995E−3 4.08

159988 3.8719E−2 2.07 160729 2.8978E−4 3.71

DOF E : DPM2 Rate DOF E : DPM4 Rate

10,000 1.1178E−1 – 10,000 1.1392E−3 –

40,000 1.8941E−2 2.56 40,000 5.9291E−5 4.26

160,000 4.0950E−3 2.21 160,000 3.2716E−6 4.18

DOF E : DPM2-I Rate DOF E : DPM4-I Rate

10,000 1.0377E−1 – 10,000 1.0905E−3 –

40,000 1.7727E−2 2.55 40,000 5.5494E−5 4.30

160,000 3.8853E−3 2.19 160,000 3.0003E−6 4.21

DOF E : SBP2 Rate DOF E : SBP4 Rate

10,537 1.0025E−1 – 10,537 5.9131E−3 –

40,905 2.5318E−2 1.99 40,905 4.8624E−4 3.60

161,161 6.3459E−3 2.00 161,161 3.5001E−5 3.80

due to several reasons—for example, (i) if the geometry is smooth; (ii) if the magnitude of the
derivatives have fast decay (effectively reducing the local truncation error by a factor of h);
or (iii) if there is cancellation of error due to symmetries in the geometry, or in the analytical
solution.
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Fig. 6 Log–log plot of absolute error (59) versus
√

DOF, and estimated rate of convergence, for the second-
and fourth-order versions of each method, applied to Test Problem 1A (TP–1A). See Table 1 for more details
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Fig. 7 Log–log plot of absolute error (59) versus
√

DOF, and estimated rate of convergence, for the second-
and fourth-order versions of each method, applied to Test Problem 3A (TP–3A). See Table 2 for more details

Table 2 and Fig. 7 show the numerical results for (TP–3A). This test problem has the same
manufactured solution as (TP–1A), but with a time-varying diffusion coefficient. Despite this
added complexity, the numerical results are the same order of accuracy, and in many cases
the errors are the same up to seven digits, when compared with the results for (TP–1A). This
similarity in the numerical results demonstrates that the three methods can robustly handle
time-varying diffusion coefficients.

The plots of spatial error at the final time T = 1.0, shown in Fig. 8, are representative of
other tests (not included in this text) on a single circular domain. The error in the cut-FEM
solution presents largely at the boundary; the error in the DPM solution typically has smooth
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Fig. 8 Plot of error at the final time T = 1.0, for the fourth-order versions of (a) cut-FEM, (b) DPM, and (c)
SBP–SAT–FD, respectively, applied to Test Problem 3A (TP–3A)
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Fig. 9 Plot of error at the final time T = 1.0, for the fourth-order versions of (a) cut-FEM, (b) DPM, and (c)
SBP–SAT–FD, respectively, applied to Test Problem 2A (TP–2A)
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Fig. 10 Log–log plot of absolute error (60) versus
√

DOF, and estimated rate of convergence, for the second-
and fourth-order versions of each method (cut-FEM, DPM with explicit geometry, SBP–SAT–FD), applied to
Test Problem 2A (TP–2A). See Table 3 for more details

100 200 400

10−4

10−3

10−2

10−1

100
CUT2

−2.17

DPM2

−2

SBP2

−1.63

CUT4

−3.87

DPM4

−3.89

SBP4

−3.18

√
DOF

m
a
x

|u
−

u
i j,

k
|

Fig. 11 Log–log plot of absolute error (60) versus
√

DOF, and estimated rate of convergence, for the second-
and fourth-order versions of each method (cut-FEM, DPM with explicit geometry, SBP–SAT–FD), applied to
Test Problem 2B (TP–2B). See Table 4 for more details

error, even for grid points very near Γ ; while the error in the SBP–SAT–FD solution is not
smooth at interfaces introduced by the domain partitioning.

The plots of spatial error at the final time T = 1.0 for (TP–2A) are shown in Fig. 9.
These plots are fairly representative of the other composite domain tests reported herein,
and also of others test problems not included in this work. As in Fig. 8, the cut-FEM has
its largest error at degrees of freedom on cut (intersected) elements; the DPM has piecewise
smooth error, including even grid points at the boundary/interface; and the SBP–SAT–FD
has its largest error at the interfaces between computational subdomains, with particularly
pronounced error at the corners of Ω , where the grid is most stretched.
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Fig. 12 Log–log plot of absolute error (60) versus
√

DOF, and estimated rate of convergence, for the second-
and fourth-order versions of each method (cut-FEM, DPM with explicit geometry, SBP–SAT–FD), applied to
Test Problem 2C (TP–2C). See Table 5 for more details

Regarding the max-norm error in presented in Table 3 and Fig. 10, we see that the DPM has
smaller max-norm by more than an order of magnitude. We also observe that the convergence
rate of the fourth-order SBP–SAT–FD is only three. This suboptimal convergence is inline
with the error plot in Fig. 9c, which shows that the error at the corners of the domain
is significantly larger than elsewhere. In addition, the error is only non-smooth along the
interfaces on the two diagonal lines of the domain. We have also measured the L2 error at
the final time T = 1.0 (not reported in this work), and fourth-order convergence is obtained.

In Table 4 and Fig. 11, we see the numerical results for (TP–2B). The analytical solution is
similar to (TP–2A), though much more oscillatory—this additional challenge is manifested
by an increase in error by several orders of magnitude.

In Table 5 and Fig. 12, we see the numerical results for (TP–2C), which shows that our
numerical methods are robust to large jumps in diffusion coefficients, the analytical solution,
and/or the flux of the true solution. Also, observe that the errors from DPM2/DPM4 (explicit
geometry) and DPM2-I/DPM4-I (implicit geometry) in Tables 3, 4 and 5 are almost identical,
which demonstrates the robustness and flexibility of the DPM.

6 Discussion

There are many possible methods (Sect. 1) for the numerical approximation of PDE posed on
irregular domains, or on composite domains with interfaces. In this work, we consider three
such methods, designed for the high-order accurate numerical approximation of parabolic
PDEs (1, 2 or 3–9). Each implementation was written, tested, and optimized by the authors
most experienced with the method—the cut-Finite Element Method (cut-FEM) by G. Lud-
vigsson, S. Sticko, G. Kreiss; the Difference Potentials Method (DPM) by K. R. Steffen, Q.
Xia, Y. Epshteyn; and the Finite Difference Method satisfying Summation-By-Parts, with
a Simultaneous Approximation Term (SBP–SAT–FD) by S. Wang, G. Kreiss. Although we
consider only one type of boundary/interface (a circle), we hope that the benchmark problems
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considered will be a valuable resource, and the numerical results a valuable comparison, for
researchers interested in numerical methods for such problems.

The primary differences between the cut-FEM and the standard finite element method are
the stabilization terms for near-boundary degrees of freedom, and the quadrature over cut
(intersected) elements. Tuning the free parameters in the stabilization terms could mitigate
the errors observed in Figs. 8, 9. (We have done some preliminary experiments suggesting that
the errors decrease when tuning these parameters, but further investigations are required in
order to guarantee robustness.) Given a level-set description of the geometry, there are robust
algorithms for constructing the quadrature over cut elements. Together, these differences
allow for an immersed (non-conforming) grid to be used. The theoretical base for cut-FEM
is well established.

The DPM is based on the equivalence between the discrete system of Eq. (33) and the
Boundary Equations with Projection (Theorem 1). The formulation outlined in Sect. 3.2
allows for an immersed (non-conforming) grid; fast O(N log N ) algorithms, even for prob-
lems with general, smooth geometry; and reduces the size of the system to be solved at each
time-step. The convergence theory is well-established for general, linear, elliptic boundary
value problems, and we conjecture in Sect. 3.2 that this extends to the current setting. In this
work, we have extended DPM to work with implicitly-defined geometries for the first time.
This is a first step for solving problems where the interface moves with time.

In the finite difference framework (the SBP–SAT–FD method, in this work), the SBP
property makes it possible to prove stability and convergence for high-order methods by an
energy method. Combined with the SAT method to impose boundary and interface condi-
tions, the SBP–SAT–FD method can be efficient to solve time-dependent PDE. Geometrical
features are resolved by curvilinear mapping, which requires an explicit parameterization
of boundaries and interfaces. High quality grid generation is important—our experiments,
though not reported in this work, have shown that the error in the solution is sensitive to both
the orthogonality of the grid and the grid stretching.

Similarities between the cut-FEM and the DPM (beyond the use of an immersed grid)
include the thin layer of cut cells along the boundaries/interfaces (cut-FEM) and the discrete
grid boundary γ (DPM); and the use of higher-order normal derivatives in the stabilization
term (cut-FEM) and extension operator (in the Boundary Equations with Projection; DPM).
A similarity between the cut-FEM and SBP–SAT–FD is the weak imposition of boundary
conditions, via Nitsche’s method (cut-FEM) or the SAT method (SBP–SAT–FD). In this
work, the DPM and the SBP–SAT–FD method both use an underlying finite-difference dis-
cretization, but the DPM is not restricted to this type of discretization.

Although both the cut-FEM and the DPM use higher-order normal derivatives in their
treatment of the boundary/interface, the precise usage differs. For cut-FEM, it is the normal
of the element interfaces cut byΓ , while for DPM, it is the normal of the boundary/interfaceΓ .
Moreover, in the cut-FEM, stabilization terms (19) involving higher-order normal derivatives
at the boundaries of cut-elements are added to the weak form of the PDE, to control the
condition number of the mass and stiffness matrices, with a priori estimation of parameters to
guarantee positive-definiteness of these matrices; while in the DPM, the Boundary Equations
with Projection is combined with the Extension Operator (Definition 4), which incorporates
higher-order normal derivatives at the boundary/interface Γ .

Returning to Sect. 5.3, we see (in Tables 1, 2, 3, 4, 5 and Figs. 6, 7, 8, 9, 10, 11, 12)
that the expected rate of convergence for the second- and fourth-order versions of DPM and
cut-FEM is achieved, while the DPM has the smallest error constant across all tests. For
the SBP–SAT–FD method, expected convergence rates are obtained in some experiments. A
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noticeable exception is Test Problem 2A, for which the fourth-order SBP–SAT–FD method
only has a convergence rate of three.

From the error plot in Fig. 9c, we observe that the large error is localized at the four corners
of the domain Ω , where the curvilinear grid is non-orthogonal and is stretched the most (see
Fig. 5b).

As seen in the error plots (Figs. 8, 9), the error for the cut-FEM and the SBP–SAT–FD
has “spikes”, while for the DPM the error is smooth. A surprising observation from Fig. 9 is
that conforming grids (on which the SBP–SAT–FD method is designed) do not necessarily
produce more accurate solutions than immersed grids (on which the cut-FEM and the DPM
are designed). Indeed, it is challenging to construct a high-quality curvilinear grid for the
considered composite domain problem.

Future directions we hope to consider (in the context of new developments and also
further comparisons) include: (i) parabolic problems with moving boundaries/interfaces, (ii)
comparison of numerical methods for interface problems involving wave equations [12,70,
71,75,78], (iii) extending our methods to consider PDEs in 3D, (iv) design of fast algorithms,
and (v) design of adaptive versions of our methods.

Indeed, for (i), difficulties for the cut-FEM might be the costly construction of quadra-
ture, while for DPM difficulties might be the accurate construction of extension operators.
Regarding (iii), this has already been done for the cut-FEM and SBP–SAT–FD; while for the
DPM, this is current work, with the main steps extending from 2D to 3D in a straightforward
manner.

7 Conclusion

In this work, we propose a set of benchmark problems to test numerical methods for parabolic
partial differential equations in irregular or composite domains, in the simplified geometric
setting of Sect. 2, with the interface defined either explicitly or implicitly. Next, we compare
and contrast three methods for the numerical approximation of such problems: the (i) cut-
FEM; (ii) DPM; and (iii) SBP–SAT–FD. Brief introductions of the three numerical methods
are given in Sect. 3. It is noteworthy that the DPM has, for the first time, been extended to
problems with an implicitly-defined interface.

For the three methods, the numerical results in Sect. 5.3 illustrate the high-order accuracy.
Similar errors (different by a constant factor) are observed at grid points away from the bound-
ary/interface, while the observed errors near the boundary/interface vary depending upon the
given method. Although we consider only test problems with circular boundary/interface,
the ideas underlying the three methods can readily be extended to more general geometries.

In general, all three methods require an accurate and efficient resolution of the explicitly-
or implicitly-defined irregular geometry: cut-FEM relies on accurate quadrature rules for
cut elements, and a good choice of stabilization parameters; DPM relies on an accurate and
efficient representation of Cauchy data using a good choice of basis functions; and SBP–
SAT–FD relies on the smooth parametrization to generate a high-quality curvilinear grid.
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8 Appendix (DPM)

Let us now expand some details presented in the brief introduction to the Difference Potentials
Method (Sect. 3.2).

8.1 Fully-Discrete Formulation of (3, 4)

The fully-discrete, finite-difference discretization introduced in (33) is

Ls

t,hui+1

s = F i+1
s , (x j , yk) ∈ M+

s . (62)

The general form of the operator is Ls

t,h = λs(t

i+1)
h − σ I , where σ = 3
2
t

for second-

order (BDF2–DPM2), σ = 25
12
t

for fourth-order (BDF4–DPM4), and 
h is either a standard
five- or nine-point Laplacian. For the nine-point Laplacian, we have


hu j,k =
1

12h2
(−u j−2,k + 16u j−1,k + 16u j+1,k − u j+2,k − u j,k−2

+ 16u j,k−1 + 16u j,k+1 − u j,k+2 − 60u j,k) (63)

for points sufficiently far away from the boundary of the auxiliary domain Ω0
s . For points

that are close to the boundary, we use a modified, fourth-order stencil. For example, at the
southwest corner, we take


hu1,1 =
1

12h2
(10u0,1 − 4u2,1 + 14u3,1 − 6u4,1 + u5,1

+ 10u1,0 − 4u1,2 + 14u1,3 − 6u1,4 + u1,5 − 30u1,1), (64)

where u0,1 and u1,0 will be from the boundary condition (7).
Next, the right-hand side of (33) for BDF2–DPM2 is given by

F i+1
s = − f i+1

s −
σ

3
(4ui

s − ui−1
s ), (65)

and for BDF4–DPM4 by

F i+1
s = − f i+1

s −
σ

25
(48ui

s − 36ui−1
s + 16ui−2

s − 3ui−3
s ). (66)

Lastly, the initialization at t = 0 is done using the exact solutions for the terms u0
s , u−1

s , u−2
s ,

and u−3
s . Another possibility would be the use of lower-order BDF methods, then advancing

to higher-order methods once enough stages are established. No significant differences were
observed between the two approaches.

8.2 Equation-Based Extension

Let us now expand the discussion surrounding (39–41) leading up to Definition 4 of the
Extension Operator (42).

An important step in this discussion is to recast the original PDE (3, 4) into a curvilinear
form, for points (x, y) in the vicinity of Γ . Following the notation [58], let us first introduce
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the coordinate system (d, ϑ) for points in the vicinity of Γ . Recall from Definition 42 that d

is the distance in the normal direction from a given point to its orthogonal projection on Γ ,
while ϑ is the arclength along Γ from some reference point to the orthogonal projection. In
this coordinate system, the PDE (3, 4) becomes

∂us

∂t
− λs

(
1

Hϑ

[
∂

∂n

(

Hϑ

∂us

∂n

)

+
∂

∂ϑ

(
1

Hϑ

∂us

∂ϑ

)])

= fs, (67)

where where Hϑ = 1 − dκ is the Lamé coefficient, and κ is the signed curvature along the
interface Γ .

From (67), a straightforward calculation gives the second-order normal derivative ∂2us

∂n2

(used in the calculation of (41)), which is

∂2us

∂n2
=

1

λs

(
∂us

∂t
− fs

)

−
∂2us

∂ϑ2
+ κ

∂us

∂n
. (68)

For the fourth-order numerical method, which uses an Extension Operator with p = 4, we
also need the third- and fourth-order normal derivatives, which we state now. Differentiating
(68) with respect to n, we see that

∂3us

∂n3
=

1

λs

(
∂2us

∂t∂n
−

∂ fs

∂n

)

−
∂3us

∂n∂ϑ2
+ κ

∂2us

∂n2
(69)

and

∂4us

∂n4
=

1

λ2
s

(
∂2us

∂t2
−

∂ fs

∂t

)

· · · +
1

λs

(

−2
∂3us

∂t∂ϑ2
+ κ

∂2us

∂n∂t
−

∂2 fs

∂n2
+

∂2 fs

∂ϑ2
+

∂4us

∂ϑ4
− κ

∂3us

∂n∂ϑ2

)

+ κ
∂3us

∂n3
.

(70)

Next, let us follow-up on comments made in the text following (41). There, it was pointed

out that the unknown Dirichlet and Neumann data
(

us,
∂us

∂n

)

are the only data required for

the Extension Operator (42) with p = 2. Moreover, it was pointed out that this is also true
for the Extension Operator when p = 4. The reasoning is as follows.

– The time derivatives ∂us

∂t
, ∂2us

∂t2 , ∂ fs

∂t
, ∂2us

∂n∂t
, and ∂3us

∂t∂ϑ2 can be approximated by the backward
difference formula. In BDF2–DPM2,

∂ui+1
s

∂t
≈

3ui+1
s − 4ui

s + ui−1
s

2
t
and (71)

∂2ui+1
s

∂t2
≈

2ui+1
s − 5ui

s + 4ui−1
s − ui−2

s


t2
, (72)

while in BDF4–DPM4,

∂ui+1
s

∂t
≈

25ui+1
s − 48ui

s + 36ui−1
s − 16ui−2

s + 3ui−3
s

12
t
and (73)

∂2ui+1
s

∂t2
≈

1


t2

(
15

4
ui+1

s −
77

6
ui

s +
107

6
ui−1

s − 13ui−2
s +

61

12
ui−3

s −
5

6
ui−4

s

)

.

(74)
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– The derivatives in terms of arclength ϑ can be computed from us or ∂us

∂n
. For example,

denoting us =
∑N 0

ν=1 c
s,i+1
1,ν φν(ϑ) (using notation following from (46)), then it comes

handy that

∂us

∂ϑ
=

N 0
∑

ν=1

c
s,i+1
1,ν φ′

ν(ϑ),
∂2us

∂ϑ2
=

N 0
∑

ν=1

c
s,i+1
1,ν φ′′

ν (ϑ),
∂4us

∂ϑ4
=

N 0
∑

ν=1

c
s,i+1
1,ν φ(4)

ν (ϑ).

(75)

8.3 The System of Equations at Each Time Step

With the Cauchy data u
i+1
s,Γ and Extension Operator Exs u

i+1
s,Γ from Γ to γs introduced in Defi-

nition 4, and the spectral representation introduced in (46), we now give a sketch of the linear

system for the coefficients (c
s,i+1
1,ν )N

0

ν=1 and (c
s,i+1
2,ν )N

1

ν=1, and moreover the approximation of

the solution us(x, y, t i+1) at (x j , yk) ∈ N+
s .

Indeed, substituting Exs ũ
i+1
s,Γ (42, 46) into the BEP (38), the resulting linear systems are

1
∑

k=0

N k
∑

ν=1

(

c
s,i+1
k+1,ν Exs �k

ν − c
s,i+1
k+1,ν P i+1

γs
Exs �k

ν

)

= Trγs [Gi+1

t,h F i+1

s ]. (76)

This can be further elucidated by introducing the vector of unknowns

ci+1
s =

[

c
s,i+1
1,1 c

s,i+1
1,2 · · · c

s,i+1
1,N 0

︸ ︷︷ ︸

ci+1
s,1

c
s,i+1
2,1 c

s,i+1
2,2 · · · c

s,i+1
2,N 1

︸ ︷︷ ︸

ci+1
s,2

]⊤
(77)

(so that ci+1
s = [ci+1

s,1 , ci+1
s,2 ]⊤), and the matrix

As =
[

(I − P i+1
γs

) Exs �0
1, (I − P i+1

γs
) Exs �0

2, · · · (I − P i+1
γs

) Exs �0
N 0

︸ ︷︷ ︸

As,1

,

(I − P i+1
γs

) Exs �1
1, (I − P i+1

γs
) Exs �1

2, · · · (I − P i+1
γs

) Exs �1
N 1

]

︸ ︷︷ ︸

As,2

. (78)

Then, the full system of Eq. (76) is

A

[

ci+1
1

ci+1
2

]

=
[

Trγ1 [Gi+1

t,h F i+1

1 ]
Trγ2 [Gi+1


t,h F i+1
2 ]

]

, with A =
[

A1 0
0 A2

]

. (79)

However, note that ci+1
1 and ci+1

2 are related by the interface conditions (8, 9), so that the

number of unknowns in (79) is equal the dimension of either ci+1
1 or ci+1

2 , depending on
which one is considered the independent unknown. Therefore, the dimension of A is (|γ1| +
|γ2|) × (N 0 + N 1), where N 0 + N 1 is the dimension of ci+1

1 or ci+1
2 (whichever is the

independent unknown).

Remark 8 The independent unknown (ci+1
1 or ci+1

2 ) is chosen so that the finite-dimensional,

spectral representation (46) of the Cauchy data u
i+1
s,Γ accurately resolves the Cauchy data with

a small number of basis functions, in the consideration of both accuracy and computational
efficiency. For (TP–2A) and (TP–2B), we choose ci+1

2 as the independent unknown, while
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for (TP–2C) we choose ci+1
1 . With these choices for the independent unknown, we have

N 0 = N 1 = 1 for the three considered test problems.

Since each column involves the Difference Potentials operator P i+1
γs

applied to a vector

Exs �k
ν , each column is therefore constructed via one solution of the Auxiliary Problem

(Definition 1). However, the Auxiliary Problems are posed on the computationally simple
Auxiliary Domains, and can be computed using a fast FFT- or multigrid-based algorithm,
which can significantly reduce the computational cost. Moreover, if λs(t) ≡ λs is constant,
then A can be computed and inverted once (as a pre-processing step), thus significantly
reducing computational cost for long-time simulations.
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